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Abstract Massive ocean data acquired by various observing platforms and sensors poses new challenges to data mana-

gement and utilization. Typically, it is difficult to find the desired data from the large amount of datasets efficiently and

effectively. Most of existing methods for data discovery are based on the keyword retrieval or direct semantic reasoning,

and they are either limited in data access rate or do not take the time cost into account. In this paper, we creatively design

and implement a novel system to alleviate the problem by introducing semantics with ontologies, which is referred to as

Data Ontology and List-Based Publishing (DOLP). Specifically, we mainly improve the ocean data services in the following

three aspects. First, we propose a unified semantic model called OEDO (Ocean Environmental Data Ontology) to represent

heterogeneous ocean data by metadata and to be published as data services. Second, we propose an optimized quick service

query list (QSQL) data structure for storing the pre-inferred semantically related services, and reducing the service querying

time. Third, we propose two algorithms for optimizing QSQL hierarchically and horizontally, respectively, which aim to

extend the semantics relationships of the data service and improve the data access rate. Experimental results prove that

DOLP outperforms the benchmark methods. First, our QSQL-based data discovery methods obtain a higher recall rate

than the keyword-based method, and are faster than the traditional semantic method based on direct reasoning. Second,

DOLP can handle more complex semantic relationships than the existing methods.
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1 Introduction

Ocean science is currently entering into big data era

with the exponential growth of information technology

and advances in ocean observing. On the one hand,

various sensors and autonomous observing platforms

have acquired Petabytes of observation data [1]. On the

other hand, the large-scale applications such as numer-

ical prediction models generate about Terabytes of sim-

ulation results each day. The explosive growth of the

volume and diversity of ocean data poses new challenges

for data management [2–4].

To overcome the problem, scientists have proposed

guidelines for the publication of digital resources like

datasets, codes, workflows, and research objects, in a

manner that makes them findable, accessible, interop-

erable, and reusable (FAIR) [5]. Researchers outlined

how FAIR principles apply to ocean data [6]; however,

there is still no unified or standard data service model

to make ocean data be FAIR so far. Typically, we list
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the main challenges for ocean data services as follows.

Data Access. The lack of standard and rich oceano-

graphic metadata makes it impossible to identify and

access datasets uniformly. As far as we know, there are

several ocean data inventories, such as Marine Environ-

mental Data Inventory (MEDI) [7], Ocean Data Acqui-

sition System (ODAS) metadata 1○, European Direc-

tory of the Initial Ocean-observing System (EDIOS) 2○,

and Argo floats metadata 3○, which describe observing

systems or observation data from their own perspectives

with various standards.

Data Interoperation. The ocean data types and for-

mats from different platforms and observing systems

are diverse and heterogeneous, and the terminologies

may be ambiguous, which bring great challenges to data

interoperation.

Data Finding. It is difficult to find valuable infor-

mation from the large amount of data without an ef-

fective index. According to the statistics, by the ocean

observing platforms deployed in the past 10 years, the

amount of observation data transmitted in one year is

equivalent to that acquired in the past century [6].

The proliferation of heterogeneous data sources (un-

structured, semi-structured and structured) brings a

new urgent need for tools which allow to query hete-

rogeneous data in a flexible way [8]. One of the most

challenging problems is how to improve data services to

support knowledge discovery better [6, 9]. Fortunately,

information technologies such as service computing can

be used for describing various datasets with multiple

heterogeneous formats, and improve data services in

the ocean domain.

Service-oriented computing (SOC) as an efficient

computing model for distributed computing, cross-

organizational digital data sources sharing, and appli-

cation integration [10, 11], has been developed rapidly

in the past two decades. Ontology-based semantic

web as one of the key technologies in service com-

puting, can not only construct the unified description

of heterogeneous resources, but also improve interop-

erability among services [12]. Particularly, one of the

most powerful features of ontology is that it provides a

way to express explicit knowledge of a conceptual do-

main, from which the implicit new knowledge can be

inferred through logical reasoners [13], e.g., it is widely

used to describe sensors and observations [14, 15]. It is

worthwhile to note that in recent years ontology has

been widely applied to describe heterogeneous resources

in high-performance computing (HPC) [16, 17], cloud

service environments [18–20], and Internet of things

(IoT) [21, 22]. Therefore, it is natural to utilize ontology

to represent the heterogeneous ocean data and improve

data discovery by service computing technologies.

Service discovery, especially the Web service dis-

covery, has been widely studied in recent years. The

basic service discovery solutions range from the ini-

tial proposals that rely on the syntactic description of

services (syntactic-based methods) [23], to more generic

solutions that combine user-provided semantic descrip-

tions (semantic-based methods) [24–26]. As a vast num-

ber of various types of services are available, service

discovery solutions are desired to handle much com-

plex queries effectively and efficiently. As a conse-

quence, the expanded hybrid solutions have attracted

much attention [27, 28]. However, existing service discov-

ery methods still have several limitations [27, 29,30].

First, most of the existing Web services are de-

scribed using WSDL (Web Services Description Lan-

guage) and not associated with semantics, and a ma-

jority of the syntactic-based methods adopt keyword-

matching techniques to find the published services.

However, they fail to discover the services whose func-

tionalities are semantically equivalent or similar to the

query, and returns only a few services that exactly

match the request, even though information retrieve

(IR) techniques are usually leveraged to enhance the

performance [23, 31].

Second, the semantic-based methods are tradition-

ally proposed to overcome the issues of keyword-

matching methods, by using ontology-based semantic

Web service description languages to annotate the ser-

vices. However, for data services, on the one hand, it is

impractical for service publishers to tag all the services,

especially for the ocean data that continues to grow

rapidly, and lack of recognized data ontologies. On the

other hand, the traditional service discovery methods

based on direct reasoning perform semantic reasoning

during service querying. From the perspective of ser-

vice requesters, they can return some of the services

that are semantically related to their requests, but it is

time-consuming and inefficient [32].

Third, most of the hybrid solutions recommend can-

didate services for users to select and determine their

final queries, and focus on how to enhance the queries

1○https://www.jcomm.info/index.php?option=com, Mar. 2020.
2○https://www.seadatanet.org/Metadata/, Aug. 2021.
3○http://www.argodatamgt.org/Documentation, Aug. 2021.
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of users [27]. It requires multiple interactions with the

users, and may obtain the exact services they needed

ultimately. However, the requirement for multiple at-

tempts and interactions increases the burden on users.

Here, we design and implement a novel system

called DOLP (Data Ontology and List-Based Publish-

ing), which combines the semantics with IR techniques

to improve the performance of data service discovery.

As shown in Fig.1, in DOLP we mainly improve the

ocean data services in the following three aspects. First,

we propose a unified semantic model called OEDO

(Ocean Environmental Data Ontology). Second, we

propose an optimized quick service query list (QSQL)

data structure for enhancing services querying. Third,

we propose two algorithms for optimizing QSQL hier-

archically and horizontally.

Hierarchical
Expansion
Based on
WordNet 

Horizontal
Expansion

Using Object
Properties 

OptimizationSemantic Model

OEDO

QSQL Data

Structure

Service Querying

Semantic

Reasoning

Publishing

DOLP

Fig.1. Overview of DOLP.

Specifically, we introduce semantics into ocean data

by constructing the OEDO model, which represents

multiple heterogeneous ocean data by metadata. We

publish the concepts of the OEDO model as input and

output parameters of the data service interfaces. The

QSQL data structure was proposed in our previous

studies based on IR techniques for retrieving services

quickly [16, 32]. It stores the semantically related ser-

vices which are inferred in service publishing stage. We

optimize QSQL further in this paper. Based on the

OEDO model and the basic QSQL, we extend QSQL

hierarchically and horizontally respectively to generate

the optimized QSQL. Firstly, we perform hierarchical

expansion based on WordNet [33], which extends the se-

mantics of the domain concepts. Then, based on the

RDF and OWL semantics, horizontal expansion using

object properties is implemented, which aims to extend

the semantic relationships of the data services and im-

prove the data access rate.

