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Abstract The 3D object tracking from a monocular RGB image is a challenging task. Although popular color and edge-

based methods have been well studied, they are only applicable to certain cases and new solutions to the challenges in real

environment must be developed. In this paper, we propose a robust 3D object tracking method with adaptively weighted

local bundles called AWLB tracker to handle more complicated cases. Each bundle represents a local region containing a

set of local features. To alleviate the negative effect of the features in low-confidence regions, the bundles are adaptively

weighted using a spatially-variant weighting function based on the confidence values of the involved energy terms. Therefore,

in each frame, the weights of the energy items in each bundle are adapted to different situations and different regions of

the same frame. Experiments show that the proposed method can improve the overall accuracy in challenging cases. We

then verify the effectiveness of the proposed confidence-based adaptive weighting method using ablation studies and show

that the proposed method overperforms the existing single-feature methods and multi-feature methods without adaptive

weighting.
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1 Introduction

The 3D object tracking aims to estimate the six

degrees of freedom (6DOF) relative pose between the

camera and the target object with a known geometric

model. It is a fundamental task in augmented reality

because of its capability to simultaneously capture the

camera pose and the registered 3D object model [1]. It

is also widely used in various vision-related tasks such

as human-computer interaction, robotics and medical

navigation.

An important class of methods for 3D object track-

ing are focused on tracking the object pose based on

local image features [2, 3]. Such methods have been

extensively studied in the past decades. The track-

ing methods based on local features are often robust

against lighting changes, partial occlusion and fast mo-

tion. Nevertheless, such methods are much more effi-

cient for texture-rich objects and hence not applica-

ble to texture-less objects [1]. To address this issue,

a possible approach is to utilize depth cameras [4] and

3D tracking can be then performed using an ICP-like

procedure [5]. There are however practical issues with

using the depth for 3D tracking such as depth noise and

misalignment, the limited distance between the camera

and the object, and so on. In this paper, our focus

is on the 3D tracking of texture-less objects based on

monocular RGB video input.

Our objective is to perform 6DOF pose estimation

for tracking and the video objects are assumed to un-

dergo continuous transforms in their poses, where their

initial pose in the first frame is also known. Note that

Regular Paper

Special Section of CVM 2021

This work was partially supported by Zhejiang Lab under Grant No. 2020NB0AB02, and the Industrial Internet Innovation and
Development Project in 2019 of China.

∗Corresponding Author (Xue-Ying Qin and Fan Zhong both supervised this work and provided funding support)

©Institute of Computing Technology, Chinese Academy of Sciences 2021

http://dx.doi.org/10.1007/s11390-021-1272-5


556 J. Comput. Sci. & Technol., May 2021, Vol.36, No.3

this is different from the 3D object detection and 6DOF

pose estimation from a single image, which has been

greatly advanced using learning-based approaches [6, 7].

In our approach for tracking, we only need to per-

form a local search in the pose space and our objective

is to achieve a high precision while keeping the com-

putational complexity as low as possible. This is cru-

cial for achieving the high level of temporal coherence

and real-time execution even in mobile devices (a com-

mon requirement of AR applications). For detection,

an intensive global search is required, which is often

more computational intensive than that of the track-

ing methods. In practice, both detection and tracking

are required; however detection is only performed for

initialization and/or re-localization in cases where the

tracking is lost. Although several learning-based meth-

ods have been proposed for the 3D tracking [8, 9], consi-

dering efficiency and applicability, the methods based

on hand-crafted features are still preferred in this re-

search area.

Based on the features involved, texture-less 3D

tracking methods can be categorized into edge-based

methods [10–14] and region-based methods [15–19]. The

edge-based methods are known to be sensitive to the

cluttered background which presents disproportionate

background edges that may easily force the optimiza-

tion to fall into a local minimum [11]. Image edge de-

tection is also sensitive to image blur which makes

edge-based methods sensitive to fast-moving objects

or camera. In the region-based methods, the opti-

mal object pose is obtained through maximizing the

color difference between the foreground and the back-

ground based on a statistical color model. Therefore,

it can achieve a better performance in the images with

a cluttered background. Nevertheless, in the scenes in-

cluding foreground and background in the same color,

the region-based methods become unstable. Since the

statistical color model depends on the absolute color

values, the region-based methods are often less robust

against color and lighting changes.

As it is seen, in certain situations, various feature

detection methods may become unreliable. Therefore,

addressing the issue of unreliable features improves the

accuracy of the tracking. Nonetheless, the reliability

of features might be very different even for different

parts of a single frame. Therefore, fusing features solely

based on a uniform weighting function cannot achieve

optimal combination of features. To address this issue,

we propose the AWLB tracker, which uses adaptively

weighted local bundles to define the energy function

for a spatial-variant weighting of the features. In our

proposed scheme, each bundle includes the aggregated

evidence from a set of pixels in a local region (please

refer to Subsection 3.2 for a detailed explanation). The

adaptive weights of features are then obtained based on

their confidence levels. The motion of each bundle is

independently calculated and combined to obtain the

pose transformation of the object. Color and edge fea-

tures with different spatial support can be combined

and adaptively weighted by packing them into bundles.

Fig.1 shows some results of the proposed AWLB tracker

in various challenging conditions.

Our main contributions in this paper are as the fol-

lowing.

• We propose the AWLB tracker, which uses adap-

tively weighted local bundles to suspend the negative

effect of unreliable features. This results in a higher

accuracy and reduces the sensitivity to the weighting

parameters.

• We introduce techniques to compute the confi-

dence of each feature, and establish the effectiveness in

handling a variety of complex cases.

(b)(a) (c) (d) (e) (f)

Fig.1. Overall pose estimation results of the proposed AWLB tracker in various challenging conditions including (a) cluttered scene,
(b) similar colored background, (c) occlusion, (d)(e) direct sunlight and (f) motion blur caused by fast movements.
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•We demonstrate the complementarity of the color

and edge features and propose an optimized method

to fuse them to achieve a robust 3D object tracking in

real-time.

The rest of the paper is organized as followings.

Section 2 introduces related work. Section 3 presents

the proposed the AWLB tracker in detail. The related

experiments are illustrated in Section 4, and Section 5

concludes the paper.

