
Zhao LT, Hou R, Wang K et al. A novel probabilistic saturating counter design for secure branch predictor. JOURNAL

OF COMPUTER SCIENCE AND TECHNOLOGY 36(5): 1022–1036 Sept. 2021. DOI 10.1007/s11390-021-1253-8

A Novel Probabilistic Saturating Counter Design for Secure Branch
Predictor

Lu-Tan Zhao1,2, Rui Hou1,2,∗, Senior Member, CCF, Kai Wang3, Yu-Lan Su1,2, Pei-Nan Li1,2

and Dan Meng1,2, Senior Member, CCF

1State Key Laboratory of Information Security, Institute of Information Engineering, Chinese Academy of Sciences
Beijing 100093, China

2School of Cyber Security, University of Chinese Academy of Sciences, Beijing 100093, China
3Department of Computer Science and Technology, Harbin Institute of Technology, Harbin 150001, China

E-mail: {zhaolutan, hourui}@iie.ac.cn; wk1220ym@163.com; {suyulan, lipeinan, mengdan}@iie.ac.cn

Received December 31, 2020; accepted August 29, 2021.

Abstract In a modern processor, branch prediction is crucial in effectively exploiting the instruction-level parallelism

for high-performance execution. However, recently exposed vulnerabilities reveal the urgency to improve the security of

branch predictors. The vital cause of the branch predictor vulnerabilities is that the update strategy of the saturating

counter is deterministic. As a fundamental building block in a modern branch predictor, previous studies have paid too

much attention to the performance and hardware cost and ignored the security of saturating counter. This leaves attackers

with the opportunities to perform side-channel attacks on the branch predictor. This paper focuses on the saturating

counter to explore a secure and lightweight design to mitigate branch predictor side-channel attacks. Instead of applying

the isolation mechanism to branch predictor resources, we propose a novel probabilistic saturating counter design to confuse

the attacker’s perception of the victim’s behaviour. It changes the conventional deterministic state transition function to

a probabilistic state transition function. When a branch is committed, the conventional saturating counter needs to be

updated about whether the prediction results are correct or not. While for the probabilistic saturating counter, the branch

predictor determines whether the update is performed based on the update probability. The probabilistic saturating counter

dramatically reduces the ability of the attacker to spy the saturating counter’s state. Our analyses using a cycle-accurate

simulator suggest that the proposed mechanism incurs 2.4% performance overhead and hardware cost while providing strong

protection.

Keywords branch predictor, side-channel attack, saturating counter

1 Introduction

Branch prediction is the fundamental technique

to improve the instruction-level parallelism in mod-

ern high-performance processors [1–3]. However, the

security vulnerabilities exposed in recent years reveal

that there are severe risks in modern branch predic-

tor designs [4–10]. Attackers exploit these vulnerabili-

ties to obtain the branch history (i.e., taken or not-

taken branches) and reveal the fine-grained execution

traces of the process in terms of basic blocks. For ex-

ample, BranchScope [4] and Bluethunder [8] attacks re-

veal sensitive information by detecting a specific branch

predictor entry. Furthermore, BranchShadowing [5] also

uses the shared branch prediction histories to infer fine-

grained control flow in Intel SGX. Because the modern

branch predictor resources are shared between diffe-

rent threads, in either a single-core processor or an

SMT (simultaneous multithreading) processor, it gives

an attacker the opportunity to maliciously perceive the

branch history information across different processes

and privileges.

Regular Paper

Special Section of APPT 2021

This work was supported by the Strategic Priority Research Program of Chinese Academy of Sciences under Grant
No. XDC02010200 and the National Natural Science Foundation of China under Grant No. 62125208.

∗Corresponding Author

©Institute of Computing Technology, Chinese Academy of Sciences 2021

http://dx.doi.org/10.1007/s11390-021-1253-8


Lu-Tan Zhao et al.: A Novel Probabilistic Saturating Counter Design for Secure Branch Predictor 1023

Existing hardware approaches to mitigating branch

predictor vulnerabilities focus on isolation, including

physical isolation and logical isolation. For physical

isolation, BRB [11] is a state-of-the-art implementation

that provides individual history tables for different pro-

grams. Although BRB tries to limit hardware cost, it

is in general impractical to assign separate tables to all

thread-privilege level combinations. Methods of logi-

cal isolation include encryption and flush. Encryption

prevents the information of the previous thread from

being perceived by subsequent threads [3, 12,13], which

greatly increases the attacker’s difficulty in obtaining

the information, and changes the key timely to prevent

the side-channels from being constructed. The flush-

ing predictor is known to be effective mechanisms, but

its performance overhead is significant with software

implementation [9]. Even with the optimized hardware

implementation, it still suffers significant performance

degradation in an SMT processor [13].

The vital cause of the branch predictor vulnerabili-

ties is that the update strategy of the saturating counter

is deterministic. This makes it easy for an attacker

to control the saturating counter’s state to construct a

side-channel attack. As the fundamental building block

of branch predictors, the saturating counter provides an

excellent cost-efficient way of reducing the penalty due

to conditional branches and is widely used in various

branch prediction designs from the simple GShare pre-

dictor to the latest TAGE-type predictor [14–21]. How-

ever, previous studies have paid too much attention to

the performance and hardware cost and ignored the

security of the saturating counter. The emergence of

these security vulnerabilities reminds us to reconsider

the design of this critical building block. Therefore, this

paper focuses on the saturating counter and explores

a secure and lightweight design for mitigating branch

predictor vulnerabilities. Overall, this paper makes the

following contributions.

1) We investigate the side-channel attacks on the

saturating counter and reveal how the saturating

counter update strategy affects the information leakage

via the saturating counter side channel.

2) We propose a novel probabilistic saturating

counter design. It changes the conventional determinis-

tic state transition mode to a probabilistic state transi-

tion mode. The probabilistic saturating counter greatly

reduces the ability of the attacker to perceive the satu-

rating counter’s state.

3) We present a detailed evaluation of our proposed

design. The proposed probabilistic saturating counter

is modelled and evaluated on a cycle-accurate Gem5-

based simulator, and its performance impacts are in-

vestigated for different branch predictors, including the

state-of-the-art TAGE-SC-L predictor [19].

In the following, we introduce the saturating counter

and analyze the existing attacks on branch predictors

(Section 2), discuss the threat model (Section 3), intro-

duce the defense strategy (Section 4), implement the

countermeasure on modern predictor (Section 5), an-

alyze the security of probabilistic saturating counter

(Section 6), evaluate the performance impacts (Sec-

tion 7), summarize related work (Section 8), and con-

clude this paper (Section 9).

2 Background

The conventional branch predictor design allows

different processes to access the same hardware re-

sources for branch prediction directly. The attacker

process can influence predictor entries shared with the

victim process to spy on the execution of sensitive

branches. Additionally, the attacker can achieve ma-

licious training to influence the victim’s (speculative)

execution [4, 8, 22–24], which, in turn, enables or exacer-

bates the victim’s information leak.

2.1 Saturating Counter

Branch predictors are usually composed of various

saturating counters which record the branch history. A

saturating counter is a finite state machine (FSM) that

consists of a set of states, a start state, an input al-

phabet, and a transition function that maps an input

symbol and current state to the next state. A Moore

machine extends this with output on each state. Four

values define a conventional saturating (CS) counter

(saturation threshold, correct increment, wrong decre-

ment, and prediction threshold). Taking the two-bit

FSM as an example, it has four states as shown in Fig.1:

SN (strongly not taken), WN (weakly not taken), WT

(weakly taken) and ST (strongly taken). The most sig-

nificant bit of the saturating counter predicts the di-

rection of the branch, and the other bits provide hys-

teresis, thereby the branch predictor requires two suc-

cessive mispredictions to change the prediction of di-

rection. If one considers the case where the alphabet

and output symbols are constrained to be only {0, 1}, a

finite state machine can be used to generate taken/not-

taken predictions. Fig.1 and Fig.2 are two typical sat-

urating counter forms [25]. Studies [26] have indicated

that better results can be obtained by using two or



1024 J. Comput. Sci. & Technol., Sept. 2021, Vol.36, No.5

more bits to represent the history of each branch, with

the cost-effectiveness diminishing rapidly beyond three

bits. Therefore, we consider only these two types in our

design.

