
Hou SL, Huang XK, Fei CQ et al. A survey of text summarization approaches based on deep learning. JOURNAL OF

COMPUTER SCIENCE AND TECHNOLOGY 36(3): 633–663 May 2021. DOI 10.1007/s11390-020-0207-x

A Survey of Text Summarization Approaches Based on Deep Learning

Sheng-Luan Hou1,2, Xi-Kun Huang2,3,4, Chao-Qun Fei1,2, Shu-Han Zhang1,2, Yang-Yang Li3,4, Qi-Lin Sun2,3,4

and Chuan-Qing Wang2,3,4

1Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100190, China
2University of Chinese Academy of Sciences, Beijing 100049, China
3Academy of Mathematics and Systems Sciences, Chinese Academy of Sciences, Beijing 100190, China
4Key Laboratory of Management, Decision and Information System, Chinese Academy of Sciences, Beijing 100190, China

E-mail: houshengluan1989@163.com; huangxikun14@mails.ucas.ac.cn; {feichaoqun, zhangshuhan}@ict.ac.cn
E-mail: {liyangyang12, sunqilin13, wangchuanqing15}@mails.ucas.ac.cn

Received December 6, 2019; accepted December 24, 2020.

Abstract Automatic text summarization (ATS) has achieved impressive performance thanks to recent advances in deep

learning (DL) and the availability of large-scale corpora. The key points in ATS are to estimate the salience of information

and to generate coherent results. Recently, a variety of DL-based approaches have been developed for better considering

these two aspects. However, there is still a lack of comprehensive literature review for DL-based ATS approaches. The

aim of this paper is to comprehensively review significant DL-based approaches that have been proposed in the literature

with respect to the notion of generic ATS tasks and provide a walk-through of their evolution. We first give an overview of

ATS and DL. The comparisons of the datasets are also given, which are commonly used for model training, validation, and

evaluation. Then we summarize single-document summarization approaches. After that, an overview of multi-document

summarization approaches is given. We further analyze the performance of the popular ATS models on common datasets.

Various popular approaches can be employed for different ATS tasks. Finally, we propose potential research directions in

this fast-growing field. We hope this exploration can provide new insights into future research of DL-based ATS.

Keywords automatic text summarization, artificial intelligence, deep learning, attentional encoder-decoder, natural

language processing

1 Introduction

Automatic text summarization (ATS) plays an in-

creasingly important role in addressing how to acquire

information and knowledge in a fast, reliable, and ef-

ficient way. ATS aims to produce a condensed repre-

sentation while keeping the salient elements from one

or a group of topic-related documents. ATS is a poten-

tial research area and receives considerable attention

from academia to industries. For decades, various kinds

of approaches have been proposed, including graph-

based methods [1, 2], lexical chain based methods [3],

constraint optimization based methods [4, 5], shallow

machine learning based methods [6] and deep learning

based methods [7–9]. However, ATS is still one of the

most challenging problems because of the complexity

of input document(s).

Deep learning (DL) has emerged as a powerful ma-

chine learning tool and produces state-of-the-art pre-

diction results in many fields, such as natural language

processing (NLP) and computer vision (CV) [10]. Rush

et al. [7] first brought DL-based ATS into prominence by

proposing an attention-based summarization system.

After that, a variety of variants have been developed.

The underlying framework for these models is usually a

deep neural network that consists of an encoder and a

decoder. Many researchers have further proposed addi-

tional improvements over encoder-decoder models, such

as incorporating attention mechanism, copying mech-

anism and coverage mechanism into the sequence-to-

Survey

The work was supported by the National Key Research and Development Program of China under Grant No. 2016YFB1000902
and the National Natural Science Foundation of China under Grant Nos. 61232015, 61472412, and 61621003.

©Institute of Computing Technology, Chinese Academy of Sciences 2021

http://dx.doi.org/10.1007/s11390-020-0207-x

634 J. Comput. Sci. & Technol., May 2021, Vol.36, No.3

sequence learning framework, and leveraging external

knowledge from text classification.

As more and more research interest focuses on DL-

based ATS, an overview is needed to understand better

what has been achieved in this field. To fill this gap,

this work focuses on generic ATS tasks and aims to pro-

vide insights into some of the problems that inherently

arise with current approaches. We compare the popular

approaches for various ATS tasks. We also provide the

performance analyses of most of the ATS models dis-

cussed in this paper, in terms of both ROUGE [11] and

human evaluation. The main contents of this paper are

summarized as follows.

•We provide a comprehensive overview of DL-based

ATS methods specifically in the context of encoder-

decoder models.

• The large-scale datasets used for DL-based ATS

are listed and elaborated in this paper.

• Most of DL-based ATS work focuses on single-

document summarization (SDS), which contains two

parts: abstractive models and extractive models. We

elaborate these two parts and give a comparison of

them. Moreover, we summarize various DL-based

multi-document summarization (MDS) approaches, in-

cluding adapting methods from the models for SDS,

encoder-decoder methods, and neural ranking models.

• We quantitatively compare the performance of

different approaches in the context of ROUGE and hu-

man evaluation. Some excellent conclusions are ob-

tained (see Section 7).

The remainder of this paper is structured as fol-

lows. In Section 2, we introduce preliminaries. Sec-

tion 3 details the datasets commonly used in DL-based

ATS methods. Section 4 introduces the DL methods

for abstractive SDS. Section 5 shows the extractive SDS

approaches. Section 6 details the MDS methods. Sec-

tion 7 is the performance analysis. Finally, Section 8

concludes with research directions for future work.

2 Preliminaries

2.1 Abstractive and Extractive Summarization

Given one or more documents, ATS aims to pro-

duce a condensed text that captures the salient mean-

ing of the input document(s). Let us suppose the input

X consists of a sequence of m words (w1,w2, · · ·,wm)

from a fixed vocabulary V of size |V| = V . A summa-

rizer outputs a shortened sequence with length n < m.

Definition 1 (Abstractive Summarization). A

summarizer is abstractive if it tries to generate the op-

timal sequence Y = (y1,y2, · · ·,yn), where yi ∈ V.
Definition 2 (Extractive Summarization). A sum-

marizer is extractive if it transfers words, clauses, or

sentences from the input to generate the optimal se-

quence Y = (y1,y2, · · ·,yn), where yi ∈ X(o1,o2,···,on),

oj ∈ {w1,w2, · · ·,wm}.

2.2 Deep Neural Networks

Deep neural networks (DNNs) leverage sophisti-

cated mathematical models for data processing in com-

plex ways.

2.2.1 Feed-Forward Neural Network

A feed-forward neural network (FFNN) treats all

input features as unique and independent of one an-

other. The commonly-used situation is the end layer

for probability outputs. Note that the multi-layer per-

ceptron (MLP) is a class of FFNN, which consists of

one or more hidden layers.

2.2.2 Recurrent Neural Network

Recurrent neural networks (RNNs) are a class of

DNNs with cycles in them, which can be thought of as

multiple copies of the same network. Supposing the in-

put sequence is X = (x1,x2, · · ·,xm), where xt is the

input vector at time step t, the RNN will output hidden

states H = (h1,h2, · · ·,hm).

The Vanilla RNN has the simple network struc-

ture. At time step t, the hidden layer is ht =

σh(Whxt + Uhht−1 + bh), and the output layer is

ot = σo(Woht+bo), where σh and σ0 are both activate

functions.

Long Short Term Memory (LSTM) [12] was designed

capable of learning long-term dependencies. The key

to LSTM is the cell state, along which information

flows: “forget gate” decides what information should be

thrown away; “input gate” decides what new informa-

tion should be stored; the “tanh” layer creates a vector

of new candidate values of xt, and then the cell state

can be updated; “output gate” decides what should be

outputted.

The gated recurrent unit (GRU) [13] is much simpler

than LSTM, which has two gates: “update gate” con-

trols how much information from the previous hidden

state will be carried; “reset gate” is used to decide how

much of the past information will be forgotten.

A bidirectional RNN consists of a forward RNN and

a backward RNN, which was formulated to include the

information of both preceding and following elements.

Sheng-Luan Hou et al.: A Survey of Text Summarization Approaches Based on Deep Learning 635

When the RNN is LSTM (GRU), the bidirectional RNN

becomes BiLSTM (BiGRU).

2.2.3 Convolutional Neural Network and Graph
Convolutional Network

In a convolutional neural network (CNN) [14], the

hidden layers typically consist of a series of convolu-

tional filters. After applying a filter and a max-over-

time pooling operation, the significant features can be

identified. Features of multiple filters are concatenated

together as the final representation.

Graph convolutional networks (GCNs) [15] are a

type of graph-based neural networks to calculate the

probability for each node label in the graph. A GCN

is modeled as a function f(X,A) to encode the graph

structure, where X ∈ RN×C (N is the number of nodes

in the graph, and C is the number of input channels)

is the matrix of node features, and A is the adjacency

matrix.

2.2.4 Recursive Neural Network

Recursive neural networks (ReNNs) [16] are gener-

alizations of RNNs on tree structures. The represen-

tation of a parent node is: pl,r = f(W [cl, cr] + b),

where [cl, cr] denotes the concatenation of children rep-

resentations. ReNNs have been successfully applied

in NLP, such as sentiment analysis [16] and rhetorical

parsing [17].

There are some other types of DNN. S-LSTM [18] is

an extension of LSTM to tree structures, in which a

memory cell can reflect the history memories of mul-

tiple child cells in a recursive process. RCNN [19] was

proposed by employing a recurrent structure to cap-

ture contextual information and a max-pooling layer to

capture the key components.

2.3 Encoder-Decoder Model

The encoder-decoder model [13, 20] addresses the

sequence-to-sequence nature where input sequences

may differ in length from output sequences. It learns to

encode an input sequence X = (x1,x2, · · ·,xm) into a

fixed-length internal representation, and decodes it into

an output sequence Y = (y1,y2, · · ·,yn).

The encoder is responsible for encoding the entire

sequence into a fixed-length vector c. The decoder is

responsible for mapping c to the target sequence. The

encoder-decoder model is also called the sequence-to-

sequence model, or the Seq2Seq model for short.

2.4 Attention Mechanism

The attention mechanism was proposed to pay se-

lective attention to the inputs and relate them to the

output sequence [21]. The attentional encoder-decoder

model requires access to the outputs from the encoder:

h1,h2, · · ·,hm = Encoder(X). (1)

In the decoder, the probability for each output yt is:

p(yt|{y1,y2, · · ·,yt−1},X) = g(yt−1, st, ct), where g(·)
is potentially an MLP, st is the hidden state in time

step t, and the context vector ct is computed as

ct =

m∑
i=1

αtihi,

where the weight αti determines how much attention

should be paid to that input word

αti =
exp(eti)∑m
j=1 exp (etj)

= softmax(exp(eti)), (2)

where eti = a(st−1,hi) is an alignment model that re-

flects the importance of hi with respect to the previ-

ous hidden state st−1 in generating yt. According to

its different implementations, the attention mechanism

has different classifications, such as additive attention

vs multiplicative attention, soft attention vs hard at-

tention, global attention vs local attention.

Additive attention [21] computes the alignment

model a(·) using an MLP with a single hidden layer

a(sj ,hi) = vTa tanh(Wa[hi, sj]), (3)

where vTa and Wa are attention parameters. Multi-

plicative attention [22] simplifies a(·) as

a(sj ,hi) = hT
i Wasj .

Multiplicative attention is faster as it can be imple-

mented by using matrix multiplication.

Soft attention [21, 23] is the same as additive atten-

tion. Hard attention [23] only focuses on one hidden

state of the input sequence, which is decided by treat-

ing i as an intermediate latent variable, and a multi-

noulli distribution is assigned. However, it is non-

differentiable and is complicated to train.

Global attention [22] computes a(·) using three diffe-

rent alternatives, which are simplifications and gener-

alizations of the above models.

a(sj ,hi) =


hT
i sj , dot,

hT
i Wasj , general,

vTa tanh(Wa[hi, sj]), concat.

(4)

636 J. Comput. Sci. & Technol., May 2021, Vol.36, No.3

Local attention [22] only focuses on a small window

of the hidden states, which generates an aligned posi-

tion pt for each target word, and the context vector ct is

computed as a weighted average over the source hidden

states within the window [pt −D,pt + D], where D is

empirically selected. Unlike (2), the attention weight

here is computed as αti = eti exp(− (i−pt)
2

2σ2), where

eti = a(st−1,hi) is computed by (4).

The above attention mechanisms, in each decoding

step, only look at the previous hidden state st−1 and

the source hidden states H, may result in: 1) repeating

words or phrases; 2) missing some salient parts. Self-

attention and temporal attention are two attempts to

tackle these problems [22].

Self-attention [12, 24], also known as intra-attention,

was proposed to represent a sequence as a ma-

trix. With the outputs of encoder, the self-

attention mechanism outputs a weight matrix A =

softmax(Ws2 tanh(Ws1H
T)), where Ws2 and Ws1 are

parameters, and H = (h1,h2, · · ·,hm) is from (1). The

resulting matrix is M = AH. This allows the decoder

to keep track of its progress and reduces the generation

of repeated information.

Temporal attention [25] uses the historical informa-

tion to modulate the subsequent attention. Each atten-

tion distribution is divided by the sum of the previous

steps, which effectively dampens a repeating problem.

2.5 Copying Mechanism and Coverage

Mechanism

To reduce the computational cost, a common ap-

proach is to limit the output vocabulary to a shortlist:

only top-K most frequent words and UNK (a symbol

for all other unknown words). In this sense, the UNKs

are also called OOV (out-of-vocabulary) words. How-

ever, two problems will be caused: 1) some of the words

in the shortlist occur less frequently in the training set

and thus are difficult to learn a good representation;

2) some important information is missing by mapping

different words to UNK and there exists a chance to

see UNK at test time. Copying mechanism, such as

pointer network or CopyNet, is a solution by choos-

ing certain segments in the input sequence and putting

them at proper places in the output sequence. Another

problem for Seq2Seq models is repetition, i.e., the gene-

rated summaries tend to repeat themselves. The cov-

erage mechanism had been proved effective for solving

repetition problems [26].

2.5.1 Pointer Network

The pointer network [8, 27] leverages the additive at-

tention to produce an output sequence consisting of

elements from the input sequence. At time step j,

the output probability is: p(yj |{y1,y2, · · ·,yj−1},X) =

softmax(a(sj ,hi)), where X is the input sequence,

y1,y2, · · ·,yn is a sequence of output indices, and

a(sj ,hi) is the output of addictive attention from (3).

The pointer network can also be used to tackle the prob-

lems where the size of the output dictionary is variable,

such as sorting variable sized sequences.

2.5.2 CopyNet

CopyNet [28] predicts words based on a model with

two modes: generate mode and copy mode, where the

former follows the regular way of word generation and

the latter picks words from the source sequence.

p(yt|st,yt−1, ct,M)

= p(yt, g|st,yt−1, ct,M) + p(yt, c|st,yt−1, ct,M),

where M denotes the output of the encoder (see (1)),

and g denotes the generate mode while c denotes the

copy mode. Due to a shared normalization term, the

two modes are basically competing through a softmax

function. With this approach, the UNKs can be in-

ferred from neighboring words.

2.5.3 Coverage Mechanism

See et al. [26] adapted the coverage model of Tu et

al. [29] for solving repetition in ATS, in which a cover-

age vector is maintained to keep track of the attention

history. (3) is modified as

a(sj ,hi) = vTa tanh(Wa[hi, sj , c
j
i]),

where cj =
∑j−1
j′=0αj′ is a (unnormalized) distribution

over the source document words that represents the de-

gree of coverage.

2.6 Transformer

Transformer [30] is a parallelized attention architec-

ture based solely on the multi-head self-attention mech-

anism. Essentially, attention can be described as map-

ping a query and a set of key-value pairs to an output.

We suppose the dimension of queries and the dimension

of keys are both dk, and the dimension of each value is

dv.

Sheng-Luan Hou et al.: A Survey of Text Summarization Approaches Based on Deep Learning 637

2.6.1 Multi-Head Self-Attention

Multi-head attention jointly attends to information

from different representation subspaces

Multi-head attention(Q,K,V)

= concat(head1,head2, · · ·,headh)WO,

where headi = Scaled dot-product attention(QWQ
i ,

KWK
i ,VW

V
i), parameter matricesWQ

i ∈ Rdmodel×dk ,

WK
i ∈ Rdmodel×dk , W V

i ∈ Rdmodel×dv and WO ∈
Rhdv×dmodel , where h is the number of heads and dmodel

is the dimension of input and output embedding.

Scaled dot-product attention(Q,K,V)

= softmax

(
QKT

√
dk

)
V ,

where Q, K, and V are matrices packed by a set of

queries, keys and values respectively. These three ma-

trices are created from the encoder’s input sequence X:

Q = XWQ,K = XWK ,V = XW V .

2.6.2 Architecture of Transformer

Transformer follows the encoder-decoder architec-

ture. The encoder consists of a stack of six identical lay-

ers, each of which has two sub-layers. The first one uses

a multi-head self-attention mechanism, and the second

is an MLP. Residual connections are employed around

each of the sub-layers followed by layer normalization.

Different from the layers in the encoder, there is a third

sub-layer in the decoder, which is designed to prevent

positions from attending to subsequent positions.

To summarize, FFNNs treat features as indepen-

dent (each layer has different parameters), CNNs fo-

cus on relative location and proximity, and RNNs and

ReNNs both have shared memories. Attention mecha-

nism and Transformer can grab context about an ele-

ment.

2.7 Reinforcement Learning

Reinforcement learning (RL) is a way of training an

agent to interact with a given environment to maximize

a reward [24]. A sequential Markov decision process is

considered in RL, which has been used to solve prob-

lems where the metric to optimize is not differentiable,

such as ROUGE [24]. Taking extractive summarization

as an example, at each time step t, the agent is in a

state which includes the document and the previous

extractions. The agent would take an action that de-

cides whether a textual unit is extracted or not. After

that, the agent may receive an immediate reward that

shows how good the action is. The reward can also be

delayed. When the agent finishes extractions from the

document, it will receive a final reward that indicates

the performance of the entire action sequence.

