
Xu J, Huang Y, Shi J et al. A multi-agent spatial logic for scenario-based decision modeling and verification in pla-

toon systems. JOURNAL OF COMPUTER SCIENCE AND TECHNOLOGY 36(6): 1231–1247 Nov. 2021. DOI

10.1007/s11390-021-1565-8

A Multi-Agent Spatial Logic for Scenario-Based Decision Modeling
and Verification in Platoon Systems

Jingwen Xu1, Member, CCF, Yanhong Huang1, Jianqi Shi1,∗, and Shengchao Qin2, Senior Member, ACM, IEEE

1National Trusted Embedded Software Engineering Technology Research Center, East China Normal University
Shanghai 200062, China

2College of Computer Science and Software Engineering, Shenzhen University, Shenzhen 518061, China

E-mail: 51194501198@stu.ecnu.edu.cn; {yhhuang, jqshi}@sei.ecnu.edu.cn; sqin@szu.edu.cn

Received May 6, 2021; accepted October 19, 2021.

Abstract To cater for the scenario of coordinated transportation of multiple trucks on the highway, a platoon system

for autonomous driving has been extensively explored in the industry. Before such a platoon is deployed, it is necessary to

ensure the safety of its driving behavior, whereby each vehicle’s behavior is commanded by the decision-making function

whose decision is based on the observed driving scenario. However, there is currently a lack of verification methods to

ensure the reliability of the scenario-based decision-making process in the platoon system. In this paper, we focus on the

platoon driving scenario, whereby the platoon is composed of intelligent heavy trucks driving on cross-sea highways. We

propose a formal modeling and verification approach to provide safety assurance for platoon vehicles’ cooperative driving

behaviors. The existing Multi-Lane Spatial Logic (MLSL) with a dedicated abstract model can express driving scene spatial

properties and prove the safety of multi-lane traffic maneuvers under the single-vehicle perspective. To cater for the platoon

system’s multi-vehicle perspective, we modify the existing abstract model and propose a Multi-Agent Spatial Logic (MASL)

that extends MLSL by relative orientation and multi-agent observation. We then utilize a timed automata type supporting

MASL formulas to model vehicles’ decision controllers for platoon driving. Taking the behavior of a human-driven vehicle

(HDV) joining the platoon as a case study, we have implemented the model and verified safety properties on the UPPAAL

tool to illustrate the viability of our framework.

Keywords autonomous driving, decision-making model, platoon system, safety verification, timed automaton

1 Introduction

Autonomous driving technology has undergone

tremendous development over the years [1]. It has been

laid out in multiple applicable fields in the blueprint for

the future. As a kind of safety-critical systems, ensuring

the vehicle’s safety during driving is a primary consid-

eration. Since the decision-making function is the key

to autonomous driving, many researchers have adopted

formal methods to verify the reliability of driving deci-

sions in different scenarios, such as lane-changing [2, 3],

crossing [4], turning [5] maneuvers, car following [6], and

vehicle interaction [7]. These studies only consider a sin-

gle vehicle’s driving behavior, and rarely focus on the

collaborative control behavior of multiple vehicles. As

one of the most promising commercial applications in

the autonomous industry, automated truck transporta-

tion has attracted much attention. Hence, it is vital to

ensure the safety of multi-vehicle cooperative driving

behavior in platoon scenarios.

In our platoon driving scenario, multiple intelli-

gent heavy-duty trucks complete unified transportation

tasks via communication. The platoon composed of

these trucks can be regarded as a multi-agent system [8].

Regular Paper

Special Section on Software Systems 2021—Theme: Dependable Software Engineering

This work was partially supported by the National Key Research and Development Program of China under Grant No. 2019YF-
B2102602.

∗Corresponding Author

©Institute of Computing Technology, Chinese Academy of Sciences 2021

http://dx.doi.org/10.1007/s11390-02\discretionary {-}{}{}1-1\discretionary {-}{}{}5\discretionary {-}{}{}6\discretionary {-}{}{}5-8

1232 J. Comput. Sci. & Technol., Nov. 2021, Vol.36, No.6

These trucks are equipped with a 5G-based intelligent

truck system developed by SAIC Motor. They drive

across the East Sea Bridge in the platoon mode and

complete such tasks with level-4 autonomous driving,

centimeter-accuracy positioning, and interaction with

automatic equipments. As Fig.1 shows, driving beha-

viors in the platoon mode include joining, leaving, split-

ting, merging, and maintaining. For these collaborative

behaviors, a verifiable agent-based architecture [9] was

proposed for deploying a safety platoon system. Other

formalization work verified the correctness of the pla-

tooning protocol [10–12]. Without considering the im-

pact of driving scenarios, their methods only focus on

platoon vehicles’ interactive behaviors, which is less ex-

pressive and limited in specific situations.

