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Abstract Hardware security remains as a major concern in the circuit design flow. Logic block based encryption has

been widely adopted as a simple but effective protection method. In this paper, the potential threat arising from the rapidly

developing field, i.e., machine learning, is researched. To illustrate the challenge, this work presents a standard attack

paradigm, in which a three-layer neural network and a naive Bayes classifier are utilized to exemplify the key-guessing

attack on logic encryption. Backed with validation results obtained from both combinational and sequential benchmarks,

the presented attack scheme can specifically accelerate the decryption process of partial keys, which may serve as a new

perspective to reveal the potential vulnerability for current anti-attack designs.
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1 Introduction

In the course of achieving trusted and reliable appli-

cation specific integrated circuit (ASIC) designs, hard-

ware security remains as a paramount concern to be

confronted over the past few decades. Emerging from

its vulnerabilities to the attacks at different design lev-

els, hardware security issue involves a wide range of

countermeasures to enhance protection, where secret

key based static authentication is one of the common

techniques [1]. In this context, the original logic block is

often equipped with a tamper-proof encryption module

to authorize the user. The encryption methods may

vary from simple logic gates to huge memory units.

Logic block encryption offers several merits, including

low design overhead and functional camouflage, thus

mitigating the risks of malicious counterfeiting, piracy

and hardware trojans [2].

However, despite the virtues above, logic block en-

cryption may be greatly challenged by the novel at-

tacks with the aid of machine learning (ML) [3–6]. To

retrieve the keys in the encryption module, people used

to believe that an adversary needs to verify every key

combination; therefore the traversal complexity is expo-

nential to the length of keys. Nevertheless, the stereo-

type should be abandoned as numerous algorithms, like

feature extraction in a supervised learning task, can

support the adversary in effectively mining the data

derived from the logic block and interpreting the en-

cryption trace. As a result, the key-guessing process

is largely accelerated, while the protection techniques

become invalid.

Most of the existing researches have concentrated on

the application of machine learning in enhancing side-

channel analysis (SCA) attacks. SCA attacks usually

leverage physical information, such as processing time,

power consumption and electromagnetic emanation, to

reveal the cryptographic keys. However, the main is-
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sue remains as the feature extraction and classifica-

tion problem for the physical trace data. In the litera-

ture, Hospodar et al. [3] exemplified firstly the usage of

least squares support vector machines as the learning

algorithm. Gilmore et al. [4] proposed principal com-

ponent analysis for dimensional reduction and fed the

data into a neural network to realize decryption. Be-

sides, Maghrebi et al. [5] articulated the attack schemes

that utilize convolutional neural network (CNN), au-

toencoder, long and short term memory (LSTM) and

multilayer perceptron (MP). Moreover, Das et al. [6]

constructed a fully-connected deep neural network to

execute the SCA attack on multiple devices.

Whereas, it is notable to address the efficiency of

ML-aided SCA attack which may be dramatically hin-

dered by the fluctuation of power pin noise and power

camouflage tricks [7, 8], which directly deteriorates the

data quality and thus limits the learning accuracy. The

ML-aided SCA attack also brings forward a demand of

sampling precision and denoising ability for test faci-

lities as well as data post processing, such as the align-

ment for power traces, which may restrict its feasibility

and practicality.

Hence, for the sake of avoiding the flaws, we intro-

duce the ML-aided attack techniques to another attack

category, namely logic cryptanalysis, to implement de-

cryption operation. In the context, the ML-aided at-

tack shall mine the correlation trace of the exact logic

values rather than physical parameters to deduce the

cryptographic keys. The data source used for decryp-

tion can be easily and reliably obtained from the in-

put/output pins by applying a certain volume of vector

patterns.

In brief, the key contributions of this work can be

concluded as follows.

• This work introduces the machine learning based

attack to logic cryptanalysis rather than previous SCA-

based counterparts, but also steps further to transform

the decryption process to an optimization problem that

can be handled by existing mathematical tools.

• This work establishes a standard logic key-

guessing attack paradigm, and then elaborates how an

adversary can use reasonable computing resources to

implement a successful key-guessing attack against logic

encryption.

• This work helps accelerate the decryption process

by employing light-weighted ML methods to firstly deal

with the “easy keys”. As the keys remaining to be deci-

phered have been reduced to a small number after sev-

eral epochs, the total decryption time consumed will be

compressed.

• This work analyzes the potential logic correlation

during the encryption phase, reveals the vulnerabil-

ity of current logic block encryption, and finally helps

enhance hardware security by exploring some possible

countermeasures.