N

T

N

T

T N

ST

(11)

N

T
WT

(10)

WN

(01)

SN

(00)

Fig.1. A saturating counter to predict the branch direction.

M

H

M

H

M

H

T1

(11)

M

H
T1

(10)

T2

(01)

T2

(00)

Fig.2. A saturating counter to select a branch predictor table.

There are some other functionally equivalent encod-

ing methods. These saturating counter designs take

different forms per the purpose of their use. We clas-

sify saturating counters into the following categories ac-

cording to their functions.

1) The prediction counter predicts the direction of

the branch instruction, as shown in Fig.1. The counter

is incremented when the branch is taken (T) and decre-

mented with not-taken (N). When the two-bit counter

has a value less than or equal to 1, the branch is pre-

dicted as not-taken.

2) The choice counter selects a predictor table (T1

or T2), as shown in Fig.2. Some branch predictor archi-

tectures have several prediction tables, and a choice ta-

ble is employed to pick which predictor table to use [27].

3) The confidence counter accesses the quality of

prediction. The confidence bit favors the replacement,

update, and allocation policy to decide whether to in-

vert a prediction or update a misprediction and allocate

a new entry.

4) The weight counter is trained to recognize pat-

terns or correlations among branches. Furthermore,

the weight and an input vector are dot producted and

thresholded to make a prediction.

We show in Table 1 the types of saturation counters

used in basic branch predictors. Note that this table

only lists the basic branch predictors. Furthermore,

these basic branch predictors also constitute complex

branch predictors (e.g., TAGE-SC-L predictor).

Table 1. Saturating Counter Types Used in Different Basic
Branch Predictors

Predictor Type Saturating Counter Type

GShare [14] Prediction counter

Bimode [15] Prediction counter, choice counter

Tournament [16] Prediction counter, choice counter

TAGE [21,28] Prediction counter, confidence counter

Loop predictor [29] Confidence counter

Perceptron [17,18] Weight counter

2.2 Prime+Probe Attack on Saturating

Counter

Branch predictor side-channel attacks require the

critical capability to prime and probe saturating coun-

ters. The saturating counter encodes the execution his-

tory information of branch instructions, which may also

contain sensitive branch instructions. The attack is the

process of decoding the information in the saturating

counter. Since the state transition of a conventional

saturating counter is deterministic, it is easy for an at-

tacker to infer the direction of the victim’s branch by

counting the branch prediction results (correct predic-

tion or misprediction).

As shown in Fig.3, the attacker process and the vic-

tim process share a saturating counter. The attacker

first primes the target saturating counters to an initial

state (e.g., strong taken) with successive taken branches

and then waits for the victim to execute. Victim’s

branch execution result depends on the secret, which

may be taken or not-taken. To distinguish the exe-

cution result of the victim’s branch, the probe vector

used for spy must be the opposite of the prime vector

used for initialization (successive not-taken branches).

The attacker judges the prediction result of the branch

predictor by measuring the execution time of probe pro-

cess (e.g., reading rdtsc/rdtscp register or related hard-

ware performance counter in x86 ISA). The key to dis-

tinguish the victim’s behaviors is observable differences

of prediction results in the probe process measurements.

We note that there was a special point in the detec-

tion process. Before this point, the attacker observed



Lu-Tan Zhao et al.: A Novel Probabilistic Saturating Counter Design for Secure Branch Predictor 1025

T T T

 3. Probe

T T T

T T T

N

T T T

NNN

Victim

 2. Access

T

T T T
 2. Access

 3. Probe

 1. Prime 1. Prime

H

T T T

NN

T

N

H

Attacker VictimAttacker

Cut-Off Cut-Off
Point Point

(b)

MM M

(a)

Fig.3. Demonstration of prime+probe attack infers (a) the victim executes upon a not-taken (N) branch and (b) the victim executes
upon a taken (T) branch on a two-bit saturating counter. H means correct prediction and M means misprediction.

mispredictions. After this point, all is correct predic-

tion regardless of whether the target branch performed

taken or non-taken. The victim’s behaviour will be in-

distinguishable. We call this point as the cut-off point.

Therefore, we summarize two conditions for performing

a prime+probe attack on the saturating counter.

• The prime vector and the probe vector are in op-

posite directions.

• The branch prediction results before the cut-off

point are distinguishable.

Taking BranchScope [4] for example, an attacker

first locates the shared predictor entry of the secret-

dependent branch of the victim and sets its saturating

counter to a specific state, such as strong taken. The

contents of the branch predictor are updated after the

victim’s target branch instruction is executed. After

switching back to the attacker’s program, the victim’s

update to the branch predictor manifests as a measur-

able difference in the execution time. In BranchScope,

the second measurement of the probe process is consi-

dered as a cut-off state. The attacker can thus sense the

direction of the target instruction and infer the victim’s

execution path.

3 Threat Model and Attacker Capabilities

This paper has the following assumptions: the at-

tacker thread and the victim thread can run on the

same processor core. The attacker knows the source

code and the address layout of the victim program. The

attacker has the ability to run the victim program in

single-step mode, such as manipulating the APIC timer

exploited in SGX-Step [30].

This paper focuses on mitigating the branch predic-

tor side-channel attacks via saturating counters, which

causes malicious perception across different processes

and privileges. Side-channel leakage in the event of a

misprediction is included in this paper as well. It should

be noted that we consider developers of victim processes

as trusted. Injecting trojans in software [31] is outside

our scope. In addition, mispredictions are perhaps in-

evitable; thus this paper does not consider the defense

against all speculative execution related vulnerabilities.

4 Defense Strategy

In a side-channel attack on branch predictors, an at-

tacker infers on the victim’s sensitive branch’s direction

by detecting the saturating counter’s state. The reason

for this vulnerability is that the state transition rules of

the conventional saturating counter are deterministic.

Given the initial state, the final state, and the transfer

function of the saturating count, an attacker can easily

reverse a possible transition (caused by the victim) by

controlling the rest of the intermediate process. There-

fore, an effective way to defend against the perception

attack is to introduce randomization in the state tran-

sition function of the saturating counter, confounding

the attacker to the point where he/she cannot accu-

rately infer the victim’s branch behaviour.



1026 J. Comput. Sci. & Technol., Sept. 2021, Vol.36, No.5

4.1 Probabilistic Saturating Counter

To prevent an attacker from perceiving the state of

the saturating counter, we propose a probabilistic satu-

rating counter (PSC). Since the update probability (P)

is introduced into the transfer function, each state tran-

sition becomes a probabilistic event. When a branch is

committed, its execution result is fed back to the branch

predictor. After receiving an update request, the con-

ventional saturating counter (CSC) needs to be up-

dated about whether the prediction results are correct

or not. While for a probabilistic saturating counter, the

branch predictor determines whether the update is per-

formed based on the current update probability. Here,

the transfer probability between any two states is de-

noted as PA→B (A is the current state, and B is the next

state), as shown in Fig.4. For example, PSN→WN or P32

represents the probability of transition from the current

strong not-take state to the next weak not-taken state

caused by a taken branch.

The probabilistic update mechanism has been

shown in Fig.5. When the update request is incom-

ing, the probability update controller generates an en-

able signal for update to decide whether to allow an

update. In the controller, the probability is calculated

by the random generator (pseudo-random number gen-

erator) and the probability threshold which is set in

advance. If the generated random number is greater

than the probability threshold, the update is allowed.