Considering the significance of driving scenes to

decision-making, Hilscher et al. first proposed Multi-

Lane Spatial Logic (MLSL) [2] to formalize the spatial

properties of driving scenes and to verify the safety of

the decision controller. It turns out to be an effec-

tive way because it uses an abstract model to capture

the scenario’s characteristics, and MLSL is conducive to

logical reasoning and formal modeling. However, their

work is limited to verifying driving behaviors from the

perspective of a single-vehicle observation and cannot

handle a platoon system with multi-vehicle observation.

Di
r

Main
tain

ing

Split
ting

Leav
ing Mer

ging

Join
ing

Fig.1. Different platoon driving behaviors on highways.

In this paper, we focus on the platoon transporta-

tion of smart heavy trucks on cross-sea expressways,

and propose a formal modeling and verification ap-

proach to offer safety assurance for its scenario-based

decision-making functions. Fig.2 shows our modeling

and verification framework, and the contributions are

as follows.

•We enhance an existing abstract model [2] to char-

acterize the platoon driving scenario. Based on the

Driving Scenario

Driving Decision

Actions State Model

UPPAAL Verification Result

Guard Conditions

Abstract Extract

Specify

Verify

Multi-Agent Spatial

Constraints

Abstract Model

Timed Automata for Driving Decision Controllers

Multi-Agent Spatial Logic

Static Map

Information

Spatial Orientation

Indication

Operators

Agent Knowledge

Reasoning

Operators

Basic Spatial Logic

Traffic Snapshot

Area

E
xtends E

x
te
n
d
s

Syntax

Scenario-Based

Decision-Making

Module

Semantics Inference Rules

Fig.2. Formal modeling and verification framework.

Jingwen Xu et al.: Modeling and Verification of Platoon Systems 1233

scene constructed by the abstract model, MLSL is then

modified into our basic spatial logic, which describes

the spatial scene specification in general driving situa-

tions.

• We propose a Multi-Agent Spatial Logic (MASL)

by extending the basic spatial logic from the perspec-

tive of relative orientation and multi-agent observation.

The MASL formula specifying multi-agent spatial con-

straints in driving scenes is a formal expression of guard

conditions for decision-making.

• We propose a formal modeling method applicable

for platoon maneuvers, which adopts timed automata

to construct the vehicle’s decision controller. In the case

of joining platoon, we can use MASL formulas as the

model’s guard conditions to determine whether a car

can safely cut between two platoon members. By im-

plementing the interactive vehicles’ controllers as a net-

work of timed automata model on the UPPAAL tool,

we verify multi-vehicle cooperative driving behaviors,

thereby obtaining a reliable decision-making system for

the platoon.

The rest of the paper is organized as follows. In Sec-

tion 2, we define an abstract model and the basic spatial

logic. Then, we propose MASL and formally define its

syntax, semantics, and inference rules in Section 3. Sec-

tion 4 introduces a timed automata type to construct

the vehicle’s decision-making controller. Section 5 im-

plements and verifies the network of timed automata

model for multi-vehicle coordinated control based on

a specific case. Section 6 reviews related work, with

concluding remarks and future work in Section 7.

2 Basic Spatial Logic and Its Dedicated

Abstract Model

The proposed MLSL adapted to a dedicated ab-

stract model is a logic language expressing spatial prop-

erties on multi-lane motorways where all cars are driv-

ing in one direction [4]. Since MLSL can only verify ve-

hicle behaviors from the perspective of a single vehicle’s

observation, it is not suitable for the platoon scenario

with multi-vehicle collaborative control. To overcome

this limitation, we improve the existing abstract model

according to the platoon scene’s characteristics on the

cross-sea highway, and modify MLSL correspondingly

into our basic spatial logic, in which the representation

of spatial properties is similar to that in MLSL, but

can be further extended in terms of relative orientation

and multi-agent knowledge reasoning. In this section,

we first define an abstract model depicting important

features of road traffic. Using the abstract model as the

carrier, we then define the basic spatial logic to formally

represent driving scene spatial constraints.