As for the organization, Section 2 presents the ma-

chine learning aided key-guessing attack paradigm and

lists the related knowledge and methods. Section 3

implements the attack paradigm on ISCAS’85/89 and

ITC’99 benchmarks to exemplify its feasibility and ef-

fectiveness. Section 4 discusses the underlying math-

ematical mechanism that supports our machine learn-

ing based logic attack and explores the potential anti-

attack countermeasures, and Section 5 concludes the

paper.

2 Preliminaries

2.1 Machine Learning Aided Attack Paradigm

As the major focus of this paper, we present a

standard key-guessing attack paradigm. The paradigm

rests upon the assumption of the existence of an en-

crypted netlist as well as an additional activated inte-

grated circuit (IC), as depicted in Fig.1.

Definition 1 (Encrypted Netlist). An encrypted

netlist consists of the gate-level information of the en-

crypted IC, which can be obtained from reverse engi-

neering.

Definition 2 (Activated IC). An activated IC is a

functional circuit that produces resultant outputs when

applying arbitrary input patterns, which can be pur-

chased from the open market.

The activated IC has been authorized, formally

equivalent to the encrypted netlist when right keys are

applied. Mathematically, the encrypted netlist and the

activated IC can be expressed as the following logic

functions, respectively:

Oen =f(Ien,Ken), inverse functionKen =g(Oen), (1)

Oright =f(Ien,Kright), inv. func.Kright =g(Oright), (2)

where the encrypted netlist f(·,·) produces output Oen

when applying input Ien and key Ken, and functions

the same as the activated IC when right key Kright is

applied. In view of the independence between I and K

as they are both input variables, the inverse function

K = g(I,O) can be further simplified as K = g(O).

Generally, only when the inverse function g(·) is ex-

plicitly expressed can we reveal the keys Kright. How-
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Fig.1. Standard attack paradigm against logic block encryption. Note that the inverse function can be further simplified for the
independent variables I and K.

ever, it proves solving the inverse function g(·) is even

harder than NP-complete problems [9].

Despite the complexity of figuring out a precise so-

lution, machine learning can deduce the right keys in

a totally different way. Basically, when provided with

sufficient logic trace data, one can use supervised learn-

ing to construct a fitting function r(·) for the target

function g(·). The data pairs (Oen, Ken) collected

from the encrypted netlist, serving as labelled train-

ing datasets, are learned in the training phase, while

the data Oright derived from the activated IC, serving

as the test datasets, will be substituted to the trained

fitting function r(·) so as to approximately estimate the

key values Kright as r(Oright) in the inference phase.

2.2 Logic Encryption

In general, logic encryption refers to a built-in lock-

ing mechanism by inserting additional key gates to ac-

complish encryption within a logic block, where en-

cryption nodes are carefully chosen and adequately

mixed with the original circuit [2]. Fig.2 depicts a sim-

ple implementation for logic encryption. By mixing

XOR/XNOR gates or MUXs to the original circuit, the

encryption units will serve as buffers or inverters (or

fault nodes) according to the key values. Only when

the correct keys K1 = 1, K2 = 0, K3 = 1 and K4 = 0

are applied will the modified circuit work properly.

Logic encryption outperforms other encryption
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Fig.2. Logic encryption, where K1 and K2 are encrypted with XNOR/XOR gates, while K3 and K4 with MUXs.
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methods for its convenience and low overhead to

implement as well as obfuscation with the original

circuits [9, 10]. It has already been implemented to both

combinational and sequential circuits, e.g., full adder

and subtractor [11], pseudorandom number generator

(PRNG) [12], flip-flop [13], and scalable multi-module

designs [14].

On account of the selection of the cryptographic

nodes, EPIC [9], the first to present the concept of logic

encryption, suggested inserting additional key gates

randomly to enhance circuit security. Later work,

namely the fault analysis based logic encryption in [10],

chose the highest fault impact (FI) nodes to maintain

50% Hamming distance. [15] modifies the strategy by

selecting a majority of keys based on FI while the others

for preventing path sensitization. Other innovations on

decreasing the overhead of logic encryption were previ-

ously discussed in reusing key-based logic gates [16] and

low-overhead implementation [17].