Otherwise, the update will be discarded, and the cur-

rent state remains unchanged, but the global history is

still updated. The probability threshold supports mul-

tiple values to control the multiple transfer probabilities

between different states. Moreover, the update proba-

bility can be controlled by dynamically adjusting the

probability threshold using a heuristic policy according

to the security requirements of the branch predictor.

Here we take the two-bit saturating counter as an ex-

ample. There are other encoding methods, but the up-

date mechanism proposed in this paper can be easily

extended to these encoding methods.

Pnot-taken/PST→WT

Pnot-taken/PWN→SN

Ptaken/PSN→WN

Pnot-taken/PWT→SN
Ptaken/PWN→ST

Ptaken/PWT→ST

Ptaken

Pnot-taken

ST
(3)

SN
(0)

WT
(2)

WN
(1)

Fig.4. A probabilistic saturating counter with probabilities be-
tween any two transition states.

Commit

Hash
Global History

.

.

.

.

.

.

Update

Program Counter

OutputLookup

Probabilostic Update

Controller

Branch Predictor Table

Update Enable

...

..
.

...

Fig.5. Architecture overview of probabilistic update mechanism.



Lu-Tan Zhao et al.: A Novel Probabilistic Saturating Counter Design for Secure Branch Predictor 1027

4.2 Transition Function of Probabilistic

Saturating Counter

The two-bit saturating counter is a finite state ma-

chine, see Fig.1 and Fig.2. FSM can be considered as

a Markov chain where the probability of success (p =

Ptaken) is the probability of a branch being taken and

the probability of failure (q = Pnot-taken = 1 − Ptaken)

is the probability of branch being not taken. The

probability of updating saturating counter is m =

Pcurrent→next and the probability of not updating the

saturating counter is n = 1−m shown in Fig.4. Then,

the Markov matrices (M) for the conventional saturat-

ing counter and the probabilistic saturating counter can

be expressed on the left and right sides of the arrow in

(1) respectively [32].
p q 0 0
p 0 0 q
p 0 0 q
0 0 p q

⇒

p + nq mq 0 0
mp n 0 mq
mp 0 n mq
0 0 mp q + np

 . (1)

Given the symmetry of the state transition, the

Markov matrix of the probabilistic update saturating

counter is a symmetric matrix, where PST→WT is equal

to PSN→WN and PWT→WN is equal to PWN→WT. Then

M is substituted into (2) to solve the probability of the

steady state.

u×M = u, (2)

where u = (x, y, z, w) and x + y + z + w = 1 . We

solve (2) and find that the two Markov matrices have

the same characteristic vectors, that is, they have the

same steady state. Therefore, the probabilistic update

mechanism does not degrade the prediction accuracy of

the saturating counter without alias conflict. Note that

even so, the training times for the saturating counter

becomes uncertain, and when multiple branches share a

saturating counter, the number of mispredictions may

be increased when alias conflict occurs. And we eva-

luate the performance impact in detail in Section 7.

5 Implementation on Modern Predictors

In this section, we take the latest TAGE-SC-L [19]

branch predictor, as an example of how to apply proba-

bilistic saturating counter to modern branch predictors.

The TAGE-SC-L predictor features a TAGE predictor,

a loop predictor (LP) and a multi-GEHL statistical cor-

rector (SC). The TAGE predictor provides the main

prediction. Then this prediction is used by SC whose

role consists in confirming or reverting the prediction.

The loop predictor is used to predict regular loops with

loop bodies.

Replacing the Prediction Counter with the Proba-

bilistic Saturating Counter. The TAGE-SC-L branch

predictor contains several types of saturating counters.

First, each entry of TAGE predictor tables consists

of prediction counters which record the direction of

branches. Then, due to the limited size of the pre-

dictor, the useful bit which is a confidence counter is

used to dynamically determine the number of entries

to allocate on a misprediction and is reset according

to the reset policy. However, no matter what kind of

table provides the prediction, it would eventually end

up leaking information through a prediction counter.

Thus considering the balance of performance and secu-

rity, it is only necessary to replace the direction predic-

tion counter with the probabilistic saturating counter,

without changing the confidence counter. In addition,

we do not need to change the original structure of the

SRAM macros. Importantly, we deploy a probability

generator module into the update path. There is no

need to change the original update logic. The original

enable signal for update performs the AND operation

with the output of the probability generator module

which is generated in parallel to the update signal from

the commit stage. Thus, the impact of this modifica-

tion on the critical path is minimal.

Compatible with Hysteresis Bit Compression. To

make the branch predictor structure more compact, the

base predictor employs the hysteresis bit compression

technology. Since the probabilistic saturating counter

only needs to modify the branch predictor’s update

logic slightly, there is no loss of the entropy of hystere-

sis bit. Therefore, these techniques can still be applied

to the probabilistic update predictor.

6 Security Analysis

The key to the saturating counter side-channel at-

tacks is that the attacker can find a steady cut-off point

to distinguish the saturating counter’s state clearly.

Due to the probabilistic update, the state transition

of the saturating counter becomes uncertain. It in-

creases the randomness in the training of the saturating

counter. In this section, we analyze how the attacker

finds the cut-off point and then evaluate the security of

the probabilistic saturating counter.

To simplify the analysis, we assume that the at-

tacker is powerful enough to manipulate the specific

branch predictor entry shared with the target branch



1028 J. Comput. Sci. & Technol., Sept. 2021, Vol.36, No.5

in a noise-free environment. When an attacker can find

a clearly distinguishable cut-off point, we consider the

attack successful. (This is a pessimistic assumption,

and in fact, it usually takes a long time in the attack

and is a significant factor limiting the bandwidth of the

side channel.) To assess the security of probabilistic

saturating counter, we design Algorithm 1 to abstract

the prime+probe attack on a saturating counter shown

in Fig.3. If a branch is taken, but the saturating counter

predicts it as not-taken, the attacker will observe a mis-

prediction. Otherwise, the attacker observes a correct

prediction. In Algorithm 1, an attacker first trains the

saturating counter to a starting state using the prime

vector (lines 1–3). The victim process then executes the

target branch in a random direction (line 4). In the at-

tack process, the more the times the victim executes the

target branch, the more difficult it is for the attacker

to distinguish the victim’s branch behavior. Therefore,

the best choice for the attacker is to ensure that the

victim executes the target branch instruction only once

at a time. Since the prime vector and the probe vector

are in the opposite direction, the first few measurements

are mispredictions (as shown by M in Fig.3), and the

subsequent ones will always be correct predictions (as

shown by H in Fig.3). Finally, the attacker executes

the probe vector until a correct prediction is observed

(lines 5–11). By analyzing the differences in the number

of the observed mispredictions, an attacker can find a

clear cut-off point to infer whether the victim’s branch

is taken or not-taken.

Fig.6(a) shows the relationship between the suc-

cess rate of the prime+probe attack on the saturating

counter and the update probability. We see that the

lower the update probability, the stronger the security.

When the update probability is 0, there is no branch

history stored in the saturating counter and no secret

leakage. At this point, the attacker guesses completely

randomly, and the probability of success is 50%. The

conventional saturating counter has an update proba-

bility of 100%; thus it is vulnerable to malicious percep-

tion attacks. Furthermore, compared with the three-bit

saturating counter and the two-bit saturating counter,

it can be found that the three-bit saturating counter

has better security strength than the two-bit saturat-

ing counter at the same update probability.

Algorithm 1. Finding the Cut-Off Point

Input: Pm: prime vector (0, 0, 0, ...), V : victim (sensitive
values), Pb: probe vector (1, 1, 1, ...)