2.1 Abstract Model

It is vital to characterize the driving scenarios so

that the features can facilitate properties specification

and reasoning. For the scene factors considered in the

decision-making process of platoon control maneuver,

we define the driving scenario as an abstract model,

which consists of the following parts: static map infor-

mation, traffic snapshot, and observation area.

2.1.1 Static Map Information

Mapping the real world’s road structure to a two-

dimensional coordinate system, static map information

describes some fixed information such as road division,

orientation, connectivity, and road range. As shown

in Fig.3, the horizontal axis (x-axis) represents the dis-

crete lanes, and the vertical axis (y-axis) indicates the

road extension. A global map is defined as a structure

Map = (Lane,Dir,Begin,End).

Platoon#1

Platoon#2

Dir

End

Begin
 ↼↪↽

x

y

Fig.3. Vehicles driving on the two-dimensional map.

• Lane is the set of lanes on highways, represented

as an integer interval. Note that our research scenario is

a cross-sea bridge, which is a two-way six-lane highway.

For convenience, we only consider the three straight

lanes in one direction.

1234 J. Comput. Sci. & Technol., Nov. 2021, Vol.36, No.6

• Dir is the lane direction in which vehicles are al-

lowed to travel. We have Dir = {+1,−1} indicating

positive and negative ordinate direction respectively.

In addition, we define auxiliary functions lft(lane, dir),

rgt(lane, dir), to calculate the left and the right adja-

cent lane of a specific lane lane ∈ Lane in direction

dir ∈ Dir, respectively. As shown in Fig.3, lane 2 sat-

isfies: lft(2,+1) = 3, rgt(2,+1) = 1.

• Begin : y = 0 and End : y = LEN are the start

and the end of the lane respectively, which limit vehi-

cles’ driving range in the vertical direction. They are

functions of the y-axis, and LEN is the road length.

2.1.2 Traffic Snapshot

Traffic snapshot records vehicles’ traffic information

on Map at a given point in time, where the data is

collected from vehicles’ cameras, lidar, gyroscope, and

other sensing devices. Since the traffic information is

continuously changing, we record it once every cycle

and use vehicle-related functions to represent it.

Let V ehl be the set of vehicles currently traveling

on Map, including trucks in the platoon and non-queue

cars. Traffic snapshot is a tuple composed of multiple

functions. The function’s parameter indicates a spe-

cific vehicle C ∈ V ehl, and the return value is the

car’s current traffic information TS, a tuple of the form

(res, pos, inplt, pre, suc, spd, acc, len, pltFunc).

• res(C) : V ehl→ P(Lane) returns the set of lanes

currently occupied by car C. Vehicles traveling straight

only occupy one lane, but during lane-changing, vehi-

cles can occupy two lanes simultaneously.

• pos(C) : V ehl → R returns the ordinate of car

C’s rear position.

• inplt(C) : V ehl → {true, false} returns true if car

C is currently in the platoon; false otherwise.

• pre(C) : V ehl → V ehl returns the predecessor

vehicle of car C in the platoon.

• suc(C) : V ehl→ V ehl returns the successor vehi-

cle of car C in the platoon.

• spd(C) : V ehl → R returns the current speed of

car C and its unit is m/s.

• acc(C) : V ehl → R returns the current accelera-

tion of car C and its unit is m/s2.

• len(C) : V ehl → R calculates the length of the

vehicle’s land occupation.

• pltFunc(C) ::= join(C)|leave(C)|split(C)|... is

an extensible function representing the platoon beha-

viors that car C ∈ V ehl intends to perform. In diffe-

rent platoon driving modes, pltFunc can be assigned to

the corresponding function, which is defined according

to the characteristics of the behavior. Since the case

study in Section 5 is about the behavior of a human-

driven vehicle (HDV) joining the platoon, here we let

pltFunc := join.

join(C) : V ehl → Lane returns the lane number

car C claims to change for joining the platoon.

2.1.3 Observation Area

The observation area is a rectangular observation

segment with a fixed length and width on Map, which

is described by a tuple Area = (L,X), where

• L = [l, n], L ⊆ Lane is the set of lanes in the area’s

horizontal direction, represented as an integer interval;

|L| is the number of lanes occupied by the area;

• X = [r, f], r, f ∈ R, a real interval extending

along the Dir direction. r and f are ordinates of the

area’s start point and endpoint respectively, and |X|
represents the length of the area.

