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Abstract Resistive random access memory (RRAM) has been demonstrated to implement multiply-and-accumulate

(MAC) operations using a highly parallel analog fashion, which dramatically accelerates the convolutional neural networks

(CNNs). Since CNNs require considerable converters between analog crossbars and digital peripheral circuits, recent studies

map the binary neural networks (BNNs) onto RRAM and binarize the weights to {+1,−1}. However, two mainstream

representations for BNN weights introduce patterns of redundant 0s and 1s when dealing with negative weights. In this

work, we reduce the area of redundant 0s and 1s by proposing a BNN weight representation framework based on the

novel pattern representation and a corresponding architecture. First, we spilt the weight matrix into several small matrices

by clustering adjacent columns together. Second, we extract 1s’ patterns, i.e., the submatrices only containing 1s, from

the small weight matrix, such that each final output can be represented by the sum of several patterns. Third, we map

these patterns onto RRAM crossbars, including pattern computation crossbars (PCCs) and pattern accumulation crossbars

(PACs). Finally, we compare the pattern representation with two mainstream representations and adopt the more area

efficient one. The evaluation results demonstrate that our framework can save over 20% of crossbar area effectively, compared

with two mainstream representations.
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1 Introduction

Convolutional neural networks (CNNs) [1] have

shown significant improvements in various applications,

such as image classification and speech recognition.

At the same time, in the convolutional layers and

the fully-connected layers, CNNs contain a large num-

ber of memory accesses and multiply-and-accumulate

(MAC) operations, which become the performance bot-

tleneck. The emerging resistive random access mem-

ory (RRAM) [2] has been considered as a promising

hardware to construct a CNN accelerator [3]. Previ-

ous studies [3–5] achieved about 1 000× throughput on

RRAM compared with a CPU. On the one hand, it

can perform MAC operations within the RRAM cross-

bars that store the weights, which saves most of the

memory access overhead. On the other hand, the MAC

operations are implemented in a highly parallel analog

fashion. They set one vector as the input voltages and

the other as conductance in the crossbar, thereby the

output current represents their inner product accord-

ing to Ohm’s law. The degree of parallelism can easily

reach the crossbar size.

However, the weights in traditional CNNs are typ-

ically represented by high-precision numbers, which

pose a great challenge to the reliability of RRAM [4].

Also, the extra converters between the analog RRAM
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crossbars and the digital peripheral circuits take up

most of the area and energy consumption [5]. For-

tunately, recent studies on machine learning propose

binary neural networks (BNNs) [6, 7] and verify their

effectiveness in various benchmarks. BNNs truncate

the values of weights and activation into binary val-

ues {+1,−1} during the inference stage. Thus, when

mapping onto the RRAM crossbar [8–11], each RRAM

cell only needs to store one bit. And low-precision

converters, or even one-bit comparators, can replace

high-precision converters. BNNs can be accelerated by

RRAM crossbars with little negative effect mentioned

above.

It is still challenging about how to represent BNN

weights on RRAM efficiently in area. RRAM can

only store non-negative data by conductance, thereby

the negative weights cannot be represented on RRAM

crossbars directly. To cope with this problem, pre-

vious studies propose two mainstream representa-

tions, the pos-neg representation [8, 9] and the XNOR

representation [10, 11]. Although both of them success-

fully solve the negative weight problem, they store re-

dundant 0s in 50% of the RRAM crossbars, regardless

of the original weight distribution. Besides, we note

that these two representations only contain 0s and 1s,

thereby different columns may share some 1s’ patterns,

i.e., they all have 1s in the same few rows. It wastes

area to store and compute multiple copies of a pattern.

In this work, we propose an area efficient weight rep-

resentation framework based on the novel pattern rep-

resentation for BNN weights to reduce the redundant

0s’ and 1s’ patterns in RRAM as many as possible. Our

contributions are as follows.

•We design an architecture containing pattern com-

putation crossbars (PCCs) and pattern accumulation

crossbars for our novel pattern representation.

•We propose a weight representation framework for

this architecture and formulate the pattern extraction

and the pattern mapping problems.

• We prove that both problems are NP-hard and

design heuristic algorithms to solve them.

• We experimentally evaluate our framework to

show its area saving compared with mainstream rep-

resentations.