Output: the number of probes before the cut-off point
1: for m in Pm do
2: Execute target branch with direction m
3: end for
4: Execute victim branch with direction V
5: while b in Pb do
6: Execute target branch with direction b
7: if prediction is hit then
8: Return C
9: end if

10: C ← C + 1
11: end while
12: Return C

Fig.6(b) shows the probability distribution of the

number of probes required for the saturating counter

changing from the initial state to the cut-off state with

an update probability of 50%. The name of the sat-

urating counter is followed by its bit wide and the

victim’s branch direction in Fig.6(b). For example,

PSC2 1 represents that the attack process performs the

prime+probe attack on a two-bit probabilistic saturat-

ing counter and the victim process executes a taken

branch. For the conventional saturating counter, the

number of probes is completely concentrated on a cer-

tain value without any overlap. Therefore, the attacker

can easily find the cut-off point difference to infer the

0 10 20 30 40 50

Number of Probes

S
u
c
c
e
ss

 R
a
te

 p
e
r 

A
tt

a
ck

60 70 80 90 100 1 3 5 7 9 11

Update Probability

13 15 17 19

100%

90%

80%

70%

60%

50% S
u
c
c
e
ss

 R
a
te

 p
e
r 

A
tt

a
ck

100%

80%

60%

40%

20%

0

2-Bit
3-Bit

PSC2_1

PSC3_1

PSC2_0

PSC3_0

CSC2_1

CSC3_1

CSC2_0

CSC3_0

(b)(a)

Fig.6. Security analysis of probabilistic saturating counter. (a) The success rate varies with the update probability. (b) Probability
distribution of the number of probes.



Lu-Tan Zhao et al.: A Novel Probabilistic Saturating Counter Design for Secure Branch Predictor 1029

victim’s control flow. However for the probabilistic sat-

urating counter, the number of probes is scattered and

the overlapping part of different victims’ branch direc-

tion increases. And the more the overlapping parts, the

harder it is for an attacker to distinguish cut-off points.

For a two-bit saturating counter, an attacker can ac-

curately perceive the victim’s branch behaviour with a

probability of about 63%, and for a three-bit saturating

counter, the probability is only 58%, which is close to

the probability of no update. These probabilities are

much smaller than 100% of the conventional saturating

counter. In this case, the probability that an attacker

steals 32-bit data continuously is only one in a billion.

The probabilistic saturating counter mitigates the

branch predictor side-channel attacks, especially for the

one-time attack. However, the probabilistic update pol-

icy is based on a probability model. Since the jump

direction of a branch instruction has a certain ten-

dency, it is still possible for the attacker to increase

the success rate of the attack by repetition. However,

repeated attacks face two key challenges that make it

difficult to implement. 1) Since the attacker cannot

precisely control the execution behavior of the victim

process, aligning some of the inferred key bits to re-

store the complete key information is very difficult. 2)

Repeated attacks have obvious behavioral characteris-

tics that can be easily detected by side-channel detec-

tion mechanisms [33–35]. These detection methods and

our technique are orthogonal; thereby they can be com-

bined to further defend repeated attacks.

7 Evaluation

7.1 Methodology

We modeled an out-of-order processor using the

cycle-level Gem5 simulator [36]. This core is modeled

after the latest Intel Sunny Cove core 1○, and its para-

meters are shown in Table 2. We experimented on

the probabilistic update mechanism with three typi-

cal predictors (Gshare [14], Tournament [16], TAGE-SC-

L [19]). Probabilistic update saturating counters are im-

plemented in these predictors with an update proba-

bility of 50%. We adopted SPEC CPU 2017 bench-

mark suite [37] with a reference input size for perfor-

mance evaluation. The simulator was warmed up for

one billion instructions, and then ran another billion

instructions in the cycle-accurate mode. We measured

the misprediction per kilometer instructions (MPKI)

to demonstrate the accurate changes of the branch pre-

diction. Moreover, the IPC throughput was measured

as the metric of performance. Finally, the probabilis-

tic update mechanism was implemented using Register-

Transfer Level (RTL) code and then synthesized with

TSMC 28 nm technology for area and timing evalua-

tions.

Table 2. OoO Processor Core Configurations

Parameter Configuration

ISA ARM

Frequency 2.5 GHz

Processor type 8-decode,8-issue, 8-commit

Pipeline depth 19 stages, fetch 4 cycles

ROB/LDQ/STQ/IQ 352/128/72/120 entries

BTB 1 024 × 4-way entries

PHT TAGE-SC-L: 66.6 KB

or Tournament: 6.3 KB

or GShare: 2 KB

ITLB/DTLB 64/64 entries

L1 ICache 32 KB, 4-way, 64 B line

L1 DCache 48 KB, 4-way, 64 B line

L2 Cache 512 KB, 16-way, 64 B line

L3 Cache 4 MB, 32-way, 64 B line

7.2 Impact on Prediction Accuracy of
Different Branch Predictors

Although the probabilistic update enhances the se-

curity, the training process of the saturating counter

will also become uncertain, which may introduce ex-

tra mispredictions. Fig.7 shows the impacts on the

prediction accuracy of probabilistic update mechanisms

with three different branch predictors (GShare, Tourna-

ment and TAGE-SC-L, with a measured baseline MPKI

of 11.7, 6.5, and 4.4, respectively). Each bar repre-

sents the MPKI of the branch predictors with two- or

three-bit saturating counters. The solid part of the bar

represents the measured baseline MPKI without any

protection (baseline), the lighter part represents the

MPKI introduced by the probabilistic update mecha-

nism (probability), and the negative part represents the

MPKI is reduced.

Overall, the increase in MPKI is relatively small.

The average MPKI growth of the branch predictor with

the 2-bit saturating counter is 0.76, 0.45, and 0.54 re-

spectively. And as we expected, the average MPKI

growth of the three different branch predictors with

1○WikiChip. Sunny cove-microarchitectures-intel, 2019. https://en.wikichip.org/wiki/intel/microarchitectures/sunny cove, Sept.
2021.



1030 J. Comput. Sci. & Technol., Sept. 2021, Vol.36, No.5

-5

0

5

10

15

20

25

30

M
P
K

I 
o
f 
G

S
h
a
re

M
P
K

I 
o
f 
T
o
u
rn

a
m

e
n
t

M
P
K

I 
o
f 
T
A

G
E
_
S
C
_
L

2-Bit Baseline 2-Bit Probability 3-Bit Baseline 3-Bit Probability

2-Bit Baseline 2-Bit Probability 3-Bit Baseline 3-Bit Probability

2-Bit Baseline 2-Bit Probability 3-Bit Baseline 3-Bit Probability

-5

0

5

10

15

20

25

-2

0

2

4

6

8

10

12

14

16

18

20

(b)

(a)

bw
av

es
ca

ct
uB

SS
N

ca
m
4

de
ep

sj
en

g
ex

ch
an

ge
2

fo
to
ni
k3

d

gc
c

im
ag

ic
k

lb
m

le
el
a

m
cf

na
b

na
m
d

ro
m
s

w
rf

xa
la
nc

bm
k

xz

p
er
lb
en

ch

bw
av

es
ca

ct
uB

SS
N

ca
m
4

de
ep

sj
en

g
ex

ch
an

ge
2

fo
to
ni
k3

d

gc
c

im
ag

ic
k

lb
m

le
el
a

m
cf

na
b

na
m
d

ro
m
s

w
rf

xa
la
nc

bm
k

xz

p
er
lb
en

ch

bw
av

es
ca

ct
uB

SS
N

ca
m
4

de
ep

sj
en

g
ex

ch
an

ge
2

fo
to
ni
k3

d

gc
c

im
ag

ic
k

lb
m

le
el
a

m
cf

na
b

na
m
d

ro
m
s

w
rf

xa
la
nc

bm
k

xz

p
er
lb
en

ch

(c)

Fig.7. Misprediction per kilometer instruction (MPKI) of different branch predictors (the solid bar represents the MPKI of baseline,
and the lighter bar is the additional MPKI introduced by the probabilistic update mechanism). (a) GShare branch preditor. (b)
Tournament branch predictor. (c) TAGE-SC-L branch predictor.



