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Abstract The recently proposed learned index has higher query performance and space efficiency than the conventional

B+-tree. However, the original learned index has the problems of insertion failure and unbounded query complexity, meaning

that it supports neither insertions nor bounded query complexity. Some variants of the learned index use an out-of-place

strategy and a bottom-up build strategy to accelerate insertions and support bounded query complexity, but introduce

additional query costs and frequent node splitting operations. Moreover, none of the existing learned indices are cache-

friendly. In this paper, aiming to not only support efficient queries and insertions but also offer bounded query complexity,

we propose a new learned index called COLIN (Cache-cOnscious Learned INdex). Unlike previous solutions using an out-of-

place strategy, COLIN adopts an in-place approach to support insertions and reserves some empty slots in a node to optimize

the node’s data placement. In particular, through model-based data placement and cache-conscious data layout, COLIN

decouples the local-search boundary from the maximum error of the model. The experimental results on five workloads and

three datasets show that COLIN achieves the best read/write performance among all compared indices and outperforms the

second best index by 18.4%, 6.2%, and 32.9% on the three datasets, respectively.
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1 Introduction

The index is an essential component of database

systems, which can speed up data access. In 2018,

Kraska et al. [1] proposed an innovative indexing ap-

proach called “learned index” in SIGMOD to inte-

grate machine learning models with database index

structures, which has attracted much attention from

the database community. The learned index is an in-

memory index used to retrieve in-memory data. Like

the famous B+-tree, the learned index aims to support

point queries and range queries efficiently. However, it

uses machine learning models to learn data distribution

and find the indexed items, instead of traversing the

multi-level structure of the B+-tree. Notably, it uses

a machine-learning model to predict the data position

according to a given query. It then performs a local

search, e.g., a binary search, based on the predicted po-

sition. Compared with the B+-tree, the learned index

has higher query performance and lower space cost [1].

However, the original learned index has two short-

comings.

1) Insertion Failure. First, it fails to support in-

sertions and can only work on static datasets. There

are two reasons. One is that insertions can invalidate

the existing learned models. The current models were

built based on the old data distribution, and insertions

will probably change the distribution feature of data

and make the models invalid. The other is that, in the

learned index, a learned model covers much more keys
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than a traditional B+-tree node. Thus, insertions with

new keys will cause a lot of data shifts.

2) Unbounded Query Complexity. Another problem

is that it lacks the guarantee of query complexity. The

original learned index cannot ensure that each model

can work well on a data segment because it does not

limit the error boundary. Therefore, in the worst case

that a model cannot accurately predict the data posi-

tion, the learned index requires a local search over a

large area, which will worsen the index’s query perfor-

mance.

A few previous studies have been presented to solve

the insertion-failure problem, such as FITing-Tree [2]

and PGM-index [3], which adopt some out-of-place in-

sertion strategies but fail to offer high performance for

both read and write requests. Moreover, none of the ex-

isting learned indices consider optimizing the use of the

CPU cache, i.e., they are not cache-friendly. Learned

indices use a model to predict the position of data in

a node. Based on the predicted position, it performs a

local search that ranges to the maximum error of the

model, which usually covers multiple cachelines.

In this paper, we revisit the learned index structure

and propose a new learned index called COLIN (Cache-

cOnscious Learned INdex). COLIN aims to solve the

two problems of the existing learned index, namely

“insertion failure” and “unbounded query complexity”.

Unlike previous solutions that use an out-of-place in-

sertion strategy, COLIN adopts an in-place approach to

support insertions. It reserves some empty slots in data

nodes and uses these slots to optimize the nodes’ data

placement. By using model-based data placement and

cache-conscious data layout, the range of local searches

and data shifts is limited within a cacheline. Briefly,

we make the following contributions in this paper.

• We propose a new learned index called COLIN.

COLIN has two new designs. First, COLIN uses a hete-

rogeneous node structure containing learned nodes and

simple nodes. Specially, we use learned nodes to offer

high query performance and simple nodes to support

out-of-bounds insertions. Second, we propose model-

based data placement and cache-conscious date layout

for learned nodes to decouple the local-search boundary

from the model’s maximum error, guaranteeing that the

actual data position and the data position predicted by

the model must be within the same cacheline (see Sec-

tion 3).

• We design efficient algorithms for the operations

in COLIN, including query, upsert, deletion, and bulk

loading. We also present the structure-modified algo-

rithms, including splitting/expanding a learned node

and transforming a simple node into a learned node

(see Section 4).

• We theoretically analyze the model’s maximum

error and the worst-case query cost of COLIN (see Sec-

tion 5).

• We compare COLIN with the B+-tree and

three state-of-the-art dynamic learned indices, namely

FITing-Tree [2], PGM-index [3], and ALEX [4], on two

tailor-made datasets and one real dataset. The results

show that COLIN achieves better read/write perfor-

mance than its competitors (see Section 6).

The remainder of the paper is structured as fol-

lows. Section 2 introduces the background and mo-

tivation of this paper. Section 3 presents the index

structure and the node structure of COLIN. Section 4

describes the algorithms of COLIN. Section 5 analyzes

the model’s maximum error and the worst-case query

cost of COLIN. Section 6 reports the experimental re-

sults. Finally, in Section 7, we conclude the entire pa-

per.

2 Background

2.1 Learned Index

An index takes the keys as the input and outputs

the position of the payloads corresponding to the keys

in the storage medium. It seems that an index is simi-

lar to a machine learning model. The core idea of the

learned index is to use machine learning models to re-

place the traditional index structure. To improve the

accuracy and reduce the execution cost of the mod-

els, the learned index proposes a multi-layer model

structure called RMI (recursive model index) [1, 5]. The

structure of RMI is shown in Fig.1. At the top layer,

RMI uses a neural network model to fit the overall dis-

tribution of the dataset, which is used to predict the

approximate range of a given key. At the lower layers,

RMI divides the dataset into many disjoint subsets and

trains a linear regression model on each subset. RMI

selects a lower model according to the output of the

upper model and uses it to predict a more accurate po-

sition of the key. Finally, the learned index performs

a local search at the predicted position to find the ex-

act position of the key. RMI saves the maximum error

for the models and performs binary searches within the

error range. The learned index takes advantage of the

characteristics of data distribution, which is ignored by

traditional indices. As a result, it has better query per-

formance and lower space cost.
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Fig.1. Structure of RMI.

However, the learned index can only work on static

datasets. It is not easy for support insertions. First,

the insertion can lead to the failure of the error bound

of the model, resulting in the need for the model to be

retrained. However, retraining a model is expensive,

especially for neural networks. Second, a model in the

learned index covers a large number of keys, which is

far more than that in a B+-tree node. If a new key

is inserted directly into the data with a dense layout,

the cost of data shifting can be very high. Third, each

model in the learned index can only cover a limited

range, thereby it is necessary to consider the case that

the inserted key is outside the index range.

Another problem with the learned index is that it

cannot guarantee the worst-case query complexity. The

learned index uses a naive partitioning strategy, which

divides the dataset evenly according to the number of

keys. Therefore, it cannot determine the maximum er-

ror of the model on each data segment. If the maximum

error of a model is large, the cost of local search on its

corresponding data segment is relatively high.