3 Datasets for ATS

Identifying large, high-quality resources for ATS

has called for creative solutions: the summaries in

DUC/TAC are created by linguists, news headlines

are adopted as summaries of the first sentences in Gi-

gaword, concatenated bullet points are summaries in

CNN/DM, librarian archival summaries are used in

NYT, etc. Table 1 shows the statistics of the popu-

lar datasets for ATS approaches based on DL. Giga-

word has the biggest scale with the shortest summaries.

Compared with CNN/DM, the summaries in NYT are

shorter.

3.1 DUC/TAC

Document Understanding Conference (DUC) 1○ is

an evaluation workshop for a long-term evaluation ef-

fort in summarization from 2001. A set of English docu-

ments was published every year for participants to eva-

luate their summarization systems. DUC has become

a summarization track of TAC since 2008.

The documents are from the news agency. Ta-

ble 2 is the detailed statistics for MDS, from which

we can see that there are multiple versions of ground-

truth MDS summaries per cluster. For SDS, there are

four datasets. In DUC’01 and DUC’02, there is a 100-

word ground-truth abstractive summary for each article

in a cluster. There are very short (10-word) ground-

truth summaries in the DUC’03 dataset. The DUC’04

dataset has 75 bytes (roughly 14 words) ground-truth

summaries.

3.2 Gigaword

Gigaword contains news articles from various news

agencies. For ATS, Rush et al. [7] paired the head-

line (title) of each article with its first sentence to cre-

ate a text-summary pair. Gigaword is processed by

lower-casing, replacing all digit characters with special

character, replacing unseen words with “UNK”, and re-

1○http://duc.nist.gov/, June 2020.

638 J. Comput. Sci. & Technol., May 2021, Vol.36, No.3

Table 1. Statistics of Large-Scale Datasets

Dataset Avg. Length Avg. Length #Pairs in #Pairs in #Pairs in

of Source of Summary Training Set Validation Set Testing Set

Gigaword [7] 31.3 8.5 3 800 000 189 000 1 951

CNN/DM [25] ≈ 800.0 ≈ 60.0 286 722 13 362 11 480

NYT [31] 549.0 40.0 589 284 32 736 32 739

WikiSum [32] >35 000.0 139.4 1 579 360 38 144 38 205

WikiCatSum [33] 800.0 ≈ 100.0 ≈ 162 000 ≈ 9 000 ≈ 9 000

Newsroom [34] 658.6 26.7 995 041 ≈ 105 760 ≈ 105 760

Note: “#” means “number of”.

Table 2. Statistics of DUC/TAC Datasets for MDS 2○

Dataset Output Type #Clusters #Documents in Total #Ground-Truth Summary Summary Length

DUC’01 Abstractive 60 607 3 per cluster 50, 100, 200, 400 words

DUC’02 Abstractive 59 567 128 10, 50, 100, 200 words

DUC’02 Extractive 59 567 128 200, 400 words

DUC’03 Abstractive 30 624 4 per cluster 100 words

DUC’04 Abstractive 50 10 per cluster 4 per cluster 665 bytes

DUC’05 Abstractive 50 1 593 4 per cluster 250 words

DUC’06 Abstractive 50 25 per cluster 4 per cluster 250 words

DUC’07 Abstractive 45 25 per cluster 4 per cluster 250 words

TAC’10 Abstractive 46 10 per cluster 8 per cluster 100 words

TAC’11 Abstractive 44 10 per cluster 8 per cluster 100 words

Note: “#” means “number of”.

moving all duplicate pairs with the texts in the DUC

dataset.

Rush et al. [7] provided script 3○ to do the above fil-

tering. This script can generate about 3.8 million train-

ing pairs, 189 000 validation pairs, and an equal number

of testing pairs. Note that the commonly used test set

is a randomly held-out 2 000 pairs.

ATS on the Gigaword dataset is also called headline

generation since this task generates a headline from the

first sentence of a document. However, the task is more

akin to sentence paraphrasing as only the first sentence

is used to predict another sentence (i.e., the headline).

3.3 CNN/DM

Nallapati et al. [25] proposed an abstractive summa-

rization dataset CNN/DM by modifying a question-

answering dataset [35] of news articles paired with story

highlights from CNN and Daily Mail (DM). There are

two versions of the CNN/DM dataset.

1) Anonymous Version 4○ [25, 36]. For each pair, the

text and summary have both been pre-processed to re-

place each named entity with its own unique identifier.

2) Non-Anonymous Version 5○ [26]. The original text

and summary constitute each pair.

Different from DUC/TAC, there is only one version

of reference summary for each article. Table 3 is the

statistics of the CNN/DM dataset [36]. In the training

set, the average number of sentences (words) per docu-

ment is about 30 (800), and there are about 3 or 4 sen-

tences (60 words) in each reference summary. Note that

some systems [26, 36] use CNN/DM for training, whereas

others [8, 25,36] use only the DM subset.

Table 3. Statistics of CNN/DM Dataset [25]

#Pairs in #Pairs in #Pairs in Total

Training Set Validation Set Test Set Number

CNN subset 90 165 1 215 1 084 92 464

DM subset 196 557 12 147 10 396 219 100

Total 286 722 13 362 11 480 311 564

Note: “#” means “number of”.

2○http://duc.nist.gov/, June 2020.
3○https://github.com/facebook/NAMAS, June 2020.
4○https://github.com/deepmind/rc-data, June 2020.
5○https://github.com/abisee/cnn-dailymail, June 2020.

Sheng-Luan Hou et al.: A Survey of Text Summarization Approaches Based on Deep Learning 639

3.4 NYT

The NYT dataset [31] is a large collection of articles

published between 1987 and 2007 with article metadata

provided by the New York Times. Most articles in the

NYT dataset are manually summarized by library sci-

entists. This collection contains over 650 000 article-

summary pairs that are used for the development and

evaluation of SDS algorithms.

Paulus et al. [24] preprocessed this dataset for ATS,

which results in an average of 549 (40) words of docu-

ment (summary) per document-summary pair when

limiting the length of document (summary) to 800 (100)

words. Note that the NYT50 test set [37] is constructed

by removing the document-summary pairs whose sum-

maries are shorter than 50 words from the NYT test

set, which includes 3 452 test examples.

In the NYT dataset, the summaries are written by

library scientists. Some researchers revealed that the

data are somewhat biased toward extractive strategies,

making it particularly useful as an extractive summa-

rization dataset. Despite this, limited work has used

this dataset for ATS [24, 38,39].

3.5 WikiSum and WikiCatSum

WikiSum [32] was created as a large-scale dataset for

MDS with hundreds of thousands of Wikipedia articles.

In Wikipedia, the lead section introduces the entity

(e.g., a country, or a kind of food) that the article is

about, pointing out important facts associated with it.

The lead section is a summary of multiple documents

related to the entity. Since many articles have few cita-

tions, Google search results are taken as the supplemen-

tation. Based on this premise, the authors [32] proposed

the MDS task of generating the lead section from the

set of documents cited in Wikipedia articles or returned

by Google (using entity names as queries). The input

contains entity name (title) of a Wikipedia article, a

collection of documents (cited sources of Wikipedia ar-

ticles and Web search result articles from Google using

the titles as queries). The output is the lead section.

The authors [40] provided code and scripts 6○ to

crawl documents. Liu and Lapata [40] crawled about

78.9% of the original documents since some URLs have

become invalid. Table 1 includes the detailed statistics.

The summaries in WikiSum are multiple sentences and

sometimes multiple paragraphs, written in a fairly uni-

form style as encouraged by the Wikipedia manual of

style. The total number of words is orders-of-magnitude

larger than those of previous datasets.

WikiCatSum [33] is a domain-specific dataset that

can be regarded as a subset of WikiSum. It includes

about 180 000 pairs with more than five source docu-

ments. WikiCatSum includes three domains: Compa-

nies, Films, and Animals. Table 4 shows the dataset

statistics. The ROUGE-1 recall denotes the average

ROUGE-1 recall between the source document and the

ground-truth Wikipedia lead section. Articles in Wi-

kiCatSum are associated with a set of categories by

querying the DBPedia knowledge-base 7○.

Table 4. Statistics of WikiCatSum Dataset [33]

Category #Source-Target Pairs #Topics ROUGE-1 Recall

Company 62 545 40 55.1

Film 59 973 20 55.9

Animal 60 816 30 54.1

Note: “#” means “number of”.

3.6 Newsroom

Newsroom [34] was released by the Connected Expe-

riences Laboratory that contains 1.3 million news ar-

ticles and various meta-data information, such as title

and summary. The dataset is crawled and extracted

from 38 major publishers. The summaries in News-

room are written by authors and editors.

The Newsroom dataset is collected using social me-

dia and search engines. The sites are collected from

Alexa.com. After excluding sites that have few or no

articles with summary metadata available, a set of sites

is obtained. Over 100 million HTML pages and meta-

data of these sites are then crawled from Archive.org,

after which the newswire articles and meta-data such

as title and summary are identified.

3.7 Others

LCSTS [41] is a Chinese SDS dataset, which consists

of 2 400 591 Chinese short Weibo texts. The average

length of source documents and target summaries is

104 and 18 respectively. XSum [42] is a novel dataset

created for extreme, abstractive summarization. The

task is to reduce a news article to a short, one-sentence

summary. The training set contains about 204 000

article-summary pairs and the test set contains 11 000

pairs. Multi-News [43] is the first large-scale MDS news

6○https://github.com/tensorflow/tensor2tensor/tree/master/tensor2tensor/data generators/wikisum, June 2020.
7○https://wiki.dbpedia.org/downloads-2016-10, June 2020.

640 J. Comput. Sci. & Technol., May 2021, Vol.36, No.3

dataset, which contains 56 216 articles-summary pairs.

News articles and human-written summaries of them

are obtained from newser.com.

4 Single-Document Abstractive Approaches

According to Definition 1, abstractive ATS may

generate new words not present in the original text,

which involves natural language generation techniques.

Encoder-decoder models have become a popular basic

architecture to solve the single-document abstractive

summarization problem. With the research of atten-

tion mechanisms, the encoder-decoder models equipped

with them have gained better results.

4.1 Methodologies

It is common for models developed for abstractive

SDS to output a probability distribution over each word

in the out vocabulary W , which will be then trans-

formed into a final sequence of words as summary. The

final layer generally has one neuron with softmax ac-

tivation function for each word in W and outputs a

likelihood of each word being the next word in the sum-

mary.

4.1.1 ABS Model and Its Extensions

Motivated by the developments in neural machine

learning, Rush et al. [7] proposed an attention-based

summarization (ABS) model that combines a feed-

forward neural language model (FFNLM) with a con-

textual input encoder for headline generation from one

sentence. ABS utilizes an attention-based contextual

encoder to construct a representation based on the in-

put and current context. The FFNLM is parameterized

as a neural network, which consists of a standard lan-

guage model and the encoder term. When generating

summaries, the beam search strategy [44] is leveraged

as a compromise between exact and greedy decoding to

reduce the search space. Moreover, the authors exper-

imented with tuning a very small set of additional fea-

tures that trade off the abstractive/extractive tendency

of the system, which is referred to as ABS+. ABS is

trained on the Gigaword dataset, and ABS+ is further

trained on the DCU’03 dataset.

RAS (recurrent attentive summarizer) [45] is an ex-

tension of the ABS model. Improved attention models

are leveraged in the RAS model. The decoder is mod-

eled using two options: Vanilla RNN and LSTM. The

convolutional attention-based encoder convolves over

the full embeddings (the embedding of each word is the

addition of its word embedding and position embed-

ding) of consecutive words for attention distribution

computation. The RAS model is the novel convolu-

tional attention-based conditional RNN model.

Another extension of the ABS model is

ABS+AMR [46]. AMR (abstract meaning represen-

tation) is a rooted, directed, and acyclic graph that

encodes the meaning of a sentence. The information

presented in AMR, such as predicate-argument struc-

tures and named entities, is used since it provides

effective clues to produce summaries. The AMR for an

input sentence is acquired by a transition-based AMR

parser [47]. The results obtained from the AMR parser

are encoded by using a modified version of attention-

based Tree-LSTM encoder [48] as additional information

of the ABS model.

4.1.2 Encoder-Decoder Models with Various
Attention Mechanisms

In Lopyrev’s model [49], two deep stacks of four

LSTM units are utilized in the encoder and the encoder

respectively. The decoder takes as input the hidden

layers generated after feeding in the last word of the

input text. Two different attention mechanisms were

tested. The first one is the dot attention. The other

one consists of a small set of neurons for computing the

attention weights, which makes it easier to study the

function of the network. Experiments on the Gigaword

dataset showed the better performance of the simplified

attention. Note that the “teacher forcing” strategy [50]

is effective since the expected word in the actual sum-

mary is fed in when generating the next word. To over-

come the disconnect between training and testing, the

author in [49] randomly fed in a generated word at 10%

of the time.

Chen et al. [51] incorporated a coverage mechanism

(“distraction” in their paper) into their model. The

BiGRU is adopted as the encoder. They proposed a

novel attention mechanism that not only considers spe-

cific regions and content of input documents, but also

distracts them to traverse between different content

of a document. In the decoding process, three diffe-

rent types of distraction are enforced: Kullback-Leibler

(KL) divergence [52] of attention weights, distraction on

the attention-primed input content vector, and distrac-

tion on the hidden output vector.

The above models often generate repetitive and in-

coherent phrases when trained on longer documents.

To mitigate this problem, Paulus et al. [24] proposed

an intra-attention based encoder-decoder architecture.

Sheng-Luan Hou et al.: A Survey of Text Summarization Approaches Based on Deep Learning 641

The encoder is a BiLSTM and the decoder is a single

layer LSTM. An intra-temporal attention function is

used to attend over specific parts of the encoded input

sequence in which multiplicative attention is adopted.

The attention weights are then normalized with a tem-

poral attention function, which penalizes the input to-

kens that have obtained high attention scores in past

decoding steps. An intra-decoder attention mechanism

is introduced to further prevent the model from at-

tending over the same parts of the input on different

decoding steps. This is the first end-to-end model for

abstractive summarization on the NYT dataset.

Inspired by the graph-based approaches, Tan et

al. [53] introduced a graph-based attention mechanism

in the attentional encoder-decoder framework, in which

the attention score of a sentence is determined by a hid-

den state graph. This hidden state graph is composed

of representations of all sentences of an input docu-

ment. A hierarchical encoder framework is adopted,

where a word encoder encodes the words of a sentence

into the sentence representation, and a sentence en-

coder encodes the sentences of a document into the

document representation d. Two different LSTMs are

used as the word encoder and the sentence encoder re-

spectively. The LSTM-based decoder receives d as the

initial state and predicts the sentence representations

sequentially.

A bottom-up attention [54] is proposed to better

conduct summary content selection. A data-efficient

content selector is employed to over-determine salient

phrases in a source document. The selector decides

relevant aspects of the source document, which is for-

mulated as a word-level sequence labeling problem, to

identify summary words. At inference time, the content

selector computes selection probabilities for each word

in a source document. The selection probabilities are

used to modify the copy attention distribution to only

include words identified by the selector.

Hsu et al. [55] proposed a unified model combining

the strength of both extractive and abstractive summa-

rization. The probability output of each sentence from

the SummaRuNNer [36] model was treated as sentence-

level attention. Then the word-level dynamic attention

from the pointer-generator (PG) model [26] was modu-

lated with sentence-level attention such that words in

less attended sentences are less likely to be generated.

A novel inconsistency loss function was proposed to pe-

nalize the inconsistency between two levels of attention.

Fan et al. [56] designed a user preference-oriented

model to enable users to specify high-level attributes

such as source style and entities of interest. An encoder-

decoder model was proposed that the encoder and the

decoder are both CNNs. The multi-hop attention (i.e.,

attention is applied at each layer of the decoder) was

used to connect the encoder and the decoder. Self-

attention was also adopted in the decoder to enable

the model to refer back to previously generated words.

To control the length, this model first quantizes sum-

mary length into discrete bins. Then the input vocabu-

lary is expanded with special word types to indicate the

length bin of the desired summary. To enable entity-

centric summaries, entities are anonymized by replac-

ing all occurrences of a given entity in a document by

the same token. To enable remainder summarization,

the model first aligns summaries to full documents and

then matches each reference summary sentence to its

best matching sentence based on ROUGE-L.

Narayan et al. [42] employed CNNs in the encoder-

decoder model. The core of this model is a convo-

lutional block structure that computes intermediate

states on a fixed number of input words. The convo-

lutional encoder applies this structure across the docu-

ment and repeats these operations in a stacked fashion

to get a multi-layer hierarchical representation. Each

layer in the decoder determines useful source context

by attending to the encoder representation. The output

of the top layer is passed to a softmax layer to predict

a distribution over the target vocabulary. In addition,

the LDA topic model [57] is used to get word and docu-

ment topic distributions, which is the additional input

of the proposed network structure. Instead of gener-

ating multi-sentence summary, this method aims to a

novel ATS task called extreme summarization: to cre-

ate a short, one-sentence news summary answering the

question “What is the article about?”.

RC-Transformer (RCT), proposed by Cai et al. [58],

is an extension of Transformer with an additional RNN-

based encoder to capture the sequential context repre-

sentations. Thus the model has two encoders and one

decoder. The two encoders are capturing contextual se-

mantic representations and modeling sequential context

respectively. RCT can not only learn long-term depen-

dencies, but also address the inherent shortcoming of

Transformer. To extract salient information effectively,

the authors [58] further constructed a convolution mod-

ule to filter the sequential context with local impor-

tance. This model owns an advantage in speed over the

classical Seq2Seq models.

642 J. Comput. Sci. & Technol., May 2021, Vol.36, No.3

4.1.3 Methods for Tackling UNKs and Repetition
Problems

Gulcehre et al. [59] proposed a method to handle

UNKs based on the idea that some of the words in

the generated summary also appear in the input text.