Lu-Tan Zhao et al.: A Novel Probabilistic Saturating Counter Design for Secure Branch Predictor 1031

the 3-bit saturating counter is less than 0.4. Thus,

the branch predictor with 3-bit saturating counter is

more tolerant of probability updates than the two-bit

branch predictor. In all bars, the most obvious incre-

ment occurs in the cases bwaves and gcc, which have

increased by 3.2 and 2.4, respectively. Interestingly,

there are 8.5% improvements in the prediction accu-

racy of fotonik3d for GShare, and the improvement of

the TAGE-SC-L branch predictor even reaches 30%.

Different branch predictors have different sensitivity to

different benchmark cases. More complex branch pre-

dictors, like TAGE-SC-L, are less affected by the prob-

abilistic update because the newly allocated entries of

the TAGE predictor will be initialized as weak taken,

thereby reducing mispredictions caused by branch con-

flict.

7.3 Performance Evaluation on Different

Branch Predictors

Fig.8 shows the performance impacts of probabilis-

tic update policy mechanisms on three different branch

predictors. The performance overhead is compared

with the same predictor without any protection. For

the example fotonik3d, its performance also has a sig-

nificant improvement, which indicates that the proba-

bility update saturating counter may help improve the

accuracy of branch predictors. Thus, we found that the

probabilistic saturating counter improves the security of

the branch predictor with only a marginal performance

loss. Building lightweight secure branch predictors from

an update policy perspective is also an effective defense

technique. Three observations can be made.

1) There is a trivial range of performance impacts.

In some cases, the application’s sensitivity to branch

predictor behavior and the probabilistic update can re-

sult in more than 14% performance degradation. But

on average, the performance cost for protection, at a

few percent, is quite reasonable.

2) Systems with a more accurate predictor tend to

show more performance impact due to protection. How-

ever, on average, the increase is not significant: it goes

from 2.5% for the least accurate predictor (GShare) to

4.9% for the most accurate one (TAGE-SC-L).

3) Although there are exceptions, in general, pre-

dictors with the 3-bit saturating counter incur a lower

performance impact than the ones with the 2-bit satu-

rating counter. Compared with the 2-bit counterpart,

performance overhead due to the probabilistic update

policy is 59%–72% lower.

7.4 Sensitivity Analysis of Update Probability

Update probability will affect the training times for

the saturating counters. Therefore we take the tourna-

ment predictor as an example to evaluate the impact of

different update probabilities on the performance be-

cause the tournament predictor is almost entirely com-

posed of saturating counters and moderate prediction

accuracy.

Fig.9 shows that as the update probability increases,

the performance overhead decreases. When the up-

date probability is 10%, the performance overhead is

as high as 12.3%. When the update probability in-

creases to 90%, the performance overhead is reduced to

1.9%. Therefore, as we expected, the lower the update

probability, the higher the security, but the greater the

performance loss.

7.5 Power Cost

We modeled energy consumption of an out-of-order

processor with the probabilistic update mechanism on

the tournament branch predictor using the energy mod-

els from prior work [38]. We evaluated the overall pro-

cessor energy and observed the same trend as the per-

formance overhead result in Fig.9 because of the grad-

ual reduction in execution time. When the update

probability changes from 10% to 90%, the energy con-

sumption change fluctuates between +1.9% and −0.6%.

In general, the impact of the probability update mech-

anism on energy consumption is negligible.

7.6 Hardware Cost

The TAGE predictor with probabilistic saturating

counter is implemented at the register-transfer level

(RTL). Based on the TSMC 28 nm technology, we used

Synopsys ASIC design flow and synthesis tools to as-

sess the timing and area cost. In the evaluation, to

meet most of the design requirements as many as pos-

sible, the width of both the random generator and the

probability threshold is 16 bits, and the probability ac-

curacy that can be provided is about 2E−05. It can be

seen that the probabilistic update mechanism has mi-

nor area and timing cost. For example, in the case of

the TAGE predictor with 2-bit saturating counters, the

timing cost of probability generation logic is increased

by only 2.0% and the area cost is increased by 0.022%

(synthesized with TT corner using design compiler).



1032 J. Comput. Sci. & Technol., Sept. 2021, Vol.36, No.5

-2%

0%

2%

4%

6%

8%

-2.1%

-2%

0%

2%

4%

6%

8%

14.3%

-6.6%

-2%

0%

2%

4%

6%

8%
2-Bit 3-Bit13.4%

-3.1%-3.9%

2-Bit 3-Bit

2-Bit 3-Bit

N
o
rm

a
li
ze

d
 P

er
fo

rm
a
n
ce

 O
v
er

h
ea

d
N

o
rm

a
li
ze

d
 P

er
fo

rm
a
n
ce

 O
v
er

h
ea

d
N

o
rm

a
li
ze

d
 P

er
fo

rm
a
n
ce

 O
v
er

h
ea

d

bw
av

es

ca
ct
uB

SS
N

ca
m
4

de
ep

sj
en

g
ex

ch
an

ge
2

fo
to
ni
k3

d
gc

c
im

ag
ic
k

lb
m

le
el
a

m
cf

na
b

na
m
d

ro
m
s

w
rf

xa
la
nc

bm
k xz

A
ve

ra
ge

pe
rl
be

nc
h

bw
av

es

ca
ct
uB

SS
N

ca
m
4

de
ep

sj
en

g
ex

ch
an

ge
2

fo
to
ni
k3

d
gc

c
im

ag
ic
k

lb
m

le
el
a

m
cf

na
b

na
m
d

ro
m
s

w
rf

xa
la
nc

bm
k xz

A
ve

ra
ge

pe
rl
be

nc
h

bw
av

es

ca
ct
uB

SS
N

ca
m
4

de
ep

sj
en

g
ex

ch
an

ge
2

fo
to
ni
k3

d
gc

c
im

ag
ic
k

lb
m

le
el
a

m
cf

na
b

na
m
d

ro
m
s

w
rf

xa
la
nc

bm
k xz

A
ve

ra
ge

pe
rl
be

nc
h

(b)

(a)

(c)

Fig.8. Normalized performance overhead of different branch predictors. (a) GShare branch predictor. (b) Tournament branch predictor.
(c) TAGE-SC-L branch predictor.



Lu-Tan Zhao et al.: A Novel Probabilistic Saturating Counter Design for Secure Branch Predictor 1033

0%

5%

10%

15%

20%

25%

30%

35%

40%
10% 25% 50% 75% 90%50.4%

N
o
rm

a
li
z
e
d
 P

e
rf

o
rm

a
n
c
e
 O

v
e
rh

e
a
d

bw
av

es

ca
ct
uB

SS
N

ca
m
4

de
ep

sj
en

g
ex

ch
an

ge
2

fo
to
ni
k3

d
gc

c
im

ag
ic
k

lb
m

le
el
a

m
cf

na
b

na
m
d

ro
m
s

w
rf

xa
la
nc

bm
k

xz
A
ve

ra
ge

p
er
lb
en

ch

Fig.9. Normalized performance overhead of different update probabilities on a single-threaded core with a tournament branch predictor.

8 Related Work

Several countermeasures have been proposed to mit-

igate the branch predictor side channels. They can be

classified into four as follows.

First, branches that include sensitive information

can be transformed into safe instructions that do not

leave a mark in the branch predictors [39]. Limiting

performance counter usage can reduce the informa-

tion obtained by the attacker 2○. InvisiSpec [40], Condi-

tional Speculation [41], and STT [42] prevent speculative

computation from generating visible microarchitectural

state.

Second, the predictor table can be flushed to contain

new randomized results. Performing this by software

during context switch can bring non-trivial overhead [9].

Such expensive operations can be limited to only the

sensitive processes [43]. The impact on the performance

and prediction accuracy of flushing predictor tables in

hardware has been studied [44]. Not surprisingly, the

longer the context switch interval, the smaller the im-

pacts.

Third, using more dedicated hardware is a gene-

ral approach to isolating states from different pro-

cesses. For example, sensitive applications in SGX

can be allocated with their branch predictor tables [4].