2.2 Dynamic Learned Indices

Dynamic learned indices aim to support insertions.

Current representative dynamic learned indices include

FITing-Tree [2], PGM-index [3], and ALEX [4]. Among

them, FITing-Tree and PGM-index have bounded

query complexity, while ALEX cannot provide a the-

oretical guarantee of query complexity. In terms of

insertion strategy, FITing-Tree and PGM-index adopt

out-of-place strategies, while ALEX adopts an in-place

strategy.

To provide a theoretical guarantee of bounded query

complexity, the key is to ensure that the height of

the tree is bounded and that the maximum error of

each model is bounded. FITing-Tree [2] and PGM-

index [3] use the PLR (Piecewise Linear Representation)

algorithm [6–8] to fit the dataset. The PLR algorithm

can fit the dataset using a piecewise linear model in

O(n) time and ensures that the maximum error of each

model is less than a user-given threshold. A difference

between FITing-Tree and PGM-index is the type of in-

ner nodes. FITing-Tree only uses learned nodes as data

nodes. At the upper layers of the index, it returns to

the traditional index method and employs a B+-tree as

the index of data nodes. In contrast, PGM-index re-

cursively executes the PLR algorithm, which also uses

piecewise linear models at the upper layers of the index.

Both of these methods ensure that the tree is a balanced

tree, with a height of O(log n). In a nutshell, this type

of learned indices can guarantee the worst-case query

complexity.

ALEX [4] uses a cost model to divide the dataset

based on the key space and obtain an unbalanced tree.

Inside the node, ALEX does not save the maximum er-

ror of the model but adopts exponential search [9] with-

out bounds. Therefore, ALEX does not have bounded

query complexity.

To support insertions, FITing-Tree [2] adopts two

strategies. The first strategy is similar to B+-tree,

which inserts a new key directly into an ordered po-

sition. To avoid invalidating the model, each insertion

increases the maximum error of the model [2, 10]. How-

ever, since the number of keys in a learned node is much

more than that in a B+-tree node, each insertion can re-

sult in a high cost of data shifting. The second strategy

is to use node-level buffers [2, 11]. Specifically, it provides

an insert buffer for each data node. A new key is first

inserted into a buffer. When a buffer is full, the keys

in the buffer are merged with the keys in the learned

node, and FITing-Tree uses the PLR algorithm [6–8] to
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fit and partition these data again.

PGM-index [3] uses global multi-level buffers similar

to LSM-Tree [12]. In detail, it builds multiple learned

indices, whose capacities are different integer powers of

2. The data with new keys will be inserted into a global

buffer. When the buffer is full, it will be merged with

the smallest index. When the index size of one layer

reaches the threshold, it will be merged with the index

of the next layer. Each merge will result in a model

retraining.

However, the out-of-place insertion strategies are

problematic for learned indices. For FITing-Tree, there

are problems with using either smaller or larger buffers.

If the smaller buffers are used, the buffers will be filled

quickly and model retraining and node splitting will oc-

cur frequently. If the larger buffers are used, the read

and write costs of the buffers are higher. Fig.2 shows

the impact of the buffer size on the insertion perfor-

mance of FITing-Tree. Here, the maximum error of

the model (ε) is set to 8, which is the optimal value

of the parameter for insertion performance. As shown

in Fig.2, regardless of the size of the buffer, the inser-

tion performance of FITing-Tree is worse than that of

B+-tree. For PGM-index, each query requires lookups

to be performed in multiple indices, which can signifi-

cantly reduce query performance.
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Fig.2. Impact of the buffer size on the insertion performance of
FITing-Tree.

ALEX adopts an in-place insertion strategy. It uses

gapped arrays [13] to reduce the cost of data shifting.

When a node is built, it pre-allocates empty slots in

the data slots and inserts the empty slots evenly into

the data slots. However, gap arrays increase the pre-

diction error of the model, and inserting new keys may

make things worse. Therefore, ALEX uses exponential

search [9] and does not use the model’s maximum error

for searching, i.e., it does not guarantee bounded query

complexity. Our approach is also inspired by the idea

of the gapped array. When building nodes, we place the

data based on the position predicted by the model and

limit the range of places where the data can be placed.

This strategy allows our local search to be carried out

within a bounded range.

Moreover, the existing learned indices are in-

memory indices, but they are not cache-friendly. Previ-

ous work has shown that the latency of accessing data

with CPU cache hits is much lower than that of ac-

cessing data with CPU cache misses [14]. However, the

existing learned indices need to perform local searches

larger than the size of a cacheline, which may cause mul-

tiple cache misses. For example, the recommended er-

ror threshold for PGM-index is 64, which means a 512-

byte binary search needs to be performed. The value is

a compromise. Because with smaller error thresholds,

the height of the index may increase, which also in-

creases the query cost. In this paper, we decouple the

boundary of local search from the maximum error of

models. Therefore, we can use a larger error threshold

and perform the local search with the cacheline granu-

larity.

2.3 Other Types of Learned Indices

There are also some other types of learned indices.

Hadian and Heinis [15] proposed to use an auxiliary

data structure called Shift-Table between the model

and the data array, which stores the mapping of the

predicted position of the key to the real position and

can speed up the local search. However, Shift-Table

does not support update operations and requires a lot

of extra space. XIndex [16] is a concurrent learned in-

dex structure that uses a two-phase compaction algo-

rithm to help unlocked node splitting. RadixSpline [17]

uses spline interpolation [18] to fit the data and uses

a radix tree to index the splines. Bilgram proposed a

cost model to determine when to retrain the models [19].

SIndex [20] is specially optimized for string-type keys.

Another kind of learned indices is model-assisted in-

dices, which aim to use machine learning models to as-

sist rather than to replace traditional index structures,

such as B+-tree. Llaveshi et al. proposed to use linear

regression models to speed up the search within B+-

tree nodes [21]. IFB-Tree [22] determines when building

nodes whether each node is interpolation-friendly, i.e.,

the maximum error when using interpolation search

is below a given threshold. If the node is marked as

interpolation-friendly, the interpolation search is used

in the node. MADEX [23] further reduces the error of

interpolation search. However, these model-assisted in-

dices are limited by the performance of the B+-tree

itself, such as the high tree height and the large index

size.
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In addition to one-dimensional range indices, the

idea of the learned index is also applied to spa-

tial indices [24, 25], multi-dimensional indices [26, 27], and

existence indices (e.g., Bloom Filters [1]). Further-

more, the learned index is only the tip of the ice-

berg of “AI4DB” [28]. Machine learning techniques

are also applied to many other essential compo-

nents of the database, such as query optimization [29],

buffer management [30], workload forecast [31], and data

synthesis [32].

