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Abstract The ability to assess the reliability of safety-critical systems is one of the most crucial requirements in the

design of modern safety-critical systems where even a minor failure can result in loss of life or irreparable damage to the

environment. Model checking is an automatic technique that verifies or refutes system properties by exploring all reachable

states (state space) of a model. In large and complex systems, it is probable that the state space explosion problem occurs.

In exploring the state space of systems modeled by graph transformations, the rule applied on the current state specifies

the rule that can perform on the next state. In other words, the allowed rule on the current state depends only on the

applied rule on the previous state, not the ones on earlier states. This fact motivates us to use a Markov chain (MC) to

capture this type of dependencies and applies the Estimation of Distribution Algorithm (EDA) to improve the quality of the

MC. EDA is an evolutionary algorithm directing the search for the optimal solution by learning and sampling probabilistic

models through the best individuals of a population at each generation. To show the effectiveness of the proposed approach,

we implement it in GROOVE, an open source toolset for designing and model checking graph transformation systems.

Experimental results confirm that the proposed approach has a high speed and accuracy in comparison with the existing

meta-heuristic and evolutionary techniques in safety analysis of systems specified formally through graph transformations.

Keywords safety analysis, model checking, Markov chain, estimation of distribution algorithm, graph transformation

system

1 Introduction

Modern safety-critical systems such as nuclear

power plants or spacecraft controllers are very sensi-

tive to failures because the existence of a failure (even

very minor) in these systems can result in loss of life

or irreparable damage to the environment [1]. With the

increasing scale and complexity of these systems, tradi-

tional verification methods such as testing and simula-

tion cannot have the high efficiency in assessing reliabil-

ity because these methods can analyze only a limited

number of system behaviors due to time limitations.

The aim of testing is to examine the correctness of

the implemented system using a collection of test cases,

whereas the simulation method employs models to cap-

ture the system behaviors and simulates different sce-

narios on these models to verify the correctness of the

system. Recently, model-based safety analysis has been

introduced for designing models of systems and auto-

matically assessing the safety properties in them. A

well-known technique in such analysis is model check-

ing by which system properties are verified (or refuted)

through exploring all reachable states (state space) of

the model [2]. However, in large and complex systems,

model checking confronts with the state space explosion

problem in which all reachable states cannot be gene-

rated due to exponential memory usage. Hence, the

techniques employed in model checking should explore

only a portion of the state space. Using evolutionary

algorithms (EAs) such as Genetic Algorithm (GA) [3],

Ant Colony Optimization (ACO) [4, 5], Particle Swarm

Optimization (PSO) [6] and Bayesian Optimization Al-

gorithm (BOA) [7] is one of these techniques. As an-

other technique, applying knowledge discovery meth-
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ods such as data mining [8, 9] and learning a Bayesian

network (BN) [9] can be mentioned.

A good/bad event that always/never must happen

in a system is called a safety property. In large and

complex systems, a safety property q must be refuted

(instead of verification) by finding a state in the state

space in which q is not satisfied, i.e., the reachability

property “not q” is satisfied. A reachability property p

implies that there is a state in the state space in which p

is satisfied [10]. In some cases, finding such a state may

cause the entire exploration of the state space. When

the state space of systems modeled by graph transfor-

mations is explored, the allowed rule on the current

state depends only on the applied rule on the previous

state, not the one on earlier states. This fact moti-

vates us to use a Markov chain (MC) to capture this

type of dependencies and also apply the Estimation of

Distribution Algorithm (EDA) to improve the quality

of the MC, i.e., some of sampled solutions approach

to an optimum solution [11]. EDA belongs to the class

of population-based optimization algorithms in which

a graphical probabilistic model is learned from a set of

promising solutions, and then the model is employed to

produce new solutions [12]. The main contributions of

the paper are as follows.

1) The reason of using Markov chain to capture the

dependencies between applied rules on the current and

previous states is described.

2) The Markov chain based Estimation of Distri-

bution Algorithm (EDA) is used to verify reachability

properties and refute safety properties.

3) A practical analysis is performed using well-

known benchmarks, and the proposed approach is com-

pared with the existing meta-heuristic and evolutionary

techniques.

As a motivation example, an emergency diesel gen-

erator control system can be mentioned by which a re-

serve emergency power is provided for nuclear power

plants [13]. In other words, emergency diesel systems

are used in safety systems that they should continu-

ously connect to a power supply. For more information

about modeling this system, interested readers can refer

to [13].

In the model-based safety analysis, the considered

system should be modeled by a modeling language such

as Graph Transformation System (GTS) [14]. To imple-

ment the proposed approach, we use GROOVE [15] as a

test bed to implement the proposed approach because

it does automatic verification by generating the model’s

state space.

In the rest of the paper, we survey the related work

in Section 2. Section 3 describes the required back-

ground such as Markov chain, Markov chain based

EDA, GTS formalism, and model checking. In Sec-

tion 4, the proposed approach is described in detail.

Section 5 presents detailed experimental results. In Sec-

tion 6, we discuss the advantages and limitations of the

proposed approach. Finally, in Section 7, we conclude

the paper with some directions for possible future work.

2 Related Work

In the literature, various approaches have been pro-

posed to tackle the state space explosion problem in the

model-based safety analysis. These approaches, which

have the most relation to our approach, can be divided

into two categories: those that use EDA and those that

are applied to systems modeled by GTS.

2.1 Approaches Using Estimation of

Distribution Algorithm (EDA)

The approach in [16] is applied to find common con-

current errors such as deadlocks in multithreaded soft-

ware. This EDA-based approach uses n-gram distri-

butions as a probabilistic model for learning through

the best individuals and sampling the new individu-

als. To evaluate the performance of the approach,

it is implemented using the Java PathFinder (JPF)

model checker and the ECJ toolkit. In [17], the au-

thors proposed an EDA-based approach to find dead-

locks in multithreaded Java programs. They extended

the work in [16] to find counterexamples in Promela

models. The EDA-based work in [18] extracts the in-

formation from an earlier execution of EDA and reuses

this information to aid the search in a future execution.

The proposed approaches in [7, 19] employ a Bayesian

network based EDA, also called BOA, to verify reacha-

bility properties and refute safety properties. For sim-

plicity, the authors [7, 19] supposed that the structure of

BNs is fixed. Based on this assumption, they proposed

three different versions of the approach with different

structures. The first version, which is called BOAcl2

(BOA with a chain of two nodes), uses a chain struc-

ture with two nodes. Whereas, in the second version,

which is called BOAcln (BOA with a chain of n nodes),

the used BNs have the structure of a chain with n nodes

such that each node depends conditionally on the pre-

vious node. Also, the third version, which is called

BOActp (BOA with a chain structure and two parent
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nodes), employs the BNs that their structures are simi-

lar to the ones in cBOA with a difference that each

node in BOActp depends conditionally on two previous

nodes.