2 Background and Motivation

2.1 BNN

In traditional CNNs, the convolutional layers and

the fully-connected layers contribute a lot to the to-

tal run time and energy consumption due to the high-

precision MAC operations, which becomes the perfor-

mance bottleneck. To address this problem, BNNs [6, 7]

train and truncate the weights and activations to val-

ues {+1,−1} without losing much accuracy. In this

situation, the MAC operations over {+1,−1} during

the inference stage can also be converted to the XNOR

operations over {1, 0} followed by the bit-counting ope-

rations.

2.2 RRAM-Based BNN Accelerator

Single-level-cell (SLC) RRAM [2] is a two-terminal

device with two different states according to its resis-

tance. The high resistance represents logical “0”, and

the low resistance represents logical “1”. The RRAM

crossbar can be configured for parallel MAC operations

in an analog fashion. When we convert one input vec-

tor to the voltage signals applied to each row and store

the other one as the conductance of an RRAM column,

the output current of this column is the inner product

between the voltage vector and the conductance vec-

tor. The parallelism can reach the crossbar width with

negligible extra hardware. Fig.1 shows a rowC × colC
RRAM crossbar. The MAC operations in Fig.1 can be

expressed as

Ik =

rowC∑
j=1

VjGj,k, k = 1, 2, ..., colC .

This feature can accelerate the MAC operations in

the fully-connected and the convolutional layers of NNs.

The weight matrix of the fully-connected layers can be

directly mapped onto the RRAM crossbars. For the

convolutional layers, one kernel is typically expanded

to a one-dimensional vector and stored in an RRAM

column. Different kernels of the same layer are aligned

in the same crossbar and share the input feature maps.

If the weight matrix (or the kernels of a layer) size ex-

ceeds the RRAM crossbar size, we usually split it into

multiple crossbars and accumulate their partial sums

outside.

2.3 Mainstream Representations of Negative
Weights

RRAM can only store non-negative values. There

are two mainstream representations for the negative

weights in BNNs, as shown in Fig.2. The pos-neg

representation [8] splits the positive and the negative

weights into different crossbars and complements the

vacant cells with 0s. It requires two crossbars as large
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Fig.2. Two representations of negative weights. The shaded −1 and 1 in the original weight matrix are mapped onto the shaded
RRAM cells, respectively. (a) Weight. (b) Pos-neg representation. (c) XNOR representation.

as the weight matrix. This approach works for both

traditional CNNs [3] and BNNs [9].

The XNOR representation [10] is proposed for BNNs

only. It stores two bits 〈0, 1〉 and 〈1, 0〉 for −1 and 1

in the weights and inputs, respectively, to implement

the XNOR operation. If the input equals the weight,

their product is (1, 0) · (1, 0)T = (0, 1) · (0, 1)T = 1.

Otherwise the product is 0, which is consistent with

the XNOR operation. The judgement condition out-

side the crossbar has to be modified, and the detailed

proof can be found in [11]. This representation requires

a crossbar that is twice as large as the weight matrix.

2.4 Motivation

We observe that these two representations have a

large number of redundant 0s and 1s, which wastes the

RRAM crossbar area. First, both representations in-

troduce 0s in exactly 50% of the crossbars so that they

require twice the area of the original weight matrix. It is

worth noting that the extra 0s come from the represen-

tations but not the 1s’ distribution in the weight matrix

or the network sparsity. Second, the RRAM crossbars

only contain 1s and 0s, thereby different columns may

have a high similarity. We can extract the same rows

of these columns as patterns and store only one copy.

It is challenging to reduce the redundant 0s and

1s. SNrram [12] is an RRAM architecture that exploits

the network sparsity by discarding the whole empty

columns in the weight matrix, but it cannot deal with

the BNN representation problem where 0s and 1s al-

ternate. Although previous studies [13] propose some

pattern extraction methods for other hardware targets,

these methods cannot be applied to RRAM directly.

For example, Chi and Jiang [13] synthesized BNNs on

FPGAs by extracting same and opposite patterns, but

RRAM crossbars do not support the subtraction ope-

rations required by opposite patterns. Moreover, it is

difficult to keep the high parallelism if we only store

1s’ patterns. Different patterns correspond to different

inputs, but the parallelism in RRAM crossbars requires

the alignment of different columns.