2 Related Work

According to the main feature used, texture-less 3D

object tracking with RGB images can be categorized as

region-based and edge-based methods. Generally, color

features are more informative than the edge features,

while the edge features are less computationally inten-

sive as fewer sample points are involved. Here we elab-

orate on these two tracking methods and then briefly

review the state-of-the-art in this research area.

2.1 Edge-Based Methods

The first real-time 3D object tracking system is

RAPID [10]. It starts with locating all the 3D-2D corre-

sponding points, then utilizes a nonlinear optimization

algorithm to minimize the square errors of each point,

and then iteratively calculates the pose of the object.

Based on [10], Marchand et al. [20] then replaced the

gradient with the convolution kernel to select the best

corresponding point with the largest response. Drum-

mond and Cipolla [21] further proposed to weight each

pair of 3D-2D points according to the number of can-

didate points to reduce the matching errors. Wuest

et al. [22] picked up all candidate points to obtain the

best result via an optimization with high computation

time. Choi and Christensen [23] stored image templates

in advance. During the tracking, [23] first estimates the

initial pose based on the feature points of the current

image and the template library, and then the pose op-

timization is completed according to the edge features

thereafter.

Finding the best corresponding points of the con-

tour points is the key function of the edge-based ap-

proach. The above-mentioned methods, however, are

prone to failure in the cases where the background is

complex. Some other ancillary information or strate-

gies are therefore needed to address this issue. Seo et

al. [11] proposed using the color model to select the best

corresponding points. They first constructed the color

model of the foreground and background, and then ob-

tained the best corresponding points by maximizing the

posterior probability. This method independently lo-

cates each corresponding point and hence tends to make

wrong matching. Wang et al. [12] further utilized the ge-

ometric constraints of the image contour and the graph

model to regularize the location of the edge points and

improve the robustness against complex backgrounds.

Moreover, Wang et al. [24] proposed a tracking

method based on the edge distance field. The method

aims to minimize the value of the 3D contour projection

points over the edge distance field to obtain the optimal

pose. At the same time, to deal with fast movement and

occlusion, particle filtering and robust estimation ope-

rators are introduced into the optimization method [24].

Wang et al. [13] further used the edge direction obtained

by the image gradient to verify the confidence of edge

matching to improve the robustness. They also pro-

posed a strategy for re-localization, which records the

key frame templates in real time, and performs pose

recovery in cases where the object is lost.

2.2 Region-Based Methods

The region-based approach uses the level-set

function [25] to represent the projection contour of the

3D object. The 6DOF pose is then optimized by maxi-

mizing the color difference between the foreground and

the background. Such methods are often computation-

ally intensive as they involve building the color model

and computing the posterior probability. As the first

real-time region-based approach, PWP3D [13], is accel-

erated by using a GPU and shown to reach the pro-

cessing speed of around 20 FPS. It calculates the global

foreground and background probabilities, and also uses

the gradient descent technique to optimize the pose. In-

stead of using the gradient descent method, Tjaden et

al. [16] embraced a Gauss-Newton-like method for op-

timization. They further adopted the Lie algebra to

represent the pose, which enables the pose parameters

to quickly converge during the optimization process.

Calculating the global foreground and background

probability histograms is however difficult and it may

lead to an inaccurate posterior probability. To deal with

this, Hexner and Hagege [17] proposed to replace the

global histogram with multiple local histograms, and

then averaged them to improve the accuracy. Tjaden

et al. [18] proposed to modify the representation of the

local probability histogram, changing multiple local

probability histograms of [17] to temporally consistent
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local color histograms, which significantly improve the

accuracy of computed color probabilities. A pose recov-

ery method is also proposed in [18] to handle the cases

where the object is lost.

Based on the method of [18], Tjaden et al. [19] fur-

ther re-weighted the energy function, and used the

Gauss-Newton strategy to optimize the pose. This im-

proves the convergence rate of the optimization. It is

also shown that their method is capable of tracking

multiple objects simultaneously. Zhong et al. [26] used

overlapping fan-shaped regions to build the local color

model without other sources to speed up the model

building process. This requires fewer local regions and

gets a similar or better segmentation result. They fur-

ther proposed an explicit way to deal with the occlusion

based on the distance and color information of the con-

tour and edge points to determine the occlusion weight.

2.3 Other State-of-the-Art Methods

In addition to the above two kinds of methods, sev-

eral other tracking strategies are proposed and show ex-

cellent results. For instance, Tan et al. [4] used the ran-

dom forest algorithm to regress the pose of the object.

This method, however, needs the depth data. Convo-

lutional neural networks (CNNs) [27] are also used for

tracking [8, 9, 28]. However, these methods usually need

a large amount of training data and often demonstrate

a poor generalization performance. They also often re-

quire a pre-training process, which is computationally

intensive and requires the GPU support. Real-time

operation of such methods however is still not possi-

ble on ordinary devices.

In another development, Zhong and Zhang [29] fused

statistical and photometric constraints for 3D track-

ing, incorporated the color features and geometric con-

straints into an energy function and used a weight co-

efficient to appropriately balance the metrics. This

method combines the advantages of the two features.

However, direct fusion is sub-optimal and it is thus un-

able to fully exploit the advantages of each feature. Be-

sides, adjusting the balance parameter requires experi-

ments, and the parameter may need to be re-adjusted

for different environments.

3 Proposed Method

In this section, we devise an optimized multi-feature

fusion method with adaptively weighted local bundles,

named AWLB tracker. The AWLB tracker uses local

bundles to fuse multiple features and adaptively adjusts

their weights. The weights are adaptively adjusted us-

ing a spatially-variant function based on the confidence

of each feature. In the following, we first introduce pre-

liminaries and then elaborate on the proposed method.

3.1 Preliminaries

Given the object model with vertices Xi ∈ R3, the

camera internal parameters K ∈ R3×3 and the pose

of object T ∈ R4×4, we can obtain the mapping from

the object coordinate Xi ∈ R3 to the image coordi-

nate xi ∈ R2 based on the pinhole camera model as the

following:

x = π(K(TX̃)3×1),

where X̃ = (X,Y, Z, 1)T represents the homogeneous

coordinates of X, π(X) = (X/Z, Y/Z)T.