2.2 Approaches Applied to Systems Modeled

by GTS

The second category includes approaches whose im-

portant feature is that they are applied to systems mod-

eled by GTS. To refute safety properties in systems

modeled by GTS, the authors proposed an approach

using data mining for efficient exploring of the state

space [8]. This approach, called EMCDM, obtains spe-

cial knowledge from the information of checking some

smaller models to check the complex and large models.

In spite of having the advantages such as high speed

and generating shorter counterexamples in comparison

with others, EMCDM fails in systems with infinite

state space, because it cannot explore the state space

of smaller models exhaustively to obtain the required

knowledge. To handle the shortage of EMCDM, the

authors proposed two approaches, called LDM (Learn-

ing by Data Mining) and LBN (Learning a BN), by

which only a slight portion of the state space is explored

rather than the complete exploration of some smaller

models [9]. LDM uses a modified version of the Apriori

algorithm to find a frequent pattern through the par-

tially explored state space. Whereas, LBN learns a BN

through the explored state space. After obtaining the

required knowledge, LDM and LBN use it to explore

the remainder of the model’s state space intelligently

until a goal state is found.

In [3], the authors proposed a GA-based solution to

search safety violations in systems modeled by GTS.

The approach in [6] employs the PSO algorithm to

refute safety properties in systems modeled by GTS.

In [4], the authors proposed an ACO-based approach

to detect safety violations in concurrent systems mod-

eled by calculus of communicating systems (CCS).

Other ACO-based approaches were also proposed to

refute safety properties described in the linear tempo-

ral logic [5]. In [20], the authors proposed a hybrid ap-

proach based on BAT and PSO algorithms (also called

BAPSO) to refute complex systems specified through

GTS. The Bat algorithm (BA) is a meta-heuristic algo-

rithm for global optimization and inspired from echolo-

cation behavior of bats to search for food and distin-

guish prey from barriers [21].

3 Background

3.1 Markov Chain

The Markov property expresses that the occurrence

probability of the next event on the system (and in fact

all future events) depends only on the current event,

not the previous events [11]. A Markov chain (MC) is a

stochastic model that satisfies the Markov property. In

simpler terms, an MC is a stochastic model to describe

a sequence of possible events such that the occurrence

probability of future events depends only on the present

event, not the previous events [11]. Assuming that X

denotes random variables and S(x) defines the possible

assignments (states) of variables, an MC is specified

through S(x) and a model M that assigns every state

x ∈ S(x) a next state x′ ∈ S(x). Actually, the transi-

tion model M determines the probability M(x → x′)

of going from x to x′ for each pair of states x and x′.

Moreover, if the probability M(x → x′) is zero, the

transition x → x′ is not shown in the model. Fig.1

displays an example of a simple MC. As seen in Fig.1,

S(x) and M are the sets of {x0, x1, x2} and {x0 → x1:

0.75, x0 → x2: 0.25, x1 → x0: 0.45, x1 → x2: 0.55,

x2 → x0: 1.00} respectively. Random variables (and

their possible states) and the transition probabilities

of the model may be induced by a domain expert or

learned from the dataset using machine learning algo-

rithms. There are different methods for learning the

transitions probabilities of an MC, for example, rela-

tive frequencies observed in the dataset based on the

maximum likelihood hypothesis can be employed.

x 

 

 

.  

. . 

.

.

x

x

Fig.1. A simple Markov chain.

3.2 Markov Chain Based Estimation of

Distribution Algorithm

Estimation of distribution algorithm (EDA) belongs

to evolutionary algorithms and is based on the estima-

tion of distributions. These algorithms use the distribu-

tion of promising solutions instead of traditional genetic
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operators like crossover and mutation. This distribu-

tion, which can be considered as a probabilistic graph-

ical model, captures dependencies/independencies be-

tween variables of the problem. The estimated distri-

bution is then employed to generate new candidate so-

lutions. EDA processes as the following. The initial

population of solutions is generated randomly. After

evaluating the current population by a fitness function,

the promising solutions are selected and a distribution

is estimated using them. Finally, EDA samples the esti-

mated distribution to produce new candidate solutions

and adds them into the old population by replacing

some of the old ones. These steps are repeated until

the termination criteria are met [12].

In Markov Chain based Estimation of Distribution

Algorithm (MCEDA), a Markov chain is used to es-

timate the distribution using the selected solutions in

each step [11]. As mentioned in Subsection 3.1, to es-

timate the distribution in the MC, we can use the rel-

ative frequencies observed in the dataset based on the

maximum likelihood hypothesis. Moreover, the Markov

Chain Monte Carlo (MCMC) sampling method is used

to sample the MC. MCMC is a strategy to generate a

path from the distribution.

3.3 Graph Transformation System

Graph Transformation System (GTS) is a graph-

based formalism in which graphs and graph transfor-

mations are used to formally describe the structural

and behavioral aspects of systems respectively [14]. An

attributed GTS contains three following components.

1) A type graph TG which specifies all node types and

edge types. Furthermore, TG has two functions that

determine the source/destination nodes of an edge. 2)

A host graph HG which determines the initial config-

uration of a system that should be instantiated from

the type graph TG. 3) A set R of transformation rules

by which all possible configurations (also called state

space) of a system are generated. Each transforma-

tion rule includes pre-conditions, post-conditions, and

(probably) a negative application condition (NAC).

Pre-conditions (also called left-hand side or briefly

LHS) of a rule specify the conditions that the cur-

rent host graph should have before applying the rule.

Whereas, post-conditions (also called right-hand side

or briefly RHS) of a rule determine the conditions that

the current host graph should have after applying the

rule. NAC specifies the conditions that should not oc-

cur in the host graph before applying the rule (similar

to the pre-conditions).

In this paper, we use GROOVE, which is an open

source toolset and automatic verifier (model checker),

to implement our approach and analyze systems spe-

cified through GTS. To clarify the functionality of

GROOVE, the readers-writers problem is considered in

which several processes (e.g., readers/writers) attempt

to access (e.g., read/write) the shared resource (e.g., a

book) simultaneously. The shared resource can be read

by two or more readers provided that no writer is writ-

ing. Moreover, only one writer can write to the shared

resources at a time. In Fig.2, the designed model of

this problem with four readers (denoted by R) and four

writers (denoted by W) is displayed. Fig.2(a) displays

the type graph TG of the model. As in Fig.2(a), this
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Fig.2. (a) Type and (b) host graphs of a model of the readers-writers problem modeled by GTS in the GROOVE toolset.
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graph has three node types n0, n1, and n2 and two

edge types n0n2 and n1n2. The type of n0/n1 is R/W

and it (i.e., a reader/writer) can get one of the labels

active, deactive, waitRead/waitWrite, etc.. Also, the

type of n2 is BOOK and it can get one of the labels

free, reading and writing.

Fig.2(b) shows the host graph HG of the model.

HG contains the set {n3, n4, · · · , n11} of nodes and it

does not have any edges. As mentioned in the above,

HG should be an instance of the type graph, i.e.,

Fig.2(a). In other words, each node/edge in Fig.2(b)

must be an instance of a(n) node/edge type in Fig.2(a).

