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Abstract Sampling is a fundamental method for generating data subsets. As many data analysis methods are deve-

loped based on probability distributions, maintaining distributions when sampling can help to ensure good data analysis

performance. However, sampling a minimum subset while maintaining probability distributions is still a problem. In this

paper, we decompose a joint probability distribution into a product of conditional probabilities based on Bayesian networks

and use the chi-square test to formulate a sampling problem that requires that the sampled subset pass the distribution

test to ensure the distribution. Furthermore, a heuristic sampling algorithm is proposed to generate the required subset by

designing two scoring functions: one based on the chi-square test and the other based on likelihood functions. Experiments

on four types of datasets with a size of 60 000 show that when the significant difference level, α, is set to 0.05, the algorithm

can exclude 99.9%, 99.0%, 93.1% and 96.7% of the samples based on their Bayesian networks—ASIA, ALARM, HEPAR2,

and ANDES, respectively. When subsets of the same size are sampled, the subset generated by our algorithm passes all

the distribution tests and the average distribution difference is approximately 0.03; by contrast, the subsets generated by

random sampling pass only 83.8% of the tests, and the average distribution difference is approximately 0.24.

Keywords Bayesian network, chi-square test, sampling, probability distribution

1 Introduction

Sampling is a fundamental method in data science,

especially in the big data era. Sampling generates small

subsets that are intended to represent the original whole

datasets to reduce computational complexity. Sampling

has been widely applied to many applications. An im-

portant application is data trading or data exchange [1].

In a data center, data sellers or suppliers are often re-

quired to provide a subset of a dataset to show the

data characteristics. As many data analysis methods

are developed based on probability distributions, an in-

tuition behind this is that if the distributions of the

subset and the original whole dataset are consistent or

similar, the characteristics of the subset may represent

most of the characteristics of the whole dataset. Pro-

viding the subset rather than the whole dataset may

even be sufficient for data sellers or suppliers to meet

the data buyers’ or demanders’ analysis requirements.

In this paper, we focus on the sampling methods that
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can ensure the distributions.

Based on statistical properties, the sampling meth-

ods can be divided into two categories: probability sam-

pling and nonprobability sampling [2]. The difference

between the two categories is whether some samples

have no chance to be selected. The most typical proba-

bility sampling is random sampling in which each sam-

ple has an equal probability to be chosen. However,

random sampling’s performance is unstable. Various

sampling methods are designed to improve sampling

quality. Systematic sampling involves sorting samples

according to a set of rules and then choosing samples

at regular intervals [3]. Stratified sampling involves di-

viding samples into various categories or strata and ap-

plying random sampling in each category at a specific

sampling ratio [4]. This sample partitioning should min-

imize the varieties within categories and maximize va-

rieties between categories. Clustering methods may be

adopted for this partition task [5, 6]. However, stratified

sampling is different from cluster sampling, which in-

volves choosing a whole cluster at a time. Generally,

these probability sampling methods all involve random

sampling. The larger the size of a chosen subset is, the

closer the distribution is to the original distribution.

However, these methods have no mechanisms for min-

imizing the subpopulations’ size while maintaining the

probability distribution.

Nonprobability sampling methods are often de-

signed according to the purpose of an application.

Snowball sampling, which is usually applied to recruit

subjects [7, 8], is a widely-used nonprobability sampling

method in the social sciences. In snowball sampling, an

initial subject group is first determined, and then more

subjects are recruited based on the previously chosen

subjects. Sampling is also needed in some data sci-

ence applications to choose typical samples to improve

the performance of machine learning models, e.g., ac-

tive learning models. Sampling methods developed for

these applications are usually designed based on spe-

cial rules [9–11], e.g., choosing samples close to the de-

cision boundary or choosing samples belonging to the

center in different clusters. These methods are not de-

signed for maintaining the distribution, and they can-

not be generalized for general applications. In addi-

tion, some researchers try to determine the minimum

sampling size based on a fixed standard of data ana-

lysis performance [12–14]. Silva et al. used the per-

formance of machine learning methods as the crite-

rion for choosing samples by using a heuristic search

approach [12]. Alwosheel et al. determined the mini-

mum size for artificial neural networks by using Monte

Carlo experiments [13]. The findings of these studies are

based on the use of specific machine learning models.

When the model is changed, the sampled subsets may

become unsatisfactory based on the new model’s crite-

ria.

Probability sampling methods are more likely to

maintain the probability distribution; however, the per-

formance is unstable, and these types of methods usu-

ally need to include many samples. Recently, Yang et

al. proposed to use the chi-square test to guide the sam-

pling process [15]. Their method is a greedy method.

They randomly sampled some subsets in each itera-

tion and added the best one into the final subset. As

the subsets are randomly sampled, some samples may

not be good for the final subset to pass the distribu-

tion test. Although they eliminated some samples with

worse scoring values in each iteration, their method

could not still avoid these samples.

Some researchers also proposed methods that, un-

like those that extract samples from the whole popu-

lation, generate samples according to the probability

distribution, including Markov chain Monte Carlo

(MCMC) sampling [16–18] and Gibbs sampling [19, 20].

These methods can ensure that the distribution of the

generated sample set is the same as the original distri-

bution. When generating new samples, these methods

compute the posterior probabilities based on current

samples to obtain a new sample. A problem is that

these generated samples may not exist in the original

dataset, as they are generated by probabilities.

