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Abstract Although the popular database systems perform well on query optimization, they still face poor query execution

plans when the join operations across multiple tables are complex. Bad execution planning usually results in bad cardinality

estimations. The cardinality estimation models in traditional databases cannot provide high-quality estimation, because

they are not capable of capturing the correlation between multiple tables in an effective fashion. Recently, the state-of-

the-art learning-based cardinality estimation is estimated to work better than the traditional empirical methods. Basically,

they used deep neural networks to compute the relationships and correlations of tables. In this paper, we propose a vertical

scanning convolutional neural network (abbreviated as VSCNN) to capture the relationships between words in the word

vector in order to generate a feature map. The proposed learning-based cardinality estimator converts Structured Query

Language (SQL) queries from a sentence to a word vector and we encode table names in the one-hot encoding method and

the samples into bitmaps, separately, and then merge them to obtain enough semantic information from data samples. In

particular, the feature map obtained by VSCNN contains semantic information including tables, joins, and predicates about

SQL queries. Importantly, in order to improve the accuracy of cardinality estimation, we propose the negative sampling

method for training the word vector by gradient descent from the base table and compress it into a bitmap. Extensive

experiments are conducted and the results show that the estimation quality of q-error of the proposed vertical scanning

convolutional neural network based model is reduced by at least 14.6% when compared with the estimators in traditional

databases.

Keywords cardinality estimation, word vector, vertical scanning convolutional neural network, sampling method

1 Introduction

Query optimization is a very important method to

improve the query efficiency in database management

systems. The optimization process of query optimizer

is transparent to database developers. It automatically

performs logical equivalent transformation and the se-

lection of physical execution plans. The purpose of the
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query optimizer is to obtain theoretically the best exe-

cution plan for an SQL query. However, previous stu-

dies have shown that traditional query optimizers are

not capable of accurately estimating the cardinality of

query results, leading to selecting poor execution plans,

which directly results in slow query speed and large es-

timation error. The main reason for the large error of

cardinality estimations is that the model cannot accu-

rately capture the relations of multiple table join ope-

rations.

How to accurately capture the relationships across

different tables or columns directly determines the qua-

lity of the target method. To cope with this problem,

IBJS (Index-Based Join Sampling) [1] was proposed.

The method relies on the sampling technique and exist-

ing index structures to obtain accurate results. Thus,

it is straightforward that the quality of samples and

indexes will have a huge impact on the query results.

Challenges and Motivations. In the past few

decades, the machine learning techniques have deve-

loped rapidly, especially for deep learning and rein-

forcement learning approaches. The researchers do not

only focus on the algorithm itself to make the pro-

posed neural networks more powerful, but also on im-

proving the computing performance of machines. The

database team [2] has begun to use artificial intelligence

technology to optimize the databases. MSCN (Multi-

Set Convolutional Network) [3] uses the convolutional

neural network to estimate the cardinality of query re-

sults. This method takes into full consideration the

features of samples, multi-table join conditions, and

predicates, thereby the MSCN model yields satisfying

estimation results. However, this method has some

limitations. Firstly, this method only considers sim-

ple equivalent join operation, and does not take into

account left join, right join and other complex join ope-

rations across multiple tables. Secondly, the operator,

e.g., “OR”, “AND”, and the predictors, e.g., “LIKE”

cannot be supported. Thirdly, the model cannot be

applied to handle complex queries.

To the best of our knowledge, neural networks have

great potential in solving the cardinality estimation

problems, because when the internal rules of solving

the problems are unknown or difficult to describe, neu-

rons can obtain the hidden functional relations between

samples through learning and training the samples, and

use the learned rules to predict the future data. The

estimation problem can be viewed as supervised learn-

ing while the label is the real cardinality. Then, the

problem is how to deal with SQL queries. The biggest

challenge is how to capture the SQL semantics. Cur-

rently, the existing database optimization techniques

based on learning methods do not work well, and some-

times the results are not satisfying. In this study, we

aim to propose a new learning-based method to obtain

more accuracy query results than the state-of-the-art

models.

Contributions. In this paper, we propose a natu-

ral language processing model called VSCNN (vertical

scanning convolutional neural network) to cope with

the aforementioned challenges. The proposed model is

actually a vertical scanning convolutional neural net-

work. We train a CNN (convolutional neural network)

with one layer of special convolution. Its input vector is

the word vector of SQL queries obtained from an unsu-

pervised method. We keep the word vectors unchanged

and employ them to automatically learn the optimal

values of other parameters in the model. Importantly,

we encode the table names by one-hot encoding method

and encode the samples into bitmaps, respectively, and

then merge them. This model can capture the seman-

tics of each word in a complex SQL query, and also the

join relationship between tables.

In addition, we conduct experiments on the real

IMDB datasets to evaluate the performance of the

VSCNN model and show that our approach is more

powerful than the state-of-the-art models, i.e., IBJS [1]

and MSCN [3]. The experimental results are promising,

which also shows the feasibility of the learning-based

cardinality estimation method in current database

management systems.

The remainder of this paper is organized as follows.

Section 2 summarizes the existing cardinality estima-

tion methods. Section 3 introduces the working mech-

anism of the proposed cardinality estimator. Section 4

evaluates the proposed vertical scanning convolutional

neural network based cardinality estimation model ex-

perimentally. Section 5 concludes this paper and dis-

cusses future research directions.

2 Related Work

2.1 Cardinality Estimation Methods

After several years of development on database

query optimization techniques, the traditional cardinal-

ity estimation method has obtained good query perfor-

mance, which performs well in some specific scenarios.

In this study, we classify the traditional cardinality es-

timation methods into three categories.
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1) Histogram Techniques [4]. The most important

application of histogram techniques in databases is se-

lectivity estimation. When the database uses histogram

analysis to calculate the cardinality, the column data to

be analyzed will be partitioned into several parts with

the same number, and each part is called a bucket.