Their model can learn to point a word in the input sen-

tence and copy it to the summary. At each time step,

this model first determines whether to take a word from

the predefined shortlist or to copy one from the source

sentence. To achieve this goal, two softmax output lay-

ers are employed. A BiGRU is used for the encoder

and a GRU is applied for the decoder. The large vo-

cabulary trick (LVT) [60] is also introduced to reduce

the size of the soft-max layer of the decoder such that

the decoding can be efficiently done.

Gu et al. [28] used their proposed CopyNet to miti-

gate UNKs. A BiRNN was used as the encoder. The

decoder is a vanilla RNN that readsM and predicts the

summary sentences with copying and generation. They

tested their model on the LCSTS dataset and achieved

better results than Hu et al.’s model [41].

To overcome UNKs and repetition problems, See

et al. [26] augmented the attentional encoder-decoder

model with a hybrid PG network. They used a BiLSTM

as the encoder and an LSTM as the decoder. In the PG

network, the generation probability is calculated from

the context vector, decoder state and decoder input.

Then they used the coverage mechanism to keep track

of what has been summarized, which discourages repeti-

tion. This approach is considerably different from Gul-

cehre et al.’s approach [59] and Nallapati et al.’s point-

ing mechanism [25] in that: 1) these methods train their

pointer components to activate only for OOV words or

named entities whereas See et al.’s method freely learns

them when to use the pointer; 2) these methods do not

mix the probabilities from the copy distribution and the

vocabulary distribution.

4.1.4 Inspirations by Human Summarizers

Inspired by human summarizers which read the text

multiple times before generating summaries, Zeng et

al. [61] proposed a “Read-Again” model that first reads

the text and then does a second read where to pay spe-

cial attention to the words that are relevant to generate

the summary. This is implemented by reading the in-

put text twice and using the information acquired from

the first read to bias the second read representation,

and thus allows the intermediate hidden word vectors

to capture the meaning appropriate for the input text.

This idea can be seamlessly plugged into LSTM and

GRU. Additive attention is used in this model.

DRGN (deep recurrent generative decoder) [62] was

proposed as a component of attentional encoder-

decoder model, which considers the latent structure in-

formation implied in the target summaries. For latent

structure modeling, historical dependencies on the la-

tent variables of VAEs were added. This model has

two parts: inference (variational-encoder) and gene-

ration (variational-decoder). BiGRU was employed as

the modeling component for the encoder. The discrimi-

native deterministic decoding is an improved attention

modeling based recurrent sequence decoder. Then the

standard GRU-based discriminative deterministic de-

coder and the recurrent generative decoder were inte-

grated into a unified decoding framework.

Inspired by human summarizers who first skimmed

the document and delete unnecessary materials, Li

et al. [63] extended the encoder-decoder framework by

adding an information selection layer to model the in-

formation selection process. The information selection

layer was designed as a gated global information filter-

ing network, which consists of two parts: gated global

information filtering used to remove the unnecessary

information, and local sentence selection used to select

salient sentences from a document sequentially to pro-

duce a summary.

Inspired by how humans summarize long docu-

ments, Chen and Bansal [64] combined extractive and

abstractive summarization with RL. Salient sentences

are first selected and then be rewritten. In the sentence

extraction network, temporal convolutional model [14]

is applied to compute the representation of each sen-

tence. A BiLSTM is employed to further incorporate

the global context of the document. Another LSTM is

added to train a pointer network to extract sentences

recurrently. The copying mechanism is used to help di-

rectly copy some OOV words from the input document

to the generated summary.

4.1.5 Incorporating Additional Features

To address the problems that classical attentional

encoder-decoder architecture often suffers, Nallapati et

al. [25] adopted BiGRU as the encoder and GRU as

the decoder. Firstly, to identify the key concepts and

key entities, additional linguistic features (POS tags,

named entity tags, and TF-IDF scores of the words)

are captured for each word, along with original word

embedding to concatenate into a single long vector as

the novel word representation. Then the decoder is

Sheng-Luan Hou et al.: A Survey of Text Summarization Approaches Based on Deep Learning 643

equipped with a switch to decide whether to use the

generator or a pointer at every time-step to handle

UNKs. Moreover, to capture the hierarchy of sentence-

to-word structure, the attention mechanism is operated

at both levels simultaneously. The same first author [25]

then proposed a neural extractive approach, which will

be detailed in Section 5.

To improve informativeness, Jiang et al. [65] incor-

porated topical keyword information from the original

document into a PG network via a new attention mech-

anism. TextRank [2] was leveraged to extract topical

keywords. The sum of word embeddings for d topical

keywords was used as a part of input for the attention

distribution. In this way, a topic-oriented summary can

be generated in a context-aware manner with guidance.

Cohan et al. [66] took scientific papers as an ex-

ample of long documents with discourse information,

where their abstracts were used as ground-truth sum-

maries. The proposed model includes a hierarchical en-

coder, capturing the discourse structure of the docu-

ment and a discourse-aware decoder that generates the

summary. To capture the discourse structure, the word-

level BiLSTM encodes word sequence in a section into

vector representations, whose outputs are fed into the

section-level BiLSTM to get the document representa-

tion. Discourse-aware attention that uses the discourse-

related information to modify the word-level attention

was proposed. The copying mechanism and a coverage

model were also adopted to deal with OOV words and

self-repeat problems respectively. The authors crawled

more than 340 000 long and structured scientific papers

from arXiv.org and PubMed.com as their experimental

dataset.

4.1.6 Others

To optimize the performance metric directly, Ran-

zato et al. [44] borrowed ideas from RL [67] and in-

troduced Mixed Incremental Cross-Entropy Reinforce

(MIXER). Their generative model is a conditional

vanilla RNN where the conditioning vector is computed

by a convolutional attentive encoder similar to the one

in the ABS model. MIXER leads to significant im-

provements over existing supervised learning methods

on the Gigaword dataset. This method requires an ad-

ditional deep neural network to predict the expected

reward and stabilize the objective function gradients;

thus the computational costs are huge.

A deep generative auto-encoding sentence compres-

sion (ASC) model [68] was proposed to model the joint

distribution of sentence-summary pairs. A discrete

variational auto-encoder (VAE) was employed for infer-

ence. The objective of ASC is to perform Bayesian in-

ference for the posterior distribution of summaries con-

ditioned on the observed utterances. The ASC model

consists of four RNNs: an encoder, a compressor, a de-

coder, and a language model. To further boost the per-

formance, a supervised forced-attention sentence com-

pression model (FSC) was presented and trained on la-

beled data to teach the ASC model.

Pasunuru and Bansal [69] proposed an RL approach

with two novel reward functions: ROUGESal and En-

tail, on top of a coverage-based baseline. The ROUGE-

Sal reward is based on the ROUGE metric by up-

weighting the salient phrases/words detected via a

keyphrase classifier. The Entail reward gives high

(length-normalized) scores to logically-entailed sum-

maries using an entailment classifier. This multi-reward

approach optimizes multiple rewards simultaneously in

alternate mini-batches and has achieved competitive re-

sults on the CNN/DM dataset.

Celikyilmaz et al. [39] presented deep communicat-

ing agents [70] in an encoder-decoder architecture to ad-

dress the challenges of representing a long document.

Each agent encodes a paragraph using two stacked en-

coders: a local encoder (a BiLSTM), whose output is

fed into the contextual encoder, and a contextual en-

coder broadcasting their encoding to others. In this

way, the agents can share global context information

about different sections of the document. By passing

new messages through multiple layers, the agents can

coordinate and focus on the important aspects of the

input text. The decoder is an LSTM in which additive

attention was used over the agents to integrate infor-

mation from multiple agents smoothly at each decoding

step.

Liu et al. [71] proposed an adversarial process in

which a generative model and a discriminative model

were simultaneously trained. The generator was taken

as an agent of RL and was implemented following See

et al.’s PG network [26], in which the encoder is a BiL-

STM, and the additive attention-based decoder is an

LSTM. The discriminator attempts to distinguish the

generated summary from the ground-truth summary in

the training set, which was implemented as a text clas-

sifier that learns to classify the generated summaries as

machine- or human-generated.

Based on the idea that the salient information

should be logically entailed by the input document, Guo

et al. [72] proposed a multi-task learning framework that

incorporates the question generation and entailment

644 J. Comput. Sci. & Technol., May 2021, Vol.36, No.3

generation tasks. The former task teaches the sum-

marization model how to look for salient questioning-

worthy details, and the latter task teaches the model

how to rewrite the final summary. Experiments on

Gigaword and CNN/DM both achieved significant im-

provements over the previous models.

4.2 Summary

Abstractive summarization is the ultimate goal of

the ATS research, but previously it is less investigated

due to the immaturity of text generation techniques.

Fortunately, we have seen the emerging and develop-

ment of abstractive SDS models. After the success

ABS and ABS+ models [7], the attentional encoder-

decoder models become the mainstream architectures.

Further efforts consider many factors to improve per-

formance. The first type of variants is improved atten-

tion mechanisms, such as fused attention [55], bottom-

up attention [54], hierarchical attention [66], graph-based

attention [53], intra-attention [24], and Transformer [58].

Many improvements are argumented with other fea-

tures, such as additional linguistic features [25, 46,73], in-

herent structures [62, 66], keyword information [65], entity

information [74], and pretrained language model [75–78].

Inspired by human summarizers, there are the “Read-

Again” model [61], the “Rewrite” model (which first

selects salient sentences and then rewrites them

abstractively) [64] and information selection model [63].

Adversarial process [68, 71] is also effective, in which

a generative model and a discriminative model were

simultaneously trained. To handle UNKs, Gulcehre

et al. [59] used two softmax output layers to deter-

mine whether to take a word from the vocabulary

or to copy one from the source sequence. Gu et

al. [28] proposed CopyNet and achieved better results

on the LCSTS dataset. Since then, the copying

mechanism [26, 28,59] has become an ideal solution for

dealing with UNKs. Pointer-generator + Coverage

model [26] is a further solution for overcoming UNKs

and repetition problems, which has proved the cover-

age mechanism is remarkably effective for eliminating

repetition problems. The coverage mechanism was fur-

ther extended by Chen et al. [51] with a new attention

mechanism. To process long documents, deep com-

municating agents [39] were utilized, each of which en-

codes a paragraph using two stacked encoders. More-

over, there are the user preference-oriented model [56],

soft template-guided model [79], CNN-based Seq2Seq

model [42, 80], multi-task learning model [72], etc.

For the model training, a significant number of para-

llel article-summary pairs are needed. During training,

the loss for a document d is generally the sum of nega-

tive log-likelihood (NLL) of all target words:

Ld(W , b) = −
n∑
t=0

logP (w∗
t),

where w∗
t is the target word at time step t of decoding.

The overall loss is L(W , b) =
∑N
i=0 Ld(W , b), where

N is the number of documents in a training batch. To

speed up training, the LVT [60] was often employed to

reduce the size of the soft-max layer of the decoder.

Once the model is trained, the process of generating a

summary could be improved by using the beam search

to find a reasonably good output sequence.

Despite the performance improvement of abstrac-

tive SDS approaches, one of the shortcomings of such

models is that they often suffer from two common

problems [24]: exposure bias [44] and inconsistency be-

tween train/test measurement. Leveraging methods

from RL [24, 44,69] has emerged in addressing these two

problems. These approaches directly optimize the met-

ric (i.e., ROUGE in the ATS task) used at test time.

5 Single-Document Extractive Approaches

Despite the emergence of abstractive methods, ex-

tractive approaches are still attractive as they are less

complex, less expensive, and generate grammatically

and semantically correct summaries most of the time.

As defined in Definition 2, extractive approaches ex-

tract salient textual units directly from the original

text. A few recent approaches conceptualize extractive

SDS as a sequence classification problem.

5.1 Methodologies

5.1.1 NLL-Based Sentence Salience Scoring

Auto-Regressive Models. Cheng and Lapata’s NN-

SE model [8] is based on the encoder-decoder archi-

tecture, where the encoder learns the representation

of each sentence and the entire document while the

decoder classifies each sentence with the help of the

pointer network. The hierarchical document reader first

computes each sentence representation using a CNN

over word embedding matrix, and then the document

representation is obtained by an LSTM over the sen-

tence representations. The sentence extractor uses an-

other LSTM to label summary sentences. In the sen-

tence extractor, the pointer network is used to apply

Sheng-Luan Hou et al.: A Survey of Text Summarization Approaches Based on Deep Learning 645

attention to directly extract summary sentences after

reading them. The ground-truth extractive training

data is constructed by a rule-based system, which will

be depicted in Subsection 5.2.

SummaRuNNer [36] is a two-layer BiGRU model,

whose first layer is a BiGRU that runs at word level,

and the second layer is another BiGRU that runs at the

sentence level. The representation of the entire docu-

ment is modeled as a non-linear transformation of the

average pooling of the concatenated hidden states of

the sentence-level layer. Each sentence is revisited se-

quentially to make a binary decision about whether it

belongs to the summary by a sigmoid layer. The au-

thors proposed two training strategies: 1) extractive

training using an unsupervised approach to convert the

abstractive summaries to extractive labels; 2) abstrac-

tive training that couples the SummaRuNNer model

with an RNN decoder that models the generation of

abstractive summaries at training time only.

Based on the idea that summary sentences often

contain important keywords, SWAP-NET (Sentences

and Words from Alternating Pointer Networks) [81] was

proposed as a two-level pointer network-based architec-

ture that models the interaction of keywords and salient

sentences. In SWAP-NET, an attention-based mecha-

nism, similar to that of pointer networks, is used to

learn important words and sentences. A switch mech-

anism is used to select between words and sentences

during decoding and the final summary is generated

using a combination of selected sentences and words.

Non-Auto-Regressive Models. Based on the idea

that the gist of the newswire article may lie in side

information (e.g., the title or the image captions in a

document), Narayan et al. [82] developed an attentional

encoder-decoder framework composed of a hierarchical

document encoder and an attention-based sentence de-

coder with attention over side information. The docu-

ment encoder is a hierarchical one: an LSTM-based

document encoder followed by a CNN-based sentence

encoder. The sentence decoder is another LSTM that

labels each sentence in the document by implicitly es-

timating its relevance in the document. The attention

mechanism they used is additive attention and directly

attending to the side information for importance cues,

which is different from previous approaches.

Isonuma et al. [83] proposed a framework that iden-

tifies salient sentences from a document using exter-

nal knowledge (i.e., subject) from text classification.

This is a multi-task learning framework that contains

two components: one for sentence extraction and the

other for document classification. Document classifica-

tion supports sentence extraction by learning common

feature representations of salient sentences for sum-

marization. Sentence embedding is obtained by CNN

from word embedding matrix. The sentence extraction

component is an LSTM-based encoder-decoder archi-

tecture. By feeding back the error of document clas-

sification to the sentence extraction component, this

approach learns to extract summary sentences related

to the document subject. For multi-task learning, the

curriculum learning strategy was adopted.

NeuSum [84] learns to identify the relative impor-

tance of sentences using the gain over previously se-

lected sentences. NeuSum consists of two parts: the

document encoder and the sentence extractor. The

document encoder has a hierarchical architecture: the

BiGRU-based sentence-level encoder is based on an-

other BiGRU-based word-level encoder. The sentence

extractor reads the representation of the last extracted

sentence, and then produces a new sentence extraction

state and uses it to score the relative importance of the

rest sentences. A GRU followed by a two-layer MLP

was used to calculate the sentence salience.

Instead of using RNN or CNN, HIBERT [85] lever-

ages hierarchical Transformer as the document encoder.

The document representation is obtained by two en-

coders: a sentence encoder for transforming each sen-

tence into a vector and a document encoder for learning

context-sensitive sentence representations. The extrac-

tive SDS is modeled as a sequence labeling problem in

which the salience of a sentence can be estimated us-

ing an additional linear projection and a softmax layer.

For the model training, there are three stages. The two

pre-training stages are conducted to predict a sentence

using all sentences on both its left and right in a docu-

ment. The fine-tuning stage is conducted to predict

extractive sentence labels on the CNN/DM dataset.

BertSum [86] uses BERT for extractive summariza-

tion. To better train BERT for sentence embedding, the

authors [86] modified the model by using multiple [CLS]

symbols to get features for sentences ascending the sym-

bol. Moreover, the interval segment embeddings were

leveraged to distinguish multiple sentences within a

document. Then several summarization-specific layers

stacked on top of the BERT outputs were built to cap-

ture document-level features for extracting summaries.

This model has achieved state-of-the-art results on the

CNN/DM dataset.

646 J. Comput. Sci. & Technol., May 2021, Vol.36, No.3

5.1.2 RL-Based Methods

Narayan et al. [87] took extractive summarization as

a sentence ranking task using RL. In their method, a

novel training algorithm that globally optimizes the

ROUGE evaluation metric through an RL objective

was proposed. Their proposed summarization archi-

tecture resembles the previous models: hierarchical

encoder (CNN-based sentence encoder, LSTM-based

document encoder), and LSTM-based sentence extrac-

tor with softmax output. The summarization archi-

tecture is viewed as an agent that interacts with an

environment consisting of input documents. The agent

would be given a reward commensurate with how well

the score resembles the ground-truth summary. The

reward function is the mean F1 score of ROUGE-1,

ROUGE-2, and ROGUE-L. The agent is updated us-

ing the REINFORCE algorithm [67].

RNES [88] incorporates coherence into the neural ex-

tractive model via RL. NES was first built, in which

CNN is applied at the word level and BiGRU is em-

ployed at the sentence level to obtain sentence represen-

tations. The document is represented by a non-linear

transformation of the mean over all sentence represen-

tations. The probability of each summary sentence is

computed as an MLP. RNES learns to optimize coher-

ence and informative importance of the summary si-

multaneously using the REINFORCE algorithm based

on the pre-trained NES. The reward function considers

both coherence score and ROUGE score.