3 Architecture

We design an architecture for our novel pattern rep-

resentation, which inherits most aspects of standard

RRAM-based accelerator. At the top view, the ar-

chitecture is hierarchical, which contains multiple pro-

cessing elements (PEs) for matrix-vector product ope-

rations, as well as pooling units and sigmoid units for

the other operations.
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Fig.3 shows PE details of PEs. Each PE processes

one BNN layer. Crossbars in a PE are divided into two

parts, PCCs and PACs. For a given input feature map,

we first send it to all PCCs according to their configu-

rations. Once the patterns are computed, their values

are converted to the voltages as inputs, and the output

feature map is achieved in the analog fashion.

PCCs are used for computing partial sums of pat-

terns. We do not store the original weight matrix in the

RRAM crossbars. Instead, we extract patterns from it

and only store patterns in the crossbars. A pattern ap-

pears in at least one RRAM crossbar according to its

length and occupies one column in each crossbar. Our

pattern mapping follows two principles. First, patterns

in the same crossbar have to be aligned such that they

can be computed in parallel. Second, patterns in diffe-

rent crossbars should have no sharing inputs such that

we do not need to copy inputs. The number of PCCs

depends on both the pattern number and the pattern

length.

PACs are used for accumulating partial sums of

PCCs. We record the indices (relationship) between

the output feature maps and the patterns in the PACs.

The index of one output occupies one column. The in-

tersection of a pattern and an output is set to 1 if they

are related. If a pattern appears in multiple PCCs, each

part of the separated patterns needs to occupy a PAC

row. We arrange the patterns in the PACs in the same

order in PCCs to reduce the routing cost. If an output

is related to more than n patterns, we accumulate these

patterns with an adder tree. Assuming that n = 128,

a two-level adder tree can accommodate 1282 patterns,

which meets the requirement of most BNNs. The num-

ber of PACs depends on both the pattern number and

the relation between patterns and original outputs.

After mapping, the orders of inputs, outputs and

patterns will change, thereby we carefully reorder the

crossbar inputs to match the output order. PCCs ex-

cept for the first layer are reordered according to PACs

of the previous layer. PACs are reordered according

to PCCs of the same layer. For example, the order of

PCC-1-1 and PCC-1-2 outputs is {p1, p3, p2}, thereby

the order of PAC-1-1 inputs is also {p1, p3, p2}. The

order of PAC-1-1 outputs is {o4, o2, o3, o1}, thereby the

order of PCC-2-1 inputs is also {i4, i2, i3, i1}. There-

fore, we do not need extra hardware to store and fetch

indices.

We can further improve the area efficiency of our

PE design with two methods. First, our design can

fully utilize one dimension in both PCCs and PACs.

Therefore, we can easily map the patterns or the index

matrices of independent weight matrices, especially ma-

trices of different layers, into the same crossbar to fully

utilize a crossbar. For example, PCC-1-2 and PCC-2-1

can be merged into a 4×4 crossbar. Second, a crossbar

can be configured to act as either a PCC or a PAC with

negligible extra hardware. Although different BNNs re-

quire different ratios of PCCs to PACs, we can always

fully utilize all crossbars rather than waste some PCCs

or PACs.

4 Framework and Problem Formulation

This section proposes our weight representation

framework and formulates the pattern extraction and

mapping problems.

Input

Buffer

Input

Feature

Maps

Partial

Sums
Sums

PAC-1-1

PCC-1-1 PCC-1-2

PAC-2-1

PCC-2-1

PAC-3-1

PCC-3-1

Layer 1 Layer 3Layer 2

Part of an

RRAM

Crossbar

Output

Feature

Maps
Output

Buffer

p

p

i

i

i i

i i

i

o o o o o o o o

i i

i

i

i

i

i

i

i

pp

p

pp

p

p

p

p

p

1 1

1

1 1

1

1

1

1

1 1

1 1 1 1

111

11

1 1 1

1

1 1

11

1

1

... ...

... ...

... ...

... ...

... ...

...

...

...

... ... ...

... ... ... ...