CBO (Cost-Based Optimization) [2] can easily obtain

the distribution of the size of columns. However, the

histogram-based techniques cannot effectively estimate

the correlation between different columns.

2) Probability Algorithms [5–9]. These algorithms are

designed based on the theory of probability and statis-

tics. They can overcome the disadvantages of the exist-

ing cardinality estimation methods, i.e., excessive mem-

ory requirements or being difficult to merge, and can

control the error within the required range by averag-

ing the results of the query.

3) Sampling Methods [1, 10–13]. These methods use

data samples to estimate the cardinality, which can im-

prove the accuracy of cardinality estimation to a certain

extent. But, it will cause other problems, such as in-

appropriate indexes and samples, space explosion and

the 0-tuple problem. The sampling methods can im-

prove the accuracy of cardinality estimation, but they

will bring in space overhead [14].

2.2 Learning-Based Cardinality Estimation

Methods

Currently, many experts and scholars are devoted to

applying the artificial intelligence techniques to improve

the performance of databases. For cardinality estima-

tion, the machine learning techniques especially for the

deep learning models can be used to solve this problem.

The framework of learning-based cardinality estimation

is given in Fig.1, which is motivated by the fact that

modern join enumeration algorithms can find the opti-

mal join order for queries with dozens of relations [15].

Cardinality estimation plays an important role in query

optimization [16]. If the cardinality estimator is not ac-

curate, it will generate many bad query results [17].

Regression-based model [18] has been used for cardi-

nality estimation. BBA (Black-Box Approach) [19] ap-

plies the idea of classifying query statements according

to structure of queries, but this method does not work

for unknown structure of queries. A deep likelihood

model [20] can capture the distribution of data between

multiple columns, but not for multiple tables. Liu et

al. [21] proposed to use neural networks to estimate the

cardinality of query results. It is only effective at pro-

cessing the simplest SQL queries, because it does not

consider join queries and complex queries. We use the

MLP (MultiLayer Perceptron) as a model for process-

ing vectors. Since 1990s, MLP has been widely used

in vowel classification [22], and the best classification ef-

fect was achieved. Recently, MLP has been applied

to the classification and prediction of DNA (Deoxyri-

boNucleic Acid) sequences [23]. MSCN [3] introduces a

multi-set convolutional network. Different components

of SQL queries are encoded into vectors, and then these

vectors are put into MLPs. Then, different vectors are

merged to form a new vector. Hereafter, the vector

is put into another MLP to figure out the estimated

cardinality. The method works well for simple queries,

but not for queries with complex semantics. Sun and

Li [24] designed an end-to-end learning-based cost esti-

mator. This model can deal with complex SQL queries

and estimate the cost of queries, but it needs physical

execution plans. It is difficult to obtain the physical

execution plan, and the model is too complex.

Nowadays, the combination of machine learning and

database techniques has become a new research direc-

tion, including many aspects, for example, learned join

order selection [25], knob tuning [26, 27], which prove that

applying AI4DB (artificial intelligence for databases)

techniques to improve the performance of databases

is very promising. For crowdsourcing databases, Li et

al. [28] proposed a crowd-powered database system CDB

that supports crowd-based query optimization, which

focuses on join and selection operations, and no longer

rigidly adheres to traditional relational databases. Fan

et al. [29] proposed a template ranking model to suggest

templates relevant to query keywords, generating SQL

queries from the suggested templates.

CardinalitySQLs or Physical

Plans

Coding

Vectors
Input

Neural

Network

Output

Fig.1. Framework of learning-based cardinality estimation methods.
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3 Cardinality Estimator

Basically, our work is to encode SQL by the pro-

posed method, and then input it into the prediction

model to generate the cardinality of queries, and train

the model by comparing it with the real cardinality.

Straightforwardly, we aim to build a supervised learn-

ing model. Consequently, the following challenges will

affect the success of the work. Firstly, how to encode

SQL queries into vectors or matrices to obtain meaning-

ful semantic information? Secondly, how to design an

efficient model for supervised learning? Thirdly, how to

obtain the training data? Here, we will introduce the

proposed framework for encoding SQL queries in detail,

as presented in Fig.2.

Fig.2 shows framework for encoding SQL queries.

In Fig.2, there are six tables in total, and we encode

the table names to a one-hot vector. Then, we sample

the tables involved in the query and use bitmaps to rep-

resent them. Lastly, we merge the table name vector

with the bitmap to obtain the table information vector

representing the query. We transform the content con-

tained in the “WHERE” clause into a word matrix by

the SQL embedding technique in Subsection 3.2.

3.1 Table Information Encoding

3.1.1 Representation of Table Names

We record all the queries in a database represented

by Q, and all the tables in the database as T . Given

a query q ∈ Q, we represent the tables involved in the

query q as Tq ⊂ T . For query q, the semantics of ta-

ble names is relatively independent for join operations

and predicates, thereby the one-hot encoding method

can be adopted. We count the number of tables in T ,

and the number is |ST |. For a specific query involved in

table Tq, we transform it into a one-hot matrix mt. Ac-

cording to the aforementioned operation, we can obtain

the matrix of the table names in the query.

3.1.2 Encoding of Sampling Tuples

In order to make the model learn more information

from the table, in addition to encoding the table name,

we also need to encode the sampling tuples from the

related columns, which can help know the distribution

of data in the table. For each table, we only need to

know whether the samples meet the query conditions in

the table. If they meet the query conditions, it is rep-

resented by 1; otherwise 0. Adding sampling features

makes the proposed model more likely to perform join

estimations. We represent the sample of a specific table

Tq involved in query q as Bq.

If we only use the sampling method to estimate the

cardinality, we will encounter an empty base table (0-

tuple). It will have a big impact on the accuracy of

estimation results. In the proposed VSCNN model, we

adopt the deep learning technique by integrating the

sampling method, which can well handle the 0-tuple

problem.