For example, node n11 in Fig.2(b) is one instance of the

node type n2 in Fig.2(a).

In GROOVE, the graphs of LHS, RHS, and NAC

are merged together and they are distinguished by

colour coding. The commonalities of LHS and RHS

graphs are colored in black. The nodes and edges of

the LHS/RHS graph which are removed/created after

rule application are specified in blue/green. Further-

more, the NAC graph is specified by bold red double-

bordered nodes and dashed edges.

A transformation rule r is applicable on state s,

which is actually a graph, when there is at least one im-

age of LHS on state s such that this occurrence should

not contain any subgraph of NAC. If such occurrence

is found, it is replaced by the RHS graph. For example,

we consider the transformation rule of goWrite in the

readers-writers problem. As seen in Fig.3(a), this rule

is applicable when there are a writer with label wait-

Write and the book with label free. If such conditions

are established, this rule will change the labels of the

writer and the book to writing. Moreover, a new edge

is created between these nodes.

State properties specify some special configurations

that may happen in a system. A state property is de-

fined by a transformation rule such that its LHS and

RHS graphs are equal. Hence, applying such a rule

does not change the structure of any state. For exam-

ple, a state property of “all readers are reading and all

writers in the waitWrite mode” for the readers-writers

problem with four readers and four writers is illustrated

in Fig.3(b). It is noteworthy that since all nodes and

edges of this state property (i.e., Fig.3(b)) belong to

the commonalities of the LHS and RHS graphs, they

are colored in black.

In GTS, some of transformation rules can be appli-

cable on the current state (so-called allowed rules). Af-

ter applying one of these allowed rules (e.g., r1) on the

current state, another rule (e.g., r2) may be allowed. In

fact, rule r1 is a trigger for rule r2 or r2 depends on r1.

For example, in the readers-writers problem, the rule of

goWrite can be applied when the status of a writer is

changed into waitWrite using the rule of requsetWrite.

It means that the rule of goWrite depends on that of

requsetWrite, not the previous rules. Due to the defini-

tion of the Markov property, we can conclude that the

problem of dependencies between applied and allowed

rules on the states has the Markov property.

3.4 Model Checking

Model checking is a well-known and automatic tech-

nique by which system properties are verified (or re-

futed). For this purpose, it produces all possible states

of the model in the format of a graph whose nodes

and edges are states and transitions (i.e., applied rules

on the states) between them respectively [2]. To use
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model checking, a system property must be described

by a temporal logic such as LTL (linear temporal logic)

and CTL (computation tree logic). In LTL, infinite se-

quences of states are considered such that each state at

any point in time has a unique successor, whereas in

CTL, each state can have several successors [22]. Since

CTL is linear in both the size of the state space and the

size of the formula, in this paper, we have chosen CTL

to describe system properties. If a given property is ver-

ified (or refuted), a witness (or counterexample) will be

generated. Witnesses/counterexamples are some spe-

cial behaviors of the system that they can be used by

designers for analyzing the design. In the model’s state

space, witnesses/counterexamples are paths that begin

from the initial state and end in the state (also called

goal state) in which the property is satisfied/violated.

Reachability and safety are common properties ex-

amined by the model checking technique. A reacha-

bility property is a special configuration that occurs in

at least one state of the system. Assuming that g is a

state property, g is a reachability property if there is at

least one state in the state space in which g is satisfied.

If a reachability property is verified, a witness will be

generated. For expressing the reachability property g

in CTL, the formula E <> g is used (and also the for-

mula EF g in GROOVE). Safety properties are special

configurations that happen in all states of the system.

In other words, g is a safety property if it is satisfied

in all states of the system. To express the safety pro-

perty g in CTL, the formula A[]g is used (and also the

formula AG g in GROOVE). In large and complex sys-

tems, verifying a safety property g is impossible due to

occurring the state space explosion problem. In this

case, the safety property g is refuted rather than veri-

fied. For this purpose, we should search a state in the

state space in which g is not satisfied, i.e., the reacha-

bility property “not g” is satisfied.

4 Proposed Approach

In this section, we propose an approach, which

is called SAMEDA, using Markov chain based EDA

(MCEDA) to analyze safety properties in systems spe-

cified formally through graph transformations. In the

state space of such systems, allowed rules on the current

state only depend on applied rules on the previous state,

not the ones on earlier states. To capture these depen-

dencies between rules, a Markov chain can be used. In

the following of this section, the structure and encod-

ing of chromosomes are explained in Subsection 4.1. In

Subsection 4.2, we propose fitness functions. In Subsec-

tion 4.3, the structure and the estimation of a Markov

chain are explained. In Subsection 4.4, we talk about

sampling the estimated MC. The detail of SAMEDA is

described in Subsection 4.5.

4.1 Structure and Encoding Chromosomes

As mentioned before, if the proposed approach

can find a goal state, the output will be a wit-

ness/counterexample, a path with specific length start-

ing from an initial state and ending in the goal state.

Consequently, each sequence of applied rules in a path

of the state space, where the path has a specific length

and starts from an initial state, is considered as a chro-

mosome. In this paper, to encode a chromosome, the

index of outgoing transitions (applied rules) in the cor-

responding path is used. It is obvious that the value

of each gene is between 0 and the maximum number

of possible outgoing transitions of a state. In the fol-

lowing, an index sequence of outgoing transitions along

with a path of applied rules is considered as a chromo-

some. For example, suppose that the set R of rules for

a dummy system is {r0, r1, r2, r3}. Fig.4 displays the

chromosome “1021” along with the path “r1r2r0r1” of

applied rules in the state space. As seen in Fig.4, the

chromosome is highlighted with the colored states and

transitions.
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Fig.4. Chromosome “1021” along with path “r1r2r0r1”.

4.2 Fitness Functions

A fitness function used in refuting the safety pro-

perty “there isn’t any deadlock state in the system”
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should guide the chromosomes in the direction to reach

a deadlock state. According to [3], a chromosome is

more promising if the outgoing transitions of states in

the corresponding path decrease. It means that the

sum of the number of outgoing transitions of states in

the path can be considered as a fitness value. Also,

a fitness function employed in refuting the safety pro-

perty g should guide the chromosomes in the direction

to reach a state in which the reachability property “not

g” is satisfied. As mentioned before, we have modeled

the systems by GTS; hence reachability properties and

states in the state space are graphs. If the last state

of a path is similar to a given reachability property,

the probability of reaching the path to a goal state will

be high, i.e., the corresponding chromosome is more

promising than the others. Therefore, the similarity

value between the corresponding graphs (named Gt and

Gh respectively) of a given reachability property t and

the last state s of the path of the chromosome can be

considered as a fitness value. To display a label lbe for

node n, GROOVE uses a self-loop edge labeled by lbe

on node n. For example, Fig.5 illustrates the concrete

graph related to the state property of the model of the

readers-writers problem in GROOVE, i.e., Fig.3(b). In

the concrete graph, all labels of nodes are shown by self-

loop edges. According to Fig.5, self-loop edges of a node

can be considered as output edges. Hence, the fitness

function considers all labels of outgoing edges of node

n as a set of labels of that node (or set of labels-n). For

example, in Fig.5, the set of labels of n0 (i.e., labels-n0)