BanditSum [89] treats extractive summarization as

a contextual bandit (CB) problem. In a CB, a context

(i.e., a document) is sampled and shown to the agent

at each trial that the rewards (computed based on the

ground-truth abstractive summary using the mean F1

score of ROUGE-1, ROUGE-2, and ROGUE-L) yielded

by the actions (each ordered subset of a document’s sen-

tences is a different action) may depend on. Therefore,

the agent can quickly learn which actions are favorable

in which contexts. The model is an encoder-decoder

architecture: the BiLSTM-based encoder encodes each

sentence into a vector representation in the context of

the document and the MLP-based decoder maps each

sentence through a final sigmoid function to derive sen-

tence salience score. The agent is also updated using

the REINFORCE algorithm.

5.1.3 Others

Zhang et al. [90] proposed a latent variable approach,

where sentences are viewed as latent variables, and sen-

tences with activated variables are used to infer ground-

truth abstractive summaries. The extractive framework

is similar to the NN-SE model. The assumption is that

there is a latent variable for each sentence indicating

whether it should be a summary sentence. The extrac-

tive model was used to produce probability distribu-

tions for latent variables and obtain them by sampling.

To avoid random label sequences during sampling, a

pre-trained extractive model was used to initialize the

latent model.

Inspired by the observation that a human of-

ten reads an article multiple times to fully under-

stand and summarize its contents, ITS (iterative text

summarization) [91] consists of an iteration mechanism

and a selective reading module. There is one encoder,

one decoder, and one iterative unit in each iteration.

The iterative unit is used to update the document repre-

sentation with the newly constructed sentence represen-

tations using GRU. ITS adopts positional encoding [92]

as the sentence encoding method. The document rep-

resentation is computed using a non-linear transforma-

tion of the average pooling of the concatenated hid-

den states of sentence representations. In the decoder,

in each iteration, a BiGRU is used to output hidden

states. The final extracting probability for each sen-

tence is calculated by concatenating the hidden states

of all decoders in all iterations and applying an MLP

to them.

Xu and Durrett [38] proposed JECS (joint extractive

and compressive summarizer), based on joint sentence

extraction and syntactic compression. The sentence en-

coder encodes words using a BiLSTM and applies mul-

tiple convolution layers and max-pooling layers to ex-

tract the representation of each sentence. Similarly, the

document encoder aggregates these sentence represen-

tations into a document representation with a similar

BiLSTM and CNN combination. The decoding pro-

cess resembles pointer network-style approaches used

in NeuSum. In the sentence compression module, the

ELMo [93] is employed to compute contextualized word

representations. Then CNN is utilized to encode the

sentence and the candidate compression. For the model

training, the authors [38] constructed oracle extractive-

compressive summaries, and then learned both of two

components jointly with this supervision.

Kedzie et al. [94] investigated how content selection

is performed and took the summarization task as a se-

quence tagging problem. This model contains two main

design decisions: the selection of sentence encoder and

the choice of sentence extractor. The former compo-

Sheng-Luan Hou et al.: A Survey of Text Summarization Approaches Based on Deep Learning 647

nent maps each sentence to its vector representation

whereas the latter maps a sequence of sentence embed-

dings to a sequence of extraction probabilities. The

sentence encoder was experimented with three archi-

tectures: word averaging, RNN encoder, and CNN en-

coder. The sentence extractor was evaluated with four

kinds: NN-SE’s extractor, SummaRuNNer’s extractor,

BiGRU-based extractor, and Seq2Seq extractor. Af-

ter their experiments on different datasets, several re-

sults have been revealed: 1) for summarization of news

reports, sentence position bias dominates the learning

signal; 2) for sentence embedding, simple word embed-

ding averaging is as good as or better than RNNs or

CNNs; 3) pre-trained word embeddings are better than

learned embedding in most cases; 4) Seq2Seq extractor

performs generally better than other extractors.

5.2 Training Strategies

To train the extractive model, ground-truth

sentence-level labels are needed. However, most

datasets only contain ground-truth abstractive sum-

maries. Many training strategies were proposed based

on the ground-truth abstractive summaries.

5.2.1 Training with Automatic Generated Extractive
Labels

The intuitive solution is to convert the abstrac-

tive summaries to extractive summary sentence labels.

The authors of NN-SE model [8] designed a rule-based

system that determines whether a document sentence

matches a highlight. The position of the sentence in the

document, the unigram and bigram overlap between

document sentences and highlights, and the number

of entities appearing in the highlight and the sentence

were taken into account. The weights of the rule were

adjusted on 9 000 documents with manual sentence la-

bels. Approximately 30% of the sentences in each docu-

ment were deemed summary-worthy.

The basic idea of creating datasets for training

SummaRuNNer [36] is that the selected sentences from

the document should be the ones that maximize the

ROUGE score with respect to ground-truth summaries.

A greedy approach was adopted since finding a glob-

ally optimal subset of sentences is computationally ex-

pensive, that is, adding one sentence at a time in-

crementally to the summary such that the ROUGE

score of the current set of selected sentences is max-

imized with respect to the entire ground-truth sum-

mary. Many subsequent efforts [82, 84,85] follow this

work with small changes. For instance, the dataset

used in NeuSum [84] was constructed by maximizing the

ROUGE-2 F1 score. A greedy approach was also em-

ployed.

The training of the JECS model [38] needs two types

of ground-truth labels: sentence extractive labels and

sentence compression labels. The former was identi-

fied using a beam search procedure similar to Maximal

Marginal Relevance (MMR) [95] from the first 30 sen-

tences. For each additional sentence to add, a heuristic

cost equal to the ROUGE score of a given sentence with

respect to the reference summary was computed. To get

the sentence compression binary labels, for each com-

pression option, the authors [38] assessed the value of it

by comparing the ROUGE score of the sentence with

and without this phrase. Any option that increases

ROUGE was treated as a compression that should be

applied.

NLL is the commonly used loss function. At train-

ing time, what to minimize is

L(W , b) = −
N∑
d=1

Nd∑
j=1

(
ydj logP (ydj = 1|rdj) +

(1− ydj) log(1− P (ydj = 1|rdj))
)
,

where N is the number of documents in a training

batch, and Nd represents the number of sentences in

document d. rdj denotes the representations of docu-

ments and the current sentence. ynm denotes the binary

summary label of document n’s m-th sentence.

5.2.2 Training with Abstractive Ground-Truth
Directly

The authors of the SummaRuNNer model [36] also

proposed an abstractive training strategy to train the

extractive model on human-generated abstractive refe-

rence summaries alone. An RNN decoder was adopted

to model the generation of abstractive summaries,

which uses the output of SummaRuNNer as context

and equips with a softmax layer to emit a word at each

time step. The NLL of the words in the reference sum-

mary was minimized as

L(W , b) = −
Ns∑
k=1

log(P (wk)),

where Ns is the number of words in the reference sum-

mary. It is worth noting that at the test time, the RNN

decoder will be uncoupled and only the sentence-level

extractive probabilities will be emitted.

Furthermore, in Zhang et al.’s Latent model [90],

sentences are viewed as latent binary variables. Sen-

tences with activated variables (i.e., 1 s) are used to

648 J. Comput. Sci. & Technol., May 2021, Vol.36, No.3

infer ground-truth abstractive summaries. The latent

variables are predicted with an extractive model, and

the training loss comes from gold summaries directly.

5.2.3 Training with Reinforcement Learning

RL has been proposed as a way of training Seq2Seq

models to directly optimize the metric used at test time,

such as ROUGE in ATS.

In Narayan et al.’s method [87], a novel training al-

gorithm that globally optimizes the ROUGE evaluation

metric through an RL objective is proposed. The agent

is initialized randomly at first. It reads a document and

predicts a relevance score for each sentence. The agent

is then given a reward commensurate with how well

the extract resembles the gold-standard summary and

is updated using the REINFORCE algorithm [67]. Since

there is a large number of possible extracts, the authors

approximated the expected gradient using a single sam-

ple from model output for each training example in a

batch.

Different from the above method that uses an ap-

proximation of a policy gradient method to train their

model, the BanditSum model [89] samples directly from

the true action space, and uses exact policy gradient

parameter updates. In the RNES model [88], the re-

ward function considers both the coherence score and

the ROUGE score. The ROUGE score reward is the

same as the previous models. The neural coherence

model can identify the appropriate next sentence to

compose a coherent sentence pair, whose output is the

coherence reward. Moreover, the agent is initialized by

the pre-trained NES model by minimizing the NLL.

The objective of RL is to discriminate among sen-

tences with respect to how often they occur in high

scoring summaries, which is the main difference with

NLL-based training. However, RL methods are known

for sometimes being unstable during training. There

are also many challenges in current RL research. For in-

stance, it is often too memory-expensive to store values

of each state, since the problems can be pretty complex.

5.3 Summary

Despite recent progress in abstractive SDS, extrac-

tive approaches still achieve strong performance. Most

of the extractive models focus on extracting and order-

ing full sentences.

Attentional encoder-decoder frameworks are also fa-

vorable for extractive SDS. Hierarchical encoder is often

used, one for word-level (which encodes words in each

sentence), and the other for sentence-level (which ag-

gregates the sentence representations into a document

representation). Each hierarchy is an RNN or a CNN,

such as CNN-based sentence encoder and LSTM-based

document encoder [8, 82,83,87], and both the sentence en-

coder and the document encoder are based on the Bi-

GRU model [36, 84] and the hierarchical Transformer [85].

LSTM [8, 82,83,87,90], FFNN [36, 85,88,89], GRU followed

by MLP [34, 84], and modified GRU [91] were adopted as

the decoder. Moreover, pointer networks and their ex-

tensions were employed in extractive models [8, 81]. Side

information [82] or subject from text classification [83]

was used as external knowledge to further improve the

performance. The iterative document representation

approach [91] is a novel idea inspired by the observation

that a human often reads an article multiple times to

fully understand and summarize its contents. BERT

has also been adopted into extractive summarization

and has achieved good performance [86].

For the model training, NLL is the commonly used

loss function. There are mainly two solutions for deal-

ing with the absence of ground-truth extractive sum-

maries: training with rule-based automatic generated

extractive labels and training with abstractive ground-

truth directly. Learning to rank sentences through

an RL objective is an intuitive solution for tackling

the pitfalls of training with NLL. Many RL-based

methods [87–89] have been proposed. Incorporating co-

herence into the final reward performs better than us-

ing the ROUGE reward alone. Moreover, the self-

supervised learning approach [96] outperforms previous

models.

The above approaches remain extractive. One of the

shortcomings is that they often generate verbose con-

tents with unnecessarily long sentences and redundant

information. Despite encouraging results, summariz-

ing a large quantity of texts still requires sophisticated

abstraction capabilities. Taking extracting salient sen-

tences as the first step, then using techniques such as

generalization, paraphrasing, and sentence fusion for

further summarization may be a good solution. The

JECS model [38] is a representative example.

6 Multi-Document Summarization

Approaches

As the research progressed, MDS approaches

emerged and were applied to clusters of news articles on

the same topic, aiming at producing a summary. Neu-

ral SDS utilizing the encoder-decoder architecture has

Sheng-Luan Hou et al.: A Survey of Text Summarization Approaches Based on Deep Learning 649

shown promising results but it did not prompt much

advance on MDS. This is mainly due to:

1) the lack of large MDS datasets needed to train

the computationally expensive encoder-decoder model;

2) the inadequacy of RNNs to capture the complex

relations across multiple documents;

3) the natural characteristics of multiple documents

about the same topic.

6.1 Methodologies

6.1.1 Extractive Approaches

Central to extractive MDS is the notion of simi-

larity between sentences. To evaluate different com-

positions, K̊agebäck et al. [97] proposed two sentence

embedding methods based on word embedding. The

first one is the simple vector addition without regard-

ing word orders. The second one takes into account

the word order and grammar in which an unfolding re-

cursive auto-encoder [98] is used over sentence syntac-

tic trees. For summarization, the similarity between

two sentences is measured by cosine similarity and Eu-

clidean distance. Then different combinations of word

embeddings, sentence embeddings, and similarity mea-

sures are fed into Lin and Bilmes’s submodular opti-

mization summarizer [99]. Experimental results on the

Opinosis dataset show that the combination of CBOW

word embedding, vector addition sentence representa-

tion, and cosine similarity achieves the highest perfor-

mance.

To achieve redundancy reduction, Yin and Pei [100]

applied CNN to obtain sentence representation and

then selected sentences by minimizing the cost based on

their “prestige” and “diverseness”. They first proposed

CNNLM, a CNN-based network language model to

project sentences into vector representations. CNNLM

was trained in an unsupervised scheme, which resem-

bles the CBOW scheme in Word2vec [101]. NCE (noise-

contrastive estimation) [102] was employed to compute

the cost: the model learns to discriminate between true

next words and noise words. A sentence adjacent graph

based on the cosine similarity was built for the next

phase. And then a diversified selection process (DivSe-

lect) to select salient sentences was constructed. DivSe-

lect formulates the selection process as an optimization

problem. In this way, the proposed DivSelect+CNNLM

can produce a diversified top-K ranking list which fa-

cilitates the sentence selection for summary generation

without extra steps.

Based on ReNN, Cao et al. [103] proposed R2N2 to

formulate the sentence ranking as a hierarchical regres-

sion process. The input to R2N2 is a set of syntactic

parsing trees of input documents. A projection layer

is then added to transform raw features into hidden

states. These hidden states are then fed into ReNN

to compute all the upper node representations. Fi-

nally, different kinds of regression are conducted over

the parsing tree. R2N2 contains two widely-used sen-

tence selection methods: greedy algorithm (GA) and

integer linear programming (ILP). In the GA method,

the TF-IDF cosine similarity is employed to control the

redundancy with the most salient sentences. The ILP-

based sentence selection method considers both word

and sentence scores. The dataset used in R2N2 contains

DUC’01, DUC’02, and DUC’04. The R2N2 model was

evaluated by three-fold validation, i.e., being trained

on a two-year dataset and tested on the other year’s

dataset.

Later, to mitigate the problem of lacking sufficient

training data and diverse categories of documents of

MDS, Cao et al. [104] proposed TCSum, which leverages

plentiful text classification data to improve the perfor-

mance. Firstly, a text classification model is trained

using a CNN, which projects a document into the vec-

tor representation and adds a softmax layer to predict

a category of it. Then the summarization model shares

the same projection procedure with the text classifica-

tion model to generate document representations. TC-

Sum transforms the document embedding to the sum-

mary embedding to maximize the match to the refe-

rence summaries. To make the summary embedding

sensitive to different summary styles, the transforma-

tion matrices are computed as a category-specific ac-

cording to the predicted categories. Then the sentence

saliency is predicted by the cosine similarity between

the summary embedding and the sentence embedding,

where the sentence embedding is derived by a CNN.

Finally, the sentences were ranked according to their

saliency scores.

Christensen et al.’s G-Flow model 8○ [105] demon-

strated the importance of considering discourse re-

lations among sentences in MDS. The approximate

discourse graph (ADG), a multi-document discourse

graph, is the core in G-Flow. ADG has proved that

graphs can conveniently capture the relationships be-

tween textual units within a document. Moreover,

8○G-Flow is an extractive MDS model, which is based on relations across sentences on the basis of indicators including discourse
cues, deverbal nouns, and co-reference.

650 J. Comput. Sci. & Technol., May 2021, Vol.36, No.3

ADG can be easily constructed under the assumption

that text spans represent graph nodes and edges are

semantic links between them. Yasunaga et al. [106] ex-

tracted summary sentences in two procedures: sen-

tence salience estimation and summary sentence selec-

tion. A sentence relation graph was built in the first

procedure, where interacting sentence nodes are con-

nected by edges. Each sentence embedding was repre-

sented as the last hidden state of GRU. Three different

methods were employed to represent the relationship

between two sentences (i.e., TF-IDF cosine similarity,

ADG from G-Flow [105], and their proposed Personal-

ized Discourse Graph (PDG)). In the second proce-

dure, a GCN was applied over the sentence relation

graph. The final sentence embedding si that incor-

porates the graph representation of sentence relation-

ships was obtained through multiple layer-wise propa-

gation. Additionally, another GRU was applied to en-

code the entire document cluster to an embedding C.

Then the salience of each sentence was computed as

salience(si) = softmax(vT tanh(W1C + W2si)). Fi-

nally, a greedy heuristic was adopted to extract salient

sentences while avoiding redundancy.

The existing efforts usually model sentence rank-

ing (evaluate importance) and sentence selection (eva-

luate redundancy) in two separate processes. RASR

(Redundancy-Aware Sentence Regression) [107] models

sentence importance and redundancy simultaneously by

directly evaluating the relative importance f(s|S) of

a sentence s given a set of already selected sentences

S. To obtain f(s|S), RASR considers the minimum

relative importance of sentence s with respect to each

sentence in S. The algorithm starts with the first se-

lected sentence. A new sentence was added to the sum-

mary that results in the maximum relative increase.

The algorithm terminates when the summary length

constraint is reached. Two groups of features, includ-

ing length, content overlap, and embedding, were em-

ployed in the training episodes. The dataset they used

contains DUC’01, DUC’02, and DUC’04. The model

was trained on two years’ dataset and tested on the

other year’s dataset. However, their model of measur-

ing the redundancy only considers the redundancy of

the sentence that has the maximal score, which lacks

the modeling of all the selection history.

CRSum (contextual relation-based summarizati-

on) [108] takes advantage of contextual relations among

sentences to improve the performance. Based on the

assumption that sentence importance also depends on

contextual relations, the authors [108] first used sen-

tence relations with a word-level attentive pooling CNN

to construct sentence representations. Then, they

used contextual relations with a sentence-level atten-

tive pooling RNN to construct context representations.

Finally, CRSum automatically learns useful contextual

features by jointly learning representations of sentences

and similarity scores between a sentence and sentences

in its context. Using a two-level attention mechanism,

CRSum can pay attention to important contents, i.e.,

words and sentences, in the surrounding context of a

given sentence. The authors also evaluated the com-

bination of CRSum with surface features (SF), such

as sentence position, and TF-IDF-based features. The

sentence selection was conducted using a constraint-

based approach. The experimental results showed that

CRSum+SF significantly outperforms CRSum. The

same as RASR, the dataset includes DUC’01, DUC’02,

and DUC’04. The model was trained on two years’

dataset and tested on the other year’s dataset.