We represent the table information Eq by (1):

Eq =

∑Q
q∈QMLPT ([Tq, Bq])

|ST |
. (1)

The basic idea of (1) can be explained as: if a query

contains |ST | tables, the query should be represented

by two vectors. Each vector (Tq, Bq) is composed of

one-hot encoding of a table name and a bitmap encod-

ing of sampling tuples. Then, |ST | vectors are put into

the |ST | MLPs, and the |ST | vectors obtained from the

MLPs are summed up. Lastly, the average value Eq is

calculated and the table information of the query will

be obtained.

3.2 SQL Embedding

3.2.1 Skip-Gram for SQL Embedding

We will face two main challenges in cardinality esti-

mation: the disappearance of semantic propagation and

the explosion of searching space. For one single table,

{`movie_keyword mk', `title t', `movie_info_idx mi_idx', `cast_info ci', `movie_info mi', `movie_companies mc'}
SELECT COUNT(*) FROM cast_info ci,title t WHERE t.id=ci.movie_id AND t.production_year>1980 AND t.production_year<1995

Sampling One-Hot Matrix SQL Embedding

Words Matrix[0, 1, 1, ..., 0]
[1, 0, 1, ..., 1]

[0, 0, 0, 1, 0, 0]
[0, 1, 0, 0, 0, 0] Merging [0, 0, 0, 1, 0, 0, 0, 1, 1, ..., 0]

[0, 1, 0, 0, 0, 0, 1, 0, 1, ..., 1]

Fig.2. Proposed framework for encoding SQL queries.
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given a filter condition, it is straightforward to figure

out the correct cardinality. However, for the join query,

if the query is very complex, the searching space will

become very large, and then the problem of semantic

disappearance will occur. In order to maintain more in-

formation of multi-table joins, we should choose a kind

of vector having memory function or being capable of

mapping words to context sensitive vectors.

We express the meaning of each word in the

“WHERE” clause with a vector, and we use the Skip-

Gram model [30] to perform SQL embedding method.

Fig.3 shows the detail of the word vector by one-hot en-

coding is inputted into the single-layer neural network,

in which the number of neuron nodes in the input layer

should correspond to the dimension of the word vector

via one-hot encoding. Specifically, we first encode the

contents after the “WHERE” clause as a one-hot vec-

tor. Because the information in the one-hot encoding

vector is very sparse and cannot represent the similarity

between words, we update the values of vectors by the

learning-based strategy. In this fashion, we can encode

the statement into a dense vector.

[0.43, 0.34, ..., 0.79]

[0.21, 0.38, ..., 0.19]

[0.66, 0.68, ..., 0.27]

[0.54, 0.12, ..., 0.22]

[0.77, 0.48, ..., 0.62]

[0.11, 0.32, ..., 0.09]

[0.74, 0.38, ..., 0.41]

[0.01, 0.00, ..., 0.02]

WHERE

t.id

=

mc.movie_id

AND

mc.company_id

<

27

Fig.3. Example of an SQL query embedding matrix.

In this paper, the SQL embedding is used to map

an SQL into context sensitive vectors, which aims to

deal with “WHERE” clauses based on natural lan-

guage processing. It is worth to note that we em-

ploy the basic idea of natural language processing to

process the “WHERE” clauses. Because one-hot vec-

tors cannot accurately describe the similarity between

words or symbols from various dimensions, including

(“AND”, “OR”), (“>”, “>=”), (“<”, “<=”), (“%XX”,

“%XX%”) and so on, we map the “WHERE” clause

into a context sensitive vector in order to perform the

natural language processing by using the convolutional

neural network.

This paper mainly uses the basic idea of natural

language processing to deal with SQLs, and the SQL

statement itself contains semantics. “WHERE” and

“<” in the same SQL sentence naturally have context

relationship, but this relationship is not so strong as

that in the natural language; therefore when we scan

the word vector, we set three convolution kernels with

different sizes to scan at the same time, and the model

can recognize the semantics of SQLs from different as-

pects. The three convolution kernels can help improve

the recognition accuracy of the semantics of SQLs by

the convolution neural network.

3.2.2 Negative Sampling for Accelerating Gradient
Descent

There are 100 000 sampling queries in the training

set. In order to accelerate the speed of gradient descent

during training, we use the negative sampling method.

For a query statement, we select a central word, such

as “AND”, and mark it as w. The words around it

are denoted by context(w). If this central word is cor-

related to context(w), it is viewed as a real positive

sample. When we use the negative sampling method,

we can obtain some center words wi different from w

where i = 1, 2, ..., |neg|, and |neg| represents the total

number of those center words. Therefore, we will make

up |neg| negative samples that do not really exist based

on context(w) and wi. We use this positive sample and

|neg| negative samples to do binary logistic regression.

The model parameters θi of each word wi correspond-

ing to negative sampling and the word vector of each

word are obtained. In order to keep the expressions

consistent, we define the positive sample as w0. In the

phase of logistic regression, the positive sample should

be expected to meet the following requirements, and

the probability of the center word w0 and its surround-

ing word appearing at the same time is calculated by

(2).

P (context(w0), wi) = σ
(
xT
wi
θwi

)
. (2)

The negative example expectation should obey (3),

and the probabilities of the center word w0 and the

word wi not appearing at the same time are calculated

by (3).

P (context(w0), wi) = 1− σ
(
xT
wi
θwi

)
. (3)

Then, by using the knowledge from logistic regres-

sion, we can obtain the likelihood function of the model
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as shown in (4) and we need to figure out the maximum

probability.

L =

|neg|∑
i=0

(
yi log

(
σ
(
xT
wi
θwi

))
+

(1− yi) log
(
1− σ

(
xT
wi
θwi

)) )
, (4)

where y0 = 1 represents a positive sample, yi = 0 rep-

resents a negative sample, i = 1, 2, ..., and |neg| repre-

sents the label of a negative sample. σ(∗) is the logis-

tic regression function, xT
wi

represents the word vector

corresponding to the i-th word and θwi represents the

weight corresponding to the i-th word.