The contributions of this paper are summarized as

follows.

• We construct the OEDO model to provide a uni-

fied semantic representation for heterogeneous ocean

data resources.

• In order to expand the semantics of the data ser-

vices, we optimize the QSQL data structure [16, 32], by

extending the domain concepts hierarchically based on

WordNet, and extending the relationships between con-

cepts horizontally using multiple object properties.

• Based on the OEDO model and the optimized

QSQL, we propose the hybrid data service publishing

and discovery system DOLP to improve data services.

•We conduct extensive experiments to validate the

effectiveness and efficiency of our proposals in data ser-

vice discovery and data access.

This paper extends our earlier published conference

paper [34] in several aspects. First, we focus on publish-

ing data as services to improve the discovery of hete-

rogeneous ocean data, and survey more state-of-the-art

studies related to service discovery. Second, we repre-

sent more details of the unified OEDO model by RDF

and OWL semantics, and extend the model concepts,

such as the Sensor class. Third, a new algorithm based

on multiple object properties is proposed, to further

extend the QSQL data structure and improve the effi-

ciency of data discovery and access.

The rest of this paper is organized as follows. In Sec-

tion 2, we analyze and discuss related work. Section 3

introduces the semantic OEDO model. In Section 4,

we describe the hierarchical and horizontal QSQL op-

timization algorithms in detail. Section 5 presents and

analyzes our experimental results. In Section 6, we

summarize this paper.

2 Related Work

2.1 Ontologies for Heterogeneous Data

In view of the advantages in solving semantic inter-

operability, ontology has been widely used in the rep-

resentation of multiple heterogeneous resources.

Typically, Janowicz and Compton developed a

generic ontology design pattern for observation-based

data on the semantic web [14], which also forms the top-

level of the semantic sensor network (SSN) ontology

developed by the W3C semantic sensor network incu-

bator group (SSN-XG). The SSN ontology can be seen

from four main perspectives, that is, a sensor perspec-

tive, an observation perspective, a system perspective,

and a feature and property perspective [15]. Bermudez
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et al. [35] proposed a marine platform ontology, which

is fostered by the Marine Metadata Interoperability

(MMI) Project [36] and jointly developed by a team of

data system developers from the marine science and on-

tological communities. Lowry and Leadbetter [37] sum-

marized how data discovery, markup and aggregation

are semantically supported in the European Marine Ob-

servation and Data Network (EMODnet) [37]. In order

to provide the solution of a certain class of applied prob-

lems of climate data, the first version of the primitive

Web Ontology Language (OWL)-ontology of collections

of climate and meteorological data is presented [38],

which is a component of expert and decision-making

support systems intended for quick search for climate

and meteorological data.

However, the aforementioned ontologies are just

constructed from various perspectives with their own

metadata, and have not been practically used to realize

data service discovery yet.

2.2 Service Discovery

As described in Section 1, the existing service dis-

covery methods can be classified into three categories

from the perspective of the technology used, i.e., the

syntactic-based methods, the semantic-based methods,

and the hybrid methods.

Syntactic-Based Methods. Most of the traditional

syntactic-based methods query services via matching

keywords between user queries and services, and usually

incorporate IR techniques to enhance the performance,

such as hierarchical clustering algorithm [23, 31]. Dong

et al. [31] used a clustering algorithm to calculate the

similarity between user queries and service operations.

Plebani and Pernici [39] proposed a Web service retrieval

method based on similarity evaluation, which measures

the degree of similarity between multiple service inter-

faces by analyzing the structures of WSDL documents

and the terms they contain. However, they still fail to

get services whose functionalities are semantically simi-

lar to the desired one, and limited in the precision and

recall rate [40].

Semantic-Based Methods. This kind of methods is

proposed to overcome the limitations of the syntactic-

based methods. The basic idea of the initial logic-

based methods is to represent services by ontology-

based semantic web service description languages [27],

e.g., SAWSDL, OWL-S and WSMO [24], to leverage the

powerful features of ontology. For example, Rodŕıguez-

Mier et al. proposed a logic-based fine-grained I/O web

service discovery method [25]. Chen et al. [26] proposed

a semantic similarity measure that combines functional

similarity and process similarity. It has been proved

that the efficiency of these methods is better than that

of syntactic-based methods, but the complexity of se-

mantic reasoning and similarity computation is high.

In addition to web services, semantic-based meth-

ods have been successfully applied to new service mod-

els, such as cloud services [41, 42] and HPC services [16].

Rekik et al. [41] proposed an ontology for the cloud

service description, which mainly covers three layers,

namely IaaS, PaaS and SaaS. Parhi et al. [42] designed

an ontology-based cloud infrastructure service discov-

ery and selection system by defining functional and non-

functional concepts, as well as attributes and relations

of infrastructure services. Zhou et al. [16] constructed an

ontology model to represent the cross-regional HPC re-

sources, and proposed a service discovery method based

on the model to improve the efficiency of resources dis-

covery. However, the resources of both cloud and HPC

are limited and the types of resources are clear and def-

inite. It is difficult to extend these methods to data

services, which are required to cope with the growing

and diverse types of data.

It is worth noting that the ontology-based seman-

tic models also play an important role in heterogeneous

data access. Ontology-based data access (OBDA) has

been extensively studied by researchers [43–48]. The

OBDA paradigm [49] has emerged as a proposal to pro-

vide convenient and user-friendly access to data repos-

itories, which are focused on relational data resources

in the past decade. However, they cannot handle semi-

structured and unstructured data.

Besides, many schemes have been proposed to dis-

cover valuable data from heterogeneous data sources.

For example, to integrate the proliferate heterogeneous

data sources, Buron et al. [8] proposed an ontology-

based RDF integration mechanism of heterogeneous

data. The mechanism enables joint querying of the data

and the ontology. Query answering in RDF knowledge

bases through reformulation has been studied to query

data and schema triples together [50]. Peng et al. [51]

proposed techniques for processing SPARQL queries

over a large RDF graph in a distributed environment.

Quamar et al. [52] proposed an ontology-based conversa-

tion system for domain-specific (healthcare) knowledge

bases from various data sources. However, it is hard to

access these data in the form of data services, which is

much easier for users to find the valuable data from the

large amount of heterogeneous data sources.
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Hybrid Methods. In recent years, many hybrid

methods have been proposed to improve the perfor-

mance of more complex services discovery, including

the syntactic-semantic hybrid methods [28] and query

expansion methods [27, 29]. For instance, Garriga et

al. [28] presented a structural-semantic hybrid approach

to help developers in retrieval and selection of services

from a service registry. Paliwal et al. [29] utilized cluster-

ing to classify the services accurately based on service

functionality, and enhance service requests by adding

relevant ontology concepts. Zhang et al. [27] proposed

a service discovery approach by utilizing similar ser-

vice goals extracted from textual service descriptions,

which are then recommended to users to select as an

expanded query [53]. It helps service requesters obtain

similar services accurately with a simple keyword query.

The query expansion methods improve the quality of

user queries a lot. However, users need to select the

recommended service manually, and it may require mul-

tiple interactions, which increases the burden of users

who are lack of relevant domain knowledge. To achieve

more realistic service composition, Ren et al. [32] pro-

posed a service discovery method using WordNet and

multiple heterogeneous ontologies. However, the se-

mantic relationships from WordNet are limited [28, 32],

and some concepts from the domain ontologies may be

irrelevant [27]. What is more, most of the query expan-

sion methods do not take the time cost into account,

which is important to service requesters and cannot be

neglected when a large number of services exist.