In this paper, we aim to develop a sampling method

that ensures that the distribution of the sampled subset

is the same as the original distribution and that min-

imizes the size of the subset. We first formulate the

sampling problem with the chi-square test, by using

Bayesian networks. Then, a heuristic sampling method

is proposed; the method adopts the genetic algorithm

to optimize the extracted samples during each iteration

by combining a chi-square-test based scoring function

and a likelihood-scoring function as the fitness func-

tion. The algorithm’s performance is tested on four

different types of datasets, which are generated based

on four Bayesian networks: ASIA, ALARM, HEPAR2,

and ANDES. The results show that when the signif-

icant difference level, α, is set to 0.05, the proposed

algorithm excludes 99.9%, 99.0%, 93.1% and 96.7% of

the samples from their original datasets with the size

of 60 000 while still satisfying the constraints of the chi-

square test. Our method could find much smaller sub-
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sets compared with Yang et al.’s method [15] under the

distribution constraints. Averagely, the subset size ob-

tained by our method is about 47.5% of that obtained

by Yang et al.’s method [15].

The rest of this paper is organized as follows. In

Section 2, we introduce related work. In Section 3,

the problem is formulated, and the sampling method

is introduced. The experimental results are described

in Section 4, and we summarize the paper in the last

section.

2 Related Work

A Bayesian network is a probabilistic graphical

model [21], which organizes the attributes into a directed

graph (DAG). In the graph, each node represents a

variable or attribute. Assume there are n variables,

i.e., {x1, x2, ..., xn}; then, there should be n nodes in

the graph. A directed edge from xi to xj means that

the values of xi can influence xj . xi is usually named

as a parent node, and xj is named as a children node.

A node may have multiple parent nodes and multiple

children nodes. Here, we use π(xi) to represent the par-

ent node set of xi. For each node, the graph defines a

conditional probability table based on the node’s par-

ent nodes. Fig.1 illustrates an example of a Bayesian

network. In the graph, there are five nodes including

{A,B,C,D,E}. For each node, there is a conditional

probability table, which stores the probabilities of each

variable’s values conditioning on the variable’s parent

nodes.

The conditional probability tables can be regarded

as displaying the parameters of a Bayesian network.

Here, we use θijk to encode the parameters, which de-

notes the probability of the k-th value of node xi con-

ditioning on the j-th combination of the node’s parent

nodes π(xi). With these tables, the joint probability

distribution can be factorized as the product of all the

conditional probability distributions in the network [22],

which can be written as (1):

P (x1, . . . , xn) =

n∏
i=1

P (xi|π (xi)) . (1)

The joint probability distribution of a dataset can

reflect some key characteristics of the dataset. Many

machine learning methods are based on the probability

distribution [23–25]. In addition, researchers in medicine

and biology often focus on a dataset’s statistical proper-

ties, which also depend on the probability distribution.

In this paper, we aim to extract a sampled subset to

replace the original whole dataset. The basic idea is

to guarantee the joint probability distribution, which is

usually hard to obtain. According to (1), if we main-

Parameter    E     C     P↼EC↽

       θ            Yes     Yes     0.12

       θ        No     Yes     0.88

       θ        Yes      No     0.25

       θ         No       No     0.75

Parameter    A      P↼A↽

       θ        Yes    0.99

       θ        No      0.01

Parameter    D      C      P↼DC↽

     θ         Yes    Yes      0.24

     θ         No     Yes      0.76

     θ         Yes    No      0.36

     θ         No     No      0.64
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       θ             
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Fig.1. Bayesian network example. It contains five nodes, i.e., {A,B,C,D,E}. For each node, there is a conditional probability
table, in which θijk = P (xi = k|π (xi) = j). The table displays the probability of the k-th value of node xi conditioning on the j-th
combination of the node’s parent nodes π(xi).
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tain the conditional probability distributions, then the

joint distribution is ensured.

3 Method

In this section, we first formulate the sampling prob-

lem to be evaluated by the chi-square test; then, we de-

scribe the framework for sampling. Finally, the scoring

functions and the detailed procedures are introduced.

3.1 Problem Formulation

Assume M is the size of the original dataset D and

D contains n variables. Let B be the corresponding

Bayesian network of D. The parameter set of B is

θ, which consists of θijk (1 6 i 6 n, 1 6 j 6 qi,

1 6 k 6 ri). qi and ri represent the number of all com-

binations of π (xi) and the number of unique values of

xi, respectively. θijk denotes the probability of the k-th

value of node xi conditioning on the j-th combination

of the node’s parent nodes π(xi), which can be deter-

mined based on D by θijk = P (xi = k|π (xi) = j).

In Section 2, we mentioned that we want to maintain

the conditional probability distributions when sam-

pling. Therefore, the problem is to choose a subset D′

such that the conditional probability distributions of

D′ and D are sufficiently close. The conditional proba-

bility distributions of a given dataset are represented

by θijk; therefore, the probability distribution test can

be conducted on θijk. Here, we use the chi-square test

to determine the similarity between these two distribu-

tions. Thus, the sampling problem is converted to find

a subset D′ with the minimum size m that satisfies the

chi-square test, which is denoted as follows:

test(D′;D; i, j)

,
ri∑
k=1

(mijk − θijk
∑ri
k=1mijk)

2

θijk
∑ri
k=1mijk

< χ2
α(p), (2)

test′(D′;D; i)

,
qi∑
j=1

ri∑
k=1

(mijk − ηijkm)
2

ηijkm
< χ2

α(p). (3)

In (3), ηijk is the joint distribution of node xi and

its parent nodes π(xi) in dataset D, which can be cal-

culated according to P (xi, π(xi)). mijk is the number

of the k-th value of xi conditioning on the j-th com-

bination of π (xi) in dataset D′. qi is the number of

all possible combinations of π (xi). ri is the number of

unique values of xi. α denotes the significant difference

level in the chi-square test. p is the degrees of freedom

in the chi-square distribution.

These two equations are used for conducting the

chi-square test on node xi. The conditional probabi-

lities are defined on each node; therefore the proba-

bility distribution test is performed on each node. For

node xi, there are conditional probability θijk and joint

probability ηijk, which are tested by (2) and (3), re-

spectively. In these two equations, θijk and ηijk are

calculated based on dataset D and represent the distri-

bution of D, and mijk and m are from dataset D′ and

represent the distribution of D′.