We use the random gradient ascent method to up-

date the gradient of only one sample at a time, and

finally we can obtain the proper xT
wi

and θwi values.

3.3 Vertical Scanning Convolutional Neural
Network Model

The standard neural network structure is not good

at dealing with vectors or matrices representing diffe-

rent information, thereby we use different neural net-

works to deal with different parts of a specific query.

Fig.4 shows the framework for cardinality estimation,

which consists of three stages: 1) the convolutional neu-

ral network vertically scans the “WHERE” clause se-

mantics, 2) the MLPs process table information, and 3)

the vector from the first two stages is transferred to a

new MLP. The details of these three steps are presented

in the following subsections.

3.3.1 Learning Table Information

We choose MLP [22] as the model of learning table

information. The new vector that combines the table

name vector and the sample vector is represented by

(Tq, Bq), and then we input this vector into the MLP

represented by MLP (Tq, Bq). However, we encounter

a challenge, that is, the dimension of each query’s ta-

ble information is not uniform. For example, query q1
contains one table, while query q2 contains two tables.

Then, query q1 contains one row vector, while query q2
contains two row vectors. Therefore, we use zero to fill

in the row vector. We take query qn with the most row

vectors as the benchmark, assuming that qn contains

Sigmoid(WΤv⇁b)

SQL Embedding Vectors

Vertical
Scanning

CNN

Max Pooling Average PoolingMerge

Table Information Vectors

ReLU(WΤv⇁b)

ReLU(WΤv⇁b)

ReLU(WΤv⇁b)

Cout

Fig.4. Framework for cardinality estimation.
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n tables. For example, if query q1 contains only one

table, that is, a row vector, then we fill in n− 1 zero in

this row vector.

In order to generalize query features, we design an

average pool, which is used to add all MLPs and average

the result by |ST |. These MLPs consist of two fully-

connected layers. The first layer is ReLU(W1×v1+b1),

where W1, v1 and b1 represent the weight, the table in-

formation vector and the bias of linear regression in

the first layer, respectively, and the second layer is

ReLU(W2 × v2 + b2). We use the ReLU (Rectified Lin-

ear Unit) activation functions because they show strong

empirical performance and are fast to converge. This

point is discussed in detail in Subsection 4.2.

3.3.2 Convolutional Neural Networks

Our inspiration comes from sentence classification.

In general, we use recurrent neural networks to com-

plete natural language processing tasks, while the im-

age recognition task is achieved by convolution neural

networks. In this study, we use a novel convolution neu-

ral network to convolute the “WHERE” clauses. The

first step is to transform the clause into a word matrix.

Each word in a query is composed of an n-dimensional

word vector, that is, the size of the input matrix is

m × n, where m is the length of the sentence. Fig.5

shows the working mechanism of the proposed CNN

convoluting the matrix. For the embedding matrix, the

filter no longer slides horizontally, but just moves down-

ward, which is similar to extracting the local correlation

between words in the n-gram model. In this task, we

define three types of filters with different widths: [2, 3,

4] (as shown in Fig.5, in the embedding matrix, there

are three kinds of one-hot vectors connected by diffe-

rent curves). The proposed CNN model contains three

filters with different widths. The length of each filter

is equivalent to the dimension of the word vector. It is

worth noting that there will be a lot of filters in train-

ing the real samples. Then, nine convoluted vectors are

obtained by applying different filters on different word

windows. Then, each vector is maximized and pooled,

and each pooled value is spliced. Finally, the feature

representation Fq of the “WHERE” clause is obtained.

Instead of splitting SQL embedding into three kinds,

we divide convolution kernels into three kinds with the

height of 2, 3 and 4, respectively. Then, we use these

three convolution kernels to scan downward in the ver-

tical direction from the word vector of the “WHERE”

SQL Embedding Matrix

Vertical
Scanning

Convolution

Convolution

Convolution

Max
Pooling

Max
Pooling

Max
Pooling

Feature Map

[0.43, 0.34, ..., 0.79]

[0.21, 0.38, ..., 0.19]

[0.66, 0.68, ..., 0.27]

[0.54, 0.12, ..., 0.22]

[0.77, 0.48, ..., 0.62]

[0.11, 0.32, ..., 0.09]

[0.74, 0.38, ..., 0.41]

[0.01, 0.00, ..., 0.02]

Fig.5. Working mechanism of a vertical scanning convolutional neural network.
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clause at the same time. We set three convolution ker-

nels with the height of 2, 3 and 4, respectively. After

the convolution operation, we can obtain the MaxPool-

ing layer and lastly get the feature map.

Specifically, we specify the convolution kernel to

300× 2 and the stride is 1. The word vector is set to

300 dimensions in this study, and the convolution kernel

can only slide (scan) down the matrix. Furthermore, we

set three convolution kernels of 300× 2 with different

weights. As shown in Fig.5, when the convolution ker-

nel on top with the height of 2 scans downward in the

vertical direction, three feature maps will be generated.

Similarly, we set up two convolution kernels of 300× 3

and 300× 4, respectively, and generate the feature map

in the same fashion.

3.3.3 Merge and Output Operations

When we obtain Eq and Fq, we need to merge

them as (Eq, Fq). As shown in Fig.4, we put the vec-

tor into the final neural network. The neural net-

work consists of two fully-connected layers. The first

layer is ReLU(W3 × v3 + b3), and the second layer is

Sigmoid(W4 × v4 + b4).

The cardinality estimation Cout of the final predic-

tion is a number of numeric type, thereby we have to

choose the Sigmoid function. And we use the ReLU ac-

tivation function, because it shows strong empirical per-

formance and is fast to converge. The final estimated

results Cout ∈ [0, 1]. Due to the large cardinality of the

samples, we cannot directly compare Cout with Clabel.

Then we normalize the tag cardinality Clabel ∈ [0, 1],

and Cout and Clabel can be compared.