To sum up, the existing syntactic-based methods,

semantic-based methods, and hybrid methods still face

challenges in efficient and high-quality data service dis-

covery. Specifically, syntactic-based methods are lim-

ited in the data access rate due to the lack of seman-

tic information [40]. Semantic-based methods need to

annotate services with rich domain concepts, which is

difficult for service publishers and users with little do-

main knowledge, and the semantic reasoning is time-

consuming [32]. Most of hybrid methods require multi-

ple interaction with users and do not consider the re-

sponse time of the querying [27, 53]. However, from the

perspective of data users, efficient and high-quality data

service discovery should be able to obtain the required

services quickly and accurately, which can be measured

by the response time, precision and recall rate of the

querying.

In this paper, we propose a novel system, DOLP, for

improving ocean data services. It consists of three com-

ponents: the ontology model OEDO that is constructed

using ocean metadata and is published as the in-

put/output parameters of data services, the QSQL data

structure for storing the published and pre-inferred con-

cepts and relationships in OEDO model, and the opti-

mization algorithms for extending the semantics of the

OEDO model. The DOLP system focuses on reducing

the time of data service discovery and improving data

access by optimizing the QSQL data structure.

3 Construction of the OEDO Model

As there are few open ocean data ontologies that can

be used to publish data services, we first construct the

core of the OEDO model manually using ocean meta-

data, which aims to provide a unified semantic repre-

sentation for heterogeneous ocean data. The ODEO

model is open sourced through Github 4○.

3.1 Semantic Representation

The semantic web data model RDF represents data

as a collection of triples in the form of (s, p, o), which de-

scribes the relationship between the two entities subject

s and object o by property (or predicate) p. Naturally,

it can be represented as a graph where subjects and

objects are vertices, and the properties are edge labels.

Based on RDF and RDF schema (RDFS), W3C re-

leased OWL to enhance the semantic expression. OWL

uses description logic as the theoretical basis, and it

has rich knowledge representation and reasoning ability,

which is the designated ontology description language

of W3C. In this paper, we extend OWL to represent the

heterogeneous ocean data resources with a hierarchical

structure, as summarized in Table 1.

Table 1. Semantic Representation

Semantics Notation

Class(ci) (ci, τ, Ci)

equalClassOf(Ci, Cj) (Ci,=, Cj)

subClassOf(Ci, Cj) (Ci,≺sc, Cj)

grandcldClassOf(Ci, Cj) (Ci,≺sc, Ck),

(Ck,≺sc, Cj)

siblingClassOf(Ci, Cj) (Ci,≺sc, Ck),

(Cj ,≺sc, Ck),

(Ci, 6=, Cj)

Domain(pi) (pi,←↩d, Ci)

Range(pi) (pi, ↪→r, Ci)

subPropertyOf(pi, pj) (pi,≺sp, pj)

4○https://github.com/sayingxmu/DOLP, Sept. 2021.
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3.1.1 Hierarchical Structure of Concepts

A domain ontology can be represented by a set

of triples like (s, p, o), where subjects s and objects o

are the entities, describing either ontology concepts or

blank nodes.

Definition 1 (Class). Given ∀i, Ci represents the

i-th concept of ontology O, and any instance of Ci is

denoted as (ci, τ, Ci), i.e., ci is an instance of Ci.

Definition 2 (Equal Class). Given the semantics

of Ci and Cj are equivalent, we define that Ci is the

equal class of Cj, denoted as triple (Ci,=, Cj).

Definition 3 (Sub Class). Given the concepts Ci

and Cj, Ci is defined as the sub class of Cj (or Cj is the

super class of Ci), denoted as the triple (Ci,≺sc, Cj), if

the semantics of the concepts satisfies Ci ⊆ Cj.

Definition 4 (Grandchild Class). Given the con-

cepts Ci, Cj, and Ck, Ci is defined as the grandchild

class of Cj (or Cj is the grandparent class of Ci), if

there exist (Ci,≺sc, Ck) and (Ck,≺sc, Cj).

Definition 5 (Sibling Class). Given the concepts

Ci, Cj, and Ck, Ci and Cj are defined as the sib-

ling class for each other, if there exist (Ci,≺sc, Ck),

(Cj ,≺sc, Ck), and (Ci, 6=, Cj).

3.1.2 Properties

In OWL, the properties of ontology represent the

relationship between two entities. Generally, the ob-

ject properties (“owl: ObjectProperty”) and datatype

properties (“owl: DatatypeProperty”) are user-defined

according to the domain knowledge. Besides, there are

inherent properties. Similar to the concepts, the prop-

erties also can be described with a hierarchical struc-

ture.

Definition 6 (Sub Property). Given the properties

pi and pj, pi is defined as the sub-property of pj, if the

semantics of pi is the subset of pj (i.e., pi ⊆ pj), which

is denoted as the triple (pi,≺sp, pj).

For each property, we define two operators ←↩d
and ↪→r to represent the domain and the range of

the property, respectively, e.g., triples (pi,←↩d, Ci) and

(pi, ↪→r, Cj) show that Ci is the domain and Cj is the

range of property pi. To differentiate the latter de-

scription of user-defined property, we define the proper-

ties←↩d, ↪→r,≺sp,≺sc,=, and 6= as inherent properties,

which are used to describe the hierarchical structure of

an ontology with RDF.

According to Definitions 2–6, the property p in

triple (s, p, o) represents the object properties or

datatype properties; thus p /∈ {τ,←↩d, ↪→r,≺sp,≺sc,=,

6=}.

3.2 Top Level Class

Generally, ocean data consists of observations, nu-

merical simulation results, and manually recorded data

by human beings. Because numerical simulation re-

sults are usually released in a regular structure, and the

amount of manually recorded data is relatively small,

the OEDO model in this paper mainly focuses on the

large-scale, multi-source, and heterogeneous ocean ob-

servation data. Three elements including the observa-

tions, the sensors for observations, and the observing

platforms are the core of data-intensive science, espe-

cially in the ocean area. To make the OEDO model as

comprehensive as possible, on the one hand, we have

investigated many typical ocean observation projects

and systems to integrate domain concepts, including

the MMI project [36], the European SeaDataNet 5○, the

EMODnet 6○, the Integrated Ocean Observing System

of NOAA (IOOS) 7○, the Global Ocean Observing Sys-

tem (GOOS) 8○, and the sub-projects of them. On the

other hand, we have reviewed the aforementioned meta-

data inventories and the related literature [14, 15,35,38,54]

to obtain ontology classes, relations, and the corre-

sponding object properties.

The top level of the proposed OEDO is depicted in

Fig.2, which consists of the key concepts including Ob-

servation, Sensor, System and Platform. In addition,

the relations between these concepts are represented

by the object properties. Specifically, Observation is

observed by (isObservedBy) some Sensors, which is de-

ployed on (isDeployedOn) observing Platforms, and the

observing systems include (hasPlatform) various Plat-

forms.

As shown in Fig.2, there are many reverse object

properties in OEDO, e.g., the object property isOb-

servedBy is the reverse of (“owl: inverseOf ”) hasObser-

vation. In this way, we can obtain the observation of

a certain sensor, and at the same time if we retrieve

some observations, we can obtain the sensor that senses

the observation data, as well as the platform where the

sensor is deployed, and the related information. This

5○https://www.seadatanet.org, Aug. 2021.
6○http://eurogoos.eu/emodnet, Aug. 2021.
7○https://ioos.noaa.gov, Aug. 2021.
8○http://www.goosocean.org, Aug. 2021.
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is designed to enhance the data linking capability and

the data discovery efficiency.

hasObservation (Some)

isObservedBy (Some)
Observation Sensor

System

OEDO

Platform
hasPlatform (Some)

h
a
sS

e
n
so

r 
(O

n
ly

)

isDeployedOn
(Some)

Fig.2. Key concepts and relations of OEDO [34].