The pose T of the object maps the model coordi-

nate to the camera coordinate, which can be then rep-

resented as a 4 × 4 homogeneous matrix by Lie-group

SE(3), i.e.:

T =

(
R t
0 1

)
∈ SE(3),

with R ∈ SO(3) and t ∈ R3.

SO(3) constructs the orthometric group. Here we adopt

the parametric form of Lie-algebra to optimize the pose.

The Lie-algebra se(3) corresponding to the Lie-group

SE(3) is formulated as a vector ξ ∈ R6 or its twist

ξ̂ ∈ R4×4. A detailed introduction to Lie-group and

Lie-algebra can be found in [30]. The exponential map-

ping of the matrix establishes the relationship between

Lie-group SE(3) and Lie-algebra se(3):

T = exp(ξ̂) ∈ SE(3).

3.2 3D Tracking with Local Bundles

In order to suspend the effect of unreliable obser-

vations in color and edge features, we can assign each

pixel or edge point an individual weight adjusted with

the confidence of features. This approach, however, ig-

nores the local competition between different features,

and the weight of each single feature is also not easy to

be estimated stably. Both problems can be alleviated

with the proposed local bundle model, which gathers

features in different regions with a set of local structures

(bundles) for a spatial-variant weighting, and the fea-

tures inside each bundle are also competitively weighted

to optimize their complementarity.

Specifically, given the pose ξ of the object, we can

render the object contour C, as shown in Fig.2. For the
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contour point xi on contour C, we calculate its normal

vector according to the contour direction and then draw

the local bundle Li. The bundle L creates a sub-region

that associates a contour point with its foreground and

background. The length of L is set to 17 (including one

contour point, eight foreground points, and eight back-

ground points). The choice of this value is the same

as in [19], which is an empirical value. Combined with

the multi-scale strategy, this value can get the optimal

balance point in the calculation speed and accuracy.

Furthermore, xj
i is the region point on Li. Notice that

xi ∈ xj
i , i.e., the contour point xi is one of the region

points xj
i on Li.

(b)(a)

Wb

Wf

x
i
j xi

Li

C

Fig.2. Illustration of the local bundles. Each bundle consists of a
set of points on a line segment perpendicular to the contour: (a)
bundle Li at the contour point xi; (b) bundles around the object
contour, with the red and the blue parts falling in the interior
and the exterior regions of the object, respectively.

The energy function with local bundles is defined as

follows:

E(ξ) =
∑

xi∈C
ωiEbundle(xi, ξ),

where Ebundle(xi, ξ) is the bundle energy cost corre-

sponding to the i-th bundle, and ωi is a spatially-variant

adaptive weighting function. The bundle energy is de-

fined as:

Ebundle(xi, ξ) = αieedge(xi, ξ) +

βi
∑

xj
i∈Li

λecolor(x
j
i , ξ), (1)

where eedge and ecolor are the edge and the color en-

ergy terms, respectively. Further in (1), we borrow the

energy function in [13] and [19], as

eedge(xi, ξ) =
(
D(π(K(exp(ξ̂)X̃i)3×1))

)2
, (2)

ecolor(x
j
i , ξ) = − log

(
He(Φ(xj

i (ξ)))Pf (xj
i ) +

(1−He(Φ(xj
i (ξ))))Pb(x

j
i )
)
. (3)

Specifically, (2) represents the value of the projection

point xi of the object’s contour point Xi in the edge

distance field D, and (3) represents the color posterior

probability of the region point xj
i . Then the optimal

pose can be solved by minimizing the energy function.

Note that in (1), αi and βi are the adaptive weights of

the edge and the color energies, respectively. We further

enforce αi +βi = 1, thereby the edge and the color fea-

tures are competitive with respect to their confidence

(see Subsection 3.3.3). The constant parameter λ is

also preserved to balance the overall effect of the color

and edge features. We show that using the confidence-

based adaptive weighting, λ can be easily set. Each

bundle consists of one edge point and multiple color

points. The multiple color points are also bundled to-

gether and share the same weight βi. Therefore, we

can easily define the competitive weights, and at the

same time, improve the stability of the estimated βi by

summing up throughout each bundle.

As it is seen, the bundles form a set of local regions

that divide the sampled contour and region points into

smaller subsets. This is mainly to deal with the spatial

inconsistency of color and edge features. The energy

terms in each bundle are independent, and this enables

them to fit the particular case in each sub-region and

take the full advantage of each existing feature. Al-

though the bundles can be created in other ways, our

method as illustrated in Fig.2 is a natural choice since

it encodes the most informative features to estimate the

object motion along the sample line.

3.3 Adaptive Weighting of Local Bundles

By fusing the color and edge features in each bundle,

we can then weight the features based on their quality.

To measure the quality of the features we introduce

confidence. The confidence is obtained for the color

and edge features to ensure their independence and it

is also normalized to a value in [0, 1]. Using confidence,

we can then measure the quality of each feature. The

weights αi, βi, and ωi are then adaptively obtained via

a spatially-variant weighting function based on the con-

fidence.

3.3.1 Confidence of the Region Points

We use Ωf and Ωb to represent the foreground and

the background respectively. To distinguish the fore-

ground and the background [19] uses local histograms

and mean probabilities. However this method is unable

to efficiently distinguish the foreground and the back-

ground in some complex environments. To address this

issue, here we borrow the idea of [31] to construct an

uncleared region Ωu for indistinguishable colors, and
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then use it to calculate the confidence of the region

points. Fig.3(a) is the input image and Fig.3(b) shows

per-pixel segmentation visualized as Pf (x)−Pb(x) > 0.

It is seen that the color of the object is similar to the

background color, especially the lower part of the ob-

ject, which may distract the optimization. Specifically,

for the cases where x is in the foreground, but Pf < Pb,

or x is in the background, but Pb < Pf , we obtain the

color at x to Ωu. Fig.3(c) illustrates the uncleared re-

gion Ωu constructed according to the above, where the

green line represents the contour of the object.

(b)(a) (c)

Fig.3. (a) The first frame of the regular variant of the Can model
in the RBOT dataset [19], where the color of the object is simi-
lar to the surrounding background. (b) Per-pixel segmentation
visualized as Pf (x) − Pb(x) > 0. (c) Unclear region Ωu of the
image.