3.4 Cold Start Problem

Many websites or portals want to provide the per-

sonalized recommendation services, how to make the

most effective recommendation without knowing the

user (i.e., having no user behavior data)? This leads

to the problem of cold start. In addition, the cold

start problem arises when a new user or new item en-

ters the personalized recommendation system, because

such user/items system does not have enough informa-

tion to make a decision. For example, a new user has

not rated any items and not yet viewed any items, and

then it would be difficult for the system to build a model

on that basis.

In the research of AI4DB (Artificial Intelligence for

Database), one key challenge of learning-based algo-

rithms is the “cold start problem”, i.e., how to train

the model before having concrete information about the

query workload. Our approach is to obtain an initial

training corpus by generating random queries based on

the schema information and extracting the literalness

from actual values in the database.

The information of data samples in the training set

is mainly composed of table names, join mode, a vary-

ing type of predicates and real cardinality. The real

cardinality is obtained by the SQL analysis tool. In

this study, we use IMDB (Internet Movie Database)

to select several candidate tables and find the rela-

tionships of the primary and foreign keys. We use

these relationships to randomly generate join condi-

tions. It is meaningless to blindly increase the number

of join conditions, because the join form we choose is

(T 1
q .Col

1
q=T 2

q .Col
2
q AND T 2

q .Col
2
q=T 3

q .Col
3
q), which is

represented by (A ./ B) ./ C or A ./ (B ./ C). No

matter how many join conditions are added, the per-

formance of the model will not be affected. Therefore

we set the number of join operations in each query to

0, 1 or 2, which makes the combination space smaller.

In terms of the predicates, we randomly select the

columns of numeric type in the related tables. These

operators “>,<,=,! =” are selected for the logical rela-

tion. Then, we aggregate the predicate expressions with

“AND/OR” operators. Lastly, we produce the training

data of queries.

4 Experiments and Discussions

4.1 Workload and Comparing Methods

We use the real IMDB database because it contains

several real-world correlations between tables. The

IMDB database is rich in contexts and covers a wide

range of movies, and IMDB lays a solid foundation

for coping with the challenge of cardinality estimation.

We conduct comparison experiments on three different

query workloads: 1) a synthetic workload: this work-

load contains 5 000 unique queries between 0–2 joins;

2) a scale workload: queries of this workload contain

more joins; and 3) a job-light workload, called JOB

(Join Order Benchmark) workload. This workload is a

lightweight workload extracted from the JOB without

any predicates on strings, and it contains 70 queries

between 1–4 joins.

It is a commonly-used method to obtain the initial

word vector by unsupervised learning methods before

performing large-scale supervised learning. For word

vectors, we use pre-trained word vectors for the train-

ing samples. In order to demonstrate that our model
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can handle complex predicates with strings, we generate

50 000 queries with strings based on the JOB workload.

Table 1 shows the characteristics of different cardi-

nality estimators on JOB workloads. We choose some

of the most popular relational databases to compare,

i.e., PostgreSQL v9.6.20, MySQL v5.7.32, SQL Server

2008 R2 and Oracle 12c Release2. We choose the state-

of-the-art models as the comparison methods. BBA

(Black-Box Approach) [19] was proposed based on the

idea of classifying query statements according to query

structures, but this method cannot be applied on un-

known structures of queries. IBJS [1] is a cardinality

estimation based on indexes, which relies too much on

the index structure. MSCN [3] is a multi-set convolu-

tional network, but it does not have the function of

semantic extraction, thereby it cannot be used to pro-

cess complex SQL or the string type of columns. It is

straightforward that the cardinality estimator in tra-

ditional databases does not use the complex network

structures and the encoding techniques. The learning-

based cardinality estimation methods use complex neu-

ral networks and complex encoding methods. We use

90% of the records in the database as the training sam-

ples and the remaining samples as the validation set.

Table 1. Characteristics of Cardinality Estimators on JOB
Workloads

Estimator Represent Predicate String Simple

Network Network Encoding Bitmap

PostgreSQL No No No No

MySQL No No No No

Oracle No No No No

SQL Server No No No No

BBA No No No No

IBJS No No No Yes

MSCN Yes Yes Yes Yes or No

VSCNN Yes Yes Yes Yes or No

We develop the proposed model with PyTorch

framework [31] and CUDA [32]. All experiments are con-

ducted on a machine with Intelr Xeonr CPU i7-6700k,

16 GB memory, 128 G SSD and Ubuntu 18.04 operating

systems.

4.2 Selection of Activation Function

Firstly, when using Sigmoid or other functions to

calculate the activation function, the cost of calcu-

lation (i.e., the exponential operation) is quite high.

When calculating the gradient of errors through the

back propagation method, the derivation calculation in-

volves division operation, and then the amount of cal-

culation is very large.

Secondly, when using the ReLU activation function,

the amount of calculation can be reduced. This is be-

cause, for the deep neural network, when the Sigmoid

function propagates backward, it is easy for gradient

to disappear, i.e., when the Sigmoid function approx-

imates to saturation, the transformation becomes too

slow and the derivative value tends to be 0, which will

cause the loss of information, and then it is unable to

complete the training of deep neural networks. The

derivative of Tanh is larger than that of the Sigmoid

function, the gradient changes fast, and the conver-

gence speed is faster in the phase of training. But it will

cause the problem of gradient disappearing. However,

the ReLu function does not have the gradient vanishing

problem.

Thirdly, the ReLU operation will make the output

of some neurons be zero, which makes the network be-

come sparse and can help reduce the interdependence of

parameters and alleviate the over-fitting problem. The

ReLU function is actually a piecewise linear function,

which changes all negative values to zero while keeping

the positive values unchanged. This operation is called

unilateral suppression that plays an important role in

deep learning. Because of this unilateral inhibition, the

neurons in the neural network also have sparse activa-

tion. Especially, in deep neural network models (such

as CNN), theoretically, when n layers are added to the

model, the activation rate of ReLU neurons will be re-

duced by 2n where n is the number of layers [33].