... ... ... ...
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4.1 Framework Overview

Fig.4(a) depicts our four-step weight representation

framework for the weight matrix of a layer that is al-

ready in the pos-neg or the XNOR representation.

Column Split. If the matrix is wider than the cross-

bar, we split it by column to several small matrices that

are as wide as the crossbar. Two direct representations

also require this step to ensure that the small matrix

can fill in a crossbar.

Pattern Extraction. We extract patterns, i.e., sub-

matrices, from each small weight matrix. 0s do not

contribute to the results of MAC operations, thereby

we extract patterns that only contain 1s. As shown in

Fig.4(b), the weight matrix is exactly covered by three

3×2 patterns, and each final output can be represented

by one or two patterns.

Pattern Mapping (PCC Part). The weight ma-

trix rows are split into different PCCs according to

the crossbar height. A few 0s are reintroduced due to

the alignment requirement of parallelism. In Fig.4(b),

three patterns extracted from the weight matrix are

computed in two PCCs. Input rows {i1, i2, i3, i5} and

{i4, i6, i7, i8} are separated into two PCCs such that

each pattern only appears in one PCC and occupies a

column.

Pattern Mapping (PAC Part). In Fig.4(b), PAC

stores the relation matrices among four outputs and

three patterns. For example, o1 is represented by p1
and p2, thereby the intersections (p1, o1) and (p2, o1)

are 1 in PAC. All of the three patterns occupy a row

in PAC. Patterns are arranged in 〈p1, p3, p2〉 in both

PCCs and PAC.

Area Comparison. Our pattern representation does

not work in a few cases, e.g., the staircase 1s’ distribu-

tion in Fig.5, which can be proved by enumerating all

pattern extraction and mapping possibilities. As a re-

sult, we compare the area of pattern representation, i.e.,

the total area of PCCs (areaPCC) and PACs (areaPAC),

with that of two direct representations (areadirect) to

find a more area efficient representation:

areapattern = min{areaPCC + areaPAC, areadirect}.

4.2 Problem Formulation

The pattern extraction and mapping are two key

steps in our framework. We give a formal definition to

the pattern and formulate these two problems. Both

problems try to minimize the total area of the pattern

representation.

Pattern. For a binary weight matrix W =

〈rowW , colW 〉, a pattern p = 〈rowp, colp〉 is a sub-

matrix of W that only contains 1s. In other words,

rowp ⊆ rowW , colp ⊆ colW , and pxy = 1 always hold.

Pattern Extraction Problem. Given a binary weight

matrix W , we find n disjoint patterns p1, p2, ..., pn to

exactly cover all 1s in W with the total area lower

bound fext minimized.

minimize fext =

n∑
i=1

|rowpi
|+ n× |colW |

6 areaPCC + areaPAC.
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The exact values of areaPCC and areaPAC depend

on the pattern mapping step, thereby we estimate them

with lower bounds. areaPCC is not less than the to-

tal pattern height
∑n

i=1 |rowpi |, and the equal sign is

obtained when no 0s are introduced later. The total

pattern number in the PAC is not less than n, thereby

areaPAC > n×|colW |. The equal sign is obtained when

no patterns are split into multiple PCCs.

Pattern Mapping Problem. Given n patterns

p1, p2, ..., pn, we split the weight matrix rows into

d |rowW |
|rowC | e disjoint subsets s1, s2, ..., sd |rowW |

|rowC | e
to exactly

cover rowW , and the rows in a subset are mapped to the

same crossbar. fmap is minimized. rowC is the number

of rows in a crossbar.

minimize fmap =

n∑
i=1

d |rowW |
|rowC | e∑
j=1

(rowpi
∩ sj 6= ∅)

∝ areaPCC + areaPAC.

fmap is proportional to areaPCC and areaPAC, and

we care about how many parts of patterns are separated

in our pattern representation by minimizing fmap. As

explained before, if rowpi ∩ sj 6= ∅, i.e., pattern pi con-

tains a row in sj , part of this pattern will be mapped

onto this PCC and occupy a column with |rowC | cells.

Thus, areaPCC = |rowC |×fmap. Also, each part of the

pattern will occupy a row in the PAC with |colC | cells,

thereby areaPAC > |colC | × fmap. areaPAC is a little

larger when a PAC tree is needed.