Earlier work on performance improvement considered

saving and restoring compressed branch prediction

information [45] or providing thread-private branch pre-

dictors on SMT processors [46]. BRB is a proposal to

retain partial predictor state in on-chip SRAM to swap

in with context [11].

Finally, one promising solution is randomizing index

and content of branch predictors. The Samsung Exynos

CPU has implemented content-encryption via simple

substitution cipher in branch-target buffers (BTB) and

return-address stack (RAS) [3], but it only protects

against some Spectre variants (e.g., Spectre V2 and

Spectre RSB), lack of sufficient coverage to side-channel

attacks. Lee et al. [12] and Zhao et al. [13] proposed

to randomize the index of branch predictor to miti-

gate branch predictor side-channels using a low-latency

cipher. However, they used the LLBC proposed by

CEASER [47], which has been proved to be linear and

vulnerable to cryptanalytic attacks, and the complexity

of finding an eviction set is the same as when there is

no randomization present [48, 49].

9 Conclusions

The saturating counter is a fundamental building

block in modern branch predictors. However, the secu-

rity of the saturating counter has been ignored. This

leaves the attackers with the opportunities to perform

prime-probe attacks on branch predictors. Instead of

applying isolation to branch predictor resources, we

proposed a novel saturating counter design to con-

fuse the attacker’s perception of the victim’s behaviour.

It breaks the traditional deterministic state transition

mode and introduces the probabilistic update mecha-

nism. The probabilistic saturating counter greatly re-

duces the ability of the attacker to spy the saturating

counter state. Our evaluations using a cycle-accurate

simulator demonstrated that the proposed mechanisms

occur less than 2.4% slowdown on average. Compared

2○Guide P. Intelr 64 and ia-32 architectures software developer’s manual. Volume 3B: System programming Guide, Part, 2011, 2.



1034 J. Comput. Sci. & Technol., Sept. 2021, Vol.36, No.5

with the isolation mechanism, the probabilistic update

mechanism achieves a good balance between perfor-

mance and safety.

Acknowledgement(s) We would like to thank

Prof. Naijun Zhan and Prof. Lijun Zhang for their

discussions about security analysis of probabilistic sat-

urating counters. We also wish to thank the anonymous

reviewers and editors for their valuable comments and

suggestions.

References

[1] Sinharoy B, Van Norstrand J A, Eickemeyer R J et al. IBM

POWER8 processor core microarchitecture. IBM Journal

of Research and Development, 2015, 59(1): Article No. 2.

DOI: 10.1147/JRD.2014.2376112.

[2] Suggs D, Subramony M, Bouvier D. The AMD “Zen 2”

processor. IEEE Micro, 2020, 40(2): 45-52. DOI: 10.110-

9/MM.2020.2974217.

[3] Grayson B, Rupley J, Zuraski G Z et al. Evolution of the

Samsung Exynos CPU microarchitecture. In Proc. the 47th

ACM/IEEE Annual International Symposium on Com-

puter Architecture, May 30-June 3, 2020, pp.40-51. DOI:

10.1109/ISCA45697.2020.00015.

[4] Evtyushkin D, Riley R, Abu-Ghazaleh N C, Ponomarev

D. BranchScope: A new side-channel attack on directional

branch predictor. In Proc. the 23rd International Confe-

rence on Architectural Support for Programming Languages

and Operating Systems, March 2018, pp.693-707. DOI:

10.1145/3173162.3173204.

[5] Lee S, Shih M W, Gera P et al. Inferring fine-grained con-

trol flow inside SGX enclaves with branch shadowing. In

Proc. the 26th USENIX Security Symposium, August 2017,

pp.557-574.

[6] Aciiçmez O, Koç Ç K, Seifert J P. Predicting secret keys via

branch prediction. In Proc. the 7th Cryptographers’ Track

at the RSA Conference on Topics in Cryptology, February

2007, pp.225-242. DOI: 10.1007/11967668 15.

[7] Aciiçmez O, Koç Ç K, Seifert J P. On the power of sim-

ple branch prediction analysis. In Proc. the 2nd ACM

Symposium on Information, Computer and Communica-

tions Security, March 2007, pp.312-320. DOI: 10.1145/122-

9285.1266999.

[8] Huo T, Meng X, Wang W et al. Bluethunder: A 2-

level directional predictor based side-channel attack against

SGX. IACR Transactions on Cryptographic Hardware

and Embedded Systems, 2019, 2020(1): 321-347. DOI:

10.46586/tches.v2020.i1.321-347.

[9] Evtyushkin D, Ponomarev D, Abu-Ghazaleh N. Under-

standing and mitigating covert channels through branch

predictors. ACM Transactions on Architecture and Code

Optimization, 2016, 13(1): Article No. 10. DOI: 10.114-

5/2870636.

[10] Bhattacharya S, Mukhopadhyay D. Fault attack revealing

secret keys of exponentiation algorithms from branch pre-

diction misses. IACR Cryptol. ePrint Arch, 2014, 2014: Ar-

ticle No. 790.

[11] Vougioukas I, Nikoleris N, Sandberg A et al. BRB: Mit-

igating branch predictor side-channels. In Proc. the 2019

IEEE International Symposium on High Performance

Computer Architecture, February 2019, pp.466-477, DOI:

10.1109/HPCA.2019.00058.

[12] Lee L, Ishii Y, Abu-Sunwoo D. Securing branch predictors

with two-level encryption. ACM Transactions on Architec-

ture and Code Optimization, 2020, 17(3): Article No. 21.

DOI: 10.1145/3404189.

[13] Zhao L, Li P, Hou R et al. A lightweight isolation mecha-

nism for secure branch predictors. arXiv:2005.08183, 2020.

https://arxiv.org/abs/2005.08183, May 2021.

[14] McFarling S. Combining branch predictors. Technical

Report, Digital Western Research Laboratory, 1993.

https://www.hpl.hp.com/techreports/Compaq-DEC/WR-

L-TN-36.pdf, May 2021.

[15] Lee C, Chen I K, Mudge T N. The bi-mode branch predic-

tor. In Proc. the 30th Annual International Symposium on

Microarchitecture, Dec. 1997, pp.4-13. DOI: 10.1109/MI-

CRO.1997.645792.

[16] Kessler R E. The Alpha 21264 microprocessor. IEEE Micro,

1999, 19(2): 24-36. DOI: 10.1109/40.755465.

[17] Jimenez D A, Lin C. Dynamic branch prediction with per-

ceptrons. In Proc. the 7th HPCA International Symposium

on High-Performance Computer Architecture, Jan. 2001,

pp.197-206. DOI: 10.1109/HPCA.2001.903263.

[18] Tarjan D, Skadron K. Merging path and gshare indexing in

perceptron branch prediction. ACM Transactions on Archi-

tecture and Code Optimization, 2005, 2(3): 280-300. DOI:

10.1145/1089008.1089011.

[19] Seznec A. TAGE-SC-L branch predictors again. In Proc. the

5th JILP Workshop on Computer Architecture Competi-

tions (JWAC-5): Championship Branch Prediction (CBP-

5), June 2016.

[20] Seznec A. A 256 Kbits L-TAGE branch predictor. In

Proc. the 2nd JILP Workshop on Computer Architecture

Competitions (JWAC-2): Championship Branch Predic-

tion (CBP-2), Dec. 2006.

[21] Seznec A. A new case for the TAGE branch predictor. In

Proc. the 44th Annual IEEE/ACM International Sympo-

sium on Microarchitecture, Dec. 2011, pp.117-127. DOI:

10.1145/2155620.2155635.

[22] Kocher P, Horn J, Fogh A et al. Spectre attacks: Exploit-

ing speculative execution. In Proc. the 2019 IEEE Sympo-

sium on Security and Privacy, May 2019, pp.1-19, DOI:

10.1109/SP.2019.00002.