4.3 Regularization

In order to avoid the phenomenon of over-fitting,

we train the proposed neural network by the dropout

technique. Dropout is used in the phase of deep learn-

ing network training, and the neural network unit is

temporarily discarded from the network according to a

certain probability. It is worth noting that the dropout

is only temporary. For random gradient descent, each

mini-batch trains a different network and it is randomly

discarded. When the dropout probability is applied in

training samples, each neuron has a 50% probability of

being removed, which makes the training of one neuron

independent of another neuron and weakens the corre-

lation of features. For fitting the new data, L1-norm

is not stable and the loss by applying L1-norm changes

a lot, while L2-norm changes little. L1-norm tends to

make coefficients sparse, but L2-norm has no sparse

coefficients. In a word, L2-norm is more stable than

L1-norm, thereby we choose L2-norm. For regulari-
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zation, we use the dropout technique on the penulti-

mate layer with a constraint on L2-norm of the weight

vectors [34]. At the same time, we also use early stop-

ping to prevent the over-fitting problem. When we train

deep learning neural networks, we aim to obtain the

best generalization performance (that is, it can fit the

data well). But all the standard deep learning neural

network structures, such as fully connected multi-layer

perceptron, suffer from substantial over-fitting. That

is, when the network performs well in training, the pre-

diction error is low. However, in reality, at a certain

moment, its performance in the test set has begun to

deteriorate. The regularization helps keep the number

of parameters in the model smaller.

4.4 Hyperparameters Tuning

In order to make the model reach an ideal state, we

have to tune the hyperparameters including the number

of epochs, the size of mini-batch, the weight of filters,

the width of filters, the number of hidden units and the

learning rate in experiments. We compare many gradi-

ent descent algorithms and find that Adam [35] achieves

the best performance, thereby we apply the Adam gra-

dient descent algorithm [35] in this study.

In experiments, we try the following settings as

shown in Table 2.

We use 60% of the data to train the samples. The

training set contains 54 000 queries, and the validation

set contains 6 000 queries. We find that the comparison

models can obtain good performance when the parame-

ters are set to 100 epochs, 1 000 batch size, the weight

of filters [128, 128, 128], the width of filters [2, 3, 4] and

256 hidden units.

After several settings of parameter combinations,

we observe that the comparison models perform better

when training for 100 epochs than when training for

200 epochs. This is a phenomenon of over-fitting. As

for the width of filters, in general, the training sample

contains three words, which produce some specific se-

mantics, for example, the predicate “production year”,

“=”, “2021”. Therefore, the filter window is set to [2,

3, 4] as necessary. Fig.6 shows the influence of different

filter combinations on the loss defined in (6).

Furthermore, in this set of experiments, we discuss

the influence of the number of windows on training.

Fig.7 shows the training performance comparison be-

tween three windows and four windows. We set the

three windows to [2, 3, 4], and set two different groups

of four windows [1, 2, 3, 4] and [2, 3, 4, 5], respectively.

We set up 30 epochs for training.

According to Fig.7, we can see that [2, 3, 4] has

the best performance, because four windows are easy

to fall into the over-fitting phenomena. In addition, it

is time-consuming to specify too many windows.

4.5 Cardinality Estimation Quality

We use the following q-error [36] defined in (5) and

the loss function given in (6) to evaluate the perfor-

mance of distinct models. q-error can be used to

measure the deviations of cardinality estimates from

ground-truth cardinalities. In (5) and (6), Cout rep-

resents the estimated value and Clabel represents the

ground-truth value.

q-error = max

(
Cout

Clabel
,
Clabel

Cout

)
. (5)

Loss = log

n∑
i=0

max

(
Cout

Clabel
,
Clabel

Cout

)
. (6)

Fig.8 demonstrates the convergence performance of

the proposed VSCNN model by comparing it with other

three models on the validation set. We use 54 000

queries as the training set and the remaining 6 000 as

the validation set. We find that NoSamplingMSCN

(MSCN without sampling) shows the trend of fluctu-

ation as the number of training epochs grows, having

the slowest convergence speed. MSCN works the best

because it converges the fastest. In addition, our model

VSCNN is better than NoSamplingMSCN without sam-

pling. We can see that the convergence speed of the pro-

posed VSCNN model will be significantly improved af-

ter using the proposed negative sampling method and it

is more accurate with the lowest loss. Furthermore, we

also find that MSCN and VSCNN algorithms converge

Table 2. Parameter Setting of Experiments

Number of Epochs Batch Size Weight of Filters Width of Filters Hidden Units Learning Rate

50 500 [128, 128, 128] [1, 2, 3] 256 0.000 1

100 1 000 [256, 256, 256] [2, 3, 4] 512 /

/ / [512, 512, 512] [3, 4, 5] 1 024 /



772 J. Comput. Sci. & Technol., July 2021, Vol.36, No.4

when the epochs is 100. After 100 epochs, the curve of

our model almost coincides with that of MSCN. As for

NoSamplingMSCN and NoSamplingVSCNN, the per-

formance of q-error is improved by 40.4% and 23.5%,

respectively.
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Fig.6. Impact of different filter combinations on the loss.
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Fig.8. Convergence of the loss on the validation set as the num-
ber of epochs grows.

Table 3 shows the value of the median (denoted by

mid), percentile, maximum (denoted by max), and the

mean (denoted by mean) q-errors of distinct cardinal-

ity estimators in the synthetic workload. The lowest

q-error values are emphasized in bold. We can see that

IBJS achieves the best median estimation. VSCNN

wins the other methods in the 90th and 95th percentile

of q-errors. Although IBJS performs well on the me-

dian q-error, it relies too much on the index struc-

tures. If there is no proper index or even no index,

its performance will become very poor. In terms of ro-

bustness, VSCNN and MSCN outperform IBJS. The

mean q-error of VSCNN is 104.4 times less than that of

the average q-error on cardinality estimation in tradi-

tional databases, and 7.7 times less than that of NoSam-

plingVSCNN. When compared with other cardinality

estimation methods, our model has powerful seman-

tic recognition capability. The SQL contained in the

synthetic workload is simple, thereby the result is very

good. In particular, VSCNN applying the sampling

method can utilize the information of samples in the

base table to learn the distribution of records.