Li et al. [109] proposed an unsupervised framework,

which contains two parts, latent semantic modeling

and salience estimation. A neural generative model

called variational auto-encoders (VAEs) was employed

in the first part to describe the observed sentences

and their latent representations. Note that the neural

variational inference was used for the posterior infer-

ence of the latent variables. In the sentence salience

estimation module, an unsupervised data reconstruc-

tion framework that jointly considers the reconstruc-

tion for latent semantic space and observed term vec-

tor space was proposed. In this way, the salience of

sentences from these two different and complementary

vector spaces can be captured. Experimental results

on the DUC/TAC dataset showed that this framework

achieves better performance than the previous models.

Cho et al. [110] further proved that optimization-

based methods can obtain competitive results when

training on a relatively small-scale dataset. They pro-

posed to adopt determinantal point processes (DPPs)

to select a set of most representative sentences from the

given source documents as the summary while main-

taining a high diversity among summary sentences. To

better capture the lexical and syntactic variations in

sentences, a novel similarity measure inspired by cap-

sule networks [111] was first proposed to measure pair-

wise sentence (dis)similarity. Then DPP was leveraged

to obtain a set of diverse summary sentences. One

of the advantages of this method is that DPP can be

trained on small data.

Sheng-Luan Hou et al.: A Survey of Text Summarization Approaches Based on Deep Learning 651

6.1.2 Abstractive Counterparts

Wang and Ling [112] employed an encoder-decoder

model to effectively produce short abstractive sum-

maries for opinionated text. The model architecture is

simple: BiLSTM-based encoder, LSTM-based decoder,

and additive attention. The output is a one-sentence

abstractive summary. The key point for this work is

that the input consists of multiple separate text units.

An importance-based sampling method was designed to

allow the encoder to integrate the information from an

important subset of input. The importance score was

defined for each document. During training, K can-

didates were sampled from a multinomial distribution.

Note that the model is still able to learn from more than

K text units since the training process goes over the

training set multiple times. Top-K candidates with the

highest importance scores collapsed in descending order

were taken as the input in the test step. In the word em-

bedding, additional features such as POS tag, TF-IDF

score, dependency relation were mapped into word rep-

resentation via lookup tables. The authors [112] crawled

two datasets: movie reviews from Rotten Tomatoes 9○

and arguments from Idebate 10○ on controversial top-

ics with ground-truth abstracts, which contains about

248 000 “documents” with about 4 400 “topics”, for

training, validation, and testing.

For MDS, to train an encoder-decoder model with

millions of parameters, Zhang et al. [113] adopted Tan et

al.’s hierarchical encoder-decoder SDS framework [53] to

the abstractive MDS task. Since MDS should take all

the input documents as input, they proposed a different

encoder model. The multi-document encoder first uses

Tan et al.’s document encoder model [53] to encode each

document into a vector representation, then takes all

the document vectors in a document set as input, and

produces a novel document set vector. The document

set vector is the weighted sum of all document vectors

whereas the weight for a document is determined based

on the document itself and its contribution to the rep-

resentation of the overall document set. The decoder

is also a hierarchical one but with different attention

mechanisms. Their proposed attention distribution was

computed by conducting a topic-sensitive PageRank al-

gorithm on all input sentences. To solve the problem

that the attention distribution will be too disperse and

even when the number of sentences is large, the model

was restricted that only the top-K ranked sentences can

have attention weights. This full model was pre-trained

on the CNN/DM dataset and the decoders were tuned

on the DUC/TAC dataset. The authors also revealed

that neural abstractive summarization models did not

transfer well on a different dataset.

PG-MMR [114] is another adaption of the encoder-

decoder model to MDS. PG-MMR exploits MMR to

select representative sentences from multi-documents,

and leverages PG to fuse disparate sentences to an ab-

stractive summary. PG-MMR is an iterative frame-

work. At each iteration, PG-MMR follows the MMR

principle to select the top-K source sentences, which

serve as the basis for PG to generate an abstractive

summary. The PG attention weights were dynamically

adjusted at test time to allow the PG system to effec-

tively focus on these K sentences. This model, which

requires no MDS training data, was trained on the

CNN/DM dataset with the same hyper-parameters as

See et al. [26] did and fine-tuned on DUC/TAC datasets.

The authors of the WikiSum dataset [32] proposed

a two-stage model that first coarsely extracts salient

texts from source documents and then uses a decoder-

only architecture (that can attend to very long se-

quences) to generate the final summaries. In the extrac-

tive stage, three methods (i.e., TextRank [2], TF-IDF,

and SumBasic [115]) from the summarization literature,

along with a trivial and cheating method, assess the

importance of paragraphs. The input to the second

stage is the concatenation of K best ranked paragraphs

(up to 7.5k tokens) in importance order, and prefixed

with the title. The Transformer architecture was modi-

fied to only consist of a decoder, which performs better

in the case of longer input sequences compared with

RNNs. Experimental results on the WikiSum dataset

demonstrated that the decoder-only architecture can

scalably attend to sequences much longer than typical

encoder-decoder architectures used in sequence trans-

duction. However, this approach still considers the mul-

tiple input documents as a concatenated flat sequence,

which ignores the hierarchical structures and the rela-

tions that might exist among documents.

Liu and Lapata’s abstractive MDS system [40] first

ranked source paragraphs and the top-k ones serve

as input to an encoder-decoder model. In paragraph

ranker, an LR model was employed to determine where

a paragraph should be selected as the input of the

encoder-decoder model. The feature vectors are from

two LSTMs (one for title and the other one for source

9○https://www.rottentomatoes.com/, June 2020.
10○https://idebate.org/, June 2020.

652 J. Comput. Sci. & Technol., May 2021, Vol.36, No.3

paragraph) and two max-pooling operations. Instead

of treating the selected paragraphs as a very long se-

quence, they represented inter-paragraph relationships

via several local and global Transformer layers which

can be stacked freely. In the decoding procedure, beam

search and length penalty [116] were adopted to gene-

rate more fluent and longer summaries. This model

was trained on the WikiSum dataset.

Perez-Beltrachini et al. [33] proposed a neural model

that is guided by the topic structure of target sum-

maries. The topic structure contains the way that con-

tent is organized into sentences and the type of content

these sentences discuss. On the WikiCatSum dataset,

this model takes as input a set of ranked paragraphs

that were concatenated to form a flat input sequence.

The model adopts a CNN-based encoder-decoder ar-

chitecture, in which the convolutional encoder [117] was

used to obtain a sequence of hidden states H given an

input sequence of words. A hierarchical convolutional

decoder generates the target sentences based on H. To

further render the document-level decoder topic-aware,

the authors annotated the sentences of ground-truth

summaries with topic templates and forced the model

to predict them. The LDA topic model was trained

to discover topic templates from summaries, especially

to obtain sentence-level topic distributions by treating

sentences as documents.

Based on the observation that humans tend to

choose content from one or two sentences and merge

them into a single summary sentence, Lebanoff et

al. [118] proposed to rank sentence singletons and pairs

together in a unified space. They exploited BERT [119]

and traditional vector space models (VSMs) to char-

acterize singletons and pairs based on the amount of

summary-worthy content it conveys. The MMR princi-

ple was employed to select a set of the highest important

scoring and non-redundant instances, where important

score was obtained by BERT or VSM, and redundancy

score was obtained by the cosine similarity between the

instance and partial summary. The PG network was

adopted to compress/fuse sentences into summary sen-

tences and trained on ground-truth instances.

Sequence models perform well when parallel data

are abundant. However, datasets of large, paired

document-summary instances are rare. To side-step

these difficulties, MeanSum [9] aims to abstractively

summarize multiple product or business reviews in an

unsupervised way. MeanSum consists of two main com-

ponents: an auto-encoder that learns representations

for each review and a summarizer that learns to gene-

rate summaries semantically similar to each of the in-

put documents. The auto-encoder module was imple-

mented as a Seq2Seq model to reconstruct the original

reviews. The summarization component takes the out-

puts of the former component as input. MeanSum then

re-encoded the summary and computed a similarity loss

that further constrains the summary to be semantically

similar to the original reviews. The final loss includes

the sum of reconstruction loss and average cosine dis-

tance. MeanSum was applied to the publicly available

datasets: Yelp and Amazon reviews.

The authors of the Multi-News dataset [43] proposed

an end-to-end hierarchical MMR-attention pointer-

generator (Hi-MAP) model for abstractive MDS. The

PG network [26] was expanded as a hierarchical network,

in which the sentence-level MMR ranking scores [95]

were integrated to adapt the attention weights to the

word level. This model performs competitively on the

Multi-News dataset and the DUC’04 dataset with re-

gard to ROUGE scores.

6.2 Summary

Compared with SDS, MDS received less attention

since the paucity of suitable data for the application

of DL. The same as SDS methods, MDS approaches

can also be categorized into extractive methods and ab-

stractive counterparts. Existing extraction-based sys-

tems were mostly implemented by developing a selec-

tion model to choose sentences from a candidate set.

K̊agebäck et al. [97], and Yin and Pei [100] mapped

sentences to a continuous vector space which is used for

similarity measurement to reduce the redundancy in the

generated summaries. Generally, extractive MDS has

the following two components, which are often modeled

in two separate processes.

1) Sentence Scoring/Ranking. Sentence scor-

ing/ranking gives an informative score to every sentence

to measure its importance.

2) Sentence Selection. This component selects sen-

tences to generate a summary based on the ranked sen-

tences in the context of redundancy.

In extractive MDS, one critical issue is to repre-

sent the semantic meanings of the sentences and doc-

uments. Word vector addition [97], CNN [100,104,108],

ReNN [103], GRU [106] and VAEs [109] were used for sen-

tence embedding, among which CNN is the intuitive

and mostly adopted one since it has the ability to

extract salient n-gram features. On the other hand,

sentence ranking was conducted under a single rela-

tion assumption in most extractive publications. To

Sheng-Luan Hou et al.: A Survey of Text Summarization Approaches Based on Deep Learning 653

tackle insufficient training data, Cao et al. [104] lever-

aged knowledge from text classification. The surface

features such as length and position [108], the relative

importance of sentences [106–108] are also demonstrated

beneficial for extractive MDS. In the training step, NLL

is also a widely adopted loss function. On the other

hand, optimization-based approaches [110] have also ob-

tained competitive results.

The cost to create the ground-truth MDS dataset

can be prohibitive. The existing MDS datasets, such

as DUC/TAC, are too small to be used for training

encoder-decoder models with millions of parameters

without overfitting. Wang and Ling [112] first tried to

apply the attentional encoder-decoder model for pro-

ducing short abstractive summaries from multiple opin-

ionated texts in which the multiple texts were sampled

and concatenated into one “fat” text based on impor-

tance order. Then the model transfer methods [113,114]

were proposed, where a Seq2Seq model was pre-trained

on the SDS dataset and fine-tuned on DUC/TAC

benchmarks. However, these models do not transfer

very well on a different dataset. Many efforts focus

on summarizing Wikipedia articles, which model this

task as a two-stage: extracting salient texts and feeding

them into deep neural models to generate abstractive

summaries [32, 33,40,118]. Besides, Hi-MAP [43] is a novel

model that integrates MMR into PG architecture for

MDS.

Moreover, unsupervised MDS approaches [100,120]

were proposed to mitigate the problems of lacking suf-

ficient training data. These approaches can also be ap-

plied to other datasets directly.

7 Performance Analysis

This section shows the performance analysis of the

popular ATS models on common datasets. Since full-

data manual evaluation is time-consuming and unre-

alistic, a variety of automatic evaluation metrics have

been proposed, such as METEOR [121], and BLEU [49],

among which ROUGE [11] is currently the defacto stan-

dard evaluation metric. Human evaluation is an impor-

tant complementation of the ROUGE metric since it is

coherence-insensitive.

7.1 ROUGE

ROUGE [11] is a recall-oriented ATS evaluation

method, which measures the n-gram overlap between

the system generated and ground-truth summaries.

ROUGE has the advantage that it can compare

the system-generated summaries with one or more

ground-truth summaries as the DUC/TAC dataset has.

There are several alternatives of ROUGE, including

ROUGE-N (n-grams), ROUGE-L (the longest com-

mon sequence), and ROUGE-SU (skip-bigrams and un-

igrams). As an example, the computation of ROUGE-

N is [11]

ROUGE-N =

∑
gramn

Countmatch(gramn)∑
gramn

Count(gramn)
,

where Countmatch(gramn) is the maximum number

of n-grams co-occurring in a candidate summary and

a ground-truth summary, and n is the length of n-

gram. ROUGE-N recall (precision) can be obtained

when Countmatch(gramn) is the total number of n-

grams occurring in ground-truth (candidate) summary.

ROUGE-N F1 is their harmonic mean.

7.1.1 SDS on Gigaword and DUC’04

The SDS task on the Gigaword dataset is generat-

ing an abstractive headline from the first sentence of an

article. The expectation is for a summary of 75 bytes

(roughly 14 words). We compare the following models.

1) ABS and ABS+ [7] are both the encoder-decoder

models with soft attention. ABS was trained on the

Gigaword dataset, and ABS+ extracts additional hand-

crafted features and was further trained on the DUC’03

dataset.

2) ASC+FSC [68] draws a latent summary sentence

from a background language model, and then draws the

observed sentence conditioned on this latent summary.

3) Gulcehre et al.’s model [59] is the first attempt to

handle UNKs using a pointing and copying mechanism.

4) RAS-LSTM and RAS-Elman [45] both consider

words and word positions as input and use convolu-

tional encoders to handle the source information.

5) Nallapati et al.’s model [25] incorporates ad-

ditional linguistic features into attentional encoder-

decoder models, and utilizes LVT [60] to control the vo-

cabulary size.

6) DRGD [62] is a Seq2Seq model equipped with a

deep recurrent generative model.

7) RCT [58] is an extension of Transformer with an

additional RNN-based encoder.

Table 5 shows the experimental results on the Giga-

word dataset of abstractive methods, from which we can

see that RCT achieves the best summarization perfor-

mance on all the ROUGE metrics. The above models

were also evaluated on the DUC’04 dataset. Table 6

shows the ROUGE recall at 75 words on this dataset.

The ABS+ model obtained slightly better results than

654 J. Comput. Sci. & Technol., May 2021, Vol.36, No.3

the ABS model since it was fine-tuned on the DUC’03

dataset. The results of the ABS+AMR model indi-

cate that the performance can be improved when in-

corporating syntactic and semantic features. The gen-

erative models ASC+FSC and DRGD are better than

the ABS+ model. Evaluation results on both datasets

show that vanilla RNN performs better than LSTM in

the RAS model.

Table 5. Experimental Results (ROUGE F1) of Abstractive
Methods on Gigaword

System ROUGE-1 ROUGE-2 ROUGE-L

ABS [7] 29.55 11.32 26.42

ABS+ [7] 29.76 11.88 26.96

ASC+FSC [68] 34.16 15.94 31.92

Gulcehre et al. [59] 35.19 16.66 32.51

RAS-LSTM [45] 32.55 14.70 30.03

RAS-Elman [45] 33.78 15.97 31.15

Nallapati et al. [25] 35.30 16.64 32.62

DRGD [62] 36.27 17.57 33.62

RCT [58] 37.27 18.19 34.62

Table 6. Experimental Results (ROUGE Recall) of Abstractive
SDS Methods on DUC’04

System ROUGE-1 ROUGE-2 ROUGE-L

ABS [7] 26.55 7.06 22.05

ABS+ [7] 28.18 8.49 23.81

ABS+AMR [46] 28.80 7.83 23.62

RAS-Elman [45] 28.97 8.26 24.06

RAS-LSTM [45] 27.41 7.69 23.06

Nallapati et al. [25] 28.61 9.42 25.24

DRGD [62] 31.79 10.75 27.48

RCT [58] 33.16 14.70 30.52

7.1.2 SDS on CNN/DM and DUC’02

Both extractive and abstractive SDS models can be

trained and evaluated on the CNN/DM dataset. For

extractive models, at test time, picking all sentences

with probability larger than 0.5 may not be an opti-

mal strategy. Instead, most efforts pick the top 3 high

probability sentences as the final summary. We list the

experimental results of the following approaches.

1) Lead-3 picks the first three sentences as the sum-

mary.

2) NN-SE [8] is an encoder-decoder architecture

equipped with PG network. However, this model was

trained and evaluated on the DM part of the CNN/DM

dataset. We only report the results on the DUC’02

dataset.

3) SummaRuNNer [36] adopts BiGRU for sentence

representation and a sigmoid layer to make a binary

decision, which contains two training strategies: Sum-

maRuNNer denotes the extractively trained model, and

SummaRuNNer-abs is the abstractively trained model.

4) RNES [88] is another RL-based model to optimize

coherence and informative importance simultaneously.

5) Banditsum [89] treats extractive SDS as a contex-

tual bandit problem.

6) JECS [38] is a joint extractive and compressive

summarizer, which first extracts salient sentences and

then compresses them using the NeuSum model.

7) Nallapati et al.’s abstractive SDS method [25] was

described as in Table 5.

8) Tan et al.’s model [53] incorporates graph-based

attention into the Seq2Seq model.

9) Abstract-ML [24] is an intra-attention based

encoder-decoder architecture. Abstract-ML+RL was

trained using RL.

10) Chen and Bansal [64] combined extractive and

abstractive summarization with RL, which first selects

salient sentences and then rewrites them abstractively.

11) Fan et al.’s model [56] is a user preference-

oriented model. The control variables were set on the

general settings without user input.

12) ITS [91] is an iterative document representation

method with polishing for SDS. The same as NN-SE,

this model was trained and evaluated only on the CNN

(DM) part of the CNN/DM dataset. We only report

the results on the DUC’02 dataset.