Previous researches have demonstrated effective at-

tacks on logic encryption. Except for SCA attacks

like differential power analysis (DPA) in [18], they

can be roughly divided into two categories: topology-

indispensable or not. The former may refer to the

sensitization attack [19] (which propagates key ports

to be observed on outputs) and the logic cone ana-

lysis attack [20] (which distinguishes logic cones, then

“divide-and-rule”). They must resort to specific logi-

cal structures to sensitize key information. Hence their

attack efficiency highly hinges on the topology of the

target logic block. In contrast, the Hill-climbing [21]

or the Boolean satisfiability (SAT) attack [22] performs

only on the external input, key and output ports re-

gardless of the detail of the netlist. Hence mitigating

this type of attacks has become the so-called hot topics

in recent years [23–28]. It is notable that authors in [21]

and [22] already adopted similar principles widely used

in machine learning, such as the gradient descent al-

gorithm. In this work, we step further to present the

attack paradigm with general machine learning meth-

ods.

2.3 Neural Network

A fully-connected (FC) neural network (NN) con-

sists of an input layer, several hidden layers and an

output layer (in Fig.3). Between adjacent layers, it or-

ganizes as every neuron is connected to all the neurons

in its front and back layers. The training method we

use here is the feed-forward backprop (BP) algorithm,

which is the most common in supervised learning and

is well supported by current mathematical tools.

In the forward phase, the network propagates in-

put vectors forward and produces resultant output vec-

tors. Each neuron sums up all the weighted inputs and

modulates the sum through a nonlinear activation func-

tion, tanh(·) in (3). As the output vector o undergoes

a comparison process with the labelled vector t, loss

function E is derived in (4).

yj = a

(
n∑

i=0

wji × xi

)
, where a (·) = tanh (·) . (3)

global loss function: E =
1

2

∑
k∈outputs

(tk − ok)
2
. (4)

In the backward phase, the network propagates the

loss function E back and adjusts the weights based on

the gradient descent algorithm, where η is the learning

Hidden Layer 1 Hidden Layer NInput Layer

Activation

Function

...

...

...

...

Output Layer

Activation

Function

Activation

Function

...

...

...

...

b bN bO

Fig.3. FC neural network trained with the BP algorithm.
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rate in (5):

weight updating rule: ∆wji = −η ∂E
∂wji

. (5)

2.4 Naive Bayes Classifier

Naive Bayes classifier is a widely adopted tool for

binary classification. Given the fitting function r(·) de-

rived from the feature variables x, Bayes classification

rule h∗ is decided by:

y∗ = h∗(x) =

{
1, if r(x) > 1/2,
0, if r(x) < 1/2.

(6)

Naive Bayes classifier is known as the optimal clas-

sifier when assuming strong independence between the

variables. Once the fitted values r(x) for secret keys

are obtained, the naive Bayes classifier will judge the

keys as logic 1 if their values are above 1/2 and vice

versa, as a typical binary classification problem.

For a more comprehensive look at the preliminar-

ies mentioned above, hereinafter we will address more

about their roles. Firstly, on the basis of the assump-

tion of our attack paradigm, the kernel problem has

been transformed to solving the inverse function g(·) as

the secret keys can be derived from Kright = g(Oright),

where the circuits are encrypted by logic encryption.

Secondly, in order to deduce a possible fitting func-

tion for g(·) in reasonable time, we introduce the neural

network trained and inferred by using the datasets col-

lected from the encrypted netlist and the activated IC,

respectively. The reason why we use the neural network

lies on the issue that the network architecture can be

easily manipulated, which helps extract some high di-

mensional features if not too overfitted. Thirdly, after

training, the fitted value r(x) for right keys Kright can

be derived by substituting Oright into the trained neu-

ral network, but generally it produces an output within

the range of [0, 1]. In order to classify them as exact

logic 1 or 0, naive Bayes classifier is finally adopted to

binarize r(x).

To facilitate reading, we list the most frequently

used symbols in Table 1.

3 Implementation

3.1 Procedure of the Attack Paradigm

In terms of the implementation procedure, Fig.4 ex-

emplifies how an adversary conducts a machine learning

aided attack against logic block based encryption. 1)

The target circuits are encrypted by a specific node-

selecting strategy beforehand, i.e., random inserting or

the highest fault impact (FI) encryption with XORs or

MUXs. 2) By applying random input vectors Ien and

random key vectors Ken, resultant training datasets

(Oen, Ken) as well as test dataset Oright are collected.