We collect Ωu on the full image and update it ev-

ery S frames. The reasons for adopting this strategy

include: 1) collecting Ωu on the full image uses the

global color information and 2) the moving distance

between the frames is small during the tracking; thus

the change of Ωu is negligible. It takes much less time

to perform full image statistics every S frames than to

perform local averaging every frame.

For each region point xj
i , we now can obtain its con-

fidence ccolor(x
j
i ) by:

ccolor(x
j
i ) = 1− P (yj

i |Ωu)

P (yj
i |Ωu) + P (yj

i |Ωf ) + P (yj
i |Ωb)

,

where yj
i is the color value at xj

i on the image, and

P (yj
i |Ωu), P (yj

i |Ωf ) and P (yj
i |Ωb) indicate the color

models of the uncleared region, foreground region and

background region, respectively. We can see that the

point with a higher probability in the unclear region

will have lower confidence. Fig.4(b) shows an exam-

ple of the color confidence. The color model of Ωu is

recursively adjusted by:

P (y|Ωu) = (1− τ)P t−S(y|Ωu) + τP t(y|Ωu),

where t is current frame index and τ is the decay factor.

(b)(a)

(c) (d)

Fig.4. (a) The first image of regular variant of the Cat model
in the RBOT dataset, (b) the color confidence, (c) the contour
confidence, and (d) weights of bundles corresponding to the input
image.

In our proposed approach, the confidence of the re-

gion points is used to calculate the weight of the color

energy term as mentioned in (1). However, if we do

not use the feature fusion strategy, we can still use

the confidence to weight the color energy term, i.e., by

adding the confidence of each point to the correspond-

ing cost term. This improves the performance of the

region-based method, which is also illustrated in Sub-

section 4.2.

3.3.2 Confidence of the Contour Points

We use the gradient direction to calculate the con-

fidence of the contour points because the gradient is

the most important property of the edge. For the con-

tour point xi on image I, we formulate its confidence

cedge(xi) as:

cedge(xi) = | cos(oriI(xi)− oriI
′
(xi))|,

where oriI(xi) represents the gradient direction at xi

on the image, and oriI
′
(xi) is the gradient direction

of the object contour, which represents the normal di-

rection of the contour point xi. Fig.4(c) shows an ex-

ample of the contour confidence. This idea is inspired

from [13], and we further use the normal information of

the projected contour for geometric consistency, which

combines the geometric properties of the object model.

Furthermore, the confidence of the contour point is used

to calculate the weight of the energy term, which is the

same as the confidence of region points. The definition
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of confidence is also robust to the outliers (occlusion or

disappearance of image edges). Because the edge direc-

tion of the outlier and the direction of the projection

contour point do not match, the confidence at the out-

lier is small. Besides, this calculation method requires

minimal computational resources.

Both cedge and ccolor are naturally distributed be-

tween 0 and 1 and do not involve threshold parameters.

This enables our method to flexibly choose the weights

of features and also become highly tolerant against the

environmental variables.

3.3.3 Weights

We use a spatially-variant weighting function based

on the confidence calculated above to adaptively weight

the energy term. For the i-th local bundle Li, we first

calculate the average confidence of the region points it

contains as:

c̄icolor =
1

|Li|
∑|Li|

xj
i∈Li

ccolor(x
j
i ).

The weights of the edge term αi, the color term βi, and

the bundle term ωi are also obtained as:

αi =
cedge(xi)

c̄icolor + cedge(xi)
,

βi =
c̄icolor

c̄icolor + cedge(xi)
,

ωi =

0, if c̄icolor<γ& cedge(xi)<γ,
c̄icolor + cedge(xi)

2
, otherwise,

where αi and βi are normalized and directly obtained

from the confidence. Note that ωi weights each bun-

dle and see Fig.4(d) for example. Considering that the

number of bundles in each iteration may be different, we

do not use a normalization strategy to ωi. The bundle

with lower weight can weaken the negative impact of the

untrusted sub-region. For c̄icolor < γ and cedge(xi) < γ,

the confidence of both the contour point and the region

points on Li is very small. In such cases, we simply

eliminate it to avoid its negative effect. We further em-

phasize that our method does not need to calculate the

costs when calculating weights, and also does not need

to unify metrics, and the energy term and bundles are

adaptively weighted.

3.4 Pose Optimization

For pose optimization we use the Gauss-Newton

scheme presented in [19] and extend it to our multi-

feature cost function. We also note that (3) does

not have square terms and thus cannot directly use a

second-order optimization strategy. We use the mod-

ified version of (3) as in [19] so that it can be opti-

mized using the Gauss-Newton method. The color en-

ergy function is therefore rewritten as:

ẽcolor(x
j
i , ξ) =

1

2
ψ(xj

i )e
2
color(x

j
i , ξ),

with ψ(xj
i ) = 1/(ecolor(x

j
i , ξ)). For the edge energy

term, (2) includes the square term and therefore does

not require modification. The Jacobian of ecolor(x
j
i , ξ)

and eedge(xi, ξ) at the pose ξ are:

Jcolor(x
j
i ) =

∂ecolor(x
j
i ,ξ)

∂ξ ,

Jedge(xi) =
∂eedge(xi,ξ)

∂ξ .

Specifically, for the i-th bundle, we express its Jaco-

bian matrix and Hessian matrix as Ji and Hi, respec-

tively. Each of them can be divided into the edge part

and the color part, i.e.:

Ji = αiJ
edge
i + βiJ

color
i ,

Hi = αiH
edge
i + βiH

color
i .

For the edge part,

Jedge
i = Jedge(xi) =

∂eedge(xi, ξ)

∂ξ

=
∂eedge(xi, ξ)

∂xi
· ∂xi

∂ξ
,

Hedge
i = JedgeT

i · Jedge
i = Jedge(xi)

T · Jedge(xi).