χ2
α(p) is the prefixed chi-square test threshold value,

which can be achieved with α and p by checking the

chi-square distribution table. If the chi-square value is

less than this threshold, we can say these two distri-

butions have no significant difference with a (1 − α)

confidence level. Both equations have p, which de-

notes the degrees of freedom. It represents the num-

ber of variables that are free to vary without influ-

encing the result of the statistics [26, 27]. In (2) and

(3), there are ri and qiri variables, respectively. If

θijk is equal to 0, then variable mijk should also be

0. These variables should be combined when count-

ing the degrees of freedom. Besides, if all variables

except one are determined, then the remained varia-

ble cannot vary freely in order to guarantee the result

of the statistics. Therefore, the degrees of freedom in

(2) and (3) should be ri −
∑ri
k=1 I(θijk 6= 0) − 1 and

qiri −
∑qi
j=1

∑ri
k=1 I(θijk 6= 0) − 1, respectively. When

θijk is equal to 0, the value of function I() is 1; other-

wise, the value is 0.

Note that we assume the distribution is faithful

here. We apply chi-square tests to guarantee there are

no significant distribution differences between the sam-

pled subset and the original dataset for these condi-

tional distributions. If the distribution is unfaithful, we

could still guarantee there are no significant differences

on these specified conditional distributions which are

calculated from the data. Besides, researchers could

directly specify their concerned conditional distribu-

tions, which could also be maintained when applying

our method.

The problem formulated in this paper could be re-

garded as a generalized subset selection problem. How-

ever, there are still some differences. The classical sub-

set selection problem is to choose a subset of at most k

variables to minimize the objection function [28], where

k is a prefixed value. It is widely used in machine learn-

ing to select a subset of variables to achieve a better

prediction performance, e.g., Qian et al. proposed a

POSS approach by employing evolutionary Pareto opti-
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mization to obtain a better regression performance [29].

Lately, they accelerated POSS by applying a paral-

lelization strategy [30]. The problem solved in this paper

is to find a subset of samples that must pass the dis-

tribution test which means (2) and (3) must be sat-

isfied. The distribution test constraints could guar-

antee there is no significant distribution difference be-

tween the sampled subset and the original dataset. Un-

der these constraints, we want to minimize the size of

this subset. This is also the reason that we design a

distribution-test based scoring function to guide the

sampling process. The detailed sampling process will

be introduced in Subsection 3.2.

3.2 Heuristic Sampling Algorithm

The main idea of the proposed sampling algorithm

is to apply a heuristic strategy to find a subset D′ with

a minimum size m based on the defined scoring func-

tions. First, D′ is initialized to an empty set; then,

data samples are gradually added into D′ based on the

scoring functions. The process is listed as follows:

• Step 1: enumerate all the combinations of π(xi)

for each node xi, and encode these combinations;

• Step 2: initialize an empty set D′, and calculate

θijk and ηijk based on dataset D and the given Bayesian

network structure;

• Step 3: apply the genetic algorithm to choose a

subset ∆D′ with size |∆D′| based on the scoring func-

tion values, and add this subset into D′;

• Step 4: if all the nodes pass the chi-square test,

i.e., if the nodes satisfy (2) and (3), then terminate;

otherwise go to step 3.

In step 1, we enumerate all the combinations of

π(xi) for each node xi and encode them. These codes

are used as j in θijk and ηijk. Step 2 initializes D′ and

calculates parameters θijk and ηijk, which represent the

distribution of D and will be used for the chi-square

test. In step 3, a subset ∆D′ is chosen by the genetic al-

gorithm which mimics the process of natural biological

evolution to optimize a given function [31]. The scoring

functions for choosing ∆D′ will be described in Subsec-

tion 3.3.

This subset will be added to D′. Step 4 is used to

determine whether D′ satisfies the requirement. If so,

then the process is terminated; otherwise, we go to step

3 to continue adding samples into D′.

3.3 Scoring Functions

In this subsection, we introduce how to evaluate a

sample or a sample set by defining scoring functions.

Here, two scoring functions are used, including

L(D,D′) =

n∑
i=1

(
ri∑
j=1

(I(test(D′;D; i, j))) +

I(test′(D′;D; i))

)
, (4)

and

W (D,D′) =

n∑
i=1

qi∑
j=1

ri∑
k=1

Mijk log

(
mijk∑ri
k=1mijk

)
, (5)

which are derived from the chi-square test and the

Dirichlet distribution assumption, respectively. These

two scoring functions are used to evaluate the simi-

larity between the distribution of D and that of D′.

(4) applies test(D′;D; i, j) and test′(D′;D; i) to verify

whether the j-th conditional probability distribution of

xi and the joint probability distribution of xi and π(xi)

satisfy the chi-square test. The calculations are based

on (2) and (3). If the test is passed, the value of I()

function equals 0; otherwise, the value equals 1. There-

fore, (4) determines how many nodes fail the chi-square

test.

In (5), Mijk and mijk are the number of the k-

th value of xi conditioning on the j-th combination of

π (xi) in datasets D and D′, respectively. This equa-

tion assumes samples in the dataset obey the Dirichlet

distribution, which can be derived based on the maxi-

mum likelihood assumption. The derivation process is

shown below.

Assuming γ′ is the Dirichlet distribution parameter

of D′, the likelihood value W (D,D′) = log(P(D|D′)) =

log(P(D|γ′)). Let us determine the value of γ′.

According to the Dirichlet distribution assumption,

the probability of a sample dl in D′ is defined as

P (dl|γ′) =

n∏
i=1

qi∏
j=1

ri∏
k=1

χ (i, j, k; dl)
γ′
ijk ,

where

χ (i, j, k; dl) =

{
1, if xi = k, π (xi) = j,
0, otherwise.