3 Structure of COLIN

3.1 Overview

COLIN is a multi-tier learned index that uses

models in both data and inner nodes to speed up

searches. To ensure the retraining speed of the model,

it only uses the linear regression model. Like PGM-

index [3], COLIN calls the PLR algorithm to partition

the dataset, train the models, and recursively perform

this process to obtain the models of the upper layers. It

adopts the OptimalPLR algorithm [8], which has O(n)

time complexity and can get the optimal partition re-

sult. In COLIN, the nodes in the upper layer are used

to index the nodes in the lower layer, and the bottom

nodes are responsible for storing data. We call them

inner nodes and data nodes, respectively. Like most

learned indices, COLIN stores data in an orderly man-

ner to support range queries.

To solve poor insertion performance and low cache

efficiency of the existing learned indices, COLIN mainly

adopts the following three designs. First, COLIN uses

an in-place insertion strategy and leaves some empty

slots in the data slots. Using the enlarged data space,

COLIN uses a model-based data placement strategy to

arrange the data (see Subsection 3.3). This strategy is

used not only when new data is inserted but also when

the node is (re)built. All data needs to be rearranged.

Second, COLIN uses a cache-conscious data layout to

decouple the range of local searches to the maximum

error of the model (see Subsection 3.3). With this strat-

egy, COLIN limits the range of both local searches and

data shifts to cacheline size. At the same time, a large

model error threshold is maintained to ensure that the

index structure is sufficiently flat. Third, COLIN uses a

heterogeneous index structure (see Subsection 3.2). In

addition to using model-accelerated learned nodes, it

also introduces simple nodes, which are mainly used to

solve out-of-bounds insertions and data overflow prob-

lems.

3.2 Heterogeneous Index Structure

COLIN involves two kinds of nodes: “learned

nodes” and “simple nodes”. The learned nodes use

models to predict the position of data and perform local

searches based on the predicted position. Each learned

node corresponds to a bounded range. Simple nodes do

not use models, thereby there is no bounded limit.

Different types of nodes play different roles in

COLIN. The learned data nodes store most of the in-

dexed data, namely the keys and the corresponding

payloads. The payloads can be the actual value or a

pointer to the value’s position. The learned inner nodes

are used to index the nodes in the lower layer. It stores

keys and pointers to nodes, where a key represents the

smallest key in the corresponding children.

We use simple nodes to support efficient out-of-

bounds insertions in COLIN. As the coverage of a

learned node is fixed, once the training of a learned

node is completed, the range of keys covered by the

node cannot be changed until a new training is per-

formed. Therefore, the keys outside the range cannot

be inserted into a learned node. Thus, we use simple

nodes to cache out-of-bounds insertions. Besides, since

COLIN uses a cache-conscious data layout, there may

be data overflows. Simple nodes are also used to store

overflowed data. Specifically, there are five use-cases

that we need to allocate a simple node in COLIN, as

shown in Fig.3.

Use Case 1: As the Left or Right Buffer (Sim-

ple Data Node). The left and the right buffers are

unique components resident in COLIN, storing inser-

tions smaller than the minimum key or larger than the

maximum key of the learned nodes. They are accessed

only when inserting and querying an out-of-bounds key.

Use Case 2: As the Root Node (Simple Inner Node).

When the left/right buffer becomes full, it is converted

into a learned data node. COLIN inserts the new keys

directly into the root node. COLIN uses a simple node

as the root node to support this kind of out-of-bounds

insertions.

Use Case 3: As a Temporary Child of the Root Node

(Simple Inner Node). When the root node is filled, we

first merge the children with fewer layers to ensure the

balance of the index tree. These children will be put

in a simple node first, e.g., “node 1.3” in Fig.3. When

the number of children in the simple node reaches a

threshold, it will evolve into a learned node.

Use Case 4: As an Overflow Block of the Learned

Data Node (Simple Data Node). There may be over-

flowed data in a learned data node. COLIN uses simple
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Fig.3. Index structure of COLIN. “TIN” represents a temporary inner node and “OB” represents an overflow block.

nodes to store overflowed data, e.g., the “OB” node in

Fig.3. This component is accessed only when the over-

flowed data is inserted or queried, and there is only a

small amount of overflowed data in the index.

Use Case 5: As a Temporary Inner Node (Simple

Inner Node). Similarly, there may be overflowed data

in a learned inner node. COLIN uses simple nodes as

the temporary children of learned inner nodes to store

overflowed data, e.g., the “TIN” node in Fig.3.

3.3 Cache-Conscious Learned Node

The learned nodes in COLIN use a model-based

data placement strategy and cache-conscious data lay-

out to decouple the local-search boundary from the

model’s maximum error. To make learned nodes cache-

conscious, we enforce that the actual slot of a key to be

in the same cacheline as the slot predicted by the model,

which can guarantee that both local searches and data

shifts in a node will involve only one cacheline.

3.3.1 Learned Data Node

The learned data node consists of metadata, a key

array, a payload array, and an overflow block pointer

array. Model is stored in the metadata and contains

two member variables, slope and intercept, which are

both double values. For a given key, COLIN uses (1)

to calculate the predicted position.

pos = slope× key + intercept. (1)

The key array is an array of key types. When build-

ing a node, we multiply the number of keys by an am-

plification factor as the size of the key array. As shown

in Fig.4, the key array is divided into multiple blocks,

and each block is divided into multiple lines. In our im-

plementation, we set each block to contain eight lines.

Each line is the same size as a cacheline. We assume

that the key size is 8 bytes and a cacheline size is 64

bytes, thereby each line contains eight data slots. There

are some free slots in a learned data node. Since the

coverage of each learned node is limited, we use an out-

of-bounds key as a token to fill all free slots. This design

can save the overhead of bitmap.

In the learned data node, we use a model-based data

placement strategy to arrange the keys. When build-

ing a node, we use this strategy to place all the keys in

the node. This strategy is also used when a new key is

inserted into the node. For a key, we use the model to

predict its position and place it on the predicted slot. If

the slot is already occupied, we allow the key to deviate

from the predicted slot, but not from the current line.

Meanwhile, all keys in a line remain in order. If there

is no space in the line, we insert the key into the over-

flow block. Using this strategy, the actual deviation

Line 2

Block 0 Block 1 Block 2

Model

Free Slot

Used Slot

Line 0 Line 1

Keys

Overflow Block

e 2 Line 3e 3 Line 4 Line 6e 4 LinLine 5 e 6 Line 7

...

Fig.4. Data layout of a learned data node.
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of the data position in the node is no more than the

size of one line. Therefore, the range of local searches

and data shifts corresponds to the size of the cacheline.

However, due to the large error thresholds used when

training the model, a learned node can still hold a large

amount of data. Therefore, our strategy decouples the

local-search boundary from the maximum error of the

model.

In the learned data node, the payload offset in the

array is the same as the key. The memory addresses of

the key array and the payload array are aligned with

the size of a cacheline, thereby we can identify which

slots are in the same cacheline by the offset. Since the

size of each line is limited, there may be overflowed

keys. We use simple data nodes as overflow blocks. If a

line is filled, subsequent keys inserted into the line will

be inserted into an overflow block. In the learned data

node, we reserve a pointer to the overflow block for each

block. That is, lines in a block share an overflow block,

which is to save the space cost of the pointers.