3) A certain machine learning algorithm is adopted to

calculate the fitting function for inverse function g(·),
and here the neural network is employed, where the

number of the neurons in the input and the output layer

is consistent with the number of output nodes and key

nodes, respectively. 4) Finally, the keys values inferred

by substituting Oright into r(·) of the trained network

are fed into the naive Bayes classifier to accomplish clas-

sification.

Table 1. Quick Reference to Frequently-Used Symbols

Symbol Meaning

f(·,·) Logic function of encrypted netlist, independent
variables: I and K, dependent variable: O

g(·) Inverse function of f(·,·), independent variable: O,
dependent variable: K

r(·) Fitting function of g(·), derived from neural net-
work

Ien Random vectors applied on the encrypted input
nodes

Ken Random vectors applied on the encrypted key
nodes

Kright Right vectors applied on the encrypted key nodes

Oen Resultant output response when applying random
keys

Oright Resultant output response when applying right
keys

1. Encrypt Target Circuits by Logic Encryption

2. Achieve Training and Test Datasets from the Encrypted

Netlist and the Activated IC

3. Utilize Machine Learning Methods, e.g., Neural
Network to Fit Inverse Function g(.)

4. Inferred Key Values Are Classified by Naive Bayes
Classifier As Either Logic 0 or 1   

Key

Encrypted 

Netlist
Ien

Ien

Ken

Oen Oright

Activated

IC

Hidden Layer Output LayerInput Layer

Ouput

Vectors
Key

Vectors

r↼x↽ > / Key=1 r↼x↽ < / Key=0 

Fig.4. Procedure of the attack paradigm.



Yi Zhong et al.: Machine Learning Aided Logic Block Paradigm 1107

The encryption algorithm is embodied as Algo-

rithm 1. A designer may choose to insert either

XOR/XNOR or MUXs on random or the highest FI

location as key gates arbitrarily. For the latter, the

highest FI for an internal node i is formulated as (7)

in [14]:

FIi = (NoP0 ×NoO0 +NoP1 ×NoO1), (7)

where NoP0 denotes the number of patterns that de-

tect stuck-at-0 fault at the output and NoO0 denotes

the total number of the output bits that get affected by

the fault, while NoP1 and NoO1 represent the stuck-

at-1 fault and the total number of the affected output

bits correspondingly.

Algorithm 1. Logic Block Encryption Algorithm [9, 14]

Input: all the internal nodes of a logic block;

Output: encrypted nodes and key values;

// For random insertion

1: for (i := 1, i 6 the number of the keys, i + +)

2: Randomly select an internal node and insert the key
gate here;

3: end for

4: Finish encryption when reaching the target number of keys;

// For the highest fault impact (FI) insertion

1: for (i := 1, i 6 the number of the internal nodes, i + +)

2: Detect the s-a-0 fault (NoP0) and the affected bit ratio
(NoO0);

3: Detect the s-a-1 fault (NoP1) and the affected bit ratio
(NoO1);

4: Compute FIi := (NoP0 ×NoO0 + NoP1 ×NoO1);

5: end for

6: Select the highest FI nodes to encrypt using XOR/XNOR
gates;

A node with the highest FI can affect most of the

outputs for most of the input patterns if a fault occurs.

FI is used to enhance the Hamming distance in [14].

Mathematically, (7) should be equivalent to the total

affected bits when one reverses the logical value of a

certain node. Therefore, one can reverse each internal

node and apply random vectors on the inputs to fig-

ure out how many outputs are affected by the reversed

node, and then find the nodes with the highest im-

pact. Here Table 2 displays the internal nodes with the

highest FI values for the C432 benchmark for instance,

which has been regularized to [0, 1]. The selected nodes

are encrypted by either logic 1 or 0 arbitrarily.