Table 7 shows the results of different systems on the

CNN/DM test set (anonymized version). We can con-

clude that the Lead-3 is a strong baseline, mainly due

to how newswire articles are written. Generally, extrac-

tive models perform better than abstractive counter-

parts. JECS has achieved high ROUGE scores among

extractive summarization models. Some models trained

on the CNN/DM dataset (DM part for NN-SE model)

were also tested on the DUC’02 dataset. Following the

official guidelines, Table 8 shows the ROUGE recall

scores at 75 words on the DUC’02 dataset. The abstrac-

tive training strategy performs better on the CNN/DM

dataset, but the performance is not better when testing

on the DUC’02 dataset. The NN-SE model obtained

the highest score among these five systems.

Sheng-Luan Hou et al.: A Survey of Text Summarization Approaches Based on Deep Learning 655

Table 7. Experimental Results (ROUGE F1) on CNN/DM Dataset (Anonymized Version)

System Extraction Mode ROUGE-1 ROUGE-2 ROUGE-L

Lead-3 Extractive 39.20 15.70 35.50

SummaRuNNer-abs [36] Extractive 37.50 14.50 33.40

SummaRuNNer [36] Extractive 39.60 16.20 35.30

RNES [88] Extractive 41.25 18.87 37.75

Banditsum [89] Extractive 41.50 18.70 37.60

JECS [38] Extractive 41.70 18.50 37.90

Nallapati et al. [25] Abstractive 35.46 13.30 32.65

Tan et al. [53] Abstractive 38.10 13.90 34.00

Abstract-ML+RL [24] Abstractive 39.87 15.82 36.90

Abstract-ML [24] Abstractive 38.30 14.81 35.49

Chen and Bansal [64] Abstractive 39.66 15.85 37.34

Fan et al. [56] Abstractive 39.06 15.38 35.77

Table 8. Experimental Results (ROUGE Recall) of Extractive
SDS Methods on DUC’02

System ROUGE-1 ROUGE-2 ROUGE-L

Lead-3 43.60 21.00 40.20

NN-SE [8] 47.40 23.00 43.50

SummaRuNNer-abs [36] 44.80 21.00 41.20

SummaRuNNer [36] 46.60 23.10 43.03

ITS [91] 46.60 23.40 43.50

7.1.3 MDS on DUC’02 and DUC’04

Abstractive MDS on DUC’02 and DUC’04 aims to

generate a summary from about 10 newswire articles.

The difference is that the summary length of the former

is 100 words while the latter is 665 bytes. We list the

experimental results of the following MDS approaches.

1) GCN+GRU [106] adopts a GCN on the sentence

relation graph in which the sentences are represented by

GRU. The sentence salience score was computed using

a softmax layer.

2) R2N2 [103] is a ranking framework using ReNN.

The authors [103] experimented with two strategies to

select summary sentences: greedy selection (R2N2 GA)

and integer linear programming (R2N2 ILP).

3) TCSum [104] leverages text classification data to

improve the performance of MDS.

4) RASR [107] models sentence importance and re-

dundancy simultaneously by directly evaluating the rel-

ative importance.

5) CRSum [108] takes advantage of contextual rela-

tions among sentences. CRSum+SF is the combination

of CRSum with surface features.

Table 9 is the ROUGE recall scores on DUC’02 and

DUC’04 of abstractive MDS methods. Considering TC-

Sum is not supplemented with any hand-crafted fea-

tures, its performance is very promising. Compared

with other models, the GCN+GRU model performs

equivalent to TCSum. In R2N2, the ILP-based sum-

mary sentence selection achieved better results than

the GA-based strategy. The performance of the CR-

Sum+SF model proved the effectiveness of surface fea-

tures in MDS.

Table 9. Experimental Results (ROUGE Recall) of MDS Meth-
ods on DUC’02 and DUC’04

System DUC’02 DUC’04

ROUGE-1 ROUGE-2 ROUGE-1 ROUGE-2

GCN+GRU [106] – – 38.23 9.84

R2N2 GA [103] 36.84 8.52 38.16 9.52

R2N2 ILP [103] 37.96 8.88 38.78 9.86

TCSum [104] 36.90 8.61 38.27 9.66

RASR [107] 37.80 9.61 39.60 10.57

CRSum [108] 37.10 9.29 38.19 9.66

CRSum+SF [108] 38.90 10.28 39.53 10.60

7.2 Human Evaluation

One of the limitations of the ROUGE metric is

coherence-insensitive [122]. To ensure robustness and as-

sess linguistic quality, many ATS models complement

ROUGE results with human evaluation on relatively

small samples.

Many metrics have been proposed for human evalua-

tion.

1) Informativeness (I) [8, 9, 55,87] indicates how well

the summary captures the important parts of the arti-

cle.

2) Fluency (F) [8, 9, 32,39,87] indicates whether the

summary is written in well-formed English. This metric

was previously used in DUC’05, which contains gram-

maticality, non-redundancy, referential clarity, focus,

and structure and coherence.

3) Conciseness (CoN) [55] indicates whether the sum-

656 J. Comput. Sci. & Technol., May 2021, Vol.36, No.3

mary is clear enough to explain everything without be-

ing redundant.

4) Readability (ReD) [24, 55,64] indicates how well-

written (fluent and grammatical) the summary does.

5) Relevance (ReL) [24, 64] indicates how well the

summary captures the important parts of the article.

It is based on the summary containing salient informa-

tion from the input article, etc.

6) Sentiment accuracy (SA) [9] indicates how well

the sentiment of the summary agrees with the overall

sentiment of the original review.

7) Compactness (CoM) [112] denotes whether a sum-

mary contains unnecessary information.

Amazon Mechanical Turk (AMT) 11○ is a commonly

used crowd-sourcing platform for human evaluation.

The selected participants are often self-reported native

or proficient English speakers. In general, 3–6 partici-

pants were asked to participate in an evaluation task.

There are generally three types of human evalua-

tion, including summary quality scoring (SQS), system

ranking (SRK), and QA-based evaluation. For SQS,

participants were asked to evaluate each summary by

scoring each metric with a score. The final evaluation

score is the average over different participants. For ex-

ample, the SQS of NN-SE model [8] was conducted on

AMT platform by eliciting human judgments for 20 ran-

domly sampled DUC’02 test documents, which evalu-

ates the summaries with level range [1, 6] with respect

to informativeness and fluency. Table 10 shows the de-

tails of SQS for different systems.

In the original paper, the SQS results of Paulus et

al.’s model [24] show that even though RL has the high-

est ROUGE-1 and ROUGE-L scores, it produces the

least readable summaries, which confirms that optimiz-

ing for single discrete evaluation metric such as ROUGE

with RL can be detrimental to the model quality. Eval-

uations of Tan et al.’s model [53] show it can generate

more informative and concise summaries, which reflects

the advantage of abstractive methods over extractive

methods. To some extent, the fluency scores show the

good ability of the abstractive model to generate fluent

and grammatical sentences.

SRK was conducted by many authors. For instance,

Narayan et al. [82] randomly selected 20 articles from

the test set of the CNN part of the CNN/DM dataset

and assigned this task to five annotators. Annotators

were presented with an article and summaries from four

different systems: Lead, NN-SE, the ground-truth, and

their proposed method, and were asked to rank the

summaries from best (1st) to worst (4th). Table 11

shows the details of evaluations by SRK for different

systems. SRK is an ideal complementation of ROUGE

results to indicate the proposed models’ performance.

Furthermore, Narayan et al. [87] assessed the sum-

maries following a QA paradigm. For instance, the

question is “How far did the plane descend in three

minutes?” for the ground-truth summary “The plane

descended 28 000 feet in three minutes.” The multiple

fact-based QA pairs were written for each gold sum-

mary without looking at the document. Up to 71 ques-

tions in total varying from two to six questions per gold

summary were created. Five participants answered the

questions of each ground-truth summary. The more the

questions a system can answer, the better it is at sum-

marizing the document as a whole. In another work [42],

questions were formulated so as not to reveal answers

to subsequent questions. Participants read the output

Table 10. Details of Summary Quality Scoring

System Metric Platform #Raters #Evaluation Documents

NN-SE [8] I, F AMT 5 20 from DUC’02

Wang and Ling [112] I, F, CoM AMT 5 40 from movie reviews

Paulus et al. [24] ReL, ReD AMT 5 100 from CNN/DM

Tan et al. [53] I, CoN, F AMT 3 20 from CNN/DM

Hsu et al. [55] I, CoN, ReD Their own 5 100 from CNN/DM

Celikyilmaz et al. [39] F AMT 5 100 from CNN/DM

Liu et al. [32] F AMT 3 25 from WikiSum

Liu et al. [71] ReD Their own 2 50 from CNN/DM

Zhang et al. [113] F AMT 3 30 from DUC

Narayan et al. [87] I, F AMT 5 20 from CNN/DM

MeanSum [9] SA, I, F AMT 2 100 from CNN/DM

11○https://www.mturk.com/, June 2020.

Sheng-Luan Hou et al.: A Survey of Text Summarization Approaches Based on Deep Learning 657

Table 11. Details of Evaluations by System Ranking

System Comparison System #Raters #Evaluation Documents

Narayan et al. [82] Lead, NN-SE, the ground-truth 5 20 from CNN/DM

Isonuma et al. [83] Lead, NN-SE, LREG 6 20 from NYTAC

Fan et al. [56] Pointer-generator+Coverage 5 500 from CNN/DM

Chen and Bansal [64] Pointer-generator+Coverage 3 100 from CNN/DM

ITS [91] Lead, the ground-truth 5 40 from CNN/DM

NeuSum [84] NN-SE 3 50 from CNN/DM

BanditSum [89] SummaRuNNer 5 57 from CNN/DM

HIBERT [85] Lead, and the ground-truth, etc. 5 20 from CNN/DM

summaries and answered the questions as best as they

could without access to the gold summary. Five partici-

pants answered questions for each summary. The same

paradigm was adopted by Perez-Beltrachini et al. [33],

which was tested on the WikiCatSum dataset. In this

way, the QA-based human evaluation can evaluate the

summary quality concerning facts.

8 Conclusions

This work provides a systematic review of currently

available DL-based ATS approaches. We started with

the general definition of abstractive and extractive sum-

marization and a brief account of the related neural

models. Then we listed and analyzed the large-scale

datasets that have distinguishing features. Gradually

the state-of-the-art techniques which conduct abstrac-

tive SDS using deep neural models, especially atten-

tional encoder-decoder architectures were first intro-

duced. Some advanced techniques which perform ex-

tractive SDS were later discussed. We then focused

on the techniques adopted for MDS. We described the

overall framework, specific model design, typical train-

ing procedures, as well as pros and cons of such tech-

niques. Finally, this work conducted the performance

analysis on large-scale datasets. The performance ana-

lysis should be useful for researchers or users to select

suitable models for practical use. We hope this brief ex-

ploration can provide new insights into future research

and application of ATS.

Compared with MDS, more efforts are focusing on

SDS. This is mainly because of the richer research foun-

dation and the available large-scale datasets of SDS.

These approaches mostly employ Seq2Seq models where

the document is fed to an encoder network, and another

network learns to decode the summary. Besides RNN,

CNN also performs well in SDS [117,123]. Several mod-

els such as adaptations from SDS models, neural rank-

ing models have been proposed for a better performing

MDS task. With more and more needs of MDS, tech-

niques about MDS might receive increasing attention in

the near future. On the other hand, abstractive mod-

els can be more concise by performing generation from

scratch than extractive counterparts, but they perform

poorly at content selection. Extractive models learn to

extract sentences from the source documents and build

summaries by concatenating the extracted sentences,

which are more practical since they can guarantee the

grammatical correctness of the produced summary.

DL-based ATS models are promising in terms of

performance when large-scale datasets are available for

training. However, many challenges still remain un-

solved. We discuss several interesting research direc-

tions for future work.

1) Most of the models adopt Seq2Seq models, in

which CNN or RNN is employed. In the future, more

DNN extensions can be used for better modeling the

semantics of documents. For instance, S-LSTM and

R2NN can be used to tree structures. RCNN can be

used to capture contextual information and the key

components in texts.

2) The methods introduced so far mostly conduct

ATS using only facts observed in the original text(s).

In fact, there is a wide variety of external knowledge

that can be incorporated to further improve the task,

e.g., from rhetorical structure tree [17], lexical chain [3],

and knowledge graph [124]. The investigation on incor-

porating additional information has just started, and

might receive increasing attention in the near future.

3) The existing extractive models usually pick the

most important sentences as the final summary, which

may obtain incoherent or not concise results. In the

future, fine-grained textual unit such as clause can be

taken as the basic processing unit.

4) Most of the existing ATS methods are abstrac-

tive or extractive. With more and more specific require-

ments of users, other ATS tasks would be proposed.

• User Preference Oriented Summarization. Most

of the existing methods disregard user preferences like

658 J. Comput. Sci. & Technol., May 2021, Vol.36, No.3

the desired length, source-style, entities of interest, and

summarize only remaining portions of a document. Fan

et al. [56] designed a user preference-oriented abstractive

summarization model.

• Extreme Summarization. Narayan et al. [42] pro-

posed a new single-document summarization task which

aims at creating a short, one-sentence news summary

answering the question “What is the article about?”

Acknowledgements We are grateful to Prof. Ru-

Qian Lu, a fellow of Chinese Academy of Sciences, for

his encouragement. We also thank the reviewers for

their valuable comments and suggestions for further im-

proving the quality of this paper.

References

[1] Canhasi E. Graph-based models for multi-document sum-

marization [Ph.D. Thesis]. Doktora Tezi, Ljubljana Univer-

sitesi, 2014.

[2] Mihalcea R, Tarau P. TextRank: Bringing order into text.

In Proc. the 2004 Conference on Empirical Methods in Nat-

ural Language Processing, July 2004, pp.404-411.

[3] Hou S L, Huang Y, Fei C Q, Zhang S M, Lu R Q.

Holographic lexical chain and its application in Chinese

text summarization. In Proc. the 1st Asia-Pacific Web

(APWeb) and Web-Age Information Management (WAIM)

Joint Conference on Web and Big Data, July 2017, pp.266-

281. DOI: 10.1007/978-3-319-63579-8 21.

[4] Berg-Kirkpatrick T, Gillick D, Klein D. Jointly learning to

extract and compress. In Proc. the 49th Annual Meeting

of the Association for Computational Linguistics: Human

Language Technologies, June 2011, pp.481-490.

[5] Gillick D, Favre B. A scalable global model for summariza-

tion. In Proc. the NAACL HLT Workshop on Integer Lin-

ear Programming for Natural Language Processing, June

2009, pp.10-18. DOI: 10.3115/1611638.1611640.

[6] Fattah M A. A hybrid machine learning model for multi-

document summarization. Applied Intelligence, 2014, 40(4):

592-600. DOI: 10.1007/s10489-013-0490-0.

[7] Rush A M, Chopra S, Weston J. A neural attention model

for abstractive sentence summarization. In Proc. the 2015

Conference on Empirical Methods in Natural Language

Processing, 2015, pp.379-389. DOI: 10.18653/v1/d15-1044.

[8] Cheng J P, Lapata M. Neural summarization by extract-

ing sentences and words. In Proc. the 54th Annual Meeting

of the Association for Computational Linguistics, August

2016, pp.484-494. DOI: 10.18653/v1/p16-1046.

[9] Chu E, Liu P. MeanSum: A neural model for unsuper-

vised multi-document abstractive summarization. In Proc.

the 36th International Conference on Machine Learning,

June 2019, pp.1223-1232.

[10] Young T, Hazarika D, Poria S, Cambria E. Recent trends

in deep learning based natural language processing. IEEE

Computational Intelligence Magazine, 2018, 13(3): 55-75.

DOI: 10.1109/mci.2018.2840738.

[11] Lin C. ROUGE: A package for automatic evaluation of

summaries. In Proc. the Workshop on Text Summarization

Branches Out, July 2004, pp.74-81.

[12] Cheng J P, Dong L, Lapata M. Long short-term memory

networks for machine reading. In Proc. the 2016 Confe-

rence on Empirical Methods in Natural Language Process-

ing, November 2016, pp.551-561. DOI: 10.18653/v1/d16-

1053.

[13] Cho K, Merrienboer B, Gulcehre C, Bahdanau D, Bougares

F, Schwenk H, Bengio Y. Learning phrase representations

using RNN encoder decoder for statistical machine transla-

tion. In Proc. the 2014 Conference on Empirical Methods in

Natural Language Processing, October 2014, pp.1724-1734.

DOI: 10.3115/v1/d14-1179.

[14] Kim Y. Convolutional neural networks for sentence classifi-

cation. In Proc. the 2014 Conference on Empirical Methods

in Natural Language Processing, October 2014, pp.1746-

1751. DOI: 10.3115/v1/d14-1181.

[15] Kipf T N, Welling M. Semi-supervised classification with

graph convolutional networks. arXiv:1609.02907, 2016.

https://arxiv.org/abs/1609.02907, June 2020.

[16] Socher R, Perelygin A, Wu J, Chuang J, Manning C D,

Ng A, Potts C. Recursive deep models for semantic com-

positionality over a sentiment treebank. In Proc. the 2013

Conference on Empirical Methods in Natural Language

Processing, October 2013, pp.1631-1642.

[17] Li J W, Li R M, Hovy E. Recursive deep models for dis-

course parsing. In Proc. the 2014 Conference on Empiri-

cal Methods in Natural Language Processing, October 2014,

pp.2061-2069. DOI: 10.3115/v1/d14-1220.

[18] Zhu X D, Sobihani P, Guo H Y. Long short-term memory

over recursive structures. In Proc. the 32nd International

Conference on Machine Learning, July 2015, pp.1604-1612.

[19] Lai S W, Xu L H, Liu K, Zhao J. Recurrent convolutional

neural networks for text classification. In Proc. the 29th

AAAI Conference on Artificial Intelligence, January 2015,

pp.2267-2273.

[20] Sutskever I, Vinyals O, Le Q V. Sequence to sequence

learning with neural networks. In Proc. the Annual Confe-

rence on Neural Information Processing Systems, Decem-

ber 2014, pp.3104-3112.