3.3.2 Learned Inner Node

A learned inner node is used to index multiple un-

derlying nodes, which includes metadata, a key array, a

node pointer array, and a bitmap. COLIN implements

a base class of nodes and four node types as derived

classes. The pointer array of inner nodes stores point-

ers of base class type, which can point to any type of

nodes. In the key array, the stored key is the lower

bound of the key range in the corresponding children.

Similarly, in learned inner nodes, we also divide the key

array into multiple lines, the size of which is a cache-

line size, and align the array with the size of a cacheline.

The difference is that there is no concept of the block

in learned inner nodes.

A model-based placement strategy is also used in

learned inner nodes. The difference is that there are no

free slots in the key array of the learned inner node. We

use the nearest key and pointer on the left to fill all the

free slots. Fig.5(a) gives an example of an unfilled line.

There are two free slots between the first key and the

second key, which be filled with the first key and the

first pointer. Note that the redundant filling can involve

subsequent lines. Using this mechanism, local searches

for lower bound lookups, which happen frequently at

an inner node, can be limited to one cacheline.

When there is no enough space in a line, we use a

simple inner node as a temporary inner node, as shown

in Fig.5(b). Only one temporary inner node can be in-

cluded in a line, and the node’s position is on the left-

most side of the line. We use a bitmap to record which

lines contain a temporary inner node. Note that the

Key 1Keys

Pointers

Key 1 Key 1 Key 2 Key 3 Key 3 Key 4 Key 4

Learned 

Node 1

Learned 

Node 2
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Node 3
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(a)

Fig.5. Example lines in learned inner nodes. (a) An unfilled line. (b) A filled line with overflowed keys.
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bitmap is only used to recycle temporary inner nodes

when the learned inner node is abandoned, and queries

and insertions do not require querying the bitmap.

3.4 Simple Node

Models are not allowed in simple nodes. A naive ap-

proach is to allocate a fixed size of contiguous storage

space and use binary lookup, as with B+-tree nodes.

However, a simple node must guarantee enough space

to store the worst-case data overflow. As a result, al-

locating a fixed size of space wastes space and leads to

high read and write overhead for simple nodes. One

solution is to use a linked list structure to support ca-

pacity scaling. However, the overhead of a linked list

structure increases linearly with the amount of data and

results in the index with unbounded query complexity.

The simple nodes in COLIN adopt a scalable struc-

ture, as shown in Fig.6(a). Nodes will expand from

a one-level structure to a three-level structure accord-

ing to the number of keys. When the node has only

one level, the keys are placed in the L1 array, which

together with the metadata takes up the size of two

cachelines. In our implementation, assuming the key

size is 8 bytes, the capacity of the L1 array is 12. When

the node expands into a two-level structure, we request

a new memory space as the L2 array. In this case, the

L1 array is the index of the L2 array. In our implemen-

tation, the size of the L2 array is eight times that of the

L1 array. The i-th element in the L1 array equals the

(8× i)-th element in the L2 array. The same is true of

the three-level structure, as shown in Fig.6(b).

Metadata Level 1

Level 2&3 Payloads

2 Cachelines

Level 1

Level 2 (8x Level 1)

Level 3 (8x Level 2)

Query

(b)

(a)

Fig.6. Structure of a simple node. (a) Structure of a simple data
node. (b) Query in a three-level simple node.

The keys in any level are ordered, and a key outside

the range is used to represent the free slot. To reduce

the data shifting cost during insertion, we allow the L1

array and the L2 array to be filled, but the L3 array is

only allowed to be filled to 75%. L2 array, L3 array, and

payload array are aligned with the size of a cacheline.

The structure of a simple inner node is similar to that

of a simple data node, except that the payload array is

replaced by a pointer array.

COLIN’s simple nodes have good performance and

space efficiency when dealing with a variety of situa-

tions. For example, when we use a simple node as an

overflow block and there is only a small amount of over-

flowed data, COLIN will cost very little space. If there

is a large amount of overflowed data, COLIN can also

provide enough space. At the same time, COLIN can

also maintain high query efficiency. Because the upper-

level data is used as the index, only one cacheline in L2

and L3 is searched.

4 Operations in COLIN

4.1 Query Operations

Point Query. We reserve the minimum key and the

maximum key of the index (not including the left and

right buffers) in COLIN’s metadata. When a query re-

quest arrives, the index first determines whether the

target key is in the index’s coverage. If so, the Find al-

gorithm of the root node is called; otherwise, the Find

algorithm of the left/right buffer is called. The Find

algorithm is implemented by a virtual function. The

algorithm to be called will be selected according to the

type of nodes.

Algorithm 1 is the Find algorithm of learned inner

nodes. We first use the model to calculate the predicted

position of the key and confirm the line on which the

key is located. Then, we compare the target key with

the key at the predicted position. If the target key is

smaller, we search to the left, and vice versa. When

a key smaller than the target key is encountered, or

when the line boundary is searched, the search stops,

and the children’s Find algorithm is invoked. In any of

COLIN’s learned nodes, the Find algorithm only needs

to search the range of a cacheline. In addition, as shown

in Fig.5(b), the child of a learned inner node may be

either a learned node or a simple node (acting as a tem-

porary inner node).
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Algorithm 1. Find (Learned Inner Node)

Input: key

Output: payload

1: pos ← predictPos(key)

2: line ← [pos/8]

3: if key array[pos] > key /* Search to the left */

4: while pos× 8 = line /* Search in the line */

5: if key array[pos] 6 key

6: return node array[pos].find(key)

7: end if

8: pos = pos− 1

9: end while /* Arrive at the boundary of the line */

10: return node array[pos + 1].find(key)

11: else /* Search to the right */

12: · · ·
13: end if

Algorithm 2 shows the Find algorithm of learned

data nodes. Similarly, we calculate the predicted posi-

tion, locate the line, and search in the line. If the target

key is smaller than the key at the predicted position,

we search to the left. If a free slot is found, it means the

target key does not exist. This is because COLIN uses

a model-based data placement strategy, which ensures

that if a key exists in the node, there must be no free

slot between its real position and the position predicted

by the model. If the target key is searched, then the

payload corresponding to the target key is returned. If

a key smaller than the target key or a line boundary

is found, then the Find algorithm of the overflow block

corresponding to the current block needs to be executed

if any.

Algorithm 2. Find (Learned Data Node)

Input: key

Output: payload

1: pos ← predictPos(key)

2: line ← [pos/8]

3: if key array[pos] > key /* Search to the left */

4: while pos× 8 = line /* Search in the line */

5: if key array[pos] is free

6: return null

7: else if key array[pos] = key

8: return payload array[pos]

9: else if key array[pos] < key

10: break

11: end if

12: pos = pos− 1

13: end while /* Arrive at the boundary of the line */

14: overflow block ← getOverflowBlock(pos + 1)

15: return overflow block.find(key)

16: else /* Search to the right */

17: · · ·
18: end if

Algorithm 3 shows the Find algorithm on a three-

level simple data node. The L1 array is first searched

sequentially until a key larger than the target key is

found. Since the keys in the upper layer are a sam-

ple of the keys in the next layer, we can calculate the

key’s position in the next layer, as shown in line 3. A

similar search is then performed in the L2 array to get

the search starting point for the L3 array. Finally, a

sequential search is performed in the L3 array. If the

target key is found, the corresponding payload is re-

turned; otherwise, the algorithm returns that the key

does not exist. The Find algorithm for simple inner

nodes is similar to that for simple data nodes except

that the algorithm’s return is changed to perform the

Find algorithm on the child.