Then, the likelihood function of dl can be written as

log (P (dl|γ′)) =

n∑
i=1

qi∑
j=1

ri∑
k=1

χ (i, j, k; dl) log
(
γ′ijk

)
.
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The likelihood function of D′ is (6):

log(P(D′|γ′)) =

n∑
i=1

qi∑
j=1

ri∑
k=1

mijk log
(
γ′ijk

)
. (6)

Based on Gibb’s inequality, if P(x) and Q(x) are two

probability distributions over the same domain, then∑
x P(x) log(Q(x)) 6

∑
x P(x) log(P(x)). Therefore, to

maximize the likelihood function, i.e., (6), γ′ijk must

satisfy

γ′ijk =
mijk∑ri
k=1mijk

.

Therefore,

W (D,D′)

= log(P(D|γ′))

=

n∑
i=1

qi∑
j=1

ri∑
k=1

Mijk log
(
γ′ijk

)
=

n∑
i=1

qi∑
j=1

ri∑
k=1

Mijk log

(
mijk∑ri
k=1mijk

)
.

According to Gibb’s inequality, W (D,D′) achieves

the maximum value only if γ′ijk satisfies

γ′ijk = θijk =
Mijk∑ri
k=1Mijk

,

thus indicating that the distributions of D and D′ are

the same. This indication is why we also apply (5) as

a scoring function.

In each iteration, we add a subset ∆D′ into D′. The

evaluation is conducted for ∆D′, which is denoted as

follows:

L(D,D′,∆D′)

=

n∑
i=1

(
ri∑
j=1

(I(test(D′ ∪∆D′;D; i, j))) +

I(test′(D′ ∪∆D′;D; i))

)
, (7)

W (D,D′,∆D′)

=

n∑
i=1

qi∑
j=1

ri∑
k=1

Mijk log

(
mijk +m∗ijk

mijk
×

∑ri
k=1mijk∑ri

k=1(mijk +m∗ijk)

)
. (8)

(8) is defined as W (D,D′,∆D′) = log(P(D|D′ ∪
∆D′)) − log(P(D|D′)). Based on (5), we can obtain

(8). m∗ijk is the number of the k-th value of xi con-

ditioning on the j-th combination of π (xi) in dataset

∆D′.

(7) denotes how many nodes fail the chi-square test

after adding ∆D′ into D′, while (8) reflects the in-

crease in scoring values after the adding operation.

Therefore, we should find ∆D′ with a smaller value

of L(D,D′,∆D′) based on (7) and choose ∆D′ with

a larger value of W (D,D′,∆D′) based on (8). When

comparing scoring function values in the genetic algo-

rithm, we first compare the values of L(D,D′,∆D′).

If the values of L(D,D′,∆D′) are the same, we then

compare the values of W (D,D′,∆D′). In addition, to

accelerate the sampling process, we count only those

nodes that fail the chi-square test in the calculation of

(8).

3.4 Encoding

In the sampling algorithm, we need to calculate all

the values of mijk for the scoring functions. The value

of mijk will change if we add a sample. Therefore, we

need to compute these values repetitively during each

iteration, and this computation is quite time consum-

ing. Actually, we need to calculate only the change of

mijk, thereby reducing the time complexity. Here, we

apply an encoding strategy to fulfill this task.

In mijk, i denotes the i-th variable, j is the serial

number of the combination of the parent nodes π(xi)

of xi, and k is the value of xi. For a given sample d,

i and k can be easily determined. The most difficult

part is determining j. Assume xi has |π(xi)| parent

nodes, i.e., π(xi) = {x1i , x2i , ..., x
|π(xi)|
i }. Assume there

are rli possible values for parent node xli. In sample d,

the values of π(xi) are {k1i , k2i , ..., k
|π(xi)|
i }. Then, the

combination serial number j can be determined by (9):

j = (((k1i r
2
i ) + k2i )r3i + · · ·+ k

|π(xi)|−1
i )r

|π(xi)|
i +

k
|π(xi)|
i . (9)

For each sample, the combination serial number of

parent nodes for each node xi can be calculated dur-

ing preprocessing. This value will not change during

the algorithm. Therefore, we can store these values in

an array. When updating mijk, we can check only this

array to accomplish the task.

3.5 Time Complexity Analysis

In this subsection, we list the pseudocodes of our

algorithm and then analyze its time complexity. Algo-

rithm 1 shows the main process of the sampling algo-

rithm.

In Algorithm 1, line 1 initializes D′ to an empty

set. Line 2 initializes an array m with 0; the array is
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used to record the distribution of D′. Line 3 calls proce-

dure preProcess to determine the distribution of D and

the encoding values of the parent nodes of each node

xi for each sample. The distribution is recorded by θ

and η, and the encoding values are recorded by idxJ .

The loop of lines 4–13 is the main sampling process.

In each iteration, the algorithm extracts at least |∆D′|
samples from D; therefore there are at most M/(|∆D′|)
iterations. Line 5 applies the genetic algorithm to se-

lect |∆D′| samples based on the scoring functions; thus,

the values of the score functions are used as the fitness

values in the genetic algorithm. Then, the distribu-

tion of ∆D′ is calculated in line 6 by calling procedure

distCal. Line 7 calls procedure scoreCal to compute

the chi-square test scoring value and the likelihood scor-

ing value, which are recorded by chiScore and dScore,

respectively. Lines 8 and 9 are used to merge ∆D′ and

D′. The chi-square test value reflects how many nodes

fail the distribution test. Therefore, if this value is equal

to 0, then we can terminate the algorithm, as we have

already achieved the required subset. The condition

and steps for terminating the algorithm are in lines 10–

12.