For the color part,

Jcolor
i =

∑|Li|

xj
i∈Li

λJcolor(x
j
i )

=
∑|Li|

xj
i∈Li

λ
∂ecolor(x

j
i , ξ)

∂ξ

=
∑|Li|

xj
i∈Li

λGδe
∂Φ(xj

i (ξ))

∂ξ
, (4)

Hcolor
i =

∑|Li|

xj
i∈Li

λψ(xj
i )Jcolor(x

j
i )

TJcolor(x
j
i ). (5)

In (4), G =
Pb(xj

i )−Pf (xj
i )

He(Φ(xj
i ))(Pf (xj

i )−Pb(xj
i ))+Pb(xj

i )
and δe =

δe(Φ(xj
i )) is the smoothed Dirac delta function. In

(5), ψ(xj
i )Jcolor(x

j
i )

TJcolor(x
j
i ) is the Hessian matrix of

one region point. Some optimization details can refer

to [19].

The update step of each iteration for all bundles is

also formulated as:

∆ξ=−H−1JT = −
(∑|C|

i
ωiHi

)−1∑|C|

i
ωiJ

T
i ,
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where

Ji = αiJedge(xi) + βi
∑|Li|

xj
i∈Li

λJcolor(x
j
i ),

Hi = αiJedge(xi)
TJedge(xi) +

βi
∑|Li|

xj
i∈Li

λψ(xj
i )Jcolor(x

j
i )

TJcolor(x
j
i ).

Because we divide the optimization point by the local

bundle L, the JTJ term must be calculated according

to this division, and cannot be summed directly. Other-

wise, it cannot play the role of weight item. We perform

the optimization on three scales with four iterations on

the 1/4 image, two iterations on the 1/2 image, and one

iteration on the original image.

4 Experiments

We evaluate the performance of the proposed ap-

proach on a laptop equipped with an Intelr CoreTM

i7-8565U @1.8 GHz processor, 8 GB RAM, and an

NVIDIA GeForce MX250 GPU. We use a set of de-

fault parameters for all experiments, including S = 100,

τ = 0.8, and γ = 0.5. We further set λ to 1, unless

otherwise specified, and we also clip each model to a

maximum of 5 000 vertices.

4.1 Comparisons in 3D Tracking Datasets

We compare the proposed AWLB tracker with the

state-of-the-art methods, using the RBOT dataset [19]

and the OPT dataset [32], respectively. And we further

show two challenging examples based on real scenarios.

4.1.1 RBOT Dataset

The RBOT dataset [19] is a synthetic dataset of im-

ages with 640×512 px resolution, where the background

is a real scene image, and the object model is used to

render the foreground. The dataset consists of 18 ob-

jects and each contains four sets of variants, including

regular (Reg.), dynamic light (Dyn.), noisy+dynamic

light (Noi.), and occlusion (Occ.).

Here, we use the same evaluation method as in [19].

For the k-th frame at the j-th sequence, we then ob-

tain the tracking error for translation and rotation as

follows:

ejk(t) = ‖tj(k)− tjgt(k)‖2,

ejk(R) = cos−1

(
trace

(
Rj(k)TRj

gt(k)
)
− 1

2

)
.

If ejk(t) < 5 cm and ejk(R) < 5◦, the pose is success-

fully tracked. Otherwise, the pose is reset to the ground

truth pose. The accuracy of all poses in the sequence

is then obtained by counting the instances.

Table 1 presents a detailed accuracy of the pro-

posed method as well as the other four tracking

methods [18, 19,26,29], and all the results are taken from

their corresponding references. The bold value in the

table corresponds to the method with the highest accu-

racy. The results confirm that our method illustrates

the effectiveness of the multi-feature fusion strategy

with confidence and it is performing better than the

others, and especially in the noisy+dynamic light vari-

ant, the average accuracy rate is improved by about

7.8% compared with [26]. This is because the image

of the noisy+dynamic light variant contains a lot of

random noise. This makes the color histograms of the

foreground and the background similar to each other,

leading to an unreliable corresponding probability. The

proposed method fuses the advantage of the edge fea-

ture which is less affected by the noise and hence greatly

improves the accuracy.

For the regular and dynamic light variables, our

method also improves by 3.1% and 5.4%. For occlusion

variant, our mean accuracy is still 1.9% higher than

that in [26] even if it adopts an explicit way to han-

dle occlusion. [29] is also a feature fusion method that

fuses color features and photometric constraints. But

this method adopts a direct fusion way, and its result

is only slightly better than the region-based [19] and far

less than that of the proposed method. This confirms

the effectiveness of our proposed approach.

4.1.2 OPT Dataset

The OPT dataset [32] is a real dataset with six ob-

jects, i.e., bike, chest, house, ironman, jet and soda,

where each object contains seven motion patterns. We

evaluate our method by using all RGB image sequences

at 1 920×1 080 px resolution. The pose error of the k-th

frame at the j-th sequence is:

ejk =
1

n

∑n

i=1
‖(T j(k)X̃i − T j

gt(k)X̃i)3×1‖2.

In this setting, the pose is successfully tracked if ejk <

λedm, where λe is a predefined threshold, and dm is

the largest distance between the vertices of the model.

Within the tracking process, only the first frame of the

ground truth is used for initialization. If the tracking

fails, no recovery is taken. For a given λe, we then

obtain the accuracy which is between 0 and 100. The

final tracking accuracy is measured by AUC (area un-

der curve) score for all λe ∈ [0, 0.2], meaning the AUC

score is between 0 and 20.
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Table 2 presents the results obtained based on our

approach compared with seven other state-of-the-art

methods, where the bold value indicates the high-

est score in each column. In Table 2, PWP3D [15],

MTAP19 [13], TPAMI19 [19] and TIP20 [26] are 3D

Tracking methods, UDP [33] is a pose estimation

method, and ElasticFusion [34] and ORB-SLAM2 [35] are

visual SLAM methods. Their results except [13] are

available in [19,26,32]. For [13], the results are obtained

using the code provided by the authors. We only use

one particle, which does not use color information as a

constraint and thus it is easy to be lost. Besides, [13]

only uses one re-projection process in the calculation

and utilizes the L-M method for optimization. This

may result in the object being easily trapped in a local

minimum during the tracking and thus lost.

In Table 2, ORB-SLAM2 obtains the best results be-

cause the objects are well textured and thus stable fea-

ture points can be easily found. Our method performs

significantly better than UDP, ElasticFusion, PWP3D

and MTAP19, and slightly better than TPAMI19 and

TIP20. In the OPT dataset, the background surround-

ing the objects is a white region. Thus the color

feature [19, 26] is able to segment the foreground and the

background; therefore adding edge features does not

significantly improve the result.