Table 2. Highest FI Nodes & Applied Key Values on C432

Key Node FI Value

K1 N199 0.491 1

K2 N296 0.407 0

K3 N357 0.303 1

K4 N203 0.285 1

K5 N381 0.278 0

K6 N386 0.238 1

K7 N393 0.200 1

K8 N356 0.186 0

K9 N348 0.186 0

K10 N355 0.185 1

K11 N354 0.185 1

K12 N353 0.185 1

K13 N352 0.183 1

K14 N351 0.182 0

K15 N350 0.181 1

K16 N349 0.181 0

K17 N422 0.177 1

K18 N425 0.176 0

K19 N260 0.164 0

K20 N285 0.163 1

Afterwards, the decryption process is executed as

the flow described in Algorithm 2. Firstly, the en-

crypted netlist and the activated IC are fed with ran-

dom input vectors (Ien, Ken) and Ien to produce the

resultant outputs Oen and Oright, respectively, in which

the volume of the two datasets equals the number of

random vectors. For training the neural network, the

training datasets (Oen, Ken) need to be observed and

collected on the encrypted netlist. In the meanwhile,

the test dataset Oright should be obtained on the acti-

vated IC. Next, one utilizes the BP algorithm to min-

imize the loss function of the network by feeding the

training pairs (Oen, Ken). Once training gets finished,

test data Oright will be substituted to the input layer

in a typical inference phase. As the network has been

trained to a fitting function r(·) for g(·), the output

layer shall produce the inferred values r(Oright) for

Kright. The values r(Oright), being decimals within the

range of [0, 1] in general, shall be further binarized as

exact logic 1 or 0, where the quantization problem is

tackled by employing the naive Bayes classifier with a

decision boundary of 0.5. Ultimately the decryption

process can be accomplished, and the binary values for

those cryptographic keys can be determined.
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Algorithm 2. Logic Block Decryption Algorithm
Input: Oen, Ken for the encrypted circuit and Oright for the
activated circuit;
Output: retrieved key values Kright;
1: for (k := 1, k 6 the number of the input/output pair vec-

tors, k + +)
2: Train the neuron network by using the training dataset

(Oen,Ken);
3: end for
4: for (k := 1, k 6 the number of the input/output pair vec-

tors, k + +)
5: Infer the key values Kright by substituting test dataset

Oright;
6: end for
7: Judge the keys Kright as logic 0 or 1 by the Naive Bayes

classifier;

3.2 Attack Demonstration on C432
Benchmark

For a more comprehensive illustration of the decryp-

tion procedure, hereinafter, we will employ the C432

benchmark as an example to expound the attack de-

tails based on Fig.5.

The target C432 benchmark contains 36 inputs and

7 outputs as well as 20 key nodes whose values are en-

crypted as Table 2 (logic 0: encrypted with XOR; logic

1: encrypted with XNOR).

Above all, as Fig.5(a) draws, a random vector gen-

erator generates a set of (50%, 50%) vectors Ien, Ken

(50% probability of being logic 0 and 50% probability

of being logic 1) for the encrypted netlist, and the same

Ien for the activated IC, where the number of inputs,

keys and outputs are 36, 20, and 7, respectively. As

this is the first epoch, no keys have been retrieved be-

fore, hence they are all fed with random vectors and

expressed as “?”.

Upon reaching a certain volume of random vectors,

the training pair (Oen, Ken) is then fed into the neu-

ral network to get trained, serving as its input layer

and target output label, respectively. The number of

input and output neurons is natural to decide, which

should be equal to the number of C432 outputs and

keys. The main issue lies on the hidden layers. In or-

der to determine a reasonable network structure, here

in Fig.5(b) we have tested a so-called typical network

(structured as 7-100-20), a fat network (7-10000-20)

and a 10-hidden-layer deep network (7-100-. . . -100-20)

to fit inverse function g(·). Results show that the loss

function value does not decline more as the width en-

larges or the depth deepens. They are all around 0.213

as depicted in Fig.5(c). A possible reason for this is

overfitting in these large and deep networks. Therefore,

in the context of efficiency and performance, a typical

3-layer network is chosen as a reasonable network in our

implementation hereinafter.

Once the training gets finished, the test data Oright

is substituted into the input layer, and one can collect

the expected values for Kright from the output layer of

the trained network. As the network output, r(Oright)

is generally a value within [0, 1]; thus it will undergo

a classification process in terms of its exact value, in

which the decimal will be binarized as logic 0 or 1 by

naive Bayes classifier. The full attack flow above is

summarized in Fig.5(d).

Note that in each epoch, there will be part of

keys being retrieved. During the next epoch, those

keys should be fixed as their inferred values while the

rest of keys will still be applied random vectors. As

an iterative process, decryption is conducted succes-

sively. For better comprehension, Figs.6(a)–6(c) illus-

trate the decryption implementation conducted on the

C432 benchmark.

In the first epoch, seven keys are explicitly revealed

in comparison with the decision boundary of 0.5, in

which K1, K6, K17 and K3 are logic 1 while K2, K18

and K5 are logic 0. Then the seven key values are fixed

while the rest keys are still applied by the random vec-

tors (expressed as “?” in Fig.5(a)). The reason why we

fix the retrieved ones is that they conceal the correla-

tion between the benchmark outputs with the rest key

nodes. As the epoch goes on, more information about

the secret keys will be exposed. Hence in the second

epoch, 11 keys can be retrieved and fixed; while in the

third epoch, as 18 keys have been fixed, the last two

keys are revoked, ultimately resolving all the 20 cryp-

tographic keys.