Algorithm 1. Sampling Algorithm

Input: dataset D, Bayesian network B
Output: subset D′

1 D′ = ∅;
2 m = 0;
3 (idxJ , θ, η)=preProcess(D, B);
4 for h = 0;h < M/(|∆D′|);h+ + do
5 ∆D′=GA(idxJ , m, θ, η);
6 m∗=distCal(∆D′, idxJ);
7 (chiScore, dScore)=scoreCal(m, m∗, θ, η);
8 m=m+m∗;
9 D′ = D′ ∪∆D′; D = D −∆D′;

10 if chiScore = 0 then
11 break;
12 end

13 end

Algorithm 2 describes the detailed procedure of pre-

processing. The main purpose of preprocessing is to

calculate the distribution parameters θ and η of D and

to encode the values of the combinations of the par-

ent nodes of xi for each sample. idxJ(h, i) records the

encoding value of the parent nodes of xi in the h-th

sample. These values will be used to calculate mijk

and θijk. In Algorithm 2, lines 1–10 calculate idxJ(h, i)

based on (9). In line 1, h indicates the sample index

number, which ranges from 0 to |D|. In line 2, i rep-

resents the variable index number, which ranges from

0 to n. In line 3, hh is used to mark xi’s hh-th par-

ent node. The value and the range of this parent node

are denoted by khhi and rhhi , respectively. totalC(i)

records the total combination number of the parent

nodes of xi. d(h, i) is the value of xi in the h-th sam-

ple. Lines 11–27 calculate θ and η for dataset D. In

Algorithm 2, lines 4, 5, 7 and 8 can be accomplished

in O(1) time. Assume the largest values of totalC(i)

and ri are q and r, respectively. |π(xi)| in line 3 should

be smaller than totalC(i). Therefore, lines 1–10 take

O(|D|nq) time. Lines 11–15 take O(|D|n) time. Lines

16–27 take O(nqr) time. The preProcess procedure

takes O(|D|nq + |D|n+ nqr) = O(|D|nq + nqr) time.

Algorithm 2. preProcess

Input: dataset D, Bayesian network B
Output: idxJ , θ, η

1 for h = 0;h < |D|;h+ + do
2 for i = 0; i < n; i+ + do
3 for hh = 1;hh 6 |π(xi)| − 1;hh+ + do

4 idxJ(h, i) = (idxJ(h, i) + khhi )rhh+1
i ;

5 totalC(i) = totalC(i)× rhhi ;

6 end

7 idxJ(h, i) = idxJ(h, i) + k
|π(xi)|
i ;

8 totalC(i) = totalC(i)× r|π(xi)|i − 1;

9 end

10 end
11 for h = 0;h < |D|;h+ + do
12 for i = 0; i < n; i+ + do
13 θi, idxJ(h,i), d(h,i)++;

14 end

15 end
16 for i = 0; i < n; i+ + do
17 for j = 0; j 6 totalC(i); j + + do
18 sum = 0;
19 for k = 0; k < ri; k + + do
20 sum = sum+ θijk;
21 end
22 for k = 0; k < ri; k + + do
23 ηijk = θijk/|D|;
24 θijk=θijk/sum;

25 end

26 end

27 end

Algorithm 3 applies the genetic algorithm to find a

subset ∆D′ with size |∆D′|. In line 1, the algorithm

randomly chooses C subsets with size |∆D′| from the

remained samples to form an initial population P and

encodes genes with the serial numbers of the selected

samples in each subset. Thus, a subset corresponds

to a gene in population P and P contains C genes.

These genes have the same length |∆D′|. The loop

of lines 2–16 executes L iterations to optimize these

genes. Lines 3–6 call procedures distCal and scoreCal

to calculate the scoring values for each gene. Line 7

combines these two scoring values, and then line 8 per-

forms score scaling based on the rank of each gene in

the sorted population P . Lines 9 and 10 determine

the number of parents that will be used to generate the
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Algorithm 3. GA

Input: idxJ , m, θ, η
Output: ∆D′

1 Initialize the population set P with size C;
2 for ii = 0; ii < L; ii+ + do
3 for each gene Pjj in P do
4 m∗=distCal(Pjj , idxJ);
5 (chiScore[jj], dScore[jj])=scoreCal(m, m∗, θ,

η);
6 end

7 Score = chiScore× e10 − dScore;
8 fitV alue=FitScaling(Score);
9 nCrParent = 2(C − nElite)× CrRate;

10 nMuParent = C − nElite− nCrParent/2;
11 pSet=Select(nCrParent, nMuParent, P , fitV alue);
12 cChild=Crossover(pSet, nCrParent);
13 mChild=Mutate(pSet, nMuParent);
14 eChild=FindBest(P , nElite);
15 P = eChild ∪ cChild ∪mChild;

16 end
17 Update Score for P ;
18 ∆D′=FindBest(P , 1);

next population. CrRate is set to 0.8 and represents

the crossover rate. nElite is set to 0.05C and represents

the number of genes in population P that will survive

to the next generation. Line 11 applies a stochastic

uniform strategy to select nCrParent + nMuParent

genes from population P based on fitV alue. Line

12 applies a scattered crossover strategy to generate

0.5nCrParent new genes using nCrParent genes in

the selected pSet. Line 13 applies a uniform mutation

strategy to generate nMuParent new genes with muta-

tion rate 0.01 using nMuParent genes in the selected

pSet. Line 14 chooses the best nElite genes from P

based on Score. After the loop, line 17 reruns lines

3–7 to update Score for P , and then line 18 chooses

the best gene from the finial population P . The pro-

cedures FitScaling, Select, Crossover, and Mutate

are adopted from the Matlab genetic algorithm toolbox;

therefore we do not list the detailed pseudocodes here.

Procedure FindBest can be accomplished by sorting

the population P . Procedures disCal and scoreCal

take O(|∆D′|n) time and O(nqr) time, respectively,

and the population P contains C genes; therefore lines

3–6 take O(Cnqr) time. Procedure FitScaling in line

8 needs O(ClogC) time as it needs to sort the genes in

P . Procedure Select in line 11 takes O(nCrParent +

nMuParent) time. Procedures Crossover and Mutate

in line 12 and line 13 need O(0.5nCrParent|∆D′|)
time and O(nMuParent|∆D′|) time, respectively,

as both procedures generate new genes with size

|∆D′|. Procedure FindBest takes O(ClogC) time as

it just needs to sort the population P . Therefore,

lines 2–16 need O(L(Cnqr + ClogC + (nCrParent +

nMuParent)|∆D′|)) time. Line 17 reruns lines 3–7 and

needs O(Cnqr) time. Line 18 takes O(ClogC) time.