We abbreviate area A
[l,n]
[r,f] as A or A[l,n] or A[r,f],

where the superscript indicates the lane interval and

the subscript indicates the vertical road extension.

2.2 Basic Spatial Logic

Since we have formalized road traffic as an abstract

model, we will use it as a carrier to study the spa-

tial characteristics of general driving situations. In this

subsection, we define the syntax and semantics of the

basic spatial logic. Given the current traffic snapshot

TS and a specific area A
[l,n]
[r,f] that can be observed by

the vehicle ego, we use the basic spatial logic formula

φ to describe vehicles’ spatial distribution in the area.

Definition 1 (Syntax of Basic Spatial Logic). The

syntax of the basic spatial logic formula φ is defined by

φ ::= true|α = β|re(c)|cl(c)|φ1∧φ2|¬φ|φ1_φ2|φ1

φ2
|gap,

where α, β, c are variables of car identifiers from V ehl.

To define the semantics of the basic spatial logic,

we construct a context modelM = (TS,A, ego,υ) con-

cerning a traffic snapshot TS, an observer ego with its

observation area A, and a valuation function υ. The

valuation υ : CV ar → V ehl is a function mapping car

variables α, β, c, ... ∈ CV ar to actual car identifiers in

the set V ehl.

Definition 2 (Semantics of Basic Spatial Logic).

The satisfaction relation between a context model M =

(TS,A, ego,υ) and a basic spatial logic formula φ,

M |= φ, is defined inductively over φ as follows:

1) true: it is satisfied under any context.

M |= true for all (TS,A, ego,υ).

Jingwen Xu et al.: Modeling and Verification of Platoon Systems 1235

2) α = β: the values of variables α and β are equal.

M |= α = β ⇔ υ(α) = υ(β).

3) re(c): area A
[l,n]

[r,f] is currently occupied by car

c. IA is the set of vehicles occupying area A, resA is

the reservation of a specific car in area A, and lenA
is the intersection interval between the specified car’s

occupancy range and the ordinate of area A.

M |= re(c) ⇔ |L| = 1 ∧ |X| > 0 ∧ υ(c) ∈ IA
∧ resA(υ(c)) = L ∧ lenA(υ(c)) = X.

4) cl(c): area A
[l,n]

[r,f] is declared by car c for join-

ing the platoon. IA is the set of vehicles that declare to

change location to area A, joinA is a certain car’s lane-

change declaration for joining the platoon in area A,

and lenA is the intersection interval between the car’s

declared position range and the ordinate of area A.

M |= cl(c) ⇔ |L| = 1 ∧ |X| > 0 ∧ υ(c) ∈ IA
∧ joinA(υ(c)) = L ∧ lenA(υ(c)) = X.

5) φ1 ∧ φ2: φ1 and φ2 are both satisfied in area

A
[l,n]

[r,f].

M |= φ1 ∧ φ2 ⇔ M |= φ1 ∧ M |= φ2.

6) ¬φ: the given model does not satisfy formula φ.

M |= ¬φ ⇔ ¬ TS,A, ego,υ |= φ.

7) φ1 _ φ2: area A = A[r,f] is vertically divided

into two sub-areas A1 = A[r,k] and A2 = A[k,f] along

the increasing direction of the ordinate. Sub-area A1

satisfies φ1, and sub-area A2 satisfies φ2, if and only if

area A satisfies φ1 _ φ2.

M |= φ1 _ φ2 ⇔ ∃k ∈ R : r 6 k 6 f

∧ TS,A[r,k], ego,υ |= φ1

∧ TS,A[k,f], ego,υ |= φ2.

8) φ1

φ2
: area A = A[l,n] is horizontally divided into

two sub-areas A1 = A[l,m] and A2 = A[m+1,n] along the

lane direction. Sub-area A1 satisfies φ1, and sub-area

A2 satisfies φ2, if and only if area A satisfies φ1

φ2
.

M |=φ1

φ2
⇔ ∃m ∈ N : l 6 m 6 n− 1

∧ TS,A[l,m], ego,υ |= φ1

∧ TS,A[m+1,n], ego,υ |= φ2.