is {R, reading}. The fitness function computes the in-

tersection of two sets labels-tn and labels-hn for any

pairs (tn ∈ Gt, hn ∈ Gh) of nodes and considers its

size as the similarity value between tn and hn. This

function then finds node pairs with the largest simi-

larity value (called semi-similar nodes). After finding

all semi-similar nodes, the function sums their simi-

larity values and holds the result in the EQU Count

variable. If Gt has NAC, the function computes the

summation of similarity values for semi-similar nodes

of the NAC and Gh graphs, and saves the result in the

NegEQU Count variable. It is obvious that whatever

NegEQU Count is smaller and EQU Count is larger,

the given chromosome has more chance to reach a goal

state. Therefore, we consider the difference between

NegEQU Count and EQU Count values as a fitness

value.

4.3 Structure and Estimation of a Markov
Chain

After evaluating the current population by a fit-

ness function, a set of chromosomes is selected us-

ing the truncation selection method [23] to estimate an

MC. The functionality of the method is that it sorts

the chromosomes according to their fitness values and

then selects the best chromosomes using a truncation

threshold (also called estimating rate). Estimating

rate specifies the ratio of the population to be se-

lected for estimating an MC. Before the estimation of

an MC, we should determine its random variables, pos-

sible assignments (states) of variables and a transition

model M . In this paper, R is considered as a ran-
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dom variable and all transformation rules are consi-

dered as possible assignments. Assume that the paths

encoded by the promising chromosomes are the form

“c0c1 · · · cn−2cn−1”, where n is the length of chromo-

somes and ci ∈ {r0, r1, · · · , r|R|−1} (0 6 i 6 n−1). The

probability M (ri → rj) of going from ri to rj for each

pair of ri and rj ∈ {r0, r1, · · · , r|R|−1} (0 6 i 6 n − 1

and 0 6 j 6 n− 1) specifies the ratio of the occurrence

number of rules ri and rj to the total occurrence num-

ber of rule ri. Formally, the probability M (ri → rj) is

computed by (1):

M(ri → rj) =

n−1∑
k=1

#(ck−1ck = rirj)

n−1∑
k=1

#(ck−1 = ri)

,

0 6 i 6 |R| − 1 and 0 6 j 6 |R| − 1, (1)

where “#” means “the number of” in all paths en-

coded by the promising chromosomes. Fig.6 displays

the structure of an MC for the proposed approach. As

seen in Fig.6, the MC includes a transition model M

determining the probability M (ri → rj) of going from

ri to rj for each pair of rules ri and rj .

To estimate an MC, Algorithm 1 can be used. This

algorithm, according to lines 1–5, firstly initializes the

MC as the followings: for each rule in Rules (a set of

transformation rules), it considers a node (as a struc-

ture) node containing the rule and two lists of nextRules

and nextProbs. nextRules and nextProbs hold the rule

and the probability of other nodes that are dependent

on the current node respectively. In line 6, all chromo-

somes are sorted based on their fitness values to select

the promising chromosomes proportional by estimating

rate (line 7). In lines 13–16, for each node node, the

algorithm finds the repetition number of node.rule in

promising chromosomes and saves it in the count varia-

ble. Moreover, the same process is done for the se-

quence of node.rule and the i-th rule of Rules and saves

the result in next count. In lines 17–20, if the both

of next and next count are positive, the i-th rule of

Rules and the probability next/next count are added

to node.nextRules and node.nextProbs respectively.

4.4 Sampling the Estimated MC

After estimating an MC, it is sampled to generate

new chromosomes in order to replace some of the worst

ones in the old population. In this paper, the parame-
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ter of sampling rate determines the proportion of chro-

mosomes to be sampled and replaced. As mentioned

before, the Markov Chain Monte Carlo (MCMC) sam-

pling method is used to sample an MC. Algorithm 2 dis-

plays the pseudocode of adapting the MCMC sampling

method to model checking. In each explored state of the

sampled chromosome, the given property is checked. If

a goal state is detected, the algorithm declares the path

encoded by the corresponding chromosome as a wit-

ness/counterexample and the process will be stopped.

Otherwise, the algorithm will be continued to generate

other chromosomes.

Algorithm 1. Estimation of a Markov Chain
Input: Chromosomes: all chromosomes of current generation; Rules: all transformation rules of the considered model, estimating
rate, Depth;
Output: M : a transition model of a Markov chain;
1: for k = 1 to Rules.size() do
2: Node node = new Node();
3: node.rule = Rules.get(k);node.nextRules = null; node.nextProbs = 0.0;
4: M.nodes.add(node);
5: end for
6: Sort all chromosomes of Chromosomes based on their fitness;
7: NumEstimate = (int) Chromosomes.size()*estimating rate;
8: for k = 1 to M.nodes.size() do
9: Node node = M.nodes.get(k);
10: int count = 0;
11: for i = 1 to Rules.size() do
12: int next count = 0;
13: for j = 1 to NumEstimate do
14: Find the repetition number of node.rule in Chromosomes.get(j).paths and save it in count;
15: Find the repetition number of sequence node.rule and Rules.get(i) in Chromosomes.get(j).paths and save it in

next count;
16: end for
17: if count > 0 and next count > 0 then
18: node.nextRules.Add(Rules.get(i));
19: node.nextProbs.Add(next count/count);
20: end if
21: M.nodes.set(k, node);
22: end for
23: end for
24: return M ;

Algorithm 2. Adapting the MCMC Sampling Method to Model Checking
Input: M : a transition model of a Markov chain, Population, samplingrate,Depth;
Output: new sampled chromosomes
1: NumSample = (int) Population ∗ samplingrate;
2: List <Chromosome> allChromosomes = new List <Chromosome> ();
3: List <Path> encodedPaths = new List <Path> ();
4: for k = 1 to NumSample do
5: Chromosome chromosome = new Chromosome (); Path enpath = new Path ();
6: GraphState IS = an initial state of the specified model;
7: Rule curRule = null, nexRule = null;
8: for i = 1 to Depth do
9: enpath.Add (IS);
10: Find all applicable rules over IS state and save them in appRules;
11: if a goal state is found then
12: Display “a goal state is found” and enpath as a counterexample;
13: return;
14: end if
15: if curRule is null then
16: nexRule = choose a rule r from appRules randomly;
17: else
18: nexRule = choose a rule r from appRules by which the value of M(curRule→ nextRule) is maximized;
19: end if
20: chromosome.Add (the index of nexRule in appRules);
21: Apply nexRule over IS state and update the IS state;
22: enpath.Add (nexRule); curRule = nexRule;
23: end for
24: allChromosomes.Add (chromosome); encodedPaths.Add (enpath);
25: end for
26: return allChromosomes, encodedPaths;
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4.5 SAMEDA Approach

SAMEDA uses an MC to capture the dependencies

between the applied rule on the previous state and the

allowed rules on the current state. Moreover, it em-

ploys EDA to improve the quality of the MC in hoping

to some of sampled solutions approach to an optimum

solution. For this purpose, SAMEDA evaluates the cur-

rent population using the fitness function proposed in

Subsection 4.2. SAMEDA then estimates an MC using

the selected promising chromosomes. Finally, the esti-

mated MC is sampled to generate new candidate chro-

mosomes in order to replace some of the worst ones in

the old population. SAMEDA repeats these steps un-

til a termination criterion such as finding a path lead-

ing to a goal state or reaching to a maximum num-

ber of generations occurs. In this paper, we consider

safety properties in particular and general cases. In

the particular case, each safety property g is specific to

only one system and it is meaningless for other systems.