Algorithm 3. Find (Three-Level Simple Data Node)

Input: key

Output: payload

1: for pos ← 0 to L1 size− 1 /* Search in L1 */

2: if L1 array[pos] > key

3: pos ← (pos − 1) × 8 /* Calculate the start pos in L2
*/

4: break

5: end if

6: end for

7: for pos ← pos to pos + 7 /* Search in L2 */

8: if L2 array[pos] > key

9: pos ← (pos − 1) × 8 /* Calculate the start pos in L3
*/

10: break

11: end if

12: end for

13: for pos ← pos to pos + 7 /* Search in L3 */

14: if L3 array[pos] = key

15: return payload array[pos]

16: else if L3 array[pos] > key or L3 array[pos] is free

17: return null

18: end if

19: end for

Range Query. All keys in COLIN are ordered in

nodes. For range queries, COLIN takes two parame-

ters, lower bound and upper bound. It first finds the

position of the lower bound, similar to point queries.

Then, it scans the data nodes sequentially until the key

is larger than the upper bound. In learned data nodes,

we scan the range of one block at a time. If the block

has a corresponding overflow block, we scan both the

block and the overflow block. When the scan operation

has processed the last block in the node, we continue to

scan the block in the next node. We maintain pointers

to the left and right brothers in the learned data nodes

to support cross-node scanning.
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4.2 Upsert

COLIN provides an Upsert interface, which accepts

a key and a payload as inputs. If the key already ex-

ists in the index, COLIN updates the payload to the

new payload. Otherwise, the key and the payload will

be inserted into the index. First, we determine if the

key belongs to the coverage of the index. If so, we in-

voke the Upsert algorithm of the root node; otherwise,

we invoke the Upsert algorithm of the left/right buffer.

The Upsert algorithm for inner nodes is the same as the

Find algorithm. We find the data node corresponding

to the key through the root node and inner nodes, and

then execute the Upsert algorithm on the learned data

node.

In a learned data node, a model-based insertion is

performed. The key is preferred to be inserted into the

predicted position of the model. As shown in Algo-

rithm 4, first, the model is used to predict the position

of the key. Then, if the position is not a free slot, a local

search is performed to find the real position of the key

in the ordered array. Note that if the position is a free

slot, there is no need to perform the local search. The

local search stops when a free slot or line boundary is

encountered. If the target key is found in the array, the

corresponding payload is updated and the algorithm is

terminated, as shown in lines 4–6. Otherwise, we look

for a free slot in the array. We start with the target po-

sition and search both left and right sides at the same

time. The search range is the current line and the re-

turn is the position of the nearest free slot. If there is

a free slot in the current line, we empty the slot at the

target position by shifting the data, and insert the key

and payload, as shown in lines 10–13. Otherwise, we

perform the Upsert algorithm on the overflow block.

The Upsert algorithm of simple data nodes is de-

scribed below with a two-level structure as an example.

First, the search starting point for the L2 array pos l2

is obtained from the L1 array. If there is a free slot in

range [pos l2, pos l2+7], we insert the key and keep it

in order. Otherwise, we look farther for a free slot. In

this case, some keys at the 8k (k is an integer) posi-

tion in the L2 array are changed, thereby the keys in

the L1 array need to be updated. If the L2 array is

filled, the node is expanded to a three-level structure.

To avoid excessive data shifting costs, we allow up to

75% padding for the L3 arrays.

In this subsection, we only describe the Upsert al-

gorithm without structure-modified operations. The

structure-modified operations resulting from insertions

are described in Subsection 4.4.

Algorithm 4. Upsert (Learned Data Node)

Input: key, payload

1: pos ← predictPos(key)

2: if key array[pos] is not free

3: pos ← local search(pos, key) /* Find the real pos */

4: if key array[pos] = key

5: payload array[pos] ← payload /* Update */

6: return

7: end if

8: end if

9: free pos ← getFreePos(pos) /* Find a free slot */

10: if free pos > 0 /* A free slot exists */

11: shift keys and payload from pos to free pos

12: key array[pos] ← key /* Insert */

13: payload array[pos] ← payload

14: else /* The line is full */

15: overflow block ← getOverflowBlock(pos)

16: overflow block.insert(key, payload)

17: end if

4.3 Deletion

To delete a key, we first search the inner nodes to

find the data node on which the key resides. If the key is

in a simple data node, then the key is simply removed,

i.e., the slot in which the key resides is marked free. If

the key is in a learned data node, we use a deletion to-

ken instead of the key. Like the free token, the deletion

token is an out-of-bounds key that is not equal to the

free token. During a local search, if a deletion token

is found, the slot is skipped, and the search continues.

When looking for a free slot in the Upsert algorithm,

the deletion token is treated as a free token, allowing

new keys to be inserted into the slot.

If many keys are deleted from a node, space can be

wasted. In particular, there may be many keys stored

in overflow blocks. These keys should be moved into the

free slots in the node to make full use of the node space.

We record the number of deletion tokens in the header

of the node. If the number of deletion tokens exceeds

a threshold and the amount of overflowed data is also

greater than a threshold, we perform a batch replace-

ment of the data in the overflow blocks. Specifically, we

scan keys in both lines and overflow blocks, and if there

is a deletion token in a line and there is an overflowed

key belonging to that line in the overflow block, we in-

sert the key from the overflow block into the line. In

our implementation, the deletion token threshold and

the overflow data threshold are both set to 10% of the

node size.



Zhou Zhang et al.: COLIN: A Cache-Conscious Dynamic Learned Index 731

4.4 Bulk Loading

Like FITing-Tree [2] and PGM-index [3], COLIN

does not support zero-based insertions. When build-

ing an index, users need to provide enough data to

train a piecewise linear model. COLIN uses the Opti-

malPLR algorithm [8] to train the models and partition

the dataset. Then, the models and data are used to

build the learned data nodes.

Algorithm 5 shows the Build algorithm of the

learned data node. First, we use a parameter to enlarge

the size of the array to provide some free slots to sup-

port subsequent insertions. Then, the two parameters

of the model, which are slope and intercept, are enlarged

at the same scale. After that, we need to perform model

correction to avoid wasting space. The model correc-

tion algorithm will be described later. Then, all slots

in the key array are filled with a key that is not within

the scope of the current node. Finally, model-based in-

sertions are performed for all keys and payloads (see

Algorithm 4).