9) gap: a blank interval in area A. If there is no

car occupying or declaring this area, gap indicates the

whole area is empty. If there exists one or more ve-

hicles’ occupancy/declaration, we use gap to indicate

blank segments between its location to the front or rear

car or both ends of the area.

M |= gap ⇔ ∀c ∈ CV ar :

M |= ¬re(c) ∧ M |= ¬cl(c).

Fig.4 shows that vehicle spacing is divided into

five levels according to the distance, and the stan-

dard of division refers to [13]. We define gap ::=

gap1|gap2|gap3|gap4|gap5, where gap1 = [0, 5] is a dan-

gerous distance that requires rapid braking, gap2 =

(5, 20] represents a short distance that requires slow

braking, gap3 = (20, 40] represents a close distance,

gap4 = (40, 80] represents a normal distance, and

Dir

Far

Normal
Close

Soft BrakeHard Brake

Dista
nce

0
5

20

40

80

120

g
a
p

5

g
a
p

4

g
a
p

3

g
a
p

2

g
a
p

1

Fig.4. Different levels of gap division on the road.

1236 J. Comput. Sci. & Technol., Nov. 2021, Vol.36, No.6

gap5 = (80, 120] represents a far distance. The com-

parative relationship satisfies: gap5 > gap4 > gap3 >

gap2 > gap1.

In the following, we use a notation 〈φ〉 to state that

formula φ is satisfied somewhere in the considered area.

3 Multi-Agent Spatial Logic

To expand the basic spatial logic to MASL, we intro-

duce the spatial orientation indication (abbreviated as

SOI) operators and the agent knowledge reasoning (ab-

breviated as AKR) operators. SOI operators indicate

orientation relative to the observation vehicle. AKR

operators represent the individual knowledge, shared

knowledge, and joint knowledge of the multi-agent sys-

tem. In this section, we formally define the syntax

and semantics of MASL and formulate inference rules

to reason from single-agent observation information to

multi-agent global knowledge.

3.1 Spatial Orientation Indication Operators

SOI operators indicate spatial orientations relative

to the observation vehicle, including eight directions

of east (E), south (S), west (W), north (N), south-

east (SE), southwest (SW), northeast (NE), and north-

west (NW). The formula composed of SOI operators

followed by φ expresses the area’s observation informa-

tion, where the observation area is specified by relative

orientation.

Definition 3 (Syntax of SOI Operators). The syn-

tax of spatial orientation indication operators is defined

as follows:

ψ ::= Γφ|Γiφ,
Γ ::= N |S|W |E|NE|NW |SE|SW.

When considering the single-car perspective, we use

Γ to represent its own relative observation direction.

While focusing on the entire platoon system’s obser-

vation angle, we use Γi to represent the observation

direction relative to a certain platoon member.

For the Γ operator concerning single-car per-

spective, we construct a context model MS =

(TS,A, ego,υ) to explain ψ. As Fig.5 shows, we take

car C as the observer to detect regional traffic scenario

in its northeast. Since the multi-agent perspective is a

combination of all members’ single-agent perspective,

we define variable P = (α, β, c, ...) to indicate the pla-

toon, where α, β, c ∈ CV ar represent platoon members

variables. Here we use Pi to represent the i-th member

vehicle in platoon P , and thus P1 represents the leading

vehicle. We also define a distributed area A composed

of all members’ observation areas. Thus, to realize the

transition from a single agent to the platoon system, we

update the previous context model to obtain the multi-

agent model MP = (TS,A, P,υ), where the subscript

of MP represents the platoon variable P .

3 2 1

gap

gapNW N NE

EW

SW SE

suc↼C↽

pre↼C↽

D

Fig.5. Regional traffic scene observed by car C.

Before giving the semantics of SOI operators, we in-

troduce the following auxiliary functions, which are the

calculation of the traffic snapshot’s return value.

• getArea(C) calculates car C’s overall observation

area, which covers its occupied segment and the sur-

rounding detectable area extended in eight directions.

It returns area-type A
[l,n]
[r,f].

• getAreas(P) is the combination of the respective

observation areas of all members in platoon P .

• F (C,Γ) calculates the observation area in a spe-

cific direction relative to the occupied segment of car

C, where Γ specifies the orientation and the function

returns area-type A
[l,n]
[r,f].