[23] Chen G, Chen S, Xiao Y et al. SgxPectre: Stealing in-

tel secrets from SGX enclaves via speculative execution.

In Proc. the 2019 IEEE European Symposium on Secu-

rity and Privacy, June 2019, pp.142-157. DOI: 10.1109/Eu-

roSP.2019.00020.

[24] Evtyushkin D, Ponomarev D, Abu-Ghazaleh N. Jump over

ASLR: Attacking branch predictors to bypass ASLR. In

Proc. the 49th Annual IEEE/ACM International Sympo-

sium on Microarchitecture, October 2016, Article No. 40.

[25] Ahn Y J, Hwang D Y, Lee Y S et al. Saturating counter de-

sign for meta predictor in hybrid branch prediction. In Proc.

the 8th WSEAS International Conference on Circuits, Sys-

tems, Electronics, Control & Signal Processing, December

2009, pp.217-221.

[26] Lee J K F, Smith A J. Branch prediction strategies and

branch target buffer design. Computer, 1984, 17(1): 6-22.

DOI: 10.1109/MC.1984.1658927.

https://doi.org/10.1147/JRD.2014.2376112
https://doi.org/10.1\discretionary {-}{}{}1\discretionary {-}{}{}0\discretionary {-}{}{}9/M\discretionary {-}{}{}M.2\discretionary {-}{}{}0\discretionary {-}{}{}2\discretionary {-}{}{}0.2974217
https://doi.org/10.1\discretionary {-}{}{}1\discretionary {-}{}{}0\discretionary {-}{}{}9/M\discretionary {-}{}{}M.2\discretionary {-}{}{}0\discretionary {-}{}{}2\discretionary {-}{}{}0.2974217
https://doi.org/10.1109/ISCA45697.2020.00015
https://doi.org/10.1145/3173162.3173204
https://doi.org/10.1007/11967668_15
https://doi.org/10.11\discretionary {-}{}{}4\discretionary {-}{}{}5/1\discretionary {-}{}{}2\discretionary {-}{}{}2\discretionary {-}{}{}9\discretionary {-}{}{}285.1266999
https://doi.org/10.11\discretionary {-}{}{}4\discretionary {-}{}{}5/1\discretionary {-}{}{}2\discretionary {-}{}{}2\discretionary {-}{}{}9\discretionary {-}{}{}285.1266999
https://doi.org/10.46586/tches.v2020.i1.321-347
https://doi.org/10.1\discretionary {-}{}{}1\discretionary {-}{}{}4\discretionary {-}{}{}5/2870636
https://doi.org/10.1\discretionary {-}{}{}1\discretionary {-}{}{}4\discretionary {-}{}{}5/2870636
https://doi.org/10.1109/HPCA.2019.00058
https://doi.org/10.1145/3404189
https://doi.org/10.1109/MICRO.1997.645792
https://doi.org/10.1109/MICRO.1997.645792
https://doi.org/10.1109/40.755465
https://doi.org/10.1109/HPCA.2001.903263
https://doi.org/10.1145/1089008.1089011
https://doi.org/10.1145/2155620.2155635
https://doi.org/10.1109/SP.2019.00002
https://doi.org/10.1109/EuroSP.2019.00020
https://doi.org/10.1109/EuroSP.2019.00020
https://doi.org/10.1109/MC.1984.1658927


Lu-Tan Zhao et al.: A Novel Probabilistic Saturating Counter Design for Secure Branch Predictor 1035

[27] Sherwood T, Calder B. Automated design of finite

state machine predictors for customized processors. In

Proc. the 28th Annual International Symposium on Com-

puter Architecture, June 30-July 4, 2001, pp.86-97. DOI:

10.1145/379240.379254.

[28] Seznec A, Michaud P. A case for (partially) TAgged GE-

ometric history length predictors. Journal of Instruction

Level Parallelism, 2006, 8: Article No. 1.

[29] Sherwood T, Calder B. Loop termination prediction. In

Proc. the 3rd International Symposium on High Per-

formance Computing, October 2000, pp.73-87. DOI:

10.1007/3-540-39999-2 8.

[30] Bulck J V, Piessens F, Strackx R. SGX-Step: A prac-

tical attack framework for precise enclave execution con-

trol. In Proc. the 2nd Workshop on System Software for

Trusted Execution, October 2017, Article No. 4. DOI:

10.1145/3152701.3152706.

[31] Zhang T, Koltermann K, Evtyushkin D. Exploring branch

predictors for constructing transient execution trojans.

In Proc. the 25th International Conference on Architec-

tural Support for Programming Languages and Operating

Systems, March 2020, pp.667-682. DOI: 10.1145/3373-

376.3378526.

[32] Elkhouly R, El-Mahdy A, Elmasry A. 2-Bit branch predic-

tor modeling using Markov model. Procedia Computer Sci-

ence, 2015, pp.650-653. DOI: 10.1016/j.procs.2016.05.115.

[33] Zhang Y, Juels A, Oprea A, Reiter M K. HomeAlone: Co-

residency detection in the cloud via side-channel analysis. In

Proc. the 2011 IEEE Symposium on Security and Privacy,

May 2011, pp.313-328. DOI: 10.1109/SP.2011.31.

[34] Crane S, Homescu A, Brunthaler S et al. Thwarting cache

side-channel attacks through dynamic software diversity.

In Proc. the 22nd Annual Network and Distributed Sys-

tem Security Symposium, February 2015. DOI: 10.14722/n-

dss.2015.23264.

[35] Sabbagh M, Fei Y, Wahl T et al. SCADET: A side-

channel attack detection tool for tracking Prime+Probe.

In Proc. the 2018 IEEE/ACM International Conference

on Computer-Aided Design, Nov. 2018, pp.1-8. DOI:

10.1145/3240765.3240844.

[36] Binkert N, Beckmann B, Black G et al. The gem5 simula-

tor. ACM SIGARCH Computer Architecture News, 2011,

39(2): 1-7. DOI: 10.1145/2024716.2024718.

[37] Bucek J, Lange K D, Von Kistowski J. SPEC CPU2017:

Next-generation compute benchmark. In Proc. the Com-

panion of the 2018 ACM/SPEC International Conference

on Performance Engineering, April 2018, pp.41-42. DOI:

10.1145/3185768.3185771.

[38] Li S, Ahn J H, Strong R D et al. McPAT: An integrated

power, area, and timing modeling framework for multi-

core and manycore architectures. In Proc. the 42nd An-

nual IEEE/ACM International Symposium on Microarchi-

tecture, December 2009, pp.469-480. DOI: 10.1145/1669-

112.1669172.

[39] Agosta G, Breveglieri L, Pelosi G et al. Countermeasures

against branch target buffer attacks. In Proc. the Work-

shop on Fault Diagnosis and Tolerance in Cryptography,

Sept. 2007, pp.75-79. DOI: 10.1109/FDTC.2007.10.

[40] Yan M, Choi J, Skarlatos D et al. InvisiSpec: Making specu-

lative execution invisible in the cache hierarchy. In Proc. the

51st Annual IEEE/ACM International Symposium on Mi-

croarchitecture, Oct. 2018, pp.428-441. DOI: 10.1109/MI-

CRO.2018.00042.

[41] Li P, Zhao L, Hou R et al. Conditional speculation: An ef-

fective approach to safeguard out-of-order execution against

spectre attacks. In Proc. the 2019 IEEE International Sym-

posium on High Performance Computer Architecture, Feb.

2019, pp.264-276. DOI: 10.1109/HPCA.2019.00043.

[42] Yu J, Yan M, Khyzha A et al. Speculative taint tracking

(STT): A comprehensive protection for speculatively ac-

cessed data. In Proc. the 52nd Annual IEEE/ACM Inter-

national Symposium on Microarchitecture, October 2019,

pp.954-968. DOI: 10.1145/3352460.3358274.