According to our formulation, we can reduce

both two optimization problems to the exact cover

problem [14], a well-known NPC problem, and thus they

are also NP-hard. We propose the heuristic algorithms

to solve these problems next.

5 Algorithm Design

This section introduces our algorithms for the first

three steps in the weight representation framework.

5.1 Column Split

To prevent our pattern representation from being

worse than two direct representations, e.g., in the stair-

case distribution in Fig.5, we cluster “adjacent” weight

columns in a small weight matrix by the K-means al-

gorithm. We denote the set of 1s rows in a column

coli as rowi. We define the distance between two

columns rowi and rowj (|rowi| 6 |rowj |) as fext of

the weight matrix that consists of these two columns

(|colW | = 2). This two-column matrix can be cov-

ered by no more than three patterns, one pattern

〈rowi∩rowj , {coli, colj}〉 for the common rows, and two

patterns 〈rowi−rowj , {coli}〉, 〈rowj−rowi, {colj}〉 for

the rest rows. Based on this observation, the distance

between coli and colj can be computed as follows:

distance(coli, colj)

= fext =


|rowi|+ 2, if rowi = rowj ,

|rowj |+ 4, if rowi ⊂ rowj ,

|rowi|+ |rowj |+ 4, if rowi ∩ rowj = ∅,
|rowi − rowj |+ |rowj |+ 6, otherwise.

Since distance(coli, colj) is always smaller under the

first two conditions, the K-means algorithm prefers to

cluster columns with equivalence or inclusive relation-

ships into one small weight matrix.

5.2 Pattern Extraction

We construct the initial solution by iteratively

matching the column with the least 1s with all of the

other columns. For example, the optimal pattern ex-

traction solution of Fig.4(b) can be obtained during ini-

tialization. At the beginning, o2 has the least 1s. We

match it with o1 that also has 1s in the first three rows

{i1, i2, i3}, and we get p1. Then, the rest of 1s in o1
become the least, thereby we match o1 with the other

columns to generate p2. Finally, the remaining 1s con-

stitute p3.

Each iteration during initialization can reduce at

least one column in the weight matrix, and thus the

initial solution contains no more than |colW | patterns.

This algorithm performs well for unbalanced 1s. With

the execution of the algorithm, columns with lots of 1s

are gradually matched and become new columns with
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the least 1s. In the worst case, no columns have the

inclusive relationship, and the algorithm generates a

pattern for each column.

We design a simulated annealing (SA) algorithm

to further optimize the patterns. In each iteration,

we select two random patterns pi and pj (|rowpi
| 6

|rowpj
| or |colpi

| 6 |colpj
|) that share rows or columns

and generate a new pattern for their common rows or

columns. Since pi and pj are disjoint, they cannot share

rows and columns simultaneously. The rest parts of pi
and pj are still reserved in the solution if existed. A bet-

ter transition that can decrease fext is always accepted,

while a worse one is accepted with a certain probability

determined by the current temperature and ∆fext.

There are six different situations in the transition

function according to the relative positional relation-

ship of pi and pj , as listed in Fig.6. The patterns other

than pi and pj remain unchanged, thereby ∆fext only

depends on pi, pj , and new patterns. 1○ and 3○ can im-

prove fext by merging two smaller patterns to a larger

one and reducing the pattern number. 2○ can improve

fext by reducing the total pattern height. 4○– 6○ may

worsen fext, but they can reduce the size of pi and pj
and increase the likelihood of subsequent pattern merg-

ing, which are effective for large patterns. Fig.7 gives

an example where each column constitutes a pattern af-

ter initialization. The SA algorithm first splits patterns

in o1 and o2 into three small patterns using transition

5○ and then merges these small patterns with the other

patterns using transitions 2○ and 1○. The total pattern

height drops by half after the SA algorithm.

5.3 Pattern Mapping

We design a greedy algorithm to minimize fmap, as

shown in Algorithm 1. Each iteration from line 3 to

line 8 selects a pattern with the least rows and adds its

rows to S. Corresponding to the actual pattern map-

ping procedure, in each iteration, we map the pattern

with the least rows that are not mapped onto PCC.