Experimentally, L, C, |∆D′|, CrRate and nElite are

set to constant values; therefore the time complexity of

Algorithm 3 can be simplified to O(nqr).

Algorithm 4 calculates m∗ for dataset ∆D′, which

represents the distribution and will be used in the cal-

culation of score values. m∗ijk is the number of the k-th

value of node xi conditioning on the j-th combination

of the node’s parent nodes π(xi) in ∆D′. Therefore,

the main loop of this procedure is to check each sample

in ∆D′ and update m∗ijk by finding the corresponding

value. As the encoding value j is indexed based on the

index numbers of samples in D, line 3 finds this index

number in D for the ii-th sample of ∆D′. With this

number, we can find the encoding value j of the parent

nodes of xi for sample ii. d(h, i) is xi’s value in sam-

ple ii. In this procedure, lines 3 and 4 take O(1) time.

Thus, the whole procedure takes O(|∆D′|n) time.

Algorithm 4. distCal

Input: dataset ∆D′, idxJ
Output: m∗

1 for ii = 0; ii < |∆D′|; ii+ + do
2 for i = 0; i < n; i+ + do
3 h = index(ii);
4 m∗

i, idxJ(h,i), d(h,i)
= m∗

i, idxJ(h,i), d(h,i)
+ 1;

5 end

6 end

Algorithm 5 presents the detailed procedures for cal-

culating scoring functions based on (7) and (8). The in-

puts m and m∗ denote the distribution of D′ and ∆D′,

respectively. θ and η represent the distribution of D.

Line 1 conducts the summation calculation to obtain

the distribution of the joint set of D′ and ∆D′. The

loop of lines 2–27 calculates the chi-square test scor-

ing value. This loop is a nested loop, where i ranges

from 0 to n, j ranges from 0 to qi, and k ranges from

0 to ri. n, qi, and ri denote the number of variables,

the total combinatorial number of the parent nodes of

xi, and the number of unique values of xi, respectively.

There are two chi-square tests (i.e., (2) and (3)) in the

problem formulation. chiSquare1 records the first test,

and chiSquare2 records the second test. To accelerate

the sampling process, the likelihood score values count

only the variables that fail the chi-square test. These

variables are stored in array node. Lines 16–18 and

lines 23–25 conduct this operation. Then, lines 28–39

compute the likelihood score value on these variables.

To be inconsistent with Algorithm 2, we assume the

maximum-value of qi and ri is q and r, respectively.



904 J. Comput. Sci. & Technol., July 2021, Vol.36, No.4

The arithmetic operations in Algorithm 4 take O(1)

time. Line 17 also takes O(1) time. Consequently, lines

5–19 take O(r) time, and lines 2–27 take O(nqr) time.

There are at most n variables in node; therefore lines

28–39 take O(nqr) time. The scoreCal procedure takes

O(nqr) time in total.

Algorithm 5. scoreCal

Input: m, m∗, θ, η, idxJ
Output: chiScore, dScore

1 m̂ = m+m∗;
2 for i = 0; i < n; i+ + do
3 chiSquare2 = 0;
4 for j = 0; j < qi; j + + do
5 sum = 0; chiSquare1 = 0;
6 for k = 0; k < ri; k + + do
7 sum = sum+ m̂ijk;
8 end
9 size = |D′|+ |∆D′|;

10 for k = 0; k < ri; k + + do

11 chiSquare1+ =
(m̂ijk−θijk×sum)2

θijk×sum
;

12 chiSquare2+ =
(m̂ijk−ηijk×size)2

ηijk×size
;

13 end

14 if chiSquare1 > χ2
α(p1) then

15 chiScore+ = 1;
16 if vis(i) = 0 then
17 node.pushback(i); vis(i) = 1;
18 end

19 end

20 end

21 if chiSquare2 > χ2
α(p2) then

22 chiScore+ = 1;
23 if vis(i) = 0 then
24 node.pushback(i); vis(i) = 1;
25 end

26 end

27 end
28 for ii = 0; ii < node.size; ii+ + do
29 i = node(ii);
30 for j = 0; j < qi; j + + do
31 summ = sum = 0;
32 for k = 0; k < ri; k + + do
33 summ = summ +mijk;

sum = sum+ m̂ijk;

34 end
35 for k = 0; k < ri; k + + do

36 dScore+ = θijk|D| log(
m̂ijk×summ

mijk×sum
);

37 end

38 end

39 end

Now, we can analyze the whole time complexity.

Line 3 calls the preProcess procedure, which takes

O(|D|nq + nqr) time. Line 5 applies the GA pro-

cedure to generate a subset with size |∆D′|, which

needs O(nqr) time. Lines 6 and 7 call the distCal

and scoreCal procedures, which take O(|∆D′|n) time

and O(nqr) time, respectively. m is an array with

size nqr; therefore line 8 takes O(nqr) time. Line

9 takes O(|∆D′|) time. Therefore, lines 5–12 take

O(nqr) time. The whole sampling algorithm takes

O(|D|nq + nqr + |D|nqr) = O(|D|nqr) time.

4 Experiment

The distribution tests are conducted according to

the structures of Bayesian networks. To validate the

performance of the proposed method, four Bayesian

networks are adopted in the experiments: ASIA,

ALARM, HEPAR2, and ANDES.

• ASIA. The ASIA network [32] is a small network

that is used for diagnosing chest diseases, including tu-

berculosis, lung cancer, and bronchitis. This network

contains eight nodes and eight edges. Each node corre-

sponds to a binary variable.