Algorithm 5. Build (Learned Data Node)

Input: slope, intercept, keys, payloads, number

1: size ← number/min fill rate

2: slope ← slope/min fill rate

3: intercept ← intercept/min fill rate

4: model correction(slope, intercept, keys)

5: for i ← 0 to number − 1

6: key array[pos] ← free token

7: end for

8: for i ← 0 to number − 1

9: insert(keys[i], payloads[i])

10: end for

When using the OptimalPLR algorithm [8] to parti-

tion datasets, parameter ε is required to represent the

maximum error of the model. In COLIN, this value

can be set to a large one, such as 256. Sometimes,

using a model provided by OptimalPLR directly can

result in a waste of space. For example, the predicted

position of the minimum key in a node is 256, which

achieves the maximum error. Then, since COLIN uses

a model-based data placement strategy, the slot before

256 will always be free. We use a model correction as

shown in Algorithm 6 to avoid this space waste. First,

the predicted positions of the minimum key and the

maximum key are obtained, and their coordinates on

the two-dimensional plane are obtained. Then, if the

position of the minimum key is to the right of the left

end of the array, we move its position to the left end of

the array and update the coordinate. The coordinate

of the maximum key is treated the same. Finally, us-

ing the new two coordinate points, we can calculate a

new linear model. Note that the slope of the corrected

model can only increase, thereby there is no line in the

node that will become more crowded.

Algorithm 6. Model Correction

Input:min key,max key, slope, intercept, size

1: min pos ← predictPos(min key)

2: max pos ← predictPos(max key)

3: if min pos > 0 and max pos < size− 1

4: slope ← (size− 1)/(max key −min key)

5: intercept ← 0− slope×min key

6: else if min pos > 0

7: slope ← max pos/(max key −min key)

8: intercept ← 0− slope×min key

9: else if max pos < size− 1

10: slope ← (size− 1−min pos)/(max key −min key)

11: intercept ← size− 1− slope×max key

12: end if

After building the learned data nodes, we continue

to use the OptimalPLR algorithm [8] to train a piece-

wise linear model using the minimum key of each node

as a new dataset and build learned inner nodes. This

process is performed recursively until the number of

nodes is less than the number of a two-level simple

node. Finally, these nodes are used to build the root

node. The first half of the Build algorithm for learned

inner nodes is the same as lines 1–4 in Algorithm 5. In

the latter part, the key is placed using the model-based

placement strategy described in Subsection 3.3.

4.5 Structure-Modified Operations

The structure-modified operations in COLIN will be

triggered when a node becomes full. For learned nodes,

there are two structure-modified operations: node split-

ting and node expansion. The simple nodes used as left

and right buffers will evolve into learned nodes. For

the root node, which is also a simple node, we perform

a root neatening. Note that the simple nodes used as

overflow blocks or temporary inner nodes are the com-

ponents of learned nodes. They will be reclaimed when

a learned node triggers a structure-modified operation.

Learned Nodes. For learned data nodes, we record

the number of keys and the number of overflowed keys.

We set a maximum fill ratio and determine whether the

node reached that ratio after each insertion. If achieved,

then we decide whether to trigger node splitting or node

expansion based on the proportion of overflowed keys.
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If a lot of keys are overflowed, we think that the cur-

rent model has poor ability to fit the data in the node

and needs to be updated, thereby node splitting is per-

formed. If there are fewer keys overflowed, we think

the current model can continue to work and therefore

perform node expansion. Besides, if an overflow block

is filled, a node splitting will also be triggered.

For node expansion, we execute Algorithm 5 on

the model and data in the node without retraining

the model. Algorithm 7 describes the splitting of

learned data nodes. When COLIN receives the signal of

node splitting, it traverses the inserted node again and

records the traversed path. Then, the OptimalPLR

algorithm is used to retrain the data in the node and

build new nodes. After that, we upsert the new nodes

into the parent node. The node splitting may lead to

cascade splitting. The splitting algorithm of learned

inner nodes is similar to that of learned data nodes, as

shown in lines 7–9. Inserting into the root node may

trigger root neatening, which will be described later.

Algorithm 7. Node Split

Input: key

1: traversal path ← getTraversalPath(key)

2: data node ← traversal path.pop back()

3: models ← OptimalPLR(data node)

4: nodes ← build(models, data node)

5: while inner node ← traversal path.pop back()

6: split flag ← inner node.upsert(nodes)

7: if split flag /* Trigger cascade splitting */

8: models ← OptimalPLR(inner node)

9: nodes ← build(models, inner node)

10: else /* Split end */

11: return

12: end if

13: end while /* Split involves the root node */

14: neaten flag ← root.upsert(nodes)

15: if neaten flag

16: neaten root()

17: end if

Upsert of learned inner nodes can only be caused by

splitting on the children (line 6), which has two cases.

Assuming that node A splits into A1 and A2, the key

of A1 must equal that of A. First, we update all slots

occupied by A to A1. Case 1. If A occupies multiple

slots in the node, such as five slots, and A2 is predicted

to be in the third slot, then the third to the fifth slots

will be updated to A2. Case 2. Node A only has one

slot, thereby we need to look for free slots in the line,

i.e., other keys that occupy multiple slots. If there are

no free slots, we move the keys in the line to the left and

squeeze the leftmost key into the temporary inner node.

Simple inner nodes have the same Upsert algorithm as

simple data nodes.

Left/Right Buffer. If the left/right buffer is filled,

node evolution will be triggered. We train the data in

the buffer and build learned data nodes. Then, we in-

sert the new node into the root node, as shown in case

1 in Fig.7.

Root Node. When the root node is filled, we need

to perform a root neatening. Since a node with out-of-

bounds insertions is merged into the root node, COLIN

may be in an unbalanced state. The purpose of root

neatening is to maintain the balance of COLIN and

make enough free slots. In the root node, we maintain

the maximum depth of the index. We scan from the left

and the right to the middle and merge the nodes whose

depth is below the maximum depth into a simple inner

node, as shown in case 2 in Fig.7. Note that only the

nodes with the same depth will be merged, and there is

only one simple inner node for a specific depth. When

a simple inner node is full, we evolve it into a learned

inner node, as shown in case 3 of Fig.7. Finally, if the

root node becomes full and there are no nodes to merge,

we merge all the nodes with the maximum depth in the

root node into a new learned inner node and increase

the maximum depth by 1, as shown in case 4 of Fig.7.

5 Analysis of COLIN

5.1 Maximum Error of Models

When performing bulk loading or structure-

modified operations, COLIN uses the OptimalPLR

algorithm [8] to train the models. The algorithm guar-

antees that the maximum error of the models is less

than parameter ε. By using a larger ε, a model can

cover more data. Since we have decoupled the local-

search boundary with the maximum error of the model,

in order to reduce the height of the index tree, it seems

that the maximum error threshold ε should be set as

big as possible. However, a larger ε may result in more

overflowed data. To make COLIN work properly, we

need to ensure that the size of the overflow block is

large enough when building the node. Since the struc-

ture of the overflow block has an upper limit of capacity,

we can get the maximum value of ε by calculating the

amount of overflowed data in the worst case.