Note that, in this paper we mainly focus on the con-

cepts of Platform, Sensor and Observation, which are

closely related to data collections and services. Thus,

in the following we describe the representations in the

OEDO model in detail.

3.3 Ocean Observing Platform

As described in our earlier work [34], platforms are

the infrastructure of ocean observing activities. How-

ever, there are many kinds of platforms produced by

various manufacturers, and deployed and managed by

different organizations. Thus, the multiple standards

from different organizations lead to unclear description

of the datasets produced by them, and even the datasets

cannot be reused. In this subsection, we describe the

representation of these platforms by hierarchical classi-

fication and property description in detail.

3.3.1 Hierarchical Classification

In order to describe the observing platforms in a

hierarchical way, we first categorize them into four sub-

classes, which are all annotated by the is-a relation

and it is transitive (“owl:TransitiveProperty”). More-

over, as shown in Fig.3, we further subdivide platforms

into three layers. Specifically, the second layer of the

ocean observing platforms consists of four types, i.e., 1)

GroudBasedPlatform, which is located on the surface of

the Earth; 2) OceanBasedPlatform, including the plat-

forms that are both on the ocean surface and under-

water; 3) SpaceBasedPlatform, which mainly refers to

satellites; 4) AirBasedPlatform, including those above

the surface of the Earth and below the middle atmo-

sphere.

To clearly illustrate the representation of hierar-

chical classification in the OEDO model, we take

OceanSurfacePlatform as an example. Generally, plat-

forms deployed on ocean surface include fixed ones like

moored buoys, and the mobile ones like boat, ship, re-

search vessel, tow fish, and drifting buoys, which are

usually used for obtaining sea surface data, such as tem-

perature, salinity and wave height. These items are the

commonly used keywords for users to find the datasets

they need, and thus we add them as instances of the

ontologies. In this way, we try to improve the data dis-

covery services with the semantic extension of OEDO.

3.3.2 Property Description

With the help of the ODAS metadata and the

Global Change Master Directory (GCMD) keywords 9○,

we represent various platforms in an interoperable form.

Totally, there are 10 basic classes for describing a plat-

form, i.e., ID, URL, Type, Feature, Location, Sensor,

ValidTime, TransmitTime, DataFormat, and Organi-

zation in the OEDO model. The details of the corre-

sponding object properties are summarized in Table 2.

Taking the concept Sensor as an example, it can

be represented by the triple (Platform, hasSensor,

sensori), where hasSensor is one of the object prop-

erties of the class Platform, and sensori is a specific

Platform

AirBasedPlatform GroundBasedPlatform SpaceBasedPlatform

UnderwaterPlatformOceanSurfacePlatformHydrologicalStationCoastalStationGroudStation

is-a is-a is-a is-a

is-ais-ais-ais-ais-a

OceanBasedPlatform

Fig.3. Classification of platforms [34].

9○https://forum.earthdata.nasa.gov/app.php/tag/GCMD%20Keywords, Aug. 2021.
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Table 2. Object Properties of Platforms [34]

Object Property Range Description

hasID ID Unique identification number

hasURL URL Web address to obtain its additional information

hasType Type Type of the platform, such as moored buoy type

hasFeature Feature Shape and size (i.e., length, width or diameter)

hasLocation Location Where the platform is deployed (i.e., longitudes, latitudes and vertical height)

hasSensor Sensor Sensors deployed on the platform

hasValidTime ValidTime The initiation date and the operational end-date

hasTransTime TransmitTime The data transmitted in real time, near real time or delay model, and the time interval of

transmitting

hasDataFormat DataFormat Data format of produced data

hasOrganization Organization Who deploys and manages the platform

sensor deployed on this platform. The domain and the

range of hasSensor are represented by triples (hasSen-

sor, ←↩d, Platform) and (hasSensor, ↪→r, Sensor), re-

spectively. These triples are the basis of the horizontal

extending of the QSQL optimization, since they facili-

tate the semantic reasoning based on the RDF entail-

ment rules, and the details are shown in Subsection 4.3.

3.4 Sensor

In ocean domain, sensors refer to the physical ob-

jects that detect external stimuli (i.e., changes in the

physical world) [14, 55,56]. Various sensors are deployed

on the specific observing platform to perform sensing

and transform an incoming stimulus into another, of-

ten with digital representation, which is represented as

Observation in the OEDO in Subsection 3.5. The rep-

resentation of sensors in our model is shown in Fig.4.

We extract the general and core concepts and relation-

ships of sensors in the SSN ontology [15], and extend the

properties of sensors for ocean data acquisition.

Generally, each sensor has its own external survival

condition (SurvialCondition), and only under this con-

dition can it be able to (hasCapability) measure the

features of interest (Property), such as Wind and Pres-

sure, which are described as the subclasses of Measure-

mentCapability.

But what needs to be noted is that the performance

of a specific sensor may be affected by the prevailing

conditions. For example, the Accuracy of a sensing de-

vice may vary greatly under different external environ-

mental conditions. Therefore, we relate class Measure-

mentCapability with Performance through the object

property hasPerformance in our OEDO model.

3.5 Observation

In order to be consistent with the SSO design

pattern [14, 15], observations in OEDO are modeled as

the sensor output and events in the physical world. The

Sensor

Accuracy

Performance SurvivalCondition

inCondition

Sensitivity

hasCondition
Property

Observes

MeasurementCapability

Range

hasCapability

Wind Pressure

hasPerformance

Fig.4. Representation of sensors.
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details are described in our previous study [34].

3.5.1 Hierarchical Classification

As the development of ocean monitoring systems,

there are observations from multiple disciplines that in-

clude various physical parameters. In this subsection,

we represent the hierarchical classification of observa-

tions in OEDO, which is designed to facilitate data ac-

cess for data users from different disciplines.

As shown in Fig.5, there are seven subclasses of

ocean observations. Taking MarineMeteorology as an

example, the sensors deployed on the buoy platform

sense stimuli 10 meters above sea surface, such as wind

(speed and direction), air pressure, humidity, and vis-

ibility. These stimuli are interpreted as physical para-

meters in datasets, which will be described in Subsec-

tion 3.5.2 in detail.

3.5.2 Metadata Description of Dataset

Generally, observation is an ensemble of datasets re-

ceived by the sensors with different spatial resolutions

and temporal grids, which can be described with its own

metadata. In our OEDO model, we represent the main

items of metadata which focus on improving the FAIR

services of ocean data, and model them as datatype

properties and object properties of the unified ontology

to make various datasets interoperable. The simplified

representation of datasets in the OEDO model is shown

in Fig.6, in which the blue lines refer to datatype pro-

perty, while green lines refer to object property.

In our model, any dataset must be identified by a

name (hasName) and a unique ID (hasID), which are

both represented by datatype properties. It is worth

pointing out that the name is crucial for data discovery,

Observation

MarineBiology

Temperature Salinity Wave OceanCurrent WindSpeed WindDirection Visibility Humidity AirPressure

MarineHydrology MarineChemistry SeabedTerrain SeabedMaterial MarineMeteorology MarineGeophysics

is-a is-a is-a is-a is-a is-a is-a

part-of part-of part-of part-of part-of part-of part-of part-of part-of

Fig.5. Classification of observations [34].

xsd:string

xsd:string

Organization

hasAccessInfo hasTimeArray
Accessibility

Reference

URL

PhysicalParameter

TimeStep

DataSet

SpatialResolution

TimeArray

SpaceArray

QualityControl

hasID

hasName

hasOrganization only

hasURL

hasParameter
hasTimeStep

hasSpatialResolution

hasSpaceArray

hasQuality

isCitedBy

Fig.6. Simplified representation of datasets [34].
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that is, making the dataset findable. Data users will

learn the accessibility information by the base classes of

Accessibility, URL and the corresponding object prop-

erties, which satisfy the accessible requirement of FAIR

principle. In addition, users can cite the dataset by ref-

erences (Reference), which will encourage data produc-

ers and organizations to share their data, and facilitate

data access further. The stimuli sensed at a certain res-

olution (SpatialResolution) and time step (TimeStep)

are interpreting as physical field (PhysicalParameter),

which can be represented by a four-dimensional varia-

ble including space location (SpaceArray), and time se-

quences (TimeArray), i.e., (longitude, latitude, vertical

depth, time). With the information of dataset publica-

tion organization (Organization), as well as the detailed

quality control and quality assurance (QualityControl),

the dataset can be reused without much additional en-

deavor for tracing.