The mapped rows of this pattern are placed in the cor-

responding PCCs, while the other rows are mapped in

the PCCs that are not yet full. A new PCC is added

when all of the existing PCCs are fully allocated. This

algorithm prefers to map similar patterns sharing most

of the rows in the same PCCs and try not to split them.

For example, fmap = 3 in Fig.4(b). p1 is one of

the shortest patterns, and we map it onto the left PCC

first. Then, p3 only has one unmapped row i5. The

fourth row in the left PCC is not allocated, thereby we

map i5 to this position. Finally, the left PCC is fully

utilized, and we map p2 to the right PCC. But if we

map p2 after p1, i1–i4 will stay in a PCC. p2 and p3
will appear in two PCCs, and fmap becomes 5.

6 Experimental Evaluation

We experimentally evaluate our weight representa-

tion framework on two datasets MNIST and CIFAR-

10. We adopt the BNN training algorithm in XNOR-

Net [6] and slightly modify the network model to make

it deeper as in [13]. The BNN model for MNIST con-

tains seven convolutional or fully-connected layers, and

its accuracy is 99.2%. The BNN model for CIFAR-10

Position ④ colpi
     colpj

Transition

Example

Position ⑤  rowpi
∩rowpj

/rowpk
≠0

Transition

Example

① rowpi
/rowpj

② rowpi
    rowpj

③ colpi
     colpj∩ ∩

<rowpi
↪ colpi

∪colpj
> <rowpi

∪rowpj
↪ 

 
colpi

><rowpi
↪ colpi

∪colpj
>↪ <rowpj

 ↩rowpi
↪ colpj

>

<rowpk
↪ colpi

∪colpj
>↪ <rowpi

↩rowpk
↪ colpi

>↪ <rowpj
↩rowpk

↪ colpj
> <rowpi

∪rowpj
↪ colpk

>↪ <rowpi
↪ colpi

↩colpk
>↪ <rowpj

↪ colpj
↩colpk

>

<rowpi
∪rowpj

↪ 
 
colpi

>↪ <rowpj
↪ colpj

 ↩colpi
>

Dfext

Dfext

1 1

1 1

1 1 1 1

1 1 1 1

1 1

1 11 1

1 1
1 11

1

1

1

1

111

11

1

11

1

↩rowpi
↩colW < 

rowpi
⇁rowpj

⇁colW > ↩rowpk
⇁colW ? 

↩rowpi
 <  rowpj

 > ↩colW < 

/  ⑥ colpi
∩colpj

/colpk
≠0/

/

Fig.6. State transition function of the simulated annealing algorithm, which generates a new pattern for the common rows or columns
of pi and pj and reserves the rest parts of pi and pj . 1○– 3○ can improve fext, while 4○– 6○ may worsen fext.
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Fig.7. Example of the simulated annealing algorithm. The two selected patterns in the current step are italic.

contains 10 convolutional or fully-connected layers, and

its accuracy is 86.3%.

Algorithm 1 . Greedy Pattern Mapping Algorithm

Input: n patterns p1, p2, ..., pn

Output: d |rowW |
|rowC |

e subsets s1, s2, ..., sd |rowW |
|rowC | e

1: S = ∅ . an ordered set storing 〈s1, s2, ...〉
2: for i = 1 to n do

3: index = arg minx |rowpx |
4: S = 〈S, rowpindex 〉
5: Delete pindex
6: for j = 1 to n do

7: rowpj = rowpj − rowpindex

8: end for

9: end for

10: Split S into s1, s2, ..., sd |rowW |
|rowC | e

6.1 Area Evaluation

Table 1 lists the area saving of our framework based

on two direct representations (X + pattern) respec-

tively. P+ (X+) in the last column means pos-neg

representation (XNOR representation) is better. We

set the crossbar size to 128×128, the optimal design

option validated in [10]. 0% area saving in a few

cases indicates that we adopt the direct representations,

which are more area-efficient than the pattern represen-

tation. The height and the width belong to the original

weight matrix. The area of two direct representations

is
∑

areadirect = 2× rowW × (
∑

colW ).

Overall, our representation framework saves more

than 20% of area for both direct representations and

both networks. The area saving of a layer varies from

0% to 30%. Our pattern representation outperforms

direct representations in more than 70% of cases, and

its area saving exceeds 20% for half of the cases, espe-

cially for larger weight matrices that are much wider

and higher than the crossbar. Our framework based on

two direct representations achieves a close area saving.