• ALARM . The ALARM network [33] is a medium

network that is also used for disease diagnosis. This

network consists of 37 nodes and 46 edges. The num-

ber of unique values for each variable can be 2, 3 or

4.

• HEPAR2. The HEPAR2 network [34] is a large

network that is used for the diagnosis of liver disorders.

The network consists of 70 nodes and 123 edges.

• ANDES. ANDES [35] is a very large network that

is used in an intelligent tutoring system. The network

consists of 223 nodes and 338 edges.

For each network, a Gibbs sampler is applied to

generate three datasets of different sizes, including

20 000, 40 000 and 60 000. In the genetic algorithm, the

iteration number is set to 500, and the population size

is set to 200. Other settings including crossover rate,

mutation rate, and number of genes that will survive to

the next generation take the default values of Matlab

genetic algorithm toolbox. To choose a suitable |∆D′|,
i.e., the number of samples extracted in each iteration,

we let |∆D′| range from 1 to 50 and compare the size

of the sampled subset on the ALARM datasets. Fig.2

illustrates this result. Generally, the method achieves

the best results when |∆D′| = 10; therefore, we set

|∆D′| = 10 in the following experiments.

In statistics, the significant difference level is usu-

ally set to 0.05 or 0.01 to denote whether to accept

the null hypothesis. Here, the null hypothesis is that

the distributions of the sampled subset and the original

dataset are the same. Therefore, we set the significant

difference level, α, to 0.05 and 0.01 to test our method.

Table 1 summarizes the comparison results between our

method and Yang et al.’s method [15] in terms of subset

size, which is the size of the subset that is extracted
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from the original dataset to meet the chi-square test

requirement. In Table 1, 20 000, 40 000 and 60 000 are

the sizes of datasets, so are in Tables 2–4.
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Fig. 2. Comparison of the size of the sampled subsets
when |∆D′| ranges from 1 to 50 on three ALARM datasets,
where alarm 20000, alarm 40000 and alarm 60000 represent the
datasets with the size of 20 000, 40 000 and 60 000, respectively.

We find that our method excludes most of the sam-

ples from the original datasets while still maintaining

the distribution. For the datasets with the size of

60 000, we can exclude 99.9%, 99.0%, 93.1% and 96.7%

of the samples from the original datasets for ASIA,

ALARM, HEPAR2, and ANDES datasets, respectively,

when setting α to 0.05. Averagely, the subset size ob-

tained by our method is about 47.5% of that obtained

by Yang et al.’s method [15], which validates that our

method could extract much smaller subsets than Yang

et al.’s method [15] to meet the distribution requirement.

In addition, the size of the sampled subset becomes

larger as the structure of the Bayesian network be-

comes more complex because the distribution depends

on the Bayesian network structure. As the structure

becomes more complex, the distribution of the origi-

nal dataset also becomes more complex. Consequently,

more samples are needed to form the complex distri-

bution. Similarly, as the size of the original dataset

becomes larger, small probabilities are more likely to

happen; consequently, the distribution becomes more

complex. Therefore, more samples are needed to sat-

isfy the requirement. For the ASIA network, the sample

sizes are the same for different sizes of datasets because

the network is small and the distribution is simple. It

is very easy to satisfy (2) and (3). The sample sizes

where α = 0.01 are generally smaller than the sam-

ple sizes where α = 0.05 for the same dataset because

when α = 0.01, more differences in the distribution are

allowed than when α = 0.05.

We also compare our method with random sampling

in terms of the average distribution difference and ratio

of satisfied distribution tests when letting the two meth-

ods extract the same number of samples. As the subset

extracted by Yang et al.’s method [15] can also satisfy

the distribution tests, we do not compare our method

with their method in this experiment. The average dis-

tribution difference is calculated based on

delta =
1

num(θijk)

n∑
i=1

qi∑
j=1

ri∑
k=1

| mijk∑ri
k=1mijk

− θijk|,

where num(θijk) is the total number of θijk. This value

reflects the distribution difference between the sampled

subset and the original dataset. The ratio of satisfied

distribution tests denotes the percentage of distribu-

tions that pass the chi-square test. We let the random

sampling method extract the same number of samples

as our method. As the random sampling method is a

probability sampling method, the results are not iden-

tical for different executions. The results of random

sampling are averaged from 1 000 runs in our experi-

ments.

Table 2 shows the comparison results between our

method and random sampling when α = 0.05. As

our method will not terminate until all the distribution

tests are satisfied, the ratios of satisfied distribution

Table 1. Comparison of Experimental Results Between Our Method and Yang et al.’s Method [15] on 3 Different Sizes of Datasets
Based on 4 Bayesian Networks in Terms of Sampled Subset Size When α Is Set to 0.05 and 0.01

Dataset α = 0.05 α = 0.01

20 000 40 000 60 000 20 000 40 000 60 000

Yang Ours Yang Ours Yang Ours Yang Ours Yang Ours Yang Ours

et al.’s [15] et al.’s [15] et al.’s [15] et al.’s [15] et al.’s [15] et al.’s [15]

ASIA 100 60 300 60 300 60 100 50 100 50 100 60

ALARM 1 200 540 1 400 540 1 500 610 1 200 510 1 200 530 1 400 530

HEPAR2 4 100 3 010 6 100 3 640 9 100 4 160 3 700 2 800 5 900 3 210 8 700 3 820

ANDES 2 200 1 110 3 200 1 210 5 500 2 010 1 600 1 010 2 500 990 3 700 1 890
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Table 2. Comparison of Experimental Results Between Our Method and Random Sampling in Terms of the Average Distribution
Difference and Ratio of Satisfied Distribution Tests When α = 0.05

Dataset Random Sampling Our Heuristic Sampling

20 000 40 000 60 000 20 000 40 000 60 000

delta ratio delta ratio delta ratio delta ratio delta ratio delta ratio

ASIA 0.22 84.00 0.22 83.06 0.24 82.56 0.01 100 0.01 100 0.01 100

ALARM 0.28 77.02 0.29 76.32 0.31 74.82 0.03 100 0.04 100 0.04 100

HEPAR2 0.32 83.44 0.34 81.90 0.35 80.71 0.05 100 0.06 100 0.06 100

ANDES 0.10 94.15 0.10 93.85 0.08 94.36 0.02 100 0.02 100 0.03 100

Note: delta and ratio denote the average difference in distribution and the ratio of distributions that pass the chi-square test, respec-
tively.

tests of our method are all 100%. However, the sam-

pled subsets obtained by the random sampling method

does not pass all the distribution tests. Approximately

16.8%, 23.9%, 18.0%, and 5.9% of the distribution tests

fail the chi-square tests for these four types of datasets.