4 QSQL Optimization

The proposed OEDO model has represented the

heterogeneous ocean data in a unified form using meta-

data and taxonomy. In this section, we publish the

OEDO model as data services to improve data discov-

ery and access. QSQL is essentially a data structure

and is exclusively designed to overcome the inefficiency

problem of the traditional semantic service discovery

methods based on direct reasoning, which implement

the computationally complex and time-consuming se-

mantic reasoning during querying. QSQL has been

proved to be an effective data structure for service

discovery [10, 16,32]. Here, we first introduce the basic

structure of QSQL, and then describe the details of the

two optimization methods, named as hierarchical ex-

tending and multi-property reasoning.

4.1 Basic Structure of QSQL

As described in Section 3, the semantic information

in the ontology model can be represented by directed

graphs. The vertex represents each basic ontology class,

while the arc is notated as the relationship between the

corresponding concepts. QSQL is created at the ser-

vice publishing stage, and it stores the semantic net-

work graph in adjacency lists. The basic structure of

QSQL is shown in Fig.7.

Note that each QSQL element represents an ontol-

ogy concept, which consists of a link domain (Fig.7(a))

and a data domain (Fig.7(b)). The link domain stores

the inferred relationships from the service model, in-

cluding the links to its Equal, Super, Sibling, Sub,

Grandparent and Grandchild classes, which will speed

up service queries by avoiding repeated reasoning, while

the data domain stores services that use this concept as

their input or output under different matching degrees.

4.2 Hierarchical Expansion of QSQL

QSQL is designed to reduce the query time of the

published services, which simplifies the service model

by the assumption that QSQL elements are the con-

crete ontology concepts published by the service model.

As a result, service publishers are implicitly required to

annotate their service interfaces by domain concepts.

Accordingly, service users are also required to query ser-

vices by concrete semantic concepts. However, there is

usually a lack of recognized and interoperable domain

ontology. Furthermore, most cloud service publishers

and application users do not have much domain know-

ledge, especially for the field of data-intensive ocean

science, which will also affect the capability of service

discovery and access [34].

In this context, to improve the hierarchical reason-

ing performance of our model, we extend the concepts

in OEDO by adding the corresponding relations of syn-

onym, hypernym and hyponym in WordNet, which en-

ables fuzzy matching.

4.2.1 Extending Rules

The extending rules are described in detail in the

following. The symbols related to the rules are defined

in Table 3.

Rule 1. Since it is likely that there is no con-

crete concept in the model that completely matches the

input/output parameters of a data service, we extend

equal classes by the WordNet relation synonym, which

can be written as:

∀Ci ∈ C, Ei = Ei ∪ Synw(Ci).

Rule 2. Extending parent classes of the concepts

associated with is-a relation by their hypernym:

∀Ci ∈ C,
Grdpi = Grdpi ∪Hypew(Supi),

Supi = Supi ∪Hypew(Ci).

Rule 3. Extending subclasses of the concepts asso-

ciated with part-of relation by their hyponym:

∀Ci ∈ C,
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GrandparLink

SubLink

SibLink

SuperLink

EqualLink

Link Domain

EqualClass

SuperClass

SibClass

SubClass

GrdparClass

EqualClass ^

SuperClass ^

SibClass ^

SubClass ^

GrdparClass ^

GrandchdLink GrdchdClass GrdchdClass ^

ExtendLinki ExtendClassi ExtendClassn ^

GrdparVector

SubVector

SibVector

PluginVector

ExactVector ServiceID

ServiceID

ServiceID

ServiceID

ServiceID

GrdchdVector ServiceID

Data Domain

Input Vector

Output Vector

ExtendVectori ServiceID

(b)

(a)

Fig.7. Basic structure of QSQL. The extended nodes are marked in bold. (a) Link domain of QSQL. (b) Data domain of QSQL.

Grdci = Grdci ∪Hypow(Subi),

Subi = Subi ∪Hypow(Ci).

Table 3. Symbol Definitions of Rules to Extend Semantics in
OEDO

Symbol Semantics in OEDO

Ei Equal classes of Ci

Supi Super classes of Ci

Subi Sub classes of Ci

Grdpi Grandparent classes of Ci

Grdci Grandchild classes of Ci

Exti Extended classes of Ci

Synw(Ci) Synonyms of Ci

Hypew(Ci) Hypernyms of Ci

Hypow(Ci) Hyponyms of Ci

It is worth mentioning that in addition to extending

the basic class in Fig.7, we add a new subclass in this

paper to represent part-of relations in OEDO, which is

achieved by Rule 3. The motivation for adding this type

is that ocean data have special characteristics. For in-

stances, ocean data usually have spatiotemporal prop-

erties, and the time span and the spatial coverage are

unlikely completely consistent with the requirement of

users, but the existing data within the temporal or the

spatial range can be recommended or provided to users.

Similarly, an application user may require a dataset

with multiple ocean physical fields, such as ocean tem-

perature and salinity. If there is no complete dataset

containing all the required fields, the request may be

satisfied by providing multiple subsets, each of which

contains one or more required fields.

4.2.2 Hierarchical Extending

Specifically, we model the concepts in OEDO as

data services with input and output parameters, and

then publish the services to the optimized QSQL with

the extending rules. Then, we generate a data service
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index list to facilitate data access and improve data dis-

covery. Algorithm 1 shows the procedure of publishing

the output parameters of a data service to the opti-

mized QSQL. The main processing steps of hierarchical

extending are summarized as follows:

1) getting the concrete concepts from the model

and the synonym from WordNet corresponding to each

parameter, and extending the equal classes by Rule 1,

which is described by lines 2–4;

2) for each element of equal classes, finding if the

element has been added to QSQL; if not, building the

concept’s node, appending the data service ID to its

ExactVector, and then building the EqualLink of the

node (lines 6–10);

3) inferring the super classes of each element in

equal classes (line 11) by reasoner, extending it by

retrieving the hypernym from WordNet according to

Rule 2 (lines 12 and 13), and setting the PluginVector

and SuperLink of the node (lines 19 and 20);

4) applying Rule 2 and Rule 3 to extend grandpar-

ent and grandchild classes respectively (line 22);

5) returning an optimized QSQL with data service

model published in it at the end (line 24).