Since power is proportional to the number of crossbars,

we derive that our representation can also save more

than 20% of power on RRAM crossbars.
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Table 1. Area Saving of Our Weight Representation Framework

Dataset Layer rowW
∑

colW
∑

areadirect pos-neg + Pattern XNOR + Pattern Better∑
areapattern Saving (%)

∑
areapattern Saving (%)

MNIST 1 500 50 50 000 38 100 23.80 50 000 0.00 P+

2 800 256 409 600 275 072 32.84 294 400 28.13 P+

3 256 256 131 072 113 152 13.67 99 840 23.83 X+

4 256 256 131 072 111 616 14.84 102 400 21.88 X+

5 256 256 131 072 120 832 7.81 103 680 20.90 X+

6 256 256 131 072 105 472 19.53 99 328 24.22 X+

7 256 10 5 120 5 120 0.00 5 120 0.00 Tie

All – – 989 008 769 364 22.21 754 768 23.68 X+

CIFAR-10 1 180 96 34 560 30 848 10.74 30 208 12.59 X+

2 864 48 82 844 59 136 28.70 82 944 0.00 P+

3 432 256 221 184 161 920 26.79 168 960 23.61 P+

4 2 304 384 1 769 472 1 285 120 27.37 1 356 800 23.32 P+

5 3 456 1 024 3 538 944 5 263 360 25.64 5 299 200 25.13 P+

6 1 024 64 131 072 102 912 21.48 131 072 0.00 P+

7 64 128 16 384 16 384 0.00 16 384 0.00 Tie

8 128 128 32 768 28 288 13.67 24 320 25.78 X+

9 128 128 32 768 27 008 17.58 25 600 21.88 X+

10 128 10 2 560 2 560 0.00 2 560 0.00 Tie

All – – 9 401 600 6 977 536 25.78 7 138 048 24.08 P+

6.2 Effect of Feature Map Size

The pattern representation cannot improve much

for two types of small matrices. First, if the matrix

width is much smaller than the crossbar width, we can

hardly extract large patterns with multiple columns to

reduce the redundant 1s. Thus, the direct representa-

tions are usually better. This usually happens in the

first convolutional layer, e.g., (MNIST, 1) of the XNOR

representation, and the last fully-connected layer, e.g.,

(MNIST, 7) and (CIFAR-10, 10) of both representa-

tions. Second, if the matrix height is too small, our

algorithm prefers to extract extremely short patterns.

Since each pattern needs to occupy a whole column in

a PCC regardless of its height, these extremely short

patterns will introduce lots of redundant 0s in PCCs.

If the matrix height is equal to or less than the cross-

bar height, e.g., (CIFAR-10, 7) of both representations,

the direct representations are better. If the matrix is a

little higher than the crossbar, e.g., (MNIST, 3) of the

pos-neg representation, our framework achieves a low

area saving (5%–20%).

6.3 Effect of Direction Representation Type

Despite of the same area, two direct representations

have different shapes. The pos-neg one doubles the

weight matrix width, while the XNOR one doubles its

height, which leads to different area saving of our weight

representation framework in several layers. Given the

analysis above, pos-neg + pattern performs better for

narrow matrices, e.g., (MNIST, 1), while XNOR + pat-

tern performs better for short matrices, e.g., (CIFAR-

10, 8).

6.4 Effect of Crossbar Size

Fig.8 shows the area saving of our pattern represen-

tation under different crossbar sizes. Here we take four

representative layers (two large layers and two small

layers) as an example. For two large layers (CIFAR-

10, 4) and (CIFAR-10, 5), 128 is the best crossbar size.

When the crossbar size reaches 256, we cannot extract

such long patterns that too many 0s are reintroduced.

When the crossbar size falls to 64, outputs are related

to more patterns, and thus we need more PAC trees to

record indices. For two small layers (CIFAR-10, 7) and

(CIFAR-10, 8), our representation only works when the

crossbar size is smaller than the layer size. In summary,

128 is the best crossbar size for two BNNs used in the

experimental evaluation.