Definition 4 (Semantics of SOI Operators). Given

a context model for a single agentMS = (TS,A, ego,υ)

with A = getArea(υ(ego)), and a context model

for multiple agents MP = (TS,A, P,υ) with A =

getAreas(P), then, the satisfaction of a formula with

SOI operators is defined inductively as follows:

1) Γφ: the regional driving scene observed by car

ego in its Γ direction can be expressed by formula Γφ,

where the observation area A′ is calculated by function

F (υ(ego),Γ):

TS,A, ego,υ |= Γφ ⇔ TS,A′, ego,υ |= φ

∧ A′ = F (υ(ego),Γ);

Jingwen Xu et al.: Modeling and Verification of Platoon Systems 1237

2) Γiφ: TS,A, P,υ |= Γiφ is equivalent to the case

of a single agent TS,A, p,υ |= Γφ, where observer p

is the i-th member in platoon P , i.e., p = Pi, with its

observation area F (υ(p),Γ).

TS,A, P,υ |= Γiφ ⇔ TS,A, p,υ |= Γφ

∧ p = Pi ∧A = getArea(υ(p)) ∧A ∈ A.

When vehicles in the multi-agent system share their

observation results for communication, analyzing the

specific meaning of the information helps infer impor-

tant knowledge and discover problems. Thus, we intro-

duce comparison operators =, >,<, 6= to compare the

relationship between different spatial logic formulas.

The shaded blocks shown in Fig.6 are the overlap-

ping areas that can be observed by the front and rear

cars simultaneously. The rear car’s NE position is

equivalent to the SE position of the previous car, and

other situations are defined below. ψ1 = ψ2 is satis-

fied if and only if the scene information for the same

observation area is consistent.

TS,A, P,υ |= ψ1 = ψ2 ⇔
ψ1 = NEiφ1 ∧ ψ2 = SEjφ2 ∧ φ1 = φ2 ∧ i = j + 1 or

ψ1 = NWiφ1 ∧ ψ2 = SWjφ2 ∧ φ1 = φ2 ∧ i = j + 1 or

ψ1 = Niφ1 ∧ ψ2 = Sjφ2 ∧ φ1 = φ2 ∧ i = j + 1.

3 2 1

NWj

Wj

Wi
Ei

SWj

/NWj

Sj/Nj
SEj

/NEj

Nj NEj

EjPj

Pi

SWi SEiSi

Fig.6. Overlapping area of both cars’ view.

If the observation information of the same area is

inconsistent, we believe that the perception of distance

by different observers has been biased. To correct this

inconsistency, we stipulate that the closer the perceived

vehicle spacing, the higher the risk of collision. There-

for the closer distance is used as the correction stan-

dard. Thus, when comparing the observation formulas

of different vehicles on the same area, it is necessary to

compare the level of gap in the formulas. The smaller

the gap level, the smaller the corresponding formula ψ,

which means a more urgent situation.

TS,A, P,υ |= ψ1 < ψ2 ⇔
ψ1 = NEiφ1 ∧ ψ2 = SEjφ2 ∧ φ1 < φ2 ∧ i = j + 1 or

ψ1 = NWiφ1 ∧ ψ2 = SWjφ2 ∧ φ1 < φ2 ∧ i = j + 1 or

ψ1 = Niφ1 ∧ ψ2 = Sjφ2 ∧ φ1 < φ2 ∧ i = j + 1,

where φ1 and φ2 both contain gap, and the relationship

of gap satisfies: gap1 < gap2 < gap3 < gap4 < gap5.

If the observation information provided by two ad-

jacent vehicles points to two different regions, then

ψ1 6= ψ2.

3.2 Agent Knowledge Reasoning Operators

Relying on the vehicle-to-vehicle (V2V) communica-

tion technology, vehicles in the multi-agent system can

mutually confirm the observation information of other

members and collect it into global knowledge. In this

subsection, we define AKR operators to indicate the

knowledge acquisition degree of different platoon mem-

bers, where the knowledge refers to spatial observation

information. We specifically define three operators to

represent individual knowledge, shared knowledge, and

joint knowledge of platoon, respectively.

Definition 5 (Syntax of AKR Operators). The syn-

tax of agent knowledge reasoning operators is defined as

follows:

σ ::= Σψ,

Σ ::= Ki|EG|DG.

Definition 6 (Semantics of AKR Operators).