Assume that the initial fill rate is fr when building

nodes. The size of block B is b, the size of a line is l,

and the starting offset of B is sp. When building nodes,
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Fig.7. Root neatening caused by merging buffers.

the minimum and the maximum offsets of the keys as-

signed to B in the original dataset are represented by

(2) and (3) respectively.

offsetmin =
sp× fr − ε

fr
. (2)

offsetmax =
(sp + b− 1)× fr + ε

fr
. (3)

In the worst case, all keys are concentrated in the

first and the last two cachelines of the block. In this

case, the amount of data overflowed can be estimated

by (4).

overflowmax = offsetmax − offsetmin − 2l

=
2ε

fr
+ b− 1− 2l. (4)

In our implementation, the maximum capacity of a

three-level simple node is L1 size× 8× 8× 75% = 576,

fr = 60%, b = 64, and l = 8. Therefore, the maximum

value of ε is 260.5. We suggest setting ε to 256. The ex-

perimental results in Subsection 6.6 show that COLIN

has better read/write performance and space efficiency

when this value is used.

5.2 Cost of the Worst-Case Query

The query cost in COLIN includes two parts, the

model calculation cost and the data access cost. We di-

vide the data access cost into two types: cache hit and

cache miss. We use Cmodel, Chit, and Cmiss to represent

the model calculation cost, the data access cost with a

cache hit, and the data access cost with a cache miss

respectively.

The Find algorithm of learned data nodes needs to

access the metadata to get the model and the array

pointers, perform model calculation, search in a cache-

line, and get payloads. The Find algorithm of learned

inner nodes is similar. Therefore, the cost of the worst-
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case query in learned nodes can be estimated by (5).

Clearned = Cmodel + 3× Cmiss + 10× Chit. (5)

The Find algorithm of simple nodes needs to ac-

cess metadata to get array pointers, search in the L1,

L2, and L3 arrays, and get the payload or the pointer.

The worst-case query cost of a three-level simple node

is shown in (6).

Csimple = 5× Cmiss + 27× Chit. (6)

For learned data nodes, if the data is in an overflow

block, additional access to the overflow block pointer

array is required, which requires an additional Cmiss

and Chit.

To sum up, there is a constant upper bound for the

query cost of any node in COLIN. Therefore, the query

complexity of COLIN is O(log n). Our design signifi-

cantly reduces the number of Cmiss. On the current

computer architecture, Cmiss � Chit can be assumed,

thereby our design can have an excellent query perfor-

mance.

6 Performance Evaluation

6.1 Experimental Setup

Competitors. We compare COLIN with three

learned indices and a traditional index. The learned in-

dices are FITing-Tree [2], PGM-index [3], and ALEX [4].

The source code of PGM-index is provide by the PGM-

index group 1○, and the implementation of ALEX is

based on the open-source code in Github 2○. For the

traditional B+-tree index, we use a popular in-memory

B+-tree implementation 3○. For FITing-Tree, we im-

plement it by ourselves according to the technical de-

tails in [2]. Note that ALEX does not have provably

bounded query complexity, which differs from COLIN

and the other competitors.

Parameters. The default parameter settings of

COLIN are shown in Table 1. For FITing-Tree, we

select a set of parameters with the best read and write

performance, where the size of ε is 8, and the buffer

size (or the reserved space size for in-place insertions)

is 256. For PGM-index, we use the recommended para-

meter settings [3], where the size of ε is 64. For B+-tree,

we set the node size to 256 bytes.

Environment. The experiments run on an Ubuntu

Linux machine with Intel Core i7-7700 CPU and 64 GB

RAM. COLIN and all of the competitors are imple-

mented in C++. Each set of experiments uses “-O3”

optimization and runs with a single thread.

Datasets. Three datasets with different character-

istics are used in the experiments, namely, a normal

dataset, a lognormal dataset, and an OSM dataset. The

first two datasets include generated random numbers,

and the OSM dataset involves the longitude attributes

of the map data extracted from OpenStreetMap 4○. Ta-

ble 2 shows the amount of data and key information for

each dataset. All keys in each dataset are unique. Fig.8

shows the CDFs (cumulative distribution functions) of

the three datasets, from which we can see that the three

datasets have very different data distributions.

Table 1. Default Parameter Settings of COLIN

Parameter Default Description

ε 256 Maximum error of model

Line size 64 bytes The size of a line in learned nodes

Block size 512 bytes The size of a block in learned data nodes

Minimum fill rate 60% Used to expand the array size when initializing the learned node

Maximum fill rate 90% Used to determine whether to perform a structure modified operation

Maximum overflow rate 30% Used to determine whether to perform a node splitting or a node expansion

Maximum capacity 220 The maximum allowed capacity of a learned node

L1 size 96 bytes The L1 array size of simple nodes

L2/L1 8 The expansion ratio for L1 array to L2 array

L3/L2 8 The expansion ratio for L2 array to L3 array

L3 fill rate 75% The maximum fill rate of L3 array

1○https://pgm.di.unipi.it/, July 2021.
2○https://github.com/microsoft/ALEX/, July 2021.
3○https://panthema.net/2007/stx-btree/, July 2021.
4○https://registry.opendata.aws/osm/, July 2021.



Zhou Zhang et al.: COLIN: A Cache-Conscious Dynamic Learned Index 735

Table 2. Dataset Characteristics

Dataset Number of Key Key Size Payload Size

Keys (×106) Type (Byte) (Byte)

Normal 200 Double 8 8

Lognormal 200 Double 8 8

OSM 180 Double 8 8
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Fig.8. CDFs of the datasets. (a) Normal. (b) Lognormal. (c)
OSM.

Workloads. We use five workloads: write-only,

write-heavy (50% write and 50% read), read-heavy (5%

write and 95% read), read-only, and read-modify-write.

The last four workloads correspond to the YCSB A,

B, C, and F workloads, respectively [33]. Except for the

last workload, for all writes, we insert a new key instead

of updating an existing one. For the read-modify-write

workload, we read a key, modify its payload, and up-

date it in the index. The read operations in all work-

loads follow the Zipfian distribution [34]. For each set of

experiments, we first load half of the data in the dataset

in bulk and then write the other half (if necessary). Be-

fore running each set of workloads, we run 108 queries

as a pre-warming of the index.

Runtime State of COLIN. Table 3 shows the run-

time states of COLIN after all keys have been inserted.

Because a large ε is used, COLIN has a flat structure

on any dataset.

6.2 Read and Write Performance

Figs.9(a)–9(e) show the throughput of all indices on

the five workloads. The Y -axis is in Mtps (millions

of transactions per second). For the first four work-

loads, a transaction represents a read or write ope-

ration. For the read-modify-write workload, one trans-

action includes a read operation and a write operation.