4.1.3 Visual Analysis

Fig.5 demonstrates two typical cases and proves

that our method can outperform the region-based

method of TPAMI19 [19].

The first case is demonstrated under a condition

where light changes drastically, as shown in Fig.5(a)

and Fig.5(b). The image is obtained from the OPT

dataset and zoomed for better visualization. We can

see that the color of the image changes drastically un-

der the spotlight. In [19], only the color feature is used,

and the update of the color model cannot catch up with

the color change, resulting in a computed color proba-

bility map with errors and leading to a further tracking

failure, especially in rotation. Our method incorporates

edge features in an optimized way, which is not effected

by the illumination changes, and thus can be more ro-

bust in this case.

The second one handles a case where the color of the

foreground is similar to the background’s, and also the

object is under the highlight, as shown in Fig.5(c) and

Fig.5(d). The Bunny model has a similar color to the

background, where it is unreliable to estimate the fore-

ground probability with color distribution. Although

local color distribution is adopted in [19] to improve

the robustness of estimated color probability, we still

often encounter cases that the color feature is less ac-

curate than the edge feature. By fusing both color and

edge features with local bundle, our method can achieve

better robustness in handling different challenge situa-

tions.

4.2 Ablation Studies

The proposed method is based on adaptively

weighted local bundles for fusing the features. Here we

evaluate the accuracy of the part to analyze their corre-

sponding contribution in improving efficiency. Here we

use the RBOT dataset for our performance evaluations.

In Table 3, the bold value means the highest accu-

racy in each variant, and the proposed method gets the

best results in all variants. In the following, “conf.”

means “confidence”, and “w.” and “wo.” mean “with”

and “without”, respectively. The second row is the

result of [19] which is considered as the baseline be-

cause we borrowed its energy equation as the color

feature energy term. The third row shows the results

of using the color feature only with confidence. The

role played by each region point is weighted by the con-

fidence, and the edge energy terms eedge and the bundle

Table 2. AUC Scores on OPT Dataset of the Proposed Approach Compared with Other Methods

Method Bike Chest House Ironman Jet Soda Avg.

UDP [33] 6.097 6.791 5.974 5.250 2.342 8.494 5.825

ElasticFusion [34] 1.567 1.534 2.695 1.692 1.858 1.895 1.874

ORB-SLAM2 [35] 10.410 15.531 17.283 11.198 9.931 13.444 12.966

PWP3D [15] 5.358 5.551 3.575 3.915 5.813 5.870 5.014

MTAP19 [13] 1.053 8.669 5.599 3.895 1.596 9.055 4.978

TPAMI19 [19] 11.903 11.764 10.150 11.986 13.217 8.861 11.314

TIP20 [26] 12.831 12.240 13.613 11.214 15.441 9.012 12.392

Proposed 12.848 14.922 13.577 13.443 10.642 8.996 12.405
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(b)(a) (c) (d)

Fig.5. Two typical cases that our method (the third row) outper-
forms the region-based method of [19] (the second row). (a)(b)
The light is drastically changed between the two frames. (c)(d)
The foreground object has similar colors as the background, and
the object is under highlight. In both cases it is difficult to get
accurate foreground probability with color distribution and so
the region-based method will be error-prone.

Table 3. Average Tracking Accuracy (%) on the RBOT Dataset
of Different Parts of the Proposed Approach

Varaint Reg. Dyn. Noi. Occ.

[19] 79.92 81.16 56.64 73.27

w. conf. & wo. edge 83.54 85.13 60.68 77.01

wo. conf. & w. edge 84.58 85.34 68.44 78.42

Proposed 85.78 86.73 71.38 80.27

Li are not included. The results show that the accuracy

rate is 3%–4% higher than that in [19]. This confirms

the effectiveness of the confidence and confirms that it

is applicable in different scenarios.

Further in Table 3, the fourth row shows the re-

sults of using fusion features without confidence, i.e.,

the local bundle structure is removed, and the confi-

dence values are set to a fixed number (c̄icolor = 1.0,

cedge(xi) = 1.0 and ωi = 1.0). The improvement is

particularly evident in the noisy+dynamic light vari-

ant, which shows that using the edge features compen-

sates for the disadvantages associated with the color

features. The accuracy of the other three variables is

also improved by 4%–5%. This further confirms the

effectiveness of multi-feature fusion. In addition, the

results show that the effect of adding multiple features

is greater than that of adding confidence alone.

The last row in Table 3 shows the results of the pro-

posed method, which uses the confidence and the local

bundle to fuse two features. Adjusting the weight of

the color energy term and the edge energy term enables

them to be complemented. The above results confirm

that the weighting based on the confidence value is ef-

fective.

Table 4 presents another set of experiments that

makes the comparison based on the edge-based

method [13], where the bold value means the highest

accuracy in each variant. The second row is the result

of [13]. For a fair comparison, we modify its optimiza-

tion strategy to align with the proposed method, i.e., we

change the number of re-projection operations to 7 in

the pyramid and pick the Gauss-Newton method for the

optimization. The results are shown in the third row

as [13]+. As it is seen here the results are significantly

worse than those of the region-based method [19]. This

indicates that on a single feature, the color constraint

information is significantly stronger than the edge con-

straint information. In [13]+, we also eliminate the

confidence term.

Table 4. Average Tracking Accuracy (%) on the RBOT Dataset
Compared with the Edge-Based Method [13]

Variant Reg. Dyn. Noi. Occ.

[13] 21.84 22.02 20.74 21.57

[13]+ 40.34 43.97 39.46 42.18

w. conf. 43.36 46.92 42.40 44.65

Proposed 85.78 86.73 71.38 80.27

The fourth row is the result with confidence, which

improves the accuracy by about 3%. It is seen that

the accuracy of each variable is slightly different, which

also shows that the influence of dynamic light and noise

on edge features is small. Adding the edge features also

compensates for the disadvantages of the color features.

4.3 Analysis and Discussions

This subsection analyzes the proposed method and

discusses its function by presenting some intermediate

results. All example images are taken from the RBOT

dataset.