As mentioned in the above, refuting this type of safety

properties is converted into verification of reachability

properties. In the general case, a safety property “there

isn’t any deadlock state in the system” is meaningful for

any system and its refutation is performed by detect-

ing a deadlock state (a state with no subsequent state)

in the state space. Fig.7 illustrates the architecture of

the proposed approach. Moreover, we have presented

a comprehensive example to describe the operation of

the SAMEDA approach which can be accessed through

the web 1○.

5 Experimental Results

To evaluate the performance of the SAMEDA ap-

proach, we implement it by the Java language in the

GROOVE toolset. Also, we compare its efficiency with

the existing state-of-the-art approaches such as meta-

heuristic and evolutionary algorithms like BOAcl2 [7, 19],

LBN and LDM [9], EMCDM [8], GA [20], PSO [6], and
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heuristic search algorithms like BS [24] and IDA* [25].

Since BOAcl2 has a better performance in comparison

with BOAcln and BOActp, it is only selected to compa-

rison. To make a fair comparison, we consider the

same fitness function (mentioned in Subsection 4.2)

for all approaches and also implement them in the

GROOVE toolset. The benchmarks used in this pa-

per are different models of the dining philosophers [26],

process life cycle [9], readers-writers [9], firewalls [27], and

railway switching control [28]. All results have been

generated on a system with an Intel CORE i5 processor

and 3 GB of memory.

To execute the approaches, we should specify the

appropriate values for their parameters. For this pur-

pose, we have performed particular experiments. Ta-

ble 1 displays these parameters along with their suit-

able values. The beam width parameter specifies the

maximum number of states with the highest heuristic

values stored at each depth. In some benchmarks such

as firewalls, BS cannot find a goal state for any value

of the beam width parameter and thus no value is dis-

played for such benchmarks. Moreover, the iteration

parameter determines the maximum number of allowed

generations of SAMEDA. These parameters usually are

the same for all benchmarks, whereas some parame-

ters such as maxDepth and population size (denoted by

popuSize) are variable for different models of bench-

marks. The maxDepth parameter determines the maxi-

mum deep of the state space that the approaches can

explore to search a goal state.

The result tables show the average running time

of 20 independent runs of all approaches to refute

the safety properties. If EMCDM does not support

a model, the term of “NS” is used. Moreover, if an

approach uses up all available memory or reaches the

maximum number of iterations, but still unable to find

any goal state, we will use the term “NF” in the corre-

sponding cell of the result tables. It is possible that by

increasing the memory, iterations or maxDepth, a goal

state may be found. Also, in some benchmarks, there

are several goal states in the state space and finding

one of them can be simple. Hence, in these bench-

marks, it is not necessary to use the large values for

the maxDepth and popuSize parameters. Conversely, in

some benchmarks that only one goal state exists, the

approaches should explore the deeper level of the state

space of large models. It means that the values of these

parameters in large models should be increased. Since

each pair of LBN and LDM, GA and PSO, and BS and

IDA* has the almost same average running time, we

display only one of them in the following result tables.

The results of other approaches can also be accessed

through the web 2○.

In addition to the result tables, we will con-

sider some charts illustrating the impact of estimat-

ing and sampling rates on average running time of the

SAMEDA approach. These charts can be accessed

through the web 3○.

5.1 Dining Philosophers Problem

This problem, used to examine the concurrent al-

gorithms, describes the situation of some philosophers

Table 1. Initial Parameters of the Approaches

Approach Benchmark Parameter Value

SAMEDA – iteration 100.0

estimating rate 0.4

sampling rate 0.6

BOAcl2 – learning rate 0.4

replacement rate 0.6

BS dining philosophers, process life cycle, railway switching control beam width 10.0, 40.0

readers-writers

LBN and LDM – numPromis 3.0

dining philosophers minst 0.6, 0.1

readers-writers, process life cycle, railway switching control

PSO – C1 2.0

C2 2.0

W 0.8

GA – crossover rate 0.6

mutation rate 0.3

position of crossover Middle of the chromosomes

2○https://sourceforge.net/projects/groove-and-mceda/files/extra results.pdf/, May 2021.
3○https://sourceforge.net/projects/groove-and-mceda/files/impact runningtime.pdf, May 2021.
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sitting around a table with a fork between each two

philosophers. At first, all philosophers are in the think-

ing mode. After a while, they may change their modes

and go to the hungry one (i.e., the rule of go hungry).

Each hungry philosopher can get the left fork and go

to the hasLeft mode if it is free, i.e., it is not held by

an adjacent philosopher (i.e., the rule of get-left). If a

right fork of a philosopher with the hasLeft mode is free,

he/she gets the fork and goes to the eating mode (i.e.,

the rule of get-right). Later, a philosopher with the eat-

ing mode releases the left (i.e., the rule of release-left)

and right (i.e., the rule of release-right) forks respec-

tively and goes to the thinking mode. This process is

repeated eternally unless a deadlock state happens. In

a deadlock state, all philosophers have picked up their

left fork and wait for their right fork. In other words,

all philosophers are in the hasLeft mode.

Tables 2 and 3 display the average running time of

all approaches to refuting the safety properties “there

exists no state in which all philosophers are in the

hasLeft mode” in the particular case and “there isn’t

any deadlock state in the system” in the general case

for the dining philosophers problem, respectively.

As seen in the tables, the average running time of

SAMEDA is less than that of the others except EM-

CDM. In this problem, EMCDM can obtain precise

knowledge from the information of checking smaller

models (e.g., a model with three philosophers) and

it has the best result in comparison with the others.

When the size of models grows, GA and BS face the

state space explosion problem.

5.2 Process Life Cycle Problem

In this problem, the life cycle of a process such as

creation, execution, and death is described in the ope-

rating system. The created process is loaded into the

memory provided that there is enough free memory.

The loaded process requests CPU or I/O devices. If

these devices are available, they are allocated to the

process. Otherwise, the process should wait for them

until they are free. When the waited process gets the

devices and executes completely, it gives up all allo-

cated resources and stops. In this problem, a situation

in which all processes have stopped can be considered

as a deadlock state.