Algorithm 1. hierarchical extending

Input: basic QSQL Qs, output parameter P of service Si

Output: optimized data resource list Qs

1: for parameter Pi ∈ P do

2: Ci = get modelconcept(Pi)

3: Synw = get Synonym WordNet(Pi)

4: Ei = Ci ∪ Synw; /∗ Rule 1 ∗/
5: for each Ei do

6: if !search servicelist(Qs, Ei) then

7: build conceptnodes(Qs, Ei)

8: end if

9: Qs.Ei.OUTPUT.Exact V ec.add(Si)

10: Qs.Ei.EqualLink = build link(Pi, Ei)

11: Supi = get superconcept(Ei)

12: Hypew = get hypernym wordnet(Ei)

13: Supi = Supi ∪Hypew; /∗ Rule 2∗/
14: end for

15: for each Supi do

16: if !search servicelist(Qs, Supi) then

17: build conceptnodes(Qs, Supi)

18: end if

19: Qs.Supi.Output.P lugin V ec.add(Si)

20: Qs.Supi.SuperLink = build link(Pi, Supi)

21: end for

22: extending grandparent and grandchild classes using

Rule 2 and Rule 3 respectively

23: end for

24: return Qs

4.3 Horizontal Expansion of QSQL

The hierarchical extending based on WordNet (Al-

gorithm 1) supports fuzzy matching in case that there

is no exact concept in the model. In addition, when the

exact concept corresponding to a user’s query does exist

in the model, users may desire to find the concepts di-

rectly or indirectly related to the concrete concept, i.e.,

the neighbor concepts that are related to the queried

one through one- or multi-hop relationships.

In this case, we propose a multi-property reasoning

algorithm (Algorithm 2), which makes full use of user-

defined object properties to improve the performance of

data discovery and access further. Based on the defini-

tions in Subsection 3.1, we conduct semantic reasoning

from two perspectives, i.e., RDFS entailment rules and

OWL semantics.

Algorithm 2. multiproperty reasoning

Input: basic QSQL Qs, output parameter P of service Si

Output: optimized data resource list Qs

1: for parameter Pi ∈ P do

2: Ci = get modelconcept(Pi)

3: if Ci == NULL then

4: Continue

5: end if

6: toExtend = Ci

7: while toExtend 6= ∅ do
8: for C′i ∈ toExtend do

9: pi = get objectproperty(C′i) /∗ RDF rules ∗/
10: if pi == NULL then

11: Continue

12: end if

13: for p′i ∈ pi do

14: Exti = get objectvalue(p′i)

15: dist = cal distance(Ci, Exti)

16: if dist > H then

17: Continue

18: end if

19: toExtend = toExtend ∪ Exti
20: if !search servicelist(Qs, Exti) then

21: build conceptnodes(Qs, Exti)

22: end if

23: Qs.Exti.Output.Ext V ec.add(Si)

24: Qs.Exti.ExtendLink = build link(Pi, Exti)

25: end for

26: end for

27: toExtend = toExtend− C′i
28: end while

29: end for

30: return Qs;
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4.3.1 Reasoning Based on RDFS Entailment Rules

According to the entailment patterns given in OWL

2 RDF-Based Semantics 10○, we formalize the reasoning

rule as tail(r)⇒ head(r), if the implicit triple head(r)

can be inferred from the explicit triples tail(r) [8], which

is extended from RDFS entailment rules. We list the

inference rules closely related to the object properties

in Table 4.

Table 4. RDF Entailment Rules [8]

Rule Name Entailment Rule

rdfs2 (pi,←↩d, Ci), (Cj , pi, Ck) ⇒ (Cj , τ, Ci)

rdfs3 (pi, ↪→r, Ci), (Cj , pi, Ck) ⇒ (Ck, τ, Ci)

rdfs5 (pi,≺sp, pj), (pj ,≺sp, pk) ⇒ (pi,≺sp, pk)

rdfs7 (pi,≺sp, pj), (Ci, pi, Cj) ⇒ (Ci, pj , Cj)

ext1 (pi,←↩d, Ci), (Ci,≺sc, Cj) ⇒ (pi,←↩d, Cj)

ext2 (pi, ↪→r, Ci), (Ci,≺sc, Cj) ⇒ (pi, ↪→r, Cj)

ext3 (pi,≺sp, pj), (pj ,←↩d, Ci) ⇒ (pi,←↩d, Ci)

ext4 (pi,≺sp, pj), (pj , ↪→r, Ci) ⇒ (pi,←↩r, Ci)

4.3.2 Reasoning Based on OWL Semantics

The characteristics of object properties also im-

ply reasoning functions, such as “owl: inverseOf” and

“owl: TransitiveProperty”, which help to improve the

access and recall rate of the concepts effectively.

Assuming that the property p of triple (s, p, o) is in-

verse of property p′, when querying s, o can be accessed

through p. At the same time, by the inverse property

p′, s and its associated concepts can be accessed when o

is given. In other words, the two-way query of concepts

can be realized through “owl: inverseOf” semantics.

Example 1. Extreme weather, such as typhoons,

usually causes serious disasters. Forecasting of typhoon

path and intensity is an important means of disaster

prevention and mitigation. The first task of forecasting

is to find the relevant datasets of the sea area. Let us

assume a certain location of the sea area (SpaceArray)

is given. As shown in Fig.8, if the properties between

DataSet and SpaceArray are inverse, then the corre-

sponding DataSet can be found through the given sea

area (SpaceArray), as well as the associated addresses

(URL), and the ocean physical elements (PhysicalPa-

rameter) contained in the datasets, such as sea surface

temperature (SST), salinity, and density [57].

The inherent properties ≺sp, ≺sc, =, and 6= are

obviously transitive (“owl: TransitiveProperty”), e.g.,

grandcldClassOf(Ci, Cj) in Table 1 is defined by the

transitive property ≺sc. Apart from these, some user-

defined object properties also specify the transitive

characteristics. Through “owl: TransitiveProperty”,

the hierarchical structure of ontology can be extended

easily.

xsd:string

xsd:string

URL

PhysicalParameter

hasSpaceArray

SpaceArray

Longitude,

Latitude,

Vertical

Level

SST,

Salinity,

Density,

Pressure

DataSet

hasParameter

hasURL

hasName

hasID

owns

Fig.8. Example of reasoning based on OWL semantics.

4.3.3 Multi-Property Extending

Based on the RDF entailment rules and the OWL

semantics, we propose Algorithm 2 to extend the se-

mantics of the OEDO model by user-defined object

properties horizontally, and store the extended neigh-

bor concepts in QSQL. The details of the multi-

property reasoning can be summarized as follows:

1) determining whether the model contains the ex-

act concept corresponding to each data service parame-

ter Pi, if so, add it to set toExtend as a concept to be

extended (lines 2–6);

2) for any parameter Pi, if the set toExtend is

non-empty (line 7), then for each concept C ′i in the

toExtend, get its object properties set pi (lines 8–12);

3) for each property p′i, get the corresponding con-

cept Exti, and calculate the distance (hops) between

the related concepts Exti and the exact concept Ci; if

the distance is less than a specified value H, add Exti
to set toExtend for further extending (lines 13–19);

4) if the related concept Exti has not been built

yet, then set the ExtendV ector and ExtendLink of

the node (lines 23 and 24);

5) after reasoning on all the properties of the con-

cept C ′i, delete it from set toExtend (line 27).

Note that threshold H can be set dynamically ac-

cording to the precision and recall rate of service dis-

covery. By default, we set H = 3, and we will discuss

the value in Subsection 5.3.2.

10○https://www.w3.org/TR/rdf11-mt/#rdfs-entailment, Aug. 2021.
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5 Experiment and Evaluation

In this section, we evaluate the effectiveness and ef-

ficiency of the proposed schemes in terms of data dis-

covery and data access. The experiments are conducted

on a PC with 1.2 GHz Intel Core m5 and 8 GB RAM.

The system is implemented by Java language. We use

protégé 5.5 to construct the OEDO model, which is

a free, open-source ontology editor and framework for

building knowledge-based solutions in many scientific

and commercial areas. The package of protégé can be

easily imported in Java for parsing the concepts and

relationships of the ontology model. Racer 2.0 is used

as the basic semantic reasoning tool, and Mysql 8.0.18

is used to store the published data services.