In addition, the average distribution difference of our

method is much smaller than that of random sampling.

The average distribution difference of our method is ap-

proximately 0.03, while the average distribution diffe-

rence of random sampling is approximately 0.24. These

findings validate the effectiveness of our sampling al-

gorithm. Table 3 summarizes the comparison results

when α = 0.01, and it shows findings similar to Ta-

ble 2.

Furthermore, we conduct the comparison of running

time (in seconds) between our method and Yang et al.’s

method [15]. Both methods are implemented with Mat-

lab and executed on a Windows server with Intelr Xeon

E3-1231v3 3.4 GHz CPU and 16 G RAM. Table 4 shows

the results. Our method costs a bit longer time than

Yang et al.’s method [15]. This is because our method

applies the genetic algorithm to optimize the selected

subset in each iteration. However, the time complexity

of both methods is O(|D|nqr). We can find that the

running time of these two methods becomes close when

the dataset size, i.e., |D|, becomes larger, e.g., 60 000.

On some datasets, our method needs shorter time than

Yang et al.’s method [15], and this may be because the

number of iterations of our method is much smaller

than that of Yang et al.’s method [15] on these datasets.

As our method is heuristic, the samples extracted

in each iteration may not be good in the whole sam-

pled subset, i.e., the results are not optimal. To test

the quality of the samples in the results, we randomly

choose four samples in the ALARM dataset with the

size of 40 000 to check the ranks during each iteration,

where sample dl’s rank is defined as the serial num-

ber of dl after sorting the samples in D′ according to

the scoring values. The 3rd sample, the 89th sample,

the 413th sample and the 632nd sample are chosen. If

a sample dl is an optimal sample, then its rank in D′

should be stable, i.e., when adding new samples into D′,

these samples’ scores should be worse than that of dl,

and dl’s rank should not change much. Fig.3 shows this

result. The scoring values are calculated based on (8).

We find that although the ranks change during each it-

eration, the changes are few. The ranks are generally

stable, thereby validating the effectiveness of applying

genetic algorithm to optimize the samples in each iter-

ation. The subset chosen in each iteration by Yang et

Table 3. Comparison of Experimental Results Between Our Method and Random Sampling in Terms of Average Distribution
Difference and Ratio of Satisfied Distribution Tests when α = 0.01

Dataset Random Sampling Our Heuristic Sampling

20 000 40 000 60 000 20 000 40 000 60 000

delta ratio delta ratio delta ratio delta ratio delta ratio delta ratio

ASIA 0.25 83.12 0.23 83.11 0.25 82.56 0.01 100 0.02 100 0.03 100

ALARM 0.29 79.25 0.29 77.84 0.30 76.33 0.04 100 0.05 100 0.06 100

HEPAR2 0.32 85.41 0.35 83.57 0.36 82.92 0.07 100 0.08 100 0.08 100

ANDES 0.10 96.49 0.11 96.28 0.08 97.17 0.03 100 0.04 100 0.05 100

Note: delta and ratio denote the average difference in distribution and the ratio of distributions that pass the chi-square test, respec-
tively.
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al.’s method [15] is randomly sampled; therefore some

samples may not be good for the final subset to pass

the distribution test. Although they eliminate some

samples with worse scoring values in each iteration,

their method could still not avoid these samples. The

samples selected in each iteration by our new method

are more reasonable. This is also the reason why our

method could reduce the size of the final sampled sub-

set.

Table 4. Comparison of Running Time (in Seconds) Between
Our Method and Yang et al.’s Method [15] on 3 Different Sizes of
Datasets When α = 0.05

Dataset Yang et al.’s Method [15] Our Heuristic Sampling

20 000 40 000 60 000 20 000 40 000 60 000

ASIA 7 22 25 3 3 4

ALARM 75 102 259 118 115 121

HEPAR2 259 632 1 401 1 643 1 725 1 826

ANDES 312 564 1 101 1 312 1 453 1 610
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Fig.3. Ranks of four random samples in sampled subsets based
on scoring functions.

5 Conclusions

In this paper, we formulated a sampling problem

that requires finding a minimum subset while main-

taining the probability distribution as verified by the

chi-square test. By decomposing the joint distribu-

tion into conditional probabilities based on Bayesian

networks, we proposed a heuristic sampling method to

solve this problem. Our method applies a genetic algo-

rithm to optimize the subset during each iteration and

combines a chi-square-test based scoring function and

a likelihood-based scoring function as the fitness func-

tion. Experiments on four different types of datasets

with the size of 60 000 showed that our algorithm can

exclude 99.9%, 99.0%, 93.1% and 96.7% of the samples

based on the ASIA, ALARM, HEPAR2, and ANDES

networks, respectively, when the significant difference

level, α, is set to 0.05. Averagely, the subset size ob-

tained by our method is about 47.5% of that obtained

by Yang et al.’s method [15]. In addition, when sam-

pling subsets of the same size, the average distribution

difference of our method is approximately 0.03, which is

much smaller than that of the random sampling, whose

average distribution difference is approximately 0.24.

In the future, we will try to determine the theoreti-

cal bound of the size of the subset that can satisfy the

chi-square tests.
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