[21] Bahdanau D, Cho K, Bengio Y. Neural machine transla-

tion by jointly learning to align and translate. In Proc. the

3rd International Conference on Learning Representations,

May 2015.

[22] Luong T, Pham H, Manning C D. Effective approaches

to attention-based neural machine translation. In Proc.

the 2015 Conference on Empirical Methods in Natural

Language Processing, September 2015, pp.1412-1421. DOI:

10.18653/v1/d15-1166.

[23] Xu K, Ba J, Kiros R, Cho K, Courville A, Salakhudinov R,

Zemel R, Bengio Y. Show, attend and tell: Neural image

caption generation with visual attention. In Proc. the 32nd

International Conference on Machine Learning, July 2015,

pp.2048-2057.

[24] Paulus R, Xiong C, Socher R. A deep reinforced model

for abstractive summarization. arXiv:1705.04304, 2017.

https://arxiv.org/abs/1705.04304, June 2020.

https://doi.org/10.1007/978-3-319-63579-8_21
https://doi.org/10.3115/1611638.1611640
https://doi.org/10.1007/s10489-013-0490-0
https://doi.org/10.18653/v1/d15-1044
https://doi.org/10.18653/v1/p16-1046
https://doi.org/10.1109/mci.2018.2840738
https://doi.org/10.18653/v1/d16-1053
https://doi.org/10.18653/v1/d16-1053
https://doi.org/10.3115/v1/d14-1179
https://doi.org/10.3115/v1/d14-1181
https://doi.org/10.3115/v1/d14-1220
https://doi.org/10.18653/v1/d15-1166

Sheng-Luan Hou et al.: A Survey of Text Summarization Approaches Based on Deep Learning 659

[25] Nallapati R, Zhou B W, Santos C, Gulcehre C, Xiang B.

Abstractive text summarization using sequence-to-sequence

RNNs and beyond. In Proc. the 20th SIGNLL Confe-

rence on Computational Natural Language Learning, Au-

gust 2016, pp.280-290. DOI: 10.18653/v1/k16-1028.

[26] See A, Liu P J, Manning C D. Get to the point: Summa-

rization with pointer-generator networks. In Proc. the 55th

Annual Meeting of the Association for Computational Lin-

guistics, July 2017, pp.1073-1083. DOI: 10.18653/v1/p17-

1099.

[27] Vinyals O, Fortunato M, Jaitly N. Pointer networks. In

Proc. the Annual Conference on Neural Information Pro-

cessing Systems, December 2015, pp.2692-2700.

[28] Gu J T, Lu Z D, Li H, Li V O. Incorporating copy-

ing mechanism in sequence-to-sequence learning. In Proc.

the 54th Annual Meeting of the Association for Com-

putational Linguistics, August 2016, pp.1631-1640. DOI:

10.18653/v1/p16-1154.

[29] Tu Z P, Lu Z D, Liu Y, Liu X H, Li H. Modeling coverage

for neural machine translation. In Proc. the 54th Annual

Meeting of the Association for Computational Linguistics,

August 2016, pp.76-85. DOI: 10.18653/v1/p16-1008.

[30] Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L,

Gomez A N, Kaiser L, Polosukhin I. Attention is all you

need. In Proc. the Annual Conference on Neural Informa-

tion Processing Systems, December 2017, pp.5998-6008.

[31] Hermann K M, Kocisky T, Grefenstette E, Espeholt L, Kay

W, Suleyman M, Blunsom P. Teaching machines to read

and comprehend. In Proc. the Annual Conference on Neural

Information Processing Systems, December 2015, pp.1693-

1701.

[32] Nallapati R, Zhai F F, Zhou B W. SummaRuNNer: A

recurrent neural network based sequence model for ex-

tractive summarization of documents. In Proc. the 31st

AAAI Conference on Artificial Intelligence, February 2017,

pp.3075-3081.

[33] Sandhaus E. The New York times annotated corpus. Tech-

nical Report, The New York Times Company, Research

and Development, 2008. https://catalog.ldc.upenn.edu/

docs/LDC2008T19/new york times annotated corpus.pdf,

June 2020.

[34] Durrett G, Berg-Kirkpatrick T, Klein D. Learning-based

single-document summarization with compression and

anaphoricity constraints. In Proc. the 54th Annual Meeting

of the Association for Computational Linguistics, August

2016, pp.1998-2008. DOI: 10.18653/v1/p16-1188.

[35] Xu J C, Durrett G. Neural extractive text summariza-

tion with syntactic compression. arXiv:1902.00863, 2019.

https://arxiv.org/abs/1902.00863, June 2020.

[36] Çelikyilmaz A, Bosselut A, He X, Choi Y. Deep commu-

nicating agents for abstractive summarization. In Proc.

the 2018 Conference of the North American Chapter of

the Association for Computational Linguistics: Human

Language Technologies, June 2018, pp.1662-1675. DOI:

10.18653/v1/n18-1150.

[37] Liu P J, Saleh M, Pot E, Goodrich B, Sepassi R, Kaiser

L, Shazeer N. Generating Wikipedia by summarizing long

sequences. In Proc. the 6th International Conference on

Learning Representations, May 2018.

[38] Liu Y, Lapata M. Hierarchical transformers for multi-

document summarization. arXiv:1905.13164, 2019.

https://arxiv.org/abs/1905.13164, June 2020.

[39] Perez-Beltrachini L, Liu Y, Lapata M. Generating sum-

maries with topic templates and structured convolutional

decoders. In Proc. the 57th Annual Meeting of the Asso-

ciation for Computational Linguistics, July 2019, pp.5107-

5116. DOI: 10.18653/v1/p19-1504.

[40] Grusky M, Naaman M, Artzi Y. Newsroom: A dataset

of 1.3 million summaries with diverse extractive strategies.

arXiv:1804.11283, 2018. https://arxiv.org/abs/1804.11283,

June 2020.

[41] Hu B T, Chen Q C, Zhu F Z. LCSTS: A large scale Chinese

short text summarization dataset. In Proc. the 2015 Confe-

rence on Empirical Methods in Natural Language Process-

ing, September 2015, pp.1967-1972. DOI: 10.18653/v1/d15-

1229.

[42] Narayan S, Cohen S B, Lapata M. Don’t give me the details,

just the summary! topic-aware convolutional neural net-

works for extreme summarization. In Proc. the 2018 Confe-

rence on Empirical Methods in Natural Language Process-

ing, October 2018, pp.1797-1807. DOI: 10.18653/v1/d18-

1206.

[43] Fabbri A R, Li I, She T W, Li S Y, Radev D R. Multi-news:

A large-scale multi-document summarization dataset and

abstractive hierarchical model. In Proc. the 57th Confe-

rence of the Association for Computational Linguistics,

July 2019, pp.1074-1084. DOI: 10.18653/v1/p19-1102.

[44] Ranzato M, Chopra S, Auli M, Zaremba W. Sequence level

training with recurrent neural networks. arXiv:1511.06732,

2015. https://arxiv.org/abs/1511.06732, June 2020.

[45] Chopra S, Auli M, Rush A M. Abstractive sentence sum-

marization with attentive recurrent neural networks. In

Proc. the 2016 Conference of the North American Chap-

ter of the Association for Computational Linguistics: Hu-

man Language Technologies, June 2016, pp.93-98. DOI:

10.18653/v1/n16-1012.

[46] Takase S, Suzuki J, Okazaki N, Hirao T, Nagata M. Neural

headline generation on abstract meaning representation. In

Proc. the 2016 Conference on Empirical Methods in Nat-

ural Language Processing, November 2016, pp.1054-1059.

DOI: 10.18653/v1/d16-1112.

[47] Wang C, Xue N W, Pradhan S. A transition-based algo-

rithm for AMR parsing. In Proc. the 2015 Conference of

the North American Chapter of the Association for Compu-

tational Linguistics: Human Language Technologies, May

2015, pp.366-375. DOI: 10.3115/v1/n15-1040.

[48] Tai K S, Socher R, Manning C D. Improved semantic rep-

resentations from tree-structured long short-term memory

networks. In Proc. the 53rd Annual Meeting of the Associ-

ation for Computational Linguistics and the 7th Interna-

tional Joint Conference on Natural Language Processing,

July 2015, pp.1556-1566. DOI: 10.3115/v1/p15-1150.

[49] Lopyrev K. Generating news headlines with re-

current neural networks. arXiv:1512.01712, 2015.

https://arxiv.org/abs/1512.01712, June 2020.

[50] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT

Press, 2016.

https://doi.org/10.18653/v1/k16-1028
https://doi.org/10.18653/v1/p17-1099
https://doi.org/10.18653/v1/p17-1099
https://doi.org/10.18653/v1/p16-1154
https://doi.org/10.18653/v1/p16-1008
https://doi.org/10.18653/v1/p16-1188
https://doi.org/10.18653/v1/n18-1150
https://doi.org/10.18653/v1/p19-1504
https://doi.org/10.18653/v1/d15-1229
https://doi.org/10.18653/v1/d15-1229
https://doi.org/10.18653/v1/d18-1206
https://doi.org/10.18653/v1/d18-1206
https://doi.org/10.18653/v1/p19-1102
https://doi.org/10.18653/v1/n16-1012
https://doi.org/10.18653/v1/d16-1112
https://doi.org/10.3115/v1/n15-1040
https://doi.org/10.3115/v1/p15-1150

660 J. Comput. Sci. & Technol., May 2021, Vol.36, No.3

[51] Chen Q, Zhu X D, Ling Z H, Wei S, Jiang H. Distraction-

based neural networks for modeling document. In Proc. the

25th International Joint Conference on Artificial Intelli-

gence, July 2016, pp.2754-2760.

[52] Inan H, Khosravi K, Socher R. Tying word vectors and

word classifiers: A loss framework for language modeling.

arXiv:1611.01462, 2016. https://arxiv.org/abs/1611.01462,

June 2020.

[53] Tan J W, Wan X J, Xiao J G. Abstractive document sum-

marization with a graph-based attentional neural model.

In Proc. the 55th Annual Meeting of the Association for

Computational Linguistics, July 2017, pp.1171-1181. DOI:

10.18653/v1/p17-1108.

[54] Gehrmann S, Deng Y, Rush A. Bottom-up abstractive sum-

marization. In Proc. the 2018 Conference on Empirical

Methods in Natural Language Processing, October 2018,

pp.4098-4109. DOI: 10.18653/v1/d18-1443.

[55] Hsu W T, Lin C K, Lee M Y, Min K, Tang J, Sun M. A

unified model for extractive and abstractive summarization

using inconsistency loss. In Proc. the 56th Annual Meet-

ing of the Association for Computational Linguistics, July

2018, pp.132-141. DOI: 10.18653/v1/p18-1013.

[56] Fan A, Grangier D, Auli M. Controllable abstractive sum-

marization. In Proc. the 2nd Workshop on Neural Machine

Translation and Generation, July 2018, pp.45-54. DOI:

10.18653/v1/w18-2706.

[57] Blei D M, Ng A Y, Jordan M I. Latent Dirichlet alloca-

tion. Journal of Machine Learning Research, 2003, 3(1):

993-1022.

[58] Cai T, Shen M J, Peng H L, Jiang L, Dai Q. Improving

transformer with sequential context representations for ab-

stractive text summarization. In Proc. the 8th CCF In-

ternational Conference on Natural Language Processing

and Chinese Computing, October 2019, pp.512-524. DOI:

10.1007/978-3-030-32233-5 40.

[59] Gulcehre C, Ahn S, Nallapati R, Zhou B W, Bengio Y.

Pointing the unknown words. In Proc. the 54th Annual

Meeting of the Association for Computational Linguistics,

2016, pp.140-149. DOI: 10.18653/v1/p16-1014.

[60] Jean S, Cho K, Memisevic R, Bengio Y. On using very large

target vocabulary for neural machine translation. In Proc.

the 53rd Annual Meeting of the Association for Computa-

tional Linguistics and the 7th International Joint Confe-

rence on Natural Language Processing of the Asian Feder-

ation of Natural Language Processing, July 2015, pp.1-10.

DOI: 10.3115/v1/p15-1001.

[61] Zeng W Y, Luo W J, Fidler S, Urtasun R. Efficient

summarization with read-again and copy mechanism.

arXiv:1611.03382, 2016. https://arxiv.org/abs/1611.03382,

June 2020.

[62] Li P J, Lam W, Bing L D, Wang Z H. Deep recurrent

generative decoder for abstractive text summarization. In

Proc. the 2017 Conference on Empirical Methods in Nat-

ural Language Processing, September 2017, pp.2091-2100.

DOI: 10.18653/v1/d17-1222.

[63] Li W, Xiao X Y, Lyu Y J, Wang Y Z. Improving neural ab-

stractive document summarization with explicit informa-

tion selection modeling. In Proc. the 2018 Conference on

Empirical Methods in Natural Language Processing, Octo-

ber 2018, pp.1787-1796. DOI: 10.18653/v1/d18-1205.

[64] Chen Y C, Bansal M. Fast abstractive summarization with

reinforce-selected sentence rewriting. In Proc. the 56th An-

nual Meeting of the Association for Computational Linguis-

tics, July 2018, pp.675-686. DOI: 10.18653/v1/p18-1063.

[65] Jiang X P, Hu P, Hou L W, Wang X. Improving pointer-

generator network with keywords information for Chi-

nese abstractive summarization. In Proc. the 7th CCF In-

ternational Conference on Natural Language Processing

and Chinese Computing, August 2018, pp.464-474. DOI:

10.1007/978-3-319-99495-6 39.

[66] Cohan A, Dernoncourt F, Kim D S, Bui T, Kim S, Chang

W, Goharian N. A discourse-aware attention model for

abstractive summarization of long documents. In Proc.

the 2018 Conference of the North American Chapter

of the Association for Computational Linguistics: Hu-

man Language Technologies, June 2018, pp.615-621. DOI:

10.18653/v1/n18-2097.

[67] Williams R J. Simple statistical gradient-following algo-

rithms for connectionist reinforcement learning. Machine

Learning, 1992, 8(3): 229-256. DOI: 10.1007/978-1-4615-

3618-5 2.

[68] Miao Y S, Blunsom P. Language as a latent variable:

Discrete generative models for sentence compression. In

Proc. the 2016 Conference on Empirical Methods in Natu-

ral Language Processing, November 2016, pp.319-328. DOI:

10.18653/v1/d16-1031.

[69] Pasunuru R, Bansal M. Multi-reward reinforced summariza-

tion with saliency and entailment. In Proc. the 2018 Confe-

rence of the North American Chapter of the Association for

Computational Linguistics: Human Language Technolo-

gies, June 2018, pp.646-653. DOI: 10.18653/v1/n18-2102.

[70] Sukhbaatar S, Szlam A, Fergus R. Learning multiagent

communication with backpropagation. In Proc. the Annual

Conference on Neural Information Processing Systems, De-

cember 2016, pp.2244-2252.

[71] Liu L Q, Lu Y, Yang M, Qu Q, Zhu J, Li H Y. Generative

adversarial network for abstractive text summarization. In

Proc. the 32nd AAAI Conference on Artificial Intelligence,

February 2018, pp.8109-8110.

[72] Guo H, Pasunuru R, Bansal M. Soft layer-specific multi-

task summarization with entailment and question gene-

ration. In Proc. the 56th Annual Meeting of the Associa-

tion for Computational Linguistics, July 2018, pp.687-697.

DOI: 10.18653/v1/p18-1064.

[73] Cao Z Q, Wei F R, Li W J, Li S J. Faithful to the original:

Fact aware neural abstractive summarization. In Proc. the

32nd AAAI Conference on Artificial Intelligence, February

2018, pp.4784-4791.

[74] Amplayo R K, Lim S, Hwang S. Entity commonsense

representation for neural abstractive summarization. In

Proc. the 2018 Conference of the North American Chap-

ter of the Association for Computational Linguistics: Hu-

man Language Technologies, June 2018, pp.697-707. DOI:

10.18653/v1/n18-1064.

[75] Kryscinski W, Paulus R, Xiong C M, Socher R. Improving

abstraction in text summarization. In Proc. the 2018 Confe-

rence on Empirical Methods in Natural Language Process-

ing, October 2018, pp.1808-1817. DOI: 10.18653/v1/d18-

1207.

https://doi.org/10.18653/v1/p17-1108
https://doi.org/10.18653/v1/d18-1443
https://doi.org/10.18653/v1/p18-1013
https://doi.org/10.18653/v1/w18-2706
https://doi.org/10.1007/978-3-030-32233-5_40
https://doi.org/10.18653/v1/p16-1014
https://doi.org/10.3115/v1/p15-1001
https://doi.org/10.18653/v1/d17-1222
https://doi.org/10.18653/v1/d18-1205
https://doi.org/10.18653/v1/p18-1063
https://doi.org/10.1007/978-3-319-99495-6_39
https://doi.org/10.18653/v1/n18-2097
https://doi.org/10.1007/978-1-4615-3618-5_2
https://doi.org/10.1007/978-1-4615-3618-5_2
https://doi.org/10.18653/v1/d16-1031
https://doi.org/10.18653/v1/n18-2102
https://doi.org/10.18653/v1/p18-1064
https://doi.org/10.18653/v1/n18-1064
https://doi.org/10.18653/v1/d18-1207
https://doi.org/10.18653/v1/d18-1207

Sheng-Luan Hou et al.: A Survey of Text Summarization Approaches Based on Deep Learning 661

[76] Zhang H Y, Cai J J, Xu J J, Wang J. Pretraining-

based natural language generation for text summarization.

In Proc. the 23rd Conference on Computational Natu-

ral Language Learning, November 2019, pp.789-797. DOI:

10.18653/v1/k19-1074.

[77] Dong L, Yang N, Wang W H, Wei F R, Liu X D, Wang

Y, Gao J F, Zhou M, Hon H. Unified language model pre-

training for natural language understanding and generation.

In Proc. the Annual Conference on Neural Information

Processing Systems, December 2019, pp.13042-13054.