Considering the lack of real data services of ocean

data, we generate 500 abstract data services by using

the OEDO ontology as the output of the services, and

generate request models to simulate service requests of

data users. It should be noted that in all the experi-

ments, the threshold in the algorithm is set to the de-

fault value, unless otherwise specified, e.g., the hops

H = 3 in Algorithm 2 for default. The maximum num-

ber of queries presented in this paper is 35. It is enough

for comparing the time performance with other meth-

ods, and the quality of data service discovery is not

directly affected by the number of queries [32]. We run

each experiment three times and report the average re-

sult.

Before presenting the experiments and analysis, we

give the following naming conventions to simplify the

frequently-used description firstly.

• Evaluation Metrics. Symbols T , Tr, M , S, P , R,

and F1 represent for the evaluation metrics response

time, time trend, memory usage, semantic capabilities,

precision, recall, and F1-score respectively.

• Evaluation Methods. DR and KW are the ab-

breviations of the traditional semantic service dis-

covery methods based on direct reasoning and key-

word respectively [16, 32]. QB, QH and QM are

the abbreviations of the three methods based on

the basic QSQL, QSQL optimized by algorithm

hierarchical extending, and QSQL optimized by algo-

rithm multiproperty reasoning, respectively. In addi-

tion, Q represents all the three methods (QB, QH and

QM) based on QSQL structures.

• Experiment Analysis. The abbreviation letters of

evaluation methods are used as the subscripts of evalua-

tion metrics, e.g., TDR represents the response time of

the traditional semantic method based on direct rea-

soning.

5.1 Feasibility Analysis

5.1.1 Time Performance Analysis

Generally, service query methods include keyword

query [58] and semantic query. Due to the semantic rea-

soning functionality, the performance of semantic query

method is better than that of keyword query in service

discovery. However, the traditional semantic services

discovery method based on direct reasoning performs

semantic inference during querying, resulting in the low

efficiency of service discovery. In view of this, QSQL

data structure is designed to infer and store semantic

relationships in the service publishing stage, and thus

to avoid reasoning during service querying.

In order to evaluate the feasibility of using ext-

ended QSQL to improve the efficiency of semantic ser-

vice query, we analyze the ratio of semantic reasoning

and matching time to total query time. As shown in

Fig.9, we take several typical concepts of the OEDO

model as examples, and use the traditional semantic

query method to query data services. We can see that

the loading and reasoning time accounts for the largest

proportion, with an average of 75.4%, and the matching

time only accounts for 1.7%.
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Fig.9. Time distribution of semantic services query.

Therefore, it can be expected that advancing the

semantic reasoning to the service publishing stage will

effectively shorten the service query time. The improve-

ment of data discovery performance is verified in Sub-

section 5.2.

5.1.2 Space Performance Analysis

Semantic reasoning is not only a time-consuming

task, but also a memory-intensive task. Frequent infer-
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ences of semantic service querying may cause memory

jitter. In this subsection, we evaluate the memory us-

age (M) in semantic reasoning by publishing different

numbers of data services.

We report the average results of running each

method three times. Particularly, in order to eliminate

the impact of service comparisons in publishing and

repeated data writing, we implement one of the three

runs of each method with the empty database table for

storing the inference results.

The comparison between the direct reasoning

method and the QSQL-based methods is shown in

Fig.10. We conclude and analyze the results as follows.
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Fig.10. Memory usage of semantic reasoning.

1) MDR 6 MQ. The reason is that QSQL-based

methods need to dynamically construct the QSQL data

structures during reasoning. What is more, the QH

method extends the hierarchical semantics by reason-

ing based on WordNet, and the QM method extends the

semantic by reasoning based on multiple object prop-

erties.

2) The more the publishing services Np, the larger

the memory usage M . This illustrates that the mem-

ory utilization of semantic reasoning will continue to

increase as the number of publishing services increases.

3) Given a certain Np, e.g., when Np = 100, we can

get that MQB < MQH < MQM. Moreover, the more

the services Np, the larger the difference in M between

the four methods. It shows that the memory usage M

is positively related to the complexity of semantic rela-

tions S, i.e., M ∝ S. This is consistent with the fact

of SQB ⊂ SQH ⊂ SQM, which is analyzed in detail in

Subsection 5.3.1.

The traditional DR method performs semantic rea-

soning during service querying, which may cause sys-

tem instability when processing large amount of service

querying. Therefore, in order to support the reasoning

of more complex semantic relationships, it is essential

to avoid reasoning during service querying.

5.2 Performance of Data Service Discovery

To evaluate the efficiency of our schemes, we test

and analyze the response time (T ) and time trend (Tr)

of data service discovery, by conducting the following

two groups of comparative experiments respectively.

• Comparison between different kinds of query

methods, i.e., the traditional DR method, the KW

method and the QB method, where QB is the base-

line of the series of semantic querying methods based

on QSQL structures.

• Comparison between the series of the semantic

query methods based on QSQL. This is designed to eva-

luate the performance of the two optimizing algorithms,

i.e., QH and QM methods. Again, the benchmark is the

QB method.

Note that the comparison between DR, KW and QB

has been reported in our previously published confe-

rence paper [34]. We present it here again to compare

the response time of DR, KW and QB with that of QH

and QM, as the OEDO model is extended in this paper.

5.2.1 Response Time

The response time of processing different numbers

of queries by different methods is shown in Fig.11.

Firstly, the response time of the three types of meth-

ods is shown in Fig.11(a) where we can see the follow-

ings.

1) TDR increases as the number of query services

Nq increases, and TDR is the longest when Nq is deter-

mined.

2) TKW > TQB and TKW < TDR , but the KW

method does not support semantic reasoning, which is

analyzed in Subsection 5.3.1.

3) TQB is the shortest one when Nq is determined,

TQB � TDR and TQB � TKW. The reason is that the

QSQL data structure stores the semantic relationships

of the OEDO model and generates a service index list,

and it only needs to get the related services from the

list when processing a query. However, the DR method

needs to perform semantic reasoning during querying,

and the reasoning time accounts for a large proportion

of the response time, as analyzed in Subsection 5.1.1.
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Fig.11. Response time of querying by different methods. (a)
Different kinds of methods. (b) QSQL-based methods.

Secondly, Fig.11(b) illustrates the response time of

querying services published by the series of QSQL-

based methods. In general, TQB ≈ TQH ≈ TQM when

Nq is determined. QH and QM are extended from

QB hierarchically and horizontally, and the extending

is completed at the service publishing stage. Therefore,

the response time of querying based on them does not

increase, which is consistent with the original intention

of the QSQL design.

5.2.2 Time Trend

The trends of response time for each query are

shown in Fig.12, which illustrate the stability of each

method. In Fig.12(a), we can see that TrDR changes

drastically as the number of queries changes. In compa-

rison, TrKW and TrQB are relatively stable, regardless

of how many queries are processed.

The trends comparison of QSQL-based methods is

shown in Fig.12(b). Except for querying only one ser-

vice (the overhead accounts for a lot), the average time

difference of multiple service queries is less than 3 ms.

It shows that the three QSQL-based methods are sta-

ble and reliable, and the hierarchical and the horizontal

extending of the structure still guarantee the stability.

 10

 15

 20

 25

 30

1 5 10 15 20 25 30 35

T
im

e
 (

m
s)

Number of Queries

QH
QM
QB

1 5 10 15 20 25 30 35

Number of Queries

DR
KW
QB

101

102

103

104

T
im

e
 (

m
s)

(b)

(a)

Fig.12. Trends of average response time of different methods.
(a) Different kinds of methods. (b) QSQL-based methods.