Tables 4 and 5 display the average running time of

all approaches to refuting the safety properties “there

exists no state in which all existing processes are in the

waiting state for I/O devices” in the particular case and

“there isn’t any deadlock state in the system” in the

general case for the process life cycle problem, respec-

tively. According to the tables, all approaches except

BS can find a goal state in the large models successfully.

Table 2. Comparison of Average Running Time (s) of All Approaches to Refuting the Safety Property in the Particular Case for the
Dining Philosophers Problem

Number of Philosophers maxDepth popuSize SAMEDA (s) BOAcl2 (s) LBN (s) EMCDM (s) GA (s) BS (s)

20 100 20 1.64 1.92 1.98 1.21 16.42 110.37

40 120 40 8.37 9.12 9.23 1.39 NF 1 028.00

60 140 60 23.79 24.90 25.43 1.43 NF NF

80 180 80 45.93 46.72 46.04 1.84 NF NF

100 220 100 80.10 86.34 87.37 2.83 NF NF

Table 3. Comparison of Average Running Time (s) of All Approaches to Refuting the Safety Property in the General Case for the
Dining Philosophers Problem

Number of Philosophers maxDepth popuSize SAMEDA (s) BOAcl2 (s) LBN (s) EMCDM (s) GA (s) BS (s)

20 100 20 3.21 3.67 4.31 1.12 30.45 7.83

40 120 40 4.97 5.21 5.63 1.36 NF 18.36

60 140 60 10.93 11.62 12.54 1.76 NF NF

80 180 80 13.15 27.39 14.79 2.20 NF NF

100 220 100 26.43 54.28 29.34 3.84 NF NF

Table 4. Comparison of Average Running Time (s) of All Approaches to Refuting the Safety Property in the Particular Case for the
Process Life Cycle Problem

Process Life Cycle maxDepth popuSize SAMEDA (s) BOAcl2 (s) LBN (s) EMCDM (s) GA (s) BS (s)

10 process 10 memory 40 20 0.67 0.72 76.43 7.94 9.85 NF

12 process 12 memory 45 30 0.95 1.09 126.42 11.03 18.31 NF

15 process 15 memory 50 40 1.31 1.84 156.36 14.61 NF NF
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Table 5. Comparison of Average Running Time (s) of All Approaches to Refuting the Safety Property in the General Case for the
Process Life Cycle Problem

Process Life Cycle maxDepth popuSize SAMEDA (s) BOAcl2 (s) LBN (s) EMCDM (s) GA (s) BS (s)

20 process 8 memory 180 20 1.34 0.83 163.41 21.34 12.43 8.30

30 process 8 memory 280 40 1.49 1.21 184.30 25.42 29.93 21.30

40 process 8 memory 350 60 1.87 1.74 194.27 28.72 NF NF

50 process 8 memory 450 80 2.15 2.13 203.37 31.40 NF NF

It should be noted that there is only one goal state in

the state space of models and the state is placed in the

deeper places of the state space. Moreover, the larger

models of this problem have the wider state space and

we should increase the beam width parameter to increase

the probability of finding a goal state. This causes BS

cannot search the deeper places and thus it will fail.

5.3 Readers-Writers Problem

This problem describes a situation in concurrent

programming in which many threads try to access a

shared resource simultaneously. Some of these threads

play the reader role and some others play the writer

role. Several readers can read the shared resources at

the same time provided that no writer is writing. Un-

like the readers, only one writer can write to the shared

resource at any time. In this problem, we consider a

situation in which all readers and writers have finished

their processing as a deadlock state.

Tables 6 and 7 display the average running time of

all approaches to refuting the safety properties “there

exists no state in which all readers and writers have fin-

ished their processing” in the particular case and “there

isn’t any deadlock state in the system” in the gene-

ral case for the readers-writers problem, respectively.

According to the tables, the average running time of

SAMEDA is smaller than that of the others.

5.4 Firewalls Problem

Firewalls are tools that establish a barrier to prevent

unauthorized access to or from secured and controlled

internal networks [27]. Fig.8 shows a model of two net-

works separated by a firewall (FW). In the model, there

are an internal and an external interface (IF), connected

to a network of in-locations (LI) and a network of out-

locations (LO) respectively. It is supposed that the

firewall protects the internal network. Many safe or un-

safe packets can be created at out-locations, and they

flow through the network. Of course, only safe packets

are allowed to be created at in-locations. Although the

edges are directed, the flow of packets is bi-directional.

If an unsafe packet wants to flow from the external net-

work to the internal network, the firewall should deny

the packet. Since there is not any deadlock state in the

models of this problem, we cannot consider the safety

property “there isn’t any deadlock state in the system”

in the general case of this problem.

Table 8 shows the average running time of all ap-

proaches to refuting the safety property “there exists

no state in which an unsafe packet is denied by the fire-

wall” in the particular case for the firewalls problem.

As seen in Table 8, the running time of SAMEDA is

less than that of the others. Since the model of this

problem has infinite state space, EMCDM cannot work

correctly. Similar to the process life cycle problem and

due to the mentioned reason, BS cannot find any goal

state.

Table 6. Comparison of Average Running Time (s) of All Approaches to Refuting the Safety Property in the Particular Case for the
Readers-Writers Problem

Readers-Writers maxDepth popuSize SAMEDA (s) BOAcl2 (s) LBN (s) EMCDM (s) GA (s) BS (s)

4-R-4-W 50 40 2.14 2.83 3.21 30.28 11.87 183.47

5-R-5-W 70 50 5.21 6.02 14.67 34.75 84.28 530.18

6-R-6-W 90 60 21.74 24.39 36.39 42.93 154.95 563.95

Table 7. Comparison of Average Running Time (s) of All Approaches to Refuting the Safety Property in the General Case for the
Readers-Writers Problem

Readers-Writers maxDepth popuSize SAMEDA (s) BOAcl2 (s) LBN (s) EMCDM (s) GA (s) BS (s)

4-R-4-W 50 40 3.14 4.31 4.38 31.28 12.97 7.31

5-R-5-W 70 50 6.03 7.94 16.40 36.49 82.30 14.62

6-R-6-W 90 60 25.42 27.38 37.06 43.63 163.52 19.64
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Fig.8. A model of two networks separated by a firewall (FW).

Table 8. Comparison of Average Running Time (s) of All Approaches to Refuting the Safety Property in the Particular Case for the
Firewalls Problem

Firewalls maxDepth popuSize SAMEDA (s) BOAcl2 (s) LBN (s) EMCDM (s) GA (s) BS (s)

fire 6 LI 6 LO 60 20 2.370 4.11 25.31 NS 5.27 NF

fire 8 LI 8 LO 80 30 6.410 8.51 52.83 NS 92.51 NF

fire 10 LI 10 LO 100 40 9.173 11.04 80.73 NS 214.31 NF

5.5 Railway Switching Control Problem

This problem describes the Railway Switching Con-

trol System (RSCS) which has been designed to con-

trol the correct functionality of the railway switching

system [28]. RSCS should guarantee the safety of the

approaching trains in all railways approaching to the

railway switches. Since the models of this problem do

not have any deadlock state, we cannot consider the

safety property “there isn’t any deadlock state in the

system” in the general case of this problem.