Overall, COLIN shows the best performance on all

workloads. In particular, on the real dataset OSM,

COLIN outperforms the second place on five workloads

by 31%, 34%, 40%, 37%, and 22%, respectively. This is

because COLIN adopts a model-based data placement

strategy and a cache-conscious data layout, which can

reduce the cost of local searches and data shifts in the

process of read and write. ALEX’s performance is sec-

ond only to COLIN’s. For the lognormal dataset, its

performance is comparable to COLIN’s. For the nor-

mal dataset, its performance on the first two workloads

is close to COLIN’s, and the performance on the last

three workloads is worse than COLIN’s. For the OSM

dataset, it is inferior to COLIN on all workloads. More-

over, COLIN is well ahead of the other four competi-

tors, except that PGM-Index performs well on write-

Table 3. Runtime States of COLIN

Dataset Maximum Depth Number of Learned Number of Learned Number of Keys

(Including a Root Node) Inner Nodes Data Nodes per Node

Normal 3 1 599 333 890

Lognormal 3 4 777 257 400

OSM 3 4 3 164 56 890
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Fig.9. Experimental results on various workloads and datasets. (a) Write-only workload. (b) Write-heavy workload. (c) Read-heavy
workload. (d) Read-only workload. (e) Read-modify-write workload. (f) Index size.

only workload, on which COLIN is 19%–66% better

than PGM-index. On the other four workloads, COLIN

performs more than twice as well as PGM-index. For

the other three competitors, COLIN performs more

than twice as well on all workloads.

Note that there are some differences in COLIN’s

performance between different datasets. COLIN’s per-

formance is better on the normal and OSM datasets,

and poorer on the lognormal dataset. We think this is

because COLIN uses a large ε and is more affected by

the distribution of datasets. FITing-Tree and PGM-

index have similar phenomena, which are much smaller

than COLIN because they use smaller ε, which means

they use shorter and more segments to fit the dataset.

We observe some interesting results of PGM-index.

It performs well on both read-only and write-only work-

loads but poorly on read-write mixed workloads. Once

the new key is inserted, PGM-index needs to use log n

global buffers, which can dramatically degrade query

performance. There is no query on the write-only work-

load after a write operation, which yields the high per-

formance of PGM-index. However, on the read-write

mixed workloads, the problem of read amplification

makes PGM-index perform poorly.

6.3 Index Size

Fig.9(f) shows the index size of the competitors.

The index size contains the inner nodes (including

metadata, key arrays, and pointer arrays) and the

metadata of the data nodes (including models and over-

flow block pointer arrays, etc.). We load half of the

dataset in bulk, insert the other half, and count the

index size. For reference, all keys in the normal or log-
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normal datasets are 1.49 GB in size, while in the OSM

dataset they are 1.34 GB. As a baseline, B+-tree is

650 MB in size on the first two datasets and 585 MB

in size on the OSM dataset. PGM-index has the small-

est index size, which is 688 times smaller than B+-tree.

This is because PGM-index abandons pointers at in-

ner nodes, which finds children by offset. COLIN is

the second most space-efficient, occupying 20 times less

memory than B+-tree. ALEX and FITing-Tree have

a larger size than COLIN. In addition, ALEX shows

different space efficiency on different datasets. On the

normal dataset, it takes up about the same amount of

space as COLIN. On the lognormal dataset, it takes up

61% more space than COLIN, and it is close to the size

of FITing-Tree.

6.4 Bulk Loading

Fig.10 shows the bulk loading performance of com-

petitors. In Fig.10(a), for each dataset, 100M keys are

loaded, and the loading time is shown. ALEX has the

worst bulk loading performance because it computes a

cost model to determine the shape of the index tree dur-

ing the building process. We observe that the bulk load-

ing speed of ALEX is correlated with data distribution.

On the normal dataset, it takes twice as long as B+-

tree. But on the lognormal dataset, it takes five times

as long as B+-tree. The bulk loading speeds of other

competitors are consistent across the three datasets,

indicating that their bulk loading performance is in-

dependent of data distribution. Surprisingly, all the

other three learned indices outperform B+-tree. Al-

though learned indices require training models, the time

complexity of the algorithm is O(n) [6–8]. The index size

and the number of the nodes are much smaller than

those of B+-tree, which means much less data needs to

be organized when building the index. Compared with

PGM-index and FITing-Tree, COLIN needs to perform

model-based insertions during bulk loading, instead of

replicating data in bulk. The results show that the bulk

loading time of COLIN is 27%–32% longer than that

of PGM-index, and is similar to that of FITing-Tree,

which means the cost of insertions is not particularly

expensive.

In Fig.10(b), we show how the bulk loading time

changes as the data volume expands. The results show

that the time of all competitors is linearly related to

the amount of data. Furthermore, although the experi-

ments are performed on a single thread, all the com-

petitors except ALEX can easily use multithreading

for bulk loading by evenly dividing the datasets in

advance [3].
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6.5 Fill Rate and Overflow Rate

Fig.11 shows the fill rate and overflow rate of

COLIN. The fill rate refers to the proportion of slots

used in all learned data nodes. The overflow rate refers

to the proportion of data in the overflow blocks. We

bulk load 100M keys first, then insert 200M keys, count-

ing every 10M inserted. The results show that the fill

rate of COLIN fluctuates from 60% to 80%, and the

mean value is about 71.3%. The overflow rate fluctu-

ates between 2% and 10%, with an average of about

5.7%.
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Fig.11. Fill rate and overflow rate of COLIN on the normal
dataset.
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6.6 Maximum Error of Models

Fig.12 shows the impact of the maximum error ε on

the performance of COLIN, where the normal dataset

is used. Among them, Fig.12(a) shows the size of the

index, Fig.12(b) shows the performance on the write-

heavy workload, and Fig.12(c) shows the performance

on the read-heavy workload. With the increase of ε,

COLIN’s index size, read and write performance are all

getting better. This is because COLIN uses a model-

based data placement strategy and a cache-conscious

data layout to decouple the search boundary from the

maximum error of models. In this way, COLIN can uti-

lize a large ε to reduce the number of nodes and index

height, and ensure that local search performance does

not degrade.
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Fig.12. Impact of the maximum error ε on the performance of
COLIN. (a) Index size. (b) Write-heavy workload. (c) Read-
heavy workload.

7 Conclusions

In this paper, we presented COLIN, a cache-

conscious dynamic learned index with bounded query

complexity. It has a higher read and write perfor-

mance than existing dynamic learned indices. COLIN

uses a model-based data placement policy and a cache-

conscious data layout to decouple the local-search range

from the maximum error of the model. Moreover,

it uses a heterogeneous index structure consisting of

learned nodes and simple nodes to support out-of-

bounds insertions and data overflows. The operations

for COLIN, including query, upsert, deletion, bulk load-

ing, and structure-modified operations, are detailed in

the paper. We analyzed the model’s maximum error

and the cost of the worst-case query for COLIN. We

conducted extensive experiments to compare COLIN

with the traditional B+-tree and three state-of-the-art

dynamic learned indices, namely FITing-Tree, PGM-

index, and ALEX. The results showed that COLIN out-

performs all competitors in terms of read and write per-

formance on various datasets and workloads.

Although the current version of COLIN has shown

performance improvement over existing approaches, the

complex index structure will introduce extra work of

implementing the index into a DBMS kernel. Thus,

in the future, we will consider the simplification of the

structure of COLIN, e.g., replacing simple nodes with

B+-tree nodes. Another future work is how to adjust

COLIN according to the workload type so that COLIN

can adapt to different kinds of workloads. In addition,

we will conduct additional experiments to verify the

performance of COLIN when varying the size of the

cacheline and the CPU cache.
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