4.3.1 Adaptivity to Different Cases

The parameter λ is important for balancing the ef-

fect of the color and edge features. The proposed adap-

tive weighting method is also helpful for setting λ so

that the optimal fusion of the features can be achieved

in different cases. To verify this we conduct the experi-

ments explained in Table 5, which shows the changes

of accuracy on the RBOT dataset for different values

of λ. We also obtain the results with and without the

confidence-based adaptive weights for different cases.

The bold value indicates the highest accuracy among all

λ values. As it is seen, the proposed method with adap-

tive weights achieves the highest accuracy for different
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Table 5. Sensitivity to λ in Different Cases

λ w. conf. wo. conf.

0.5 0.8 1.0 1.2 1.5 2.0 0.5 0.8 1.0 1.2 1.5 2.0

Reg. 83.66 84.84 85.78 84.97 84.74 84.69 83.58 84.49 84.58 84.38 84.32 84.18

Dyn. 84.88 85.95 86.73 86.09 85.96 85.92 84.17 85.41 85.34 85.78 85.78 85.43

Noi. 70.96 71.13 71.38 70.02 70.11 68.12 70.09 69.85 68.44 68.59 67.50 66.63

Occ. 79.05 79.37 80.27 79.49 79.39 78.92 78.91 79.52 78.42 79.34 78.98 78.87

cases all achieved by λ = 1. In other words, by setting

λ = 1 we get the optimal fusions of color and edge fea-

tures for all of the different cases. On the contrary, as

shown in Table 5, without using the adaptive weights,

the highest accuracy for different cases is achieved by

very different values of λ. This indicates that the opti-

mal fusion is not achieved by a constant value of λ.

Our method is adaptive to different cases mainly be-

cause the weights are adaptively estimated to suspend

the effect of unreliable features. The remaining features

have high confidence values and the optimal fusion is

achieved by uniform weights.

4.3.2 Probability Map

The color-based method mainly depends on the qua-

lity of the color probability model. If the background is

clear and the foreground color and the background color

are distinguishable, then the region-based method can

generally get ideal results. Fig.6 shows the intermediate

results of the probability map. Fig.6(b)–Fig.6(d) rep-

resent the foreground probability map, the background

probability map, and the color confidence map calcu-

lated by the proposed method respectively. All the

maps shown here are calculated on the last iteration

during optimization. It should be noted that these cal-

culations do not have to be performed on the full image

in the actual optimization and here are just shown on

the full map to analyze our results.

In Fig.6, the first row of the image (frame 0 of

the Clown model of regular variant) shows a situation

where the foreground color and the background color

are easy to identify. In this case, the objects can be

easily segmented according to the foreground and the

background probability maps. And the calculated con-

fidence values are high in the foreground and surround-

ing areas. Gaussian noisy and dynamic light are added

to the input image in the second row (noisy+dynamic

light variant) based on the first one. Although the

probability map can also distinguish the foreground and

the background regions, its quality has decreased, espe-

cially the impact of noise. In this case, our color con-

fidence can play its role. By assigning lower values to

areas where the difference is not obvious, the negative

impact is reduced.

The third and the fourth rows show another set of

examples (frame 528 of the Koalacandy model of reg-

ular and noisy+dynamic light variants). Although the

foreground color of the image in the third row is com-

plex and the probability map is indiscriminative, the

contour of the object can still be segmented from the

color around the object. And the confidence of the

color around the object is also very credible. This tells

us that even if the difference between the probability

maps of the foreground and the background is not very

obvious (compared with the first row), the color model

still works, and the confidence can be used as a com-

plement to the color model. In the fourth row, due to

the addition of noise and dynamic light, it is difficult to

distinguish the position of the object in the probability

map, and the value of the confidence map is generally

lower. At this time, we need to add edge features to

overcome this shortcoming.

4.3.3 Confidence Values

To better analyze the effect of the confidence val-

ues, we select several typical images, as shown in Fig.7.

Each row represents an image and its corresponding

confidence map. All the confidence maps are obtained

at the last iteration during optimization. Fig.7(a)–

Fig.7(e) represent the input image, per pixel segmen-

tation visualized as Pf (x) − Pb(x) > 0, the confidence

value of the region points, the confidence value of the

contour points, and the weights of the local bundles,

respectively.

For the input image of the first row (frame 11 of the

Phone model of regular variant), the color of the phone

is similar to the background, especially the part located

inside the red box, which is more likely that the color of

the background belongs to the foreground. Therefore,

if we use the color model directly for optimization, the

points inside the red box may negatively affect the re-

sult. Furthermore, we can see that the confidence of the

region points in the red box is mostly between 0.4–0.8,
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(b)(a) (c) (d) (e)

Fig.6. Probability analysis of typical images. (a) Input image. (b) Foreground probability map. (c) Background probability map. (d)
Color confidence of each image point. (e) Tracking result.

which reduces the negative impact of similar colors. Al-

though the foreground and the background colors in the

red box area are similar, a clear edge is still detectable

between them. Therefore, the confidence values of the

contour points are very high and most of them are above

0.8. Finally, we can calculate the weight of each local

bundle using their confidence values. All the points in

the red box are calculated, but the color term plays a

smaller role than the edge term. Therefore, the nega-

tive effect of the similar colors is reduced and the ad-

vantages of contour features are highlighted, resulting

in a higher accuracy than that of the other methods.

In the second row (noisy+dynamic light variant),

the colors of the foreground and the background over-

lap with each other, partially due to the dynamic light

and the Gaussian noise. This is a challenge for the

region-based approach. Compared with the confidence

of the region points in the first row, the overall confi-

dence in the second row is lower. However, the addition

of these dynamic lights and the Gaussian noise has little

impact on edge detection. The confidence of the con-

tour points still reaches a high value. Finally, because

the contour points have high confidence, all bundles are

still involved in the calculation, but the role of the color

term is reduced.

The third and the fourth row are another set of ex-

amples (frame 171 of the Camera model of regular and

noisy+dynamic light variants), similar to the previous

set. It is worth noting that in cases where the con-

fidence of the region points and the confidence of the

contour points are both low, the points on the bun-

dle do not participate in the optimization (for details,

please refer to the points in the lower-left corner of the

red box). Our optimized fusion method weights the fea-

tures in each bundle based on their confidence; there-

fore it takes advantage of different features in each local

region to achieve better results.