6.5 Throughput Evaluation

We evaluate the throughput of our representation,

as shown in Fig.9. The hardware parameters are
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adopted from [8]. We can see that our representation

achieves a little throughput improvement on two BNNs,

which mainly comes from area saving. Traditional rep-

resentations usually require multi-level adder trees to

accumulate partial sums. On contrary, our representa-

tion only needs to accumulate partial sums of patterns.

One-level PACs are usually enough.

128
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64 256
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Fig.8. Area saving under different crossbar sizes.
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Fig.9. Throughput comparison. Throughput of the better direct
representation is normalized to 1.

6.6 Comparison on Another BNN Type

In a normal BNN, the weights may also be repre-

sented by {+1, 0}. This can be directly mapped onto

RRAM without differential crossbars. We also evaluate

our weight representation in this situation, as shown in

Table 2. We can see that our representation still per-

forms well and saves about 30% area on average. The

area saving rate is a little higher than that in Subsec-

tion 6.1 due to unbalanced 1s and 0s. Since 1s or 0s

occupy most of the weight matrices, the similarity be-

tween different columns increases, and it is easier to

mine patterns. In the extreme case of all 1s or 0s in the

matrix, one pattern is enough. Recent studies [15] pro-

pose some other mapping methods, which are orthogo-

nal to our work. We can further compress the crossbars

with only 0s and 1s using our pattern representation.

Table 2. Area Saving of Our Weight Representation Framework
on Another BNN Type

Dataset Layer Area Saving (%)

MNIST 1 28.32

2 37.25

3 31.35

4 24.41

5 21.48

6 25.88

7 0.00

All 30.53

CIFAR-10 1 12.96

2 29.01

3 30.27

4 34.64

5 27.38

6 23.44

7 0.00

8 29.30

9 25.39

10 0.00

All 28.66

7 Related Work

Previous studies [3, 16,17] accelerate the convolu-

tional layers and the fully-connected layers of CNNs

with analog MAC operations in RRAM crossbars. They

also design corresponding data encoding schemes, pe-

ripheral circuits, software and hardware interfaces to

improve the performance of the entire architecture.

Three improvements are made in subsequent stu-

dies. First, due to the limited accuracy of traditional

multi-bit RRAM crossbars, [8,10] use single-bit RRAM

crossbars to implement BNNs, and [18] further pro-

poses quantization algorithms to implement configu-

rable multi-precision networks. Second, it brings re-

dundant data transfer and storage by directly expand-

ing the convolution operation into a MAC operation.

In view of this, [19] proposes a new data mapping

scheme to reduce data transfer overhead, and [12] fully

exploits the network sparsity to reduce unnecessary

storage. Third, RRAM crossbars cannot support NN

training. [20] implements back propagation and weight

update in RRAM crossbars, which greatly reduces the

energy consumption required in NN training. Fourth, it

cannot deal with different crossbar sizes. To solve this
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problem, [21] proposes an overlapped mapping method

(OMM) and mixed-size crossbar-based RRAM CNN

accelerator (MISCA) to improve area utilization. [15]

presents a novel methodology for mapping BNN ope-

rations on RRAM crossbars of arbitrary sizes.

Our pattern representation improves the direct

weight matrix representations of the convolutional lay-

ers and the fully-connected layers in single-bit RRAM

crossbars. It is orthogonal to the four improvements

mentioned before. That is to say, first, we can further

improve the area efficiency of previous studies with our

representation. Second, our representation makes an

equivalent conversion to the direct representations. It

does not change the outputs of these two types of layers

and has negligible effect on the network accuracy.

8 Conclusions

In this work, we proposed an area efficient weight

representation framework for BNNs on RRAM. Unlike

two mainstream representations that directly map the

weight matrix onto the crossbars, our pattern represen-

tation extracts patterns from the original weight matrix

and then maps patterns onto the crossbars to reduce the

redundant 0s and 1s as many as possible. Experimental

evaluation showed that our framework saves more than

20% of the crossbar area compared with the pos-neg

representation and the XNOR representation.

The pattern representation currently only supports

BNNs. However, there is also some redundancy in the

weight matrices of CNNs. Therefore, in the future, we

would like to apply the novel representation to general

CNNs and multi-level RRAM cells.
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