We conclude the average query time of various

methods in Table 5, where we can see that the perfor-

mance of the three QSQL-based methods is significantly

better than that of DR and KW methods. Compared

with the basic QSQL method QB, the extending of the

QSQL structure (QH and QM) neither improves nor

affects the performance of data service querying shown

in bold in Table 5, because the semantic reasoning is

completed in the service publishing stage. But they im-

prove the efficiency of data access, which is analyzed in

Subsection 5.3.

Table 5. Comparison of Average Query Time of Methods DR,
KW, QB, QH and QM

Services Discovery Method Average Query Time (ms)

DR 1 423

KW 194

QB 16

QH 16

QM 16
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5.3 Quality of Data Service Discovery

5.3.1 Semantic Capabilities Analysis

The KW and DR methods are traditional service

query methods. The advantage of semantic query is

that it supports reasoning according to the semantic

relations. In addition to semantic reasoning, the QH

method extends the semantics of services hierarchically

by WordNet, while the QM method enhances the ability

of semantic association horizontally by multiple object

properties of the unified OEDO model.

The semantic capabilities of the five methods are

concluded in Table 6, which shows as follows.

Table 6. Comparison of Semantic Capabilities Supported by
Methods KW, DR, QB, QH and QM

Relationship KW DR QB QH QM

Equal Y Y Y Y Y

Sibling N Y Y Y Y

Parent N Y Y Y Y

Grandparent N Y Y Y Y

Grandchild N Y Y Y Y

Sub N N N Y Y

Property-related N N N N Y

1) The KW method only supports querying the ser-

vices that exactly match the users’ requirement. If

the keywords inputted by a data user do not exactly

match the published data services, the user will get

nothing. The DR method can not only return the ser-

vices that exactly match the requested one, but also

recommend related services according to the semantic

relationship between the requested and the published

ones, i.e., SDR ⊃ SKW.

2) Both DR and QB methods support the top five

semantic relationships; thus SDR = SQB.

3) The optimized QH method lists the sub services,

and the QM method recommends the property-related

services of the requested one as shown in bold in Ta-

ble 6, which are corresponding to the data domain of

the optimized QSQL structures, namely SQB ⊂ SQH ⊂
SQM.

In a nutshell, the semantic capabilities satisfy

SKW ⊂ SDR = SQB ⊂ SQH ⊂ SQM. The QM method

proposed in our paper supports processing more com-

plex semantic relations.

5.3.2 Quality Evaluation

In this subsection, we evaluate the effectiveness of

our proposed method in terms of precision (P ), recall

(R), and F1-score (F1) of data services, which are de-

fined as follows:

P =
TP

TP + FP
,

R =
TP

TP + FN
,

F1 = 2× P ×R
P +R

,

where TP , FP , and FN represent for the true positive,

false positive and false negative services, respectively.

As mentioned in Subsection 4.3.3, the hops H be-

tween the concepts and their neighbors in Algorithm 2

can be set dynamically. Thus, we evaluate the effects of

H on the precision and recall of data services discovery

by the QM method first, and then compare it with the

other methods.

Effect of H on the QM Method. In our OEDO

model, we describe the relationships between concepts

by object properties in the form of C1
p1−→ C2

p2−→
C3

...−→. For instance, in Platform
hasSensor−−−−−−→ Sensor

observes−−−−−→ Observation
hasDataset−−−−−−−→ Dataset, and the hops

H between classes Platform and Dataset is 3. We set

the hops between the queried concepts and their neigh-

bors as H = 1, 2, 3, 4, and 5 respectively to test the

precision and recall of the QM method, and calculate

the F1-score, as shown in Fig.13.

It can be seen in Fig.13(a) that when H = 1, PQM

gets its maximum value. However, RQM does not in-

crease with the increase of H, and RQM is the optimal

whenH = 3 (Fig.13(b)), as the number of hops between

most classes in our OEDO model is 3. We can con-

clude that the services discovery quality of QM is the

best when H = 3, i.e., when F1QM gets the maximum

value (Fig.13(c)). The advantage of the QM method is

its high recall, as shown in Fig.13(d), and RQM > PQM

except for H = 1, when the extended services are the

immediate neighborhood of the queried services.

Comparison Between Different Methods. To eva-

luate the services discovery quality of our methods, we

compare them with the traditional DR method, the

KW method and our baseline method QB. The exper-

imental results are shown in Fig.14.

As shown in Fig.14(a), PDR and PQB are the high-

est (92.1%). Because methods DR and QB implement

the same semantic reasoning procedure, they support

the same semantic relationships (as shown in Subsec-

tion 5.3.1). In comparison, PQH and PQM are slightly

lower than PDR and PQB, which is determined by the

semantic accuracy of the extended concepts. Neverthe-

less, PQ > PKW, i.e., the precision of our QSQL-based
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Fig.13. Effect of H on the services discovery quality of the QM method. (a) Precision. (b) Recall. (c) F1-score. (d) Comparison of
the metrics.

methods is higher than that of the KW method, which

does not support fuzzy matching.

The recall rates of the five methods are shown in

Fig.14(b). The QH query method is extended hierar-

chically by the lexical WordNet, and the synonyms, hy-

pernyms, and hyponyms of the requested data services

can be found easily. Thus, the recall RQH > RQB,

RQH > RDR, and RQB = RDR. RQM is the highest

recall rate, as the QM method horizontally extends the

semantic relations by the multiple object properties of

the OEDO model (with the default hops H = 3).

As shown in Fig.14(c), F1QM is the largest among

the five methods, followed by F1QH. Although there

exist PQB > PQH and PQB > PQM, we can get that

RQB < RQH and RQB < RQM lead to F1QB < F1QH <

F1QM (Fig.14(d)). Therefore, we can conclude that the

overall services query quality of QM and QB proposed

in this paper are higher than that of other methods.

6 Conclusions

In this paper, we designed and implemented a novel

system called DOLP to improve ocean data services by

introducing semantics, which consists of three compo-

nents: the OEDO ontology model which is constructed

by ocean metadata and published as the input/output

parameters of data services, the QSQL data structure

for storing the pre-inferred concepts and semantic rela-

tionships, and the optimization algorithms for semantic

extending.

Compared with the keyword-based method, the

semantic-based DOLP with the optimization algo-

rithms supports querying data services semantically re-

lated to the users requests. Therefore, a higher data

recall rate is obtained. The querying performance of

DOLP outperforms the traditional direct-reasoning se-

mantic method, which is beneficial from the optimized

QSQL data structures.

Although the OEDO model is ocean-domain spe-
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Fig.14. Services discovery quality of different methods. (a) Precision. (b) Recall. (c) F1-score. (d) Comparison of the metrics.

cific, it can be easily replaced by other ontologies and

extended to the corresponding applications. QSQL is

a general data structure, which is designed for storing

the pre-inferred semantic information, thus to reduce

the service query delay. The optimization algorithms

are domain-independent. Furthermore, the three com-

ponents of our system are loosely coupled. In other

words, the system is scalable.

While we believe DOLP to be an effective system

for ocean data services, there are still limitations. We

attempt to construct the OEDO model using as com-

prehensive ocean metadata as possible. However, the

type and amount of ocean data is growing rapidly, and

correspondingly, the metadata is increasing. Therefore,

the OEDO model needs to be updated regularly. It is

expected that the ODEO model can be updated auto-

matically with the latest metadata. The hierarchical

optimization of QSQL is based on WordNet, which is

limited in the domain knowledge. Integrating special

domain knowledge bases will bring better performance

of data access and become more friendly to domain

users, which is a key challenge faced by the ocean data

services.

As future work, to improve the performance of our

system further, we plan to extend the OEDO model by

considering the latest metadata of observations, the nu-

merical prediction results, as well as the ocean environ-

mental data recorded by human beings, and integrating

ocean domain knowledge. In addition to storing the se-

mantic relationships, QSQL will be further optimized

by constructing the temporal and spatial indices.
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