4.3.4 Weights of Features

In this subsection, we analyze the weight of energy

terms and bundles, which are both adaptively weighted

by confidence. We select the sequence (regular variant

of the Ape model) for analysis.
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(b)(a) (c) (d) (e)

Fig.7. Confidence analysis of typical images. (a) Input image. (b) Per pixel segmentation visualized as Pf (x) − Pb(x) > 0. (c)
Confidence of the region points. (d) Confidence of the contour points. (e) Weights of the local bundles.

Fig.8(a) shows the trend of color energy term

weights. β represents the mean weight of the color term

of all the bundles and α = 1− β is the mean weight of

the edge term. Besides, β shown in Fig.8(a) stands for

the last iteration of the tracking. We can see that the

weight of the color term is mainly distributed between

0.4 and 0.6, and its average value is 0.48. In general,

the average impact of the color term and the edge term

is the same. However, through adaptive adjustment,

we can fully exploit their respective advantages. For

the weight distribution at other iterations, there is no

significant difference from the last iteration. Therefore

they are not listed here.

Further, we pick out the images corresponding to

the maximum and the minimum values of β. In cases

where β reaches its minimum, as shown in the first im-

age, the object is at a position similar to its color. This

reduces the weight of the color term. In cases where

β reaches its maximum, part of the object exceeds the

image, leading to the ill-matched edges. The color item

weight then becomes larger. It can be seen that the

weights are adjusted accordingly to improve the perfor-

mance of the algorithm.

Fig.8(b) further illustrates the trend of ω. Here ω

represents the average of the weights of all bundles,

which can reflect the participation of all optimization

points in the calculation. When the value of ω is small,

the optimization points have lower reliability and thus

lower participation in the calculation. ω is mainly dis-

tributed between 0.8–0.9, and its average is 0.86. We

select two images corresponding to the minimum value.

The first image is the case in which the object exceeds

the boundary, and the second image shows the object

which is located in a position with a similar color. Cor-

responding to Fig.8(a), these two cases are the situa-

tions where one feature is invalid, and two figures to-

gether can reflect the validity of the weight setting.

4.3.5 Robust to Outlier

We further show that the confidence of the contour

points can handle occlusion situations. Fig.9(a) shows

the image when the object is occluded, and we zoom

it to facilitate observation. We use a red box to mark

the occluded part. Fig.9(b) shows the confidence of the
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Fig.8. (a) β distribution of the Ape model of regular variant and (b) ω distribution of the Ape model of regular variant. A smaller ω
indicates a lower participation level in the overall optimization point. The horizontal axis represents the video frame index.

corresponding contour points. The confidence of the

occluded part is generally below 0.4, indicating its ro-

bustness to the outliers. Although the confidence of the

region points is not designed to consider the influence

of the occlusion, due to the contour point confidence,

the corresponding bundle still has only a small weight,

which can reduce the negative impact of outliers, as

shown in Fig.9(c).

(b)(a) (c)

Fig.9. The confidence of the contour points can shield the outliers
in the occlusion scene. (a) Input occlusion image. (b) Confidence
of the contour points. (c) Weights of the bundles. Our method
gives low confidence to the contour points in the occlusion area
and makes the corresponding bundle weight lower, shielding the
outliers.

4.4 Time Cost

In our experimental environment, the average speed

of the proposed method on all sequences of the RBOT

dataset is 32.1 ms. We also list the average time of other

methods in Table 6. The average time of TPAMI19 [19],

ICCV17 [18], and MTAP19 [13] is testing in our exper-

imental environment. For IJCV19 [29] and TIP20 [26],

their average time is taken from [26].

Table 6. Runtime Performance Compared with Other Methods

Method Avg. Time (ms) Std.

ICCV17 [18] 27.3 2.42

MTAP19 [13] 9.8 0.81

TPAMI19 [19] 26.2 2.31

IJCV19 [29] 47.0 –

TIP20 [26] 41.2 –

Proposed 32.1 3.05

4.5 Limitations

An optimized multi-feature fusion method with

adaptively weighted local bundles is proposed in this

paper. It performs better than the previous methods

when the background is complex or the color of the

foreground and the background is similar. However, it

still has some limitations.

A complete 3D tracking system also includes initial-

ization and relocation modules. In this paper, we only

focus on the tracking module, and the 3D detection

modules [36, 37] can be added to our method to complete

the system. In addition, we can perform the tracking

for each object to do the multi-object tracking. This is

however limited by the computational efficiency. Effi-
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cient multi-object tracking methods will be explored in

future work.

The color feature is distinguishable enough to get

a proper segmentation when the background color is

pure. In this case, the performance will not be signifi-

cantly improved when we merge the edge feature to the

energy function (see the experiment in Table 2). Be-

sides, our method is disturbed when the background is

particularly complex, or objects are severely occluded.

Finally, objects with symmetry and translucency are

still challenging.

5 Conclusions

This work proposed an optimized way to fuse multi-

feature for 3D object tracking. To achieve optimal fu-

sion and avoid the side effects of simple feature fusion

with uniform weights, we proposed to group the re-

gion and edge features as a set of local bundles, which

are adaptively weighted based on the confidence values

of the involved features. The benefits of using local

bundles are two-fold. First, the spatial-variant weights

(ωi) can be estimated more reliably by averaging over

features of each bundle. Second, the color and the

edge features can compete via spatial-variant weights

(αi,βi) despite their spatial inconsistency. Quantita-

tive experiments showed that our proposed approach

significantly overperformed the previous single-feature

methods and multi-feature methods without adaptive

weighting. Extended experiments also showed that the

proposed method enabled balancing the overall effect of

each feature in different conditions. We further demon-

strated that the overall weighting parameter λ was not

essential. For the future work, additional texture fea-

tures fusing might be taken into consideration to handle

the textured and texture-less objects simultaneously.
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lar pose estimation of 3D objects using temporally consis-

tent local color histograms. In Proc. the 2017 IEEE Inter-

national Conference on Computer Vision, October 2017,

pp.124-132. DOI: 10.1109/ICCV.2017.23.

[19] Tjaden H, Schwanecke U, Schömer E, Cremers D. A
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