Given a context model for multiple agents MP =

(TS,A, P,υ), the satisfaction of a formula with AKR

operator is defined inductively as follows:

1) Kiψ indicates the individual knowledge, where the

spatial information ψ is recognized or obtained by pla-

toon member Pi within its own field of vision.

TS,A, P,υ |= Kiψ ⇔ TS,A, p,υ |= ψ

∧ p = Pi ∧ ψ = Γiφ ∧A = getArea(υ(p)) ∧A ∈ A.

1238 J. Comput. Sci. & Technol., Nov. 2021, Vol.36, No.6

2) EGψ represents the shared knowledge, where the

spatial information ψ can be observed simultaneously by

each agent in sub-queue G and G is formed by several

consecutive vehicles in platoon P . When two adjacent

vehicles share their information, they reach a consen-

sus only when the observation area is consistent and the

information is the same.

TS,A, P,υ |= EGψ ⇔ ∀p ∈ G :

TS,A, P,υ |= Kiψ ∧ p = Pi ∧G ⊆ P.

3) DGψ indicates the joint knowledge. It is an ag-

gregation of knowledge that all agents acquire in sub-

queue G. Through communication and information in-

tegration, all the platoon members can finally obtain

global knowledge. Thus, the decision controller can di-

rect vehicles to drive cooperatively based on joint know-

ledge.

TS,A, P,υ |= DGψ ⇔ ∀p, q ∈ G, p = Pi, q = Pj :

TS,A, P,υ |= Kiψ → TS,A, P,υ |= Kjψ.

3.3 Inference Rules

Vehicles’ observation information needs to be in-

tegrated into unified knowledge to facilitate systemic

decision-making. We regard the members of the pla-

toon as different agents. To reason from a single agent’s

local information to the multi-agent system’s global

knowledge, we formulate the following inference rules.

The conjunction rule realizes the reasoning from in-

dividual knowledge to shared knowledge. Supposing

that the platoon member Pi and its front vehicle Pj
satisfy Ki(NEiφ), Kj(SEjφ), respectively, they can

recognize each other’s knowledge acquisition via com-

munication: KiKj(SEjφ), KjKi(NEiφ). Since their

information of the same observation area is consistent,

they reach a consensus on the area’s scene information,

which is called shared knowledge.

Ki(ψ1) ∧Kj(ψ2) ∧ (ψ1 = ψ2) ∧ (i = j + 1)

∧KiKj(ψ2) ∧KjKi(ψ1) =⇒ EGψ,

where G = (Pj , Pi), ψ = 〈ψ1〉, or G = (Pj , Pi),

ψ = 〈ψ2〉.
The disjunction rule infers from individual know-

ledge to joint knowledge. Given that the platoon mem-

ber Pi and its front vehicle Pj satisfy Kiψ1,Kjψ2, re-

spectively, it is necessary to determine whether their

observation information points to the same area dur-

ing communication. If their information is consistent,

it can be used as shared knowledge or as joint know-

ledge. However, if their respective observation points

to different regions, their observation information will

be merged into joint knowledge.

1) Kiψ1 ∧Kjψ2∧(ψ1 = ψ2) ∧ (i = j + 1)

∧KiKjψ2 ∧KjKiψ1 =⇒ DGψ,

where G = (Pj , Pi), ψ = 〈ψ1〉 or ψ = 〈ψ2〉.

2) Kiψ1 ∧Kjψ2∧(ψ1 6= ψ2) ∧ (i = j + 1)

∧KiKjψ2 ∧KjKiψ1 =⇒ DGψ,

where G = (Pj , Pi), ψ = 〈ψ1 ∧ ψ2〉.
When the observation results of different vehicles

in the same area are inconsistent, the error correction

rule helps to find faults in these vehicles’ perceptions

and correct them in time. According to the rule of the

comparison operators, observational information with a

higher risk can be used as a calibration standard. Thus,

by modifying another vehicle’s observation result, these

vehicles can maintain information consistency.

1) Ki(ψ1) ∧Kj(ψ2) ∧ (ψ1 < ψ2) ∧ (i = j + 1)

∧KiKj(ψ2) ∧KjKi(ψ1) =⇒ Kj(ψ) ∧ ψ = 〈ψ1〉 .

2) Ki(ψ1) ∧Kj(ψ2) ∧ (ψ1 > ψ2) ∧ (i = j + 1)

∧KiKj(ψ2) ∧KjKi(ψ1) =⇒ Ki(ψ) ∧ ψ = 〈ψ2〉 .