[43] Hu W M. Lattice scheduling and covert channels. In

Proc. the 1992 IEEE Computer Society Symposium on Re-

search in Security and Privacy, May 1992, pp.52-61. DOI:

10.1109/RISP.1992.213271.

[44] Pasricha S, Veidenbaum A. Improving branch prediction

accuracy in embedded processors in the presence of con-

text switches. In Proc. the 21st International Confe-

rence on Computer Design, Oct. 2003, pp.526-531. DOI:

10.1109/ICCD.2003.1240950.

[45] Dhodapkar A S, Smith J E. Saving and restoring implemen-

tation contexts with co-designed virtual machines. In Proc.

Workshop on Complexity-Effective Design, June 2001.

[46] Ramsay M, Feucht C, Lipasti M H. Exploring efficient

SMT branch predictor design. http://citeseerx.ist.psu.ed-

u/viewdoc/citations;jsessionid=156C5BEB0B1C452690D-

8A3BBE301116F?doi=10.1.1.79.5793, Sept. 2021.

[47] Qureshi M K. CEASER: Mitigating conflict-based cache at-

tacks via encrypted-address and remapping. In Proc. the

51st Annual IEEE/ACM International Symposium on Mi-

croarchitecture, Oct. 2018, pp.775-787. DOI: 10.1109/MI-

CRO.2018.00068.

[48] Purnal A, Giner L, Gruss D et al. Systematic analysis

of randomization-based protected cache architectures. In

Proc. the 42nd IEEE Symposium on Security and Privacy,

May 2021, pp.987-1002. DOI: 10.1109/SP40001.2021.00011.

[49] Bodduna R, Ganesan V, SLPSK P et al. Brutus: Re-

futing the security claims of the cache timing ran-

domization countermeasure proposed in CEASER. IEEE

Computer Architecture Letters, 2020, 19(1): 9-12. DOI:

10.1109/LCA.2020.2964212.

Lu-Tan Zhao received his B.E.

degree in electronic information science

and technology from Henan Polytechnic

University, Zhengzhou, in 2014, and

his M.E. degree in circuits and systems

from University of Electronic Science

and Technology of China, Chengdu, in

2017. He is a Ph.D. candidate at the

State Key Laboratory of Information Security, Institute of

Information Engineering, Chinese Academy of Sciences,

Beijing. His current research interests include computer

architecture and hardware security.

https://doi.org/10.1145/379240.379254
https://doi.org/10.1007/3-540-39999-2_8
https://doi.org/10.1145/3152701.3152706
https://doi.org/10.1\discretionary {-}{}{}1\discretionary {-}{}{}4\discretionary {-}{}{}5/3\discretionary {-}{}{}3\discretionary {-}{}{}7\discretionary {-}{}{}3\discretionary {-}{}{}376.3378526
https://doi.org/10.1\discretionary {-}{}{}1\discretionary {-}{}{}4\discretionary {-}{}{}5/3\discretionary {-}{}{}3\discretionary {-}{}{}7\discretionary {-}{}{}3\discretionary {-}{}{}376.3378526
https://doi.org/10.1016/j.procs.2016.05.115
https://doi.org/10.1109/SP.2011.31
https://doi.org/10.1\discretionary {-}{}{}4\discretionary {-}{}{}7\discretionary {-}{}{}2\discretionary {-}{}{}2/n\discretionary {-}{}{}d\discretionary {-}{}{}ss.2015.23264
https://doi.org/10.1\discretionary {-}{}{}4\discretionary {-}{}{}7\discretionary {-}{}{}2\discretionary {-}{}{}2/n\discretionary {-}{}{}d\discretionary {-}{}{}ss.2015.23264
https://doi.org/10.1145/3240765.3240844
https://doi.org/10.1145/2024716.2024718
https://doi.org/10.1145/3185768.3185771
https://doi.org/10.1\discretionary {-}{}{}1\discretionary {-}{}{}4\discretionary {-}{}{}5/1\discretionary {-}{}{}6\discretionary {-}{}{}6\discretionary {-}{}{}9\discretionary {-}{}{}112.1669172
https://doi.org/10.1\discretionary {-}{}{}1\discretionary {-}{}{}4\discretionary {-}{}{}5/1\discretionary {-}{}{}6\discretionary {-}{}{}6\discretionary {-}{}{}9\discretionary {-}{}{}112.1669172
https://doi.org/10.1109/FDTC.2007.10
https://doi.org/10.1109/MICRO.2018.00042
https://doi.org/10.1109/MICRO.2018.00042
https://doi.org/10.1109/HPCA.2019.00043
https://doi.org/10.1145/3352460.3358274
https://doi.org/10.1109/RISP.1992.213271
https://doi.org/10.1109/ICCD.2003.1240950
https://doi.org/10.1109/MICRO.2018.00068
https://doi.org/10.1109/MICRO.2018.00068
https://doi.org/10.1109/SP40001.2021.00011
https://doi.org/10.1109/LCA.2020.2964212


1036 J. Comput. Sci. & Technol., Sept. 2021, Vol.36, No.5

Rui Hou received his B.S. and M.S.

degrees in computer architecture from

Harbin Institute of Technology, Harbin,

in 2001 and 2003 respectively, and his

Ph.D. degree in computer architec-

ture from the Institute of Computing

Technology (ICT), Chinese Academy of

Sciences (CAS), Beijing, in 2007. He is

a professor and vice director of State Key Laboratory of

Information Security, Institute of Information Engineering,

Chinese Academy of Sciences, Beijing. He published

over 30 papers in international conferences and journals,

and got more than 50 patents. He has also served more

than 10 times on conference organizing committees in

international academia community. His current research

interests include computer architecture, processor security,

data center server architecture and AI security.

Kai Wang received his B.S. degree

in software engineering from Harbin

Institute of Technology, Harbin, in

2014, and his M.S. degree in computer

science and technology from Harbin

Institute of Technology, Harbin, in

2016. He is now a Ph.D. candidate at

Harbin Institute of Technology, Harbin.

His research interests include computer architecture and

hardware security.

Yu-Lan Su received her Bache-

lor’s degree in computer science and

technology from Harbin Engineering

University, Harbin, in 2019. She is

now a Master student at the Institute

of Information Engineering, Chinese

Academy of Sciences, Beijing. Her cur-

rent research interests include federated

learning and cache side channel attacks.

Pei-Nan Li received his B.E. degree

in software engineering from Shanxi

University, Taiyuan, in 2014 and his

M.E. degree in computer technology

from Harbin University of Science and

Technology, Harbin, co-educated with

the Institute of Automation, Chinese

Academy of Sciences, Beijing, in 2017.

He is a Ph.D. candidate at the State Key Laboratory of

Information Security, Institute of Information Engineer-

ing, Chinese Academy of Sciences, Beijing. His current

research interests include computer architecture and

hardware security.

Dan Meng received his Ph.D. de-

gree in computer architecture from the

Harbin Institute of Technology, Harbin,

in 1995. He is the director of Institute

of Information Engineering, Chinese

Academy of Sciences, Beijing, and the

dean of the School of Cyber Security,

University of Chinese Academy of

Sciences, Beijing. His research interests include high-

performance computer architecture and cyber security.


	1 Introduction
	2 Background
	2.1 Saturating Counter
	2.2 Prime+Probe Attack on Saturating Counter

	3 Threat Model and Attacker Capabilities
	4 Defense Strategy
	4.1 Probabilistic Saturating Counter
	4.2 Transition Function of ProbabilisticSaturating Counter

	5 Implementation on Modern Predictors
	6 Security Analysis
	7 Evaluation
	7.1 Methodology
	7.2 Impact on Prediction Accuracy of Different Branch Predictors
	7.3 Performance Evaluation on Different Branch Predictors
	7.4 Sensitivity Analysis of Update Probability
	7.5 Power Cost
	7.6 Hardware Cost

	8 Related Work
	9 Conclusions