Table 9 shows the average running time of all ap-

proaches to refuting the safety property “there exists no

state in which all trains have been crossed successfully”

in the particular case for the railway switching control

problem. According to Table 9, the average running

time of SAMEDA is smaller than that of the others.

6 Discussion

The required time to reach a goal state is an impor-

tant factor to evaluate the effectiveness of an approach.

In fact, whatever an approach can find a goal state

(especially an error) sooner, designers can correct the

faulty design sooner and prevent spending more time

and cost. According to Tables 2–9, SAMEDA out-

performs other approaches in terms of such a factor.

Generating shorter counterexamples through exploring

less states can be another important factor to evaluate

the effectiveness of an approach. For this purpose, we

compare the length of the generated counterexamples

and the number of explored states by all approaches

in a sample model of the benchmarks. These tables,

which can be accessed through the web 4○, confirm that

SAMEDA generates shorter counterexamples through

exploring less states in most of the benchmarks.

The accuracy (i.e., the ratio of the number of suc-

cessful runs to the total runs) is another important fac-

tor to compare the effectiveness of the approaches. To

do this, we have executed all approaches 30 times to

refute the safety properties in the dining philosopher’s

problem with 12 philosophers. It should be noted that

the maxDepth parameter affects the accuracy of the ap-

proaches. Large values for this parameter cause all ap-

proaches to find a goal state easily. Conversely, small

values get harder (even impossible) to find a goal state.

Table 9. Comparison of Average Running Time (s) of All Approaches to Refuting the Safety Property in the Particular Case for the
Railway Switching Control Problem

RSCS maxDepth popuSize SAMEDA (s) BOAcl2 (s) LBN (s) EMCDM (s) GA (s) BS (s)

RSCS 8 train 4 railway 50 20 3.19 6.41 12.74 3.83 24.61 17.31

RSCS 10 train 4 railway 60 30 8.93 18.31 30.91 11.49 73.93 43.02

RSCS 12 train 4 railway 70 40 15.29 33.72 43.21 16.32 110.34 64.28

4○https://sourceforge.net/projects/groove-and-mceda/files/detailed results.pdf/, May 2021.
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Hence, we have considered the value of maxDepth equal

to 24, the minimum possible value in this model. As

seen in charts of Fig.9, SAMEDA, BOAcl2, LBN, LDM

and EMCDM have a higher accuracy in comparison

with the others except BS and IDA*. Although BS

and IDA* can find a goal state in this model, according

to Tables 2 and 3, they cannot find any goal state in

the larger models of this problem.

Several parameters such as maxDepth and popuSize

influence the accuracy of the approaches. To determine

the impact level of maxDepth and popuSize, we have

executed all approaches 30 times with several values of

these parameters to refute the safety properties in the

readers-writers problem with six readers and six writ-

ers.

As seen in the charts on the web 5○, very small

values of maxDepth have a significant negative effect

on the accuracy of the approaches. While, large val-

ues of maxDepth increase the chance of approaches to

reach a goal state. Since there is a minimum value

for maxDepth in the considered benchmark, the values

smaller than this minimum value cause BS and IDA* to

fail and the larger ones have no positive effect. Hence,

these approaches are ignored in the charts. Similar to

the maxDepth parameter, very small values for popu-

Size decrease the successful likelihood of approaches.

Moreover, large values for popuSize raise the level of

accuracy. Note that popuSize does not have any effect

on LBN, LDM, EMCDM, BS and IDA*. Therefore,

these approaches are ignored in the charts.

As mentioned before, checking a safety property q

in all possible states may expose the problem of state

space explosion, especially in large and complex sys-

tems. To handle this problem, SAMEDA attempts to

refute the safety property q by verifying the reachability

property “not q”. If SAMEDA can verify the reacha-

bility property successfully, a witness/counterexample

will be generated. Otherwise, SAMEDA either has used

up all available memory or has reached the maximum

number of iterations. There is also a third possibil-

ity: q describes a correct behavior of the corresponding

system. Reaching SAMEDA to the maximum number

of iterations shows that q is satisfied in the explored

states. Nevertheless, we cannot conclude that q is sat-

isfied in all possible states. But, it can be said that

the safety property q is verified with the probability of

the ratio of the explored states and all possible states.

For more clarity, we consider the safety property “un-

safe packets never reach the internal network” in the

firewalls problem with 10 LIs and 10 LOs. SAMEDA

with parameters values, maxDepth = 100, popuSize =

40, iterations =100, and sampling rate = 0.6, explores

the following number of states (of course some of them

may be repetitive):

popuSize×maxDepth + sampling rate×
popuSize×maxDepth× iterations

= 40× 100 + 0.6× 40× 100× 100

= 244 000.

Whereas, the number of possible states of this model

(so-called nps) is much larger than this number. It

should be noted that the generation of all possible

states needs a very powerful computer system. After

computing nps, we can claim that, with probability of

0 20 40 60 80 100
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LDM

LBN

BOAcl2
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IDA*
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Accuracy
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Fig.9. Comparing the accuracy of the approaches to refuting the safety properties in the (a) particular and (b) general cases for the
dining philosopher’s problem with 12 philosophers. maxDepth = 24.

5○https://sourceforge.net/projects/groove-and-mceda/files/impact accuracy.pdf/, May 2021.
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(244 000/nps), unsafe packets do not reach the internal

network in the specified model of the firewalls problem.

7 Conclusions

In this paper, we used model checking for model-

based safety analysis of systems modeled by graph

transformations. The problem of model checking is that

it may face the state space explosion problem in large

and complex systems. Unfortunately, recently proposed

meta-heuristic and evolutionary algorithms to handle

this problem suffer from the low effectiveness in terms

of accuracy and speed of convergence. In exploring the

state space of such systems, since allowed rules on the

current state depend on only applied rules on the pre-

vious state, a Markov chain can be employed to cap-

ture this type of dependencies. Moreover, Estimation

of Distribution Algorithm (EDA) is an evolutionary al-

gorithm to guide the search for the optimal solution

by learning and sampling probabilistic models through

the best individuals of the population at each gene-

ration. Hence, in this paper, we proposed an approach

using Markov chain based Estimation of Distribution

Algorithm (EDA) to improve the accuracy and speed

of convergence in model checking of safety properties

of systems. To evaluate the effectiveness of the pro-

posed approach, it was implemented in GROOVE, an

open source toolset for designing and model checking

graph transformation systems. The comparison of ave-

rage running time of SAMEDA with other approaches

on several benchmarks showed that the proposed ap-

proach has a high speed and accuracy in comparison

with the existing meta-heuristic and evolutionary tech-

niques in safety analysis of systems. Using other prob-

abilistic models can be a future research. Also, improv-

ing the proposed fitness functions can be another piece

of future work.
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lem, distribution estimation, and Bayesian networks. Evol.