[78] Song K T, Tan X, Qin T, Lu J F, Liu T. MASS: Masked se-

quence to sequence pre-training for language generation. In

Proc. the 36th International Conference on Machine Learn-

ing, June 2019, pp.5926-5936.

[79] Cao Z Q, Li W J, Li S J, Wei F R. Retrieve, rerank

and rewrite: Soft template based neural summarization.

In Proc. the 56th Annual Meeting of the Association for

Computational Linguistics, July 2018, pp.152-161. DOI:

10.18653/v1/p18-1015.

[80] Wang L, Yao J L, Tao Y Z, Zhong L, Liu W, Du Q. A

reinforced topic-aware convolutional sequence-to-sequence

model for abstractive text summarization. In Proc. the 27th

International Joint Conference on Artificial Intelligence,

July 2018, pp.4453-4460. DOI: 10.24963/ijcai.2018/619.

[81] Jadhav A, Rajan V. Extractive summarization with SWAP-

NET: Sentences and words from alternating pointer net-

works. In Proc. the 56th Annual Meeting of the Associa-

tion for Computational Linguistics, July 2018, pp.142-151.

DOI: 10.18653/v1/p18-1014.

[82] Narayan S, Papasarantopoulos N, Cohen S B, Lapata M.

Neural extractive summarization with side information.

arXiv:1704.04530, 2017. https://arxiv.org/abs/1704.04530,

June 2020.

[83] Isonuma M, Fujino T, Mori J, Matsuo Y, Sakata I. Extrac-

tive summarization using multi-task learning with docu-

ment classification. In Proc. the 2017 Conference on Em-

pirical Methods in Natural Language Processing, September

2017, pp.2101-2110. DOI: 10.18653/v1/d17-1223.

[84] Zhou Q Y, Yang N, Wei F R, Huang S H, Zhou M, Zhao

T J. Neural document summarization by jointly learning to

score and select sentences. In Proc. the 56th Annual Meet-

ing of the Association for Computational Linguistics, July

2018, pp.654-663. DOI: 10.18653/v1/p18-1061.

[85] Zhang X X, Wei F R, Zhou M. Hibert: Document

level pre-training of hierarchical bidirectional transform-

ers for document summarization. arXiv:1905.06566, 2019.

https://arxiv.org/abs/1905.06566, June 2020.

[86] Liu Y. Fine-tune BERT for extractive summarization.

arXiv:1903.10318, 2019. https://arxiv.org/abs/1903.10318,

June 2020.

[87] Narayan S, Cohen S B, Lapata M. Ranking sentences for

extractive summarization with reinforcement learning. In

Proc. the 2018 Conference of the North American Chapter

of the Association for Computational Linguistics: Human

Language Technologies, June 2018, pp.1747-1759. DOI:

10.18653/v1/n18-1158.

[88] Wu Y X, Hu B T. Learning to extract coherent sum-

mary via deep reinforcement learning. In Proc. the 32nd

AAAI Conference on Artificial Intelligence, February 2018,

pp.5602-5609.

[89] Dong Y, Shen Y K, Crawford E, van Hoof H, Cheung J C K.

BanditSum: Extractive summarization as a contextual ban-

dit. In Proc. the 2018 Conference on Empirical Methods in

Natural Language Processing, October 2018, pp.3739-3748.

DOI: 10.18653/v1/d18-1409.

[90] Zhang X X, Lapata M, Wei F R, Zhou M. Neural latent ex-

tractive document summarization. In Proc. the 2018 Confe-

rence on Empirical Methods in Natural Language Pro-

cessing, October 2018, pp.779-784. DOI: 10.18653/v1/d18-

1088.

[91] Chen X Y, Gao S, Tao C Y, Song Y, Zhao D Y, Yan R.

Iterative document representation learning towards summa-

rization with polishing. In Proc. the 2018 Conference on

Empirical Methods in Natural Language Processing, Octo-

ber 2018, pp.4088-4097. DOI: 10.18653/v1/d18-1442.

[92] Sukhbaatar S, Weston J, Fergus R et al. End-to-end mem-

ory networks. In Proc. the Annual Conference on Neural

Information Processing Systems, December 2015, pp.2440-

2448.

[93] Peters M E, Neumann M, Iyyer M, Gardner M, Clark C,

Lee K, Zettlemoyer L. Deep contextualized word representa-

tions. In Proc. the 2018 Conference of the North American

Chapter of the Association for Computational Linguistics:

Human Language Technologies, June 2018, pp.2227-2237.

[94] Kedzie C, McKeown K, Daume III H. Content selec-

tion in deep learning models of summarization. In Proc.

the 2018 Conference on Empirical Methods in Natural

Language Processing, October 2018, pp.1818-1828. DOI:

10.18653/v1/d18-1208.

[95] Carbonell J G, Goldstein J. The use of MMR, diversity-

based reranking for reordering documents and produc-

ing summaries. In Proc. the 21st Annual International

ACM SIGIR Conference on Research and Development

in Information Retrieval, August 1998, pp.335-336. DOI:

10.1145/290941.291025.

[96] Wang H, Wang X, Xiong W H, Yu M, Guo X X, Chang S

Y, Wang W Y. Self-supervised learning for contextualized

extractive summarization. In Proc. the 57th Conference of

the Association for Computational Linguistics, July 2019,

pp.2221-2227. DOI: 10.18653/v1/p19-1214.

[97] K̊agebäck M, Mogren O, Tahmasebi N, Dubhashi D. Ex-

tractive summarization using continuous vector space mod-

els. In Proc. the 2nd Workshop on Continuous Vector Space

Models and their Compositionality, April 2014, pp.31-39.

DOI: 10.3115/v1/w14-1504.

[98] Socher R, Huang E H, Pennington J, Ng A Y, Manning C D.

Dynamic pooling and unfolding recursive autoencoders for

paraphrase detection. In Proc. 25th Annual Conference on

Neural Information Processing Systems, December 2011,

pp.801-809.

[99] Lin H, Bilmes J. A class of submodular functions for docu-

ment summarization. In Proc. the 49th Annual Meeting

of the Association for Computational Linguistics: Human

Language Technologies, June 2011, pp.510-520.

[100] Yin W P, Pei Y L. Optimizing sentence modeling and selec-

tion for document summarization. In Proc. the 24th Inter-

national Joint Conference on Artificial Intelligence, July

2015, pp.1383-1389.

https://doi.org/10.18653/v1/k19-1074
https://doi.org/10.18653/v1/p18-1015
https://doi.org/10.24963/ijcai.2018/619
https://doi.org/10.18653/v1/p18-1014
https://doi.org/10.18653/v1/d17-1223
https://doi.org/10.18653/v1/p18-1061
https://doi.org/10.18653/v1/n18-1158
https://doi.org/10.18653/v1/d18-1409
https://doi.org/10.18653/v1/d18-1088
https://doi.org/10.18653/v1/d18-1088
https://doi.org/10.18653/v1/d18-1442
https://doi.org/10.18653/v1/d18-1208
https://doi.org/10.1145/290941.291025
https://doi.org/10.18653/v1/p19-1214
https://doi.org/10.3115/v1/w14-1504

662 J. Comput. Sci. & Technol., May 2021, Vol.36, No.3

[101] Mikolov T, Chen K, Corrado G, Dean J. Efficient

estimation of word representations in vector space.

arXiv:1301.3781, 2013. https://arxiv.org/abs/1301.3781,

June 2020.

[102] Mnih A, Teh Y. A fast and simple algorithm for training

neural probabilistic language models. In Proc. the 29th In-

ternational Conference on Machine Learning, June 2012.

[103] Cao Z Q, Wei F R, Dong L, Li S J, Zhou M. Ranking

with recursive neural networks and its application to multi-

document summarization. In Proc. the 29th AAAI Confe-

rence on Artificial Intelligence, January 2015, pp.2153-

2159.

[104] Cao Z Q, Li W J, Li S J, Wei F R. Improving multi-

document summarization via text classification. In Proc. the

31st AAAI Conference on Artificial Intelligence, February

2017, pp.3053-3059.

[105] Christensen J, Soderland S, Etzioni O. Towards coherent

multi-document summarization. In Proc. the 2013 Confe-

rence of the North American Chapter of the Association for

Computational Linguistics: Human Language Technolo-

gies, June 2013, pp.1163-1173.

[106] Yasunaga M, Zhang R, Meelu K, Pareek A, Srinivasan K,

Radev D. Graph-based neural multi-document summariza-

tion. In Proc. the 21st Conference on Computational Nat-

ural Language Learning, August 2017, pp.452-462. DOI:

10.18653/v1/k17-1045.

[107] Ren P J, Wei F R, Chen Z M, Ma J, Zhou M. A

redundancy-aware sentence regression framework for ex-

tractive summarization. In Proc. the 26th International

Conference on Computational Linguistics, December 2016,

pp.33-43.

[108] Ren P J, Chen Z M, Ren Z C, Wei F R, Ma J, de Rijke

M. Leveraging contextual sentence relations for extractive

summarization using a neural attention model. In Proc. the

40th International ACM SIGIR Conference on Research

and Development in Information Retrieval, August 2017,

pp.95-104. DOI: 10.1145/3077136.3080792.

[109] Li P J, Wang Z H, Lam W, Ren Z C, Bing L D. Salience es-

timation via variational auto-encoders for multi-document

summarization. In Proc. the 31st AAAI Conference on Ar-

tificial Intelligence, February 2017, pp.3497-3503.

[110] Cho S, Lebanoff L, Foroosh H, Liu F. Improving the simila-

rity measure of determinantal point processes for extractive

multi-document summarization. In Proc. the 57th Confe-

rence of the Association for Computational Linguistics,

July 2019, pp.1027-1038. DOI: 10.18653/v1/p19-1098.

[111] Hinton G E, Sabour S, Frosst N. Matrix capsules with

EM routing. In Proc. the 6th International Conference on

Learning Representations, April 2018.

[112] Wang L, Ling W. Neural network-based abstract gene-

ration for opinions and arguments. In Proc. the 2016 Confe-

rence of the North American Chapter of the Association for

Computational Linguistics: Human Language Technolo-

gies, June 2016, pp.47-57. DOI: 10.18653/v1/n16-1007.

[113] Zhang J M, Tan J W, Wan X J. Adapting neural single-

document summarization model for abstractive multi-

document summarization: A pilot study. In Proc. the 11th

International Conference on Natural Language Generation,

November 2018, pp.381-390. DOI: 10.18653/v1/w18-6545.

[114] Lebanoff L, Song K, Liu F. Adapting the neural encoder-

decoder framework from single to multi-document sum-

marization. In Proc. the 2018 Conference on Empirical

Methods in Natural Language Processing, October 2018,

pp.4131-4141. DOI: 10.18653/v1/d18-1446.

[115] Nenkova A, Vanderwende L. The impact of frequency

on summarization. Technical Report, Microsoft Re-

search, 2005. https://www.cs.bgu.ac.il/˜elhadad/nlp09/su-

mbasic.pdf, June 2020.

[116] Wu Y H, Schuster M, Chen Z F et al. Google’s neu-

ral machine translation system: Bridging the gap between

human and machine translation. arXiv:1609.08144, 2016.

https://arxiv.org/abs/1609.08144, June 2020.

[117] Gehring J, Auli M, Grangier D, Yarats D, Dauphin Y N.

Convolutional sequence to sequence learning. In Proc. the

34th International Conference on Machine Learning, Au-

gust 2017, pp.1243-1252.

[118] Lebanoff L, Song K, Dernoncourt F, Kim D S, Kim S,

Chang W, Liu F. Scoring sentence singletons and pairs

for abstractive summarization. arXiv:1906.00077, 2019.

https://arxiv.org/abs/1906.00077, June 2020.

[119] Devlin J, Chang M W, Lee K, Toutanova K. BERT: Pre-

training of deep bidirectional transformers for language un-

derstanding. In Proc. the 2019 Conference of the North

American Chapter of the Association for Computational

Linguistics: Human Language Technologies, June 2019,

pp.4171-4186.

[120] Chu E, Liu P J. Unsupervised neural multi-document

abstractive summarization. arXiv:1810.05739, 2018.

https://arxiv.org/abs/1810.05739, June 2020.

[121] Denkowski M, Lavie A. Meteor universal: Language spe-

cific translation evaluation for any target language. In Proc.

the 9th Workshop on Statistical Machine Translation, June

2014, pp.376-380. DOI: 10.3115/v1/w14-3348.

[122] Schluter N. The limits of automatic summarisation accord-

ing to ROUGE. In Proc. the 15th Conference of the Euro-

pean Chapter of the Association for Computational Lin-

guistics, April 2017, pp.41-45. DOI: 10.18653/v1/e17-2007.

[123] Zhong M, Liu P F, Wang D Q, Qiu X P, Huang X J. Search-

ing for effective neural extractive summarization: What

works and what’s next. In Proc. the 57th Conference of

the Association for Computational Linguistics, July 2019,

pp.1049-1058. DOI: 10.18653/v1/p19-1100.

[124] Lu R Q, Jin X L, Zhang S M, Qiu M K, Wu X D. A study

on big knowledge and its engineering issues. IEEE Trans-

actions on Knowledge and Data Engineering, 2018, 31(9):

1630-1644.

Sheng-Luan Hou received his M.S.

degree in mathematics from Beijing

University of Technology, Beijing, in

2014. He is now a Ph.D. candidate

in Institute of Computing Technology

(ICT), Chinese Academy of Sciences,

Beijing. His research interests include

deep learning, automatic text summa-

rization, and artificial intelligence.

https://doi.org/10.18653/v1/k17-1045
https://doi.org/10.1145/3077136.3080792
https://doi.org/10.18653/v1/p19-1098
https://doi.org/10.18653/v1/n16-1007
https://doi.org/10.18653/v1/w18-6545
https://doi.org/10.18653/v1/d18-1446
https://doi.org/10.3115/v1/w14-3348
https://doi.org/10.18653/v1/e17-2007
https://doi.org/10.18653/v1/p19-1100

Sheng-Luan Hou et al.: A Survey of Text Summarization Approaches Based on Deep Learning 663

Xi-Kun Huang received his B.S.

degree in mathematics from Jilin

University, Changchun, in 2014. He

is now a Ph.D. candidate in Academy

of Mathematics and Systems Sciences,

Chinese Academy of Sciences, Beijing.

His current research interests include

complex network evolving model, link

prediction in dynamic networks, and network representa-

tion learning.

Chao-Qun Fei received his M.S.

degree in computer science from Wuhan

University, Wuhan, in 2015. He is

now a Ph.D. candidate in Institute of

Computing Technology (ICT), Chinese

Academy of Sciences, Beijing. His

research interests include knowledge

graph, natural language processing, and

machine learning.

Shu-Han Zhang received her M.S.

degree in computer science from Yun-

nan Normal University, Kunming, in

2015. She is now a Ph.D. candidate

in Institute of Computing Technology

(ICT), Chinese Academy of Sciences,

Beijing. Her research interests include

petri net, data mining, and artificial intelligence.

Yang-Yang Li received her B.E.

degree in mathematics and computer

science from Hebei University, Baoding,

in 2012. She is currently pursuing

her Ph.D. degree in Academy of

Mathematics and Systems Science,

Chinese Academy of Sciences, Beijing.

Her research interests include pattern

recognition, image processing, and machine learning.

Qi-Lin Sun received his B.S. degree

from Dalian University of Technology,

Dalian, in 2013. He is now a Ph.D.

candidate in Academy of Mathematics

and Systems Science, Chinese Academy

of Sciences, Beijing. His research inter-

ests include knowledge graph, natural

language processing, and machine

learning.

Chuan-Qing Wang received his

B.S. degree in mathematics from Henan

University, Kaifeng, in 2015. He is now

a successive M.S.-Ph.D. candidate in

Academy of Mathematics and Systems

Science, Chinese Academy of Sciences,

Beijing. His research interests include

knowledge-based programming and

natural language processing.

	1 Introduction
	2 Preliminaries
	2.1 Abstractive and Extractive Summarization
	2.2 Deep Neural Networks
	2.2.1 Feed-Forward Neural Network
	2.2.2 Recurrent Neural Network
	2.2.3 Convolutional Neural Network and GraphConvolutional Network
	2.2.4 Recursive Neural Network

	2.3 Encoder-Decoder Model
	2.4 Attention Mechanism
	2.5 Copying Mechanism and Coverage Mechanism
	2.5.1 Pointer Network
	2.5.2 CopyNet
	2.5.3 Coverage Mechanism

	2.6 Transformer
	2.6.1 Multi-Head Self-Attention
	2.6.2 Architecture of Transformer

	2.7 Reinforcement Learning

	3 Datasets for ATS
	3.1 DUC/TAC
	3.2 Gigaword
	3.3 CNN/DM
	3.4 NYT
	3.5 WikiSum and WikiCatSum
	3.6 Newsroom
	3.7 Others

	4 Single-Document Abstractive Approaches
	4.1 Methodologies
	4.1.1 ABS Model and Its Extensions
	4.1.2 Encoder-Decoder Models with Various Attention Mechanisms
	4.1.3 Methods for Tackling UNKs and Repetition Problems
	4.1.4 Inspirations by Human Summarizers
	4.1.5 Incorporating Additional Features
	4.1.6 Others

	4.2 Summary

	5 Single-Document Extractive Approaches
	5.1 Methodologies
	5.1.1 NLL-Based Sentence Salience Scoring
	5.1.2 RL-Based Methods
	5.1.3 Others

	5.2 Training Strategies
	5.2.1 Training with Automatic Generated Extractive Labels
	5.2.2 Training with Abstractive Ground-Truth Directly
	5.2.3 Training with Reinforcement Learning

	5.3 Summary

	6 Multi-Document Summarization Approaches
	6.1 Methodologies
	6.1.1 Extractive Approaches
	6.1.2 Abstractive Counterparts

	6.2 Summary

	7 Performance Analysis
	7.1 ROUGE
	7.1.1 SDS on Gigaword and DUC'04
	7.1.2 SDS on CNN/DM and DUC'02
	7.1.3 MDS on DUC'02 and DUC'04

	7.2 Human Evaluation

	8 Conclusions