The evolution curves delineated in Fig.6 are

achieved by increasing the training pair vectors gradu-

ally, ranging from 5 to 100 000. It is notable that those

curves can converge within 1 000–5 000 vectors, where

the time used for training is much less than 1s. With

regard to the key values listed in Table 2, the proposed

neural network succeeds in retrieving all the keys cor-

rectly.

To further testify the efficiency of the proposed

attack paradigm on the C432 benchmark encrypted

with other techniques, including different node selec-

tion methods like random inserting or the highest fault

impact inserting and encryption gates like XOR/XNOR

and MUXs, we conduct the attack implementation as

summarized in Table 3.



Yi Zhong et al.: Machine Learning Aided Logic Block Paradigm 1109

(a)

First Epoch:

Second Epoch:

Third Epoch:

C432 Logic Block 

C432 Logic Block 

Encrypted with XOR/XNOR Gates with the Highest Fault Impact

36 7

Inputs Ouputs

Random 

Vector

Generator

00110?101 010101111 ?0

???10?101 01??????? ??

????????? ????????? ??

?
?

?
?

?
?

?
?

Activated Circuit Without Encryption Module

7

Ouputs

?
?

?
?

36

Inputs

?

?

N
a
iv

e
 B

a
y
e
s 

C
la

ss
if
ie

r

7 Keys

11 Keys

K K K K K K K K K

K

K

K

K

K

K

K

K

K K

K

Oright

OenIen

Ien

Ken

C432 Logic Block 

...

...
...

(b)

7 100 20

?
?

?
?

?
?

?
?

Ouput Vectors
Logic 1

Logic 0

Vectors

E
x
p
e
c
ta

ti
o
n

?
?

?
?

Train

7 10 000 20

Hidden Layer Output LayerInput Layer

7 20100 100

10 Hidden Layers

?
?

?
?

?
?

?
?

?
?

?
?

?
?

?
?

?
?

?
?

Infer

Key VectorsTypical / Fat / Deep

7

Ouputs

7

Ouputs

Naive Bayes Classifier

Oright

Ken

Oen

Kright

Kright

Kright

...

... ...
...

...

...
...

... ...

1. Collecting the Training
Datasets (Oen, Ken) from
the Encrypted  Netlist   
and the Test Dataset 
Oright from the Activated 
IC 

(c)

Train
Validation
Test
Best

Train
Validation
Test
Best

Train
Validation
Test
Best

Epoch Epoch Epoch

Typical: 0.213 54 Fat: 0.213 77 Deep: 0.213 29

0 50 100 150 200 0 50 100 150 0 50 100 150 200

E
rr

o
r 

(M
S
E
) 

100

10-1

E
rr

o
r 

(M
S
E
) 

100

10-1

E
rr

o
r 

(M
S
E
) 

100

10-1

Best Performance at
Epoch 225

Best Performance at
Epoch 188

Best Performance at
Epoch 200

2. Using Data Pairs 
(Oen, Ken) to Train the 
Network 

3. Substituting the Right 
Output Oright to Infer the 
Right Key Kright

4. Feeding Kright to the 
Naive Bayes Classifier. 
Judging As Logic  0 or 1

(d)
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Fig.6. Decrypting C432 benchmark within three epochs. (a) Retrieved keys in the 1st epoch: K1–K3, K5, K6, K17 and K18. (b)
Retrieved keys in the 2nd epoch: K7–K16 and K19. (c) Retrieved keys in the 3rd epoch: K4 and K20.
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Table 3. Attack Implementation Summary on C432

Encryption Method 1st Iteration 2nd Iteration 3rd Iteration

C432 EPIC XOR 9/40 13/40 17/40

C432 FI XOR 9/40 27/40 28/40

C432 EPIC MUX 10/40 16/40 20/40

C432 FI MUX 16/40 35/40 40/40

Note: C432 EPIC XOR means that the benchmark is C432,
the encryption method is EPIC (random inserting) and the
inserted logic gate is XOR/XNOR. x/y: number of retrieved
keys/number of total encrypted keys.