Comput., 2000, 8(3): 311-340. DOI: 10.1162/10636560075-

0078808.

[13] Lahtinen J, Kuismin T, Heljanko K. Verifying large modu-

lar systems using iterative abstraction refinement. Reliab.

Eng. Syst. Saf., 2015, 139: 120-130. DOI: 10.1016/j.res-

s.2015.03.012.

[14] Rozenberg G. Handbook of Graph Grammars and Com-

puting by Graph Transformation, Volume 1: Foundations.

World Scientific, 1997. DOI: 10.1142/3303.

[15] Kastenberg H, Rensink A. Model checking dynamic states

in GROOVE. In Proc. the 13th International SPIN Work-

shop on Model Checking of Software, March 30–April 1,

2006, pp.299-305. DOI: 10.1007/11691617 19.

[16] Staunton J, Clark J A. Searching for safety violations

using estimation of distribution algorithms. In Proc. the

3rd International Conference on Software Testing, Ver-

ification, and Validation, April 2010, pp.212-221. DOI:

10.1109/ICSTW.2010.24.

[17] Staunton J, Clark J A. Finding short counterexamples

in promela models using estimation of distribution algo-

rithms. In Proc. the 13th Annual Conference on Genetic

and Evolutionary Computation, July 2011, pp.1923-1930.

DOI: 10.1145/2001576.2001834.

https://doi.org/10.1002/9781118776353
https://doi.org/10.1016/j.ress.2012.03.021
https://doi.org/10.10\discretionary {-}{}{}1\discretionary {-}{}{}6/j.a\discretionary {-}{}{}s\discretionary {-}{}{}o\discretionary {-}{}{}c.2014.06.055
https://doi.org/10.10\discretionary {-}{}{}1\discretionary {-}{}{}6/j.a\discretionary {-}{}{}s\discretionary {-}{}{}o\discretionary {-}{}{}c.2014.06.055
https://doi.org/10.1109/COMPSAC.2011.22
https://doi.org/10.11\discretionary {-}{}{}4\discretionary {-}{}{}5/1\discretionary {-}{}{}2\discretionary {-}{}{}7\discretionary {-}{}{}6\discretionary {-}{}{}958.1277171
https://doi.org/10.11\discretionary {-}{}{}4\discretionary {-}{}{}5/1\discretionary {-}{}{}2\discretionary {-}{}{}7\discretionary {-}{}{}6\discretionary {-}{}{}958.1277171
https://doi.org/10.10\discretionary {-}{}{}1\discretionary {-}{}{}6/j.a\discretionary {-}{}{}s\discretionary {-}{}{}o\discretionary {-}{}{}c.2015.04.032
https://doi.org/10.10\discretionary {-}{}{}1\discretionary {-}{}{}6/j.a\discretionary {-}{}{}s\discretionary {-}{}{}o\discretionary {-}{}{}c.2015.04.032
https://doi.org/10.1016/j.jss.2017.05.128
https://doi.org/10.10\discretionary {-}{}{}1\discretionary {-}{}{}6/j.a\discretionary {-}{}{}s\discretionary {-}{}{}o\discretionary {-}{}{}c.2016.06.039
https://doi.org/10.10\discretionary {-}{}{}1\discretionary {-}{}{}6/j.a\discretionary {-}{}{}s\discretionary {-}{}{}o\discretionary {-}{}{}c.2016.06.039
https://doi.org/10.1016/j.infsof.2018.01.004
https://doi.org/10.11\discretionary {-}{}{}6\discretionary {-}{}{}2/1\discretionary {-}{}{}0\discretionary {-}{}{}6\discretionary {-}{}{}36\discretionary {-}{}{}5\discretionary {-}{}{}6\discretionary {-}{}{}0\discretionary {-}{}{}0\discretionary {-}{}{}7\discretionary {-}{}{}5\discretionary {-}{}{}0078808
https://doi.org/10.11\discretionary {-}{}{}6\discretionary {-}{}{}2/1\discretionary {-}{}{}0\discretionary {-}{}{}6\discretionary {-}{}{}36\discretionary {-}{}{}5\discretionary {-}{}{}6\discretionary {-}{}{}0\discretionary {-}{}{}0\discretionary {-}{}{}7\discretionary {-}{}{}5\discretionary {-}{}{}0078808
https://doi.org/10.10\discretionary {-}{}{}1\discretionary {-}{}{}6/j.r\discretionary {-}{}{}e\discretionary {-}{}{}s\discretionary {-}{}{}s.2015.03.012
https://doi.org/10.10\discretionary {-}{}{}1\discretionary {-}{}{}6/j.r\discretionary {-}{}{}e\discretionary {-}{}{}s\discretionary {-}{}{}s.2015.03.012
https://doi.org/10.1142/3303
https://doi.org/10.1007/11691617_19
https://doi.org/10.1109/ICSTW.2010.24
https://doi.org/10.1145/2001576.2001834


Einollah Pira: Using Markov Chain Based EDA for Model-Based Safety Analysis 855

[18] Staunton J, Clark J A. Applications of model reuse when

using estimation of distribution algorithms to test concur-

rent software. In Proc. the 3rd International Symposium

on Search Based Software Engineering, September 2011,

pp.97-111. DOI: 10.1007/978-3-642-23716-4 12.

[19] Pira E, Rafe V, Nikanjam A. Using evolutionary algo-

rithms for reachability analysis of complex software systems

specified through graph transformation. Reliab. Eng. Syst.

Saf., 2019, 191: Article No. 106577. DOI: 10.1016/j.res-

s.2019.106577.

[20] Yousefian R, Aboutorabi S, Rafe V. A greedy algorithm ver-

sus metaheuristic solutions to deadlock detection in graph

transformation systems. J. Intell. Fuzzy Syst., 2016, 31(1):

137-149. DOI: 10.3233/IFS-162127.

[21] Yang X S. A new metaheuristic bat-inspired algorithm.

In Proc. the 2010 Nature Inspired Cooperative Strategies

for Optimization, May 2010, pp.65-74. DOI: 10.1007/978-

3-642-12538-6 6.

[22] Baier C, Katoen J P. Principles of Model Checking. MIT

Press, 2008.

[23] Sivanandam S N, Deepa S N. Introduction to Genetic Al-

gorithms. Springer, 2008. DOI: 10.1007/978-3-540-73190-0.

[24] Groce A, Visser W. Heuristics for model checking Java pro-

grams. Int. J. Softw. Tools Technol. Transf., 2004, 6(4):

260-276. DOI: 10.1007/s10009-003-0130-9.

[25] Edelkamp S, Lafuente A L, Leue S. Protocol verification

with heuristic search. In Proc. the 2001 Spring Symposium

Series, March 2001.
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