Table 4 shows the detail of the median, percentile,

maximum, and the mean q-errors in the scale work-

load. It is straightforward to find that all the q-errors

are larger than those on the synthetic workload. This

is because the Scale workload contains more SQL joins,

thereby the q-errors of all methods increase. We can

see that MSCN achieves the best median estimation,

and its maximum q-error and mean q-error are the

minimum. VSCNN wins other methods in the 90th,

95th and 99th percentile of q-errors. The mean q-

error of our model is 11.6 times less than that of the

average q-error of cardinality estimation methods in

traditional databases, and 3.7 times less than that of

NoSamplingVSCNN. The proposed VSCNN model per-

forms well, because we use different convolution kernels

to scan the features of words, which can well identify

the relationship of different join operations. Similarly,

VSCNN with the sampling method can make full use

of the information of samples in the base table to learn

the the distribution of records.

To show that the proposed model can be generally

applied to query workloads which are not generated by

the query generator, we use the JOB query workload.

Table 5 shows the value of the median, percentile, maxi-

mum, and the mean q-errors of distinct cardinality es-

timators in the JOB workload. In order to validate the

generalization capability of processing the queries, we

conduct experiments on the job-light workloads that
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Table 3. Q-Error of Cardinality Estimators on Synthetic Workload

Method Mid 90th 95th 99th Max Mean

PostgreSQL 1.85 10.03 25.10 487.00 399 274 172.00

MySQL 2.27 25.80 55.70 642.00 458 835 367.00

Oracle 2.03 15.10 47.40 497.00 545 925 385.00

SQL Server 2.15 17.40 50.10 296.00 512 591 379.00

BBA 2.33 20.01 49.30 544.00 483 216 303.00

IBJS 1.11 10.36 37.10 299.00 293 290 127.00

NoSamplingMSCN 2.39 8.94 14.60 120.00 1 903 25.71

NoSamplingVSCNN 2.16 8.37 13.90 108.00 1 842 24.03

MSCN 1.26 4.03 7.32 33.67 1 545 3.08

VSCNN 1.32 3.99 7.29 33.95 1 564 3.12

Table 4. Q-Error of Cardinality Estimators on Scale Workload

Method Mid 90th 95th 99th Max Mean

PostgreSQL 2.79 259.0 577.0 1 956.0 243 863 581.0

MySQL 3.29 95.4 339.0 7 795.0 56 512 441.0

Oracle 2.71 121.0 491.0 3 601.0 104 912 405.0

SQL Server 2.81 242.0 446.0 3 905.0 64 321 423.0

BBA 2.67 102.4 281.0 1 829.0 58 219 332.0

IBJS 2.54 91.3 252.1 1 711.0 49 306 291.0

NoSamplingMSCN 2.39 97.1 261.0 1 121.0 4 113 137.0

NoSamplingVSCNN 2.31 95.4 254.0 1 107.0 4 098 135.0

MSCN 1.71 38.5 146.0 795.0 3 687 36.3

VSCNN 1.76 38.1 144.8 793.2 3 690 36.5

Table 5. Q-Error of Cardinality Estimators on JOB Workload

Method Mid 90th 95th 99th Max Mean

PostgreSQL 8.04 169.0 1 110.0 2 921.0 3 492.0 176.0

MySQL 10.01 307.0 691.0 2 263.0 2 589.0 156.0

Oracle 8.76 379.0 981.0 2 770.0 3 342.0 163.0

SQL Server 9.03 364.0 701.0 2 550.0 3 421.0 171.0

BBA 8.03 157.2 621.1 2 311.0 3 006.0 151.0

IBJS 1.92 157.0 3 198.0 14 309.0 15 775.0 590.0

NoSamplingMSCN 5.49 131.0 981.0 1 315.0 2 023.0 104.0

NoSamplingVSCNN 5.41 129.2 976.0 1 301.0 1 999.0 103.0

MSCN 3.91 81.7 364.1 931.7 1 119.0 58.8

VSCNN 3.82 79.4 362.5 935.1 1 118.2 60.1

contain the queries with a predicate in closed interval,

e.g., 1997 < production year < 2021, while the tradi-

tional training data only contain the predicates in open

interval, e.g., production year >1997. According to

the experimental results, VSCNN performs the best on

the 90th, and the 95th of percentile and the maximum

q-error respectively.

In addition, the results show our model can be

generalized to the workloads with distributions diffe-

rent from the training data. The mean q-error of the

VSCNN model is 2.7 times less than that of the ave-

rage q-error of cardinality estimation models in tradi-

tional databases, and 1.5 times less than that of NoSam-

plingVSCNN. This can be explained by the reason that

the proposed model will learn a lot of SQL features from

the training samples. But, the word vector we use is

trained in advance, and the value of each field is very

sparse in the phase of training. Therefore in terms of

the validation samples, it is very likely to encounter the

vector that is not in the word vector. We set this kind

of word vector to zero vector. Because the proposed

model has learned all kinds of SQL structures through

the training set, although it is only the deviation from

one data field, it has little negative effect on the cardi-

nality estimation of the whole SQL queries.