In summary, our proposed MASL can always for-

mally describe the vehicle’s occupancy on the road

space under any platoon driving behavior, thereby spec-

ifying driving scene constraints. Moreover, inference

rules simulate the process of information exchange and

integration between vehicles, which apply to the com-

munication stages of different platoon modes.

4 Timed Automata for Decision Controller

In this section, we introduce a timed automata type

supporting MASL formulas to model the vehicle’s deci-

sion controller for platoon maneuvers. Although diffe-

rent vehicles will make corresponding driving decisions

in different platoon modes, their formal modeling meth-

ods are still the same.

Definition 7 (Timed Automaton with MASL). A

timed automaton for vehicle’s decision control support-

ing our Multi-Agent Spatial Logic is defined by a seven-

tuple structure: TA = (Agt,Q, I , Act,G, T, q0).

• Agt identifies the agent that controls the execution

of TA. In a multi-agent system composed of multiple

vehicles, Agt = P indicates that the executor is the pla-

toon system, Agt = Pi represents a platoon member,

Jingwen Xu et al.: Modeling and Verification of Platoon Systems 1239

and Agt = X represents the HDV that interacts with

the platoon.

• Q is the set of states. Each state is mapped from

a traffic snapshot TS at a specific moment.

• I : Q→ Φ is the labeling function which assigns an

invariant I(q) to state q. Φ ::= ΦTS |ΦD|ΦC |ΦM |Φ1∧
Φ2|¬Φ, where ΦTS is the set of the traffic snapshots TS,

ΦD is the set of data variables of other driving scene in-

formation, ΦC is the set of clocks ranging over R, and

ΦM is a set of MASL formulas representing multi-agent

spatial constraints.

• Act is the set of actions directed by the decision

controller. The occurrence of an action will trigger a

state transition and value update of relevant variables.

• G is the set of guard conditions, including ΦTS
and ΦD’s data constraints, clock constraints of ΦC
and multi-agent spatial constraints of ΦM expressed by

MASL formulas.

• T is the set of transitions of TA. Given a state

Q representing current traffic snapshot TS, when the

guard condition g is satisfied, the transition relation

that changes TS to a post-state TS′ with an action

act ∈ Act is denoted as: TS
g/act−→ TS′.

• q0 ∈ Q is the initial state that corresponds to the

traffic snapshot in the initial scene TS0.

Given a state Q representing its corresponding traf-

fic snapshot TS, when guard condition g is satisfied, the

transition relation that changes TS to a post-state TS′

with an action act ∈ Act is denoted as: TS
g/act−→ TS′.

The actions in Act vary depending on the platoon driv-

ing mode, since driving strategies in different scenarios

are inconsistent. In this way, it is necessary to adap-

tively customize the state transition caused by the ac-

tion execution in the considered scenario. Nevertheless,

the vehicle’s decision controller in any platoon driving

mode can be modeled concerning the timed automata

type defined above. In the following, we take the joining

mode as an example to formally define how to update

the value of TS when the action occurs.

1) TS
go(t)−−−→ TS′: after t seconds, car C will travel

a certain distance according to the previous speed and

acceleration, thereby the values of spd and pos need to

be updated.

TS′ = (res, pos′, inplt, pre, suc, spd′, acc, len, join)

∧ pos′(C) = pos(C) + spd(C)× t+
1

2
× acc(C)× t2

∧ spd′(C) = spd(C) + acc(C)× t.

2) TS
acc(C,a)−−−−−→ TS′: car C’s current acceleration is

assigned to a. a > 0 means acceleration, a < 0 means

deceleration, and a = 0 means a constant speed.

TS′ = (res, pos, inplt, pre, suc, spd, acc′, len, join)

∧ acc′ = acc⊕ {C 7→ a} .

3) TS
clm j(C,n)−−−−−−−→ TS′: car C declares to change

lanes to join the platoon, and n is the lane number

where the platoon is located.

TS′ = (res, pos, inplt, pre, suc, spd, acc, len, join′)

∧ join′ = join⊕ {C 7→ {n}} .

4) TS
wd j(C)−−−−−→ TS′: car C withdraws the request

to join and continues to drive as usual.

TS′ = (res, pos, inplt, pre, suc, spd, acc, len, join′)

∧ join′ = join⊕ {C 7→