For the four cases listed above, the proposed attack

scheme performs better on FI inserting than on random

inserting, and on MUXs than on XOR/XNOR encryp-

tion. When encrypted by FI inserting and MUXs, one

can reveal all the keys within three epochs even when

the key number increases to 40. A possible reason for

better performance on FI inserting can refer to the aug-

ment on Hamming distance, as the encryption method

unconsciously amplifies the correlation between the key

nodes with the outputs. For MUXs, compared with

XOR/XNOR gates, there is an additional fault node

to be selected, which may also introduce unconscious

statistical correlation between two logic cones.

3.3 Extending to Other Benchmarks

To further demonstrate the efficiency of the pro-

posed attack paradigm, the same attack flow is imple-

mented on the ISCAS’85, ISCAS’89 and ITC’99 bench-

marks. The target logic blocks contain both combina-

tional and sequential circuits with various topographies

and have been successively used as a basis for com-

paring results in the area of test generation or circuit

validation. For strictly validating the proposed attack

scheme, encryption is conducted by referring to EPIC [9]

to randomly insert XOR and XNOR gates at internal

nodes (because decryption may be harder in this case

according to Table 3). The number of the secret keys

varies with the size of the benchmarks, ranging from

4 for the smaller circuit C17 to 100 for larger circuit

C2670 and B04.

In practical terms, the proposed attack paradigm

exhibits a different attack efficiency on each benchmark,

which is reasonable in view of their unique topologi-

cal structures. Some representative key curves in their

first epoch are depicted in Fig.7. For each benchmark,

the input, output and key port layouts are displayed in

Fig.7(a). And the evolution curves for secret keys are

portrayed in Fig.7(b). As the vector number (horizon-

tal axis in log scale) increases from 5 to 100 000, the

evolution curves may firstly oscillate around the classi-

fication boundary 0.5 due to random fluctuation. Then

when the vector number gets larger, conservatively like

20 000 vectors (in vertical dash line), it will be feasible

to obtain a converged evolution curve in which the ex-

pectation for each key takes on a stable value, probably

above or below the boundary.

Fig.8 describes the time consumption to implement

the attack flow on the above benchmarks for one epoch.

Each data box describes the time distribution for 10

different attempts. The plots are divided into blue,

green and purple groups, representing 20 000, 50 000

and 100 000 training pairs, respectively. As 20 000 vec-

tors are conservative enough to obtain a converged evo-

lution curve, the time consumed is quite acceptable.

Table 4 summarizes the implementation results on

the benchmarks. The same attack is conducted for

three epochs with each testing up to 100 000 vectors.

The attack efficiency may hinge on the topography of

the benchmarks, as the attack scheme is most suitable

for retrieving the keys that expose most information to

the outputs, namely “easy keys”. The ratio of the keys

retrieved is relatively low, which is reasonable when

considering the strict condition, i.e., randomly inserting

XOR/XNOR gates. There are cases in which a wrong

key has no effect on the outputs, and the correct key

combination is more than one. Moreover, more keys

may be successively retrieved in the next epochs. But

in view of their relatively low confidence level, we ignore

that.

Table 4. Attack Implementation Summary

Circuit Input Output Gate DFF Retrieved Keys

in 3 Epochs

C17 5 2 6 0 4/4

C432 36 7 160 0 17/40

C499 41 32 202 0 12/50

C880 60 26 383 0 30/50

C1908 33 25 880 0 9/50

C2670 233 140 1 193 0 29/100

S27 4 1 10 3 4/5

S344 9 11 160 15 10/40

S386 7 7 149 6 19/50

S510 19 7 211 6 29/50

S832 18 19 287 5 19/50

B01 2 2 39 5 4/10

B04 11 8 632 66 16/100

B10 11 6 174 17 11/50

Note: x/y: number of retrieved keys/number of total encrypted
keys.
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Fig.7. Implementation results on ISCAS’85/89 and ITC’99 benchmarks. (a) Input, output and key port layouts. (b) Some represen-
tative evolution curves for secret keys.
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Fig.8. Time consumption for one epoch on an Intel i7-6700HQ CPU.

As a comparison with other attack schemes in logic

cryptanalysis, the ML-aided attack paradigm does not

ask for detailed netlist to sensitize special paths be-

tween key nodes and outputs like [19] and [20]. And

it can retrieve the “easiest keys” in each epoch suc-

cessively, which may also be useful to compress the de-

cryption time if combined with tricks in [21] and [22], as

they are hindered a lot if the number of keys is too large.

One can utilize the limited computation resources to de-

cipher the “easy keys” as priority, and resort to tradi-

tional methods to tackle the rest, which may be suitable

for many more scenarios.