We train the models on 80 000 queries with multi-

ple joins and take 90% of multi-table join queries as

training samples and 10% of them as validation sam-

ples. We train the model until the loss converges. The

estimation q-errors are shown in Table 6. From the ex-
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Table 6. Q-Error of Cardinality Estimators on JOB Workloads with Strings

JOB-String Mid 90th 95th 99th Max Mean

PostgreSQL 184.0 8 303.0 34 203.0 106 000.0 670 000.0 10 416.0

MySQL 104.0 28 157.0 213 471.0 1 630 689.0 2 487 611.0 60 229.0

Oracle 119.0 55 446.0 179 106.0 697 790.0 927 648.0 34 493.0

SQL Server 174.0 60 432.0 231 045.0 552 190.0 432 609.0 52 700.0

MSCN Null Null Null Null Null Null

MSCN(string) 14.6 85.4 207.3 792.7 851.1 73.5

VSCNN 15.2 89.1 199.5 760.2 803.7 69.6

perimental results, traditional database systems tend

to overestimate the cardinality, and the q-error is very

large, even up to hundreds of thousands. The q-error

of learning-based cardinality estimation models can be

reduced to at least 14.6% when compared with the es-

timators in traditional databases. MSCN can handle

simple queries, but for complex queries in JOB work-

loads, including strings, MSCN does not work, thereby

the results are represented by “Null” in Table 6. In or-

der to increase the generalization capability of MSCN,

that is, the compatibility of handing strings, we ex-

tend the value to a multi-dimensional vector represent-

ing string. We can find that our model works well to

achieve good results in all experiments. MSCN cannot

handle the string type field, because it does not have

a neural network structure that can recognize strings.

MSCN (string) can handle strings, but its q-error is

larger than VSCNN. The VSCNN model can handle

strings well, because it embeds the string as a word

vector by the embedding technique introduced in Sub-

section 3.2 and it captures the semantic information in

SQL statements.

4.6 Prediction Time Comparison

Fig.9 shows the prediction time among different car-

dinality estimators. We can see that the prediction

time (per sample) of the proposed VSCNN model on

the validation set is only about 0.2 ms. In Fig.9, we

demonstrate the prediction time on the training as

well as validation samples, respectively. We find that

the cardinality estimation models (i.e., TLSTM [24] and

TPOOL [24]) with NLP (natural language processing)

have high prediction time cost for training and valida-

tion. The proposed tree structure can deal with com-

plex predicates and has powerful functions. The predic-

tion time of TLSTM on the validation set is 3.1 times

higher than that of VSCNN, and the prediction time of

TPOOL on the validation set is about two times higher

than that of VSCNN. The prediction time of VSCNN

on the validation set is similar to that of traditional

database (i.e., PostgreSQL and MySQL). In general,

MSCN has the least prediction time, but the predic-

tion time on the validation set is higher than that on

the training set. The prediction time of VSCNN on

the validation set is lower than that on the training

set. The structures of TLSTM and TPOOL are very

complex, which leads to costly prediction time. The

method of cardinality estimation applied in traditional

databases (i.e., PostgreSQL and MySQL) is very sim-

ple, thereby the prediction time is short.
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Fig.9. Prediction time comparison of different cardinality esti-
mators.

Fig.10 shows the prediction time of different filters

in VSCNN. We specify three categoris of filters: [1, 2,

3], [2, 3, 4] and [3, 4, 5], and we observe that when the

filters is [1, 2, 3], the prediction time is the least, and

the prediction time of filters [3, 4, 5] is the maximum.

4.7 Data Update

To cope with data and schema changes, we can ap-

ply some modifications to our model that supports in-

cremental training, and we can also completely re-train

the model. But complete re-training the model will con-

sume a lot of computing resources, because we need to
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re-execute SQLs to get the latest cardinality and then

re-train the model. For the columns that do not involve

the change of data range in the training set, re-training

is not necessary. Complete re-training is allowed to use

different data encoding methods in these operations,

e.g., creating a new table, and then we need to use a

long one-hot vector to represent the table name and we

could re-normalize values in case of new minimum or

maximum values.
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Fig.10. Prediction time comparison of different filters.

In this study, we assume that the database state is

stable without changing, that is to say, the cardinality

estimation is achieved on the snapshot of the database.

When training the data, we learn the data distribution

by the proposed sampling method in Subsection 3.1.2.

However, the state of the database cannot be constant,

and there are operations such as creating new tables,

inserting data, deleting data, and updating data, which

may make the state of the database no longer constant,

resulting in the change of data distribution. At this

time, if we work on the trained model directly with-

out considering the change of data distribution, it will

cause large loss values. Then, it is straightforward to

think of incremental training, which does not require

us to re-train all the data in advance. We could re-use

the model state and only apply it in the new samples.

But this will encounter a problem, how to adapt to the

change of data encoding, including one-hot encodings

and the normalization of values (i.e., cardinality). For

the cardinality, we can specify a threshold, such as the

maximum value. No matter whether it is re-training or

incremental training, the proposed VSCNN model can

adapt the change of data distribution, because there

is no memory mechanism like that applied in LSTM

(Long Short-Term Memory) networks.

5 Conclusions

In this study, we introduced the vertical scanning

convolutional neural network model VSCNN in coping

with the cardinality estimation problem. VSCNN can

convert SQL queries from a sentence level to a word

vector, and then use a vertical scanning convolutional

neural network to capture the relationships between

words in the word vector. It works very well when

dealing with multiple table join queries and can handle

the string type of predicates. In particular, we used the

proposed sampling method based on the base table and

compressed it into a bitmap to improve the accuracy of

cardinality estimation. In addition, we conducted ex-

tensive experiments on the real IMDB datasets, and the

experimental results showed that the estimation qua-

lity of q-error of the proposed vertical scanning convo-

lutional neural network-based model is reduced by at

least 14.6% when compared with the existing estima-

tors in traditional databases.

In order to apply the proposed model on more types

of queries, we will improve it from the following aspect:

in terms of the string type of data, although we can han-

dle it, the results are not satisfying. When compared

with the numerical type of data, the fields of numeric

data have the maximum and the minimum values in the

table, and all values are between the maximum and the

minimum values. The string type is difficult to process

because the numbers of characters in strings are diffe-

rent, and the characters themselves are different. In

this way, the string type of data is more sparse than

the numeric type. In future, we will design a better

method to deal with the string type of data.
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