4 Discussion

It has been demonstrated in Section 3 that typical

logic encryption is vulnerable to the proposed ML-aided

attack paradigm. Here, we will try to concentrate on

the underlying mathematical basis that supports the at-

tack and move on to explore some potential anti-attack

countermeasures.

4.1 Underlying Mathematical Comprehension

The proposed attack paradigm essentially hinges on

the mathematical correlation between output Oen and

key Ken to build a fitting function r(·) to deduce the

proper keys Kright. Its foundation even lies on the ba-

sic logic gates. Specifically, the relevance between two

logic nodes can be evaluated by the Pearson correlation

coefficient as (8):

ρ(A,O) =
cov(A,O)√

var(A)× var(O)
, ρ(A,O) ∈ [−1, 1], (8)

where cov(·,·) is covariance, var(·) represents variance

and ρ(·,·) describes the correlation extend.

Considering an AND logic gate in Fig.9, when ap-

plying random vectors (1 − p1, p1) on input A (the

probability of being logic 1 is p1) and (1 − p2, p2) on

B, ρ(A,O) and ρ(B,O) can be quantified. Fig.9(a) il-

lustrates when p2 is closer to 1, input A and output O

are much more positively relevant. Similarly, for OR

gate in Fig.9(b), when p2 is closer to 0, output O will

be dependent on input A.

Correlation analysis helps us understand the logic

dependency on digital systems. Fig.10 shows the Pear-

son correlation coefficient on the C17 benchmark. As

anticipated, N7 has no relationship with N10, N11, N16

and N22 that belong to another logic cone, while sen-

sitizing its influence on N19 and N23. The underlying

mathematical principle for keys in logic encryption re-

mains the same. Any modification of the original cir-

cuit will be propagated to certain nodes as correlation

somehow. By tracking the correlation traces, the ma-

chine learning aided attack finally retrieves the keys and

breaks the encryption.

As a supplementary experiment, a similar attack of

linear regression is included in Fig.11. The experimen-

tal results confirm that any mathematical methods, not

restricted to machine learning, can also be utilized to

model the fitting function g(·), but they may not be ef-
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Fig.9. Pearson correlation coefficient between the output and inputs for basic logic gates. (a) AND gate. (b) OR gate. (c) XOR gate.
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Fig.11. Linear regression fitting: boxes show the 95% confidence interval of the keys (blue: first epoch; green: second epoch; orange:
third epoch).

ficient enough to extract the high-dimensional features,

compared with the neural network.

4.2 Enhancing Logic Encryption

In fact, typical logic encryption does not conceal

the encryption track but even exposes it to an ex-

perienced attacker. Some previous camouflage tricks

such as the current domain signature attenuation [7]

and the machine learning assisted countermeasure [8] in

SCA-resistant designs may not be appropriate for logic

attack-resistant design as the logic outputs cannot be

reasonably manipulated as the power trace. This is

because a good encryption also needs to ensure its ob-

scureness, i.e., a wrong key should result in a wrong

output for all input patterns [29]. However, when de-

liberately eliminating the correlation between keys and

outputs, an applied wrong key may affect only a few

output bits, which shall deteriorate the encryption effi-

cacy.

Therefore, as our consideration, in order to miti-

gate the potential risks, a promising encryption algo-

rithm can refer to the attempts of, for instance, adding

a key generation unit [30], physical unclonable function

(PUF) [31] to separate the outputs with the interme-

diate keys rather than the real key ports, and trying

to conceal the internal details. Nevertheless, logically

concealing the huge block also remains as a complicated

issue and is therefore beyond the scope of this work.

5 Conclusions

In this paper, a machine learning aided attack

scheme against logic block encryption was presented.

Above all, a standard attack paradigm was defined, in

which we adopted random and the highest FI inserting

as the encryption mechanisms and selected a three-layer

neural network as the decryption tool to exemplify how

a successful attack can be executed. With the aid of the

simple neural network and naive Bayes classifier, the

proposed attack scheme has been implemented on the

ISCAS’85/89 and ITC’99 benchmarks, succeeding in re-

trieving partial keys in three epochs. We also shed light

on the vulnerability of the logic block based encryption

and explored some preliminary countermeasures. It is

notable that the underlying mathematical principle for

the attack still hinges on the correlation between keys

and outputs, and a possible anti-attack scheme could

explore the possibility of maintaining logic obscureness

and correlation confusion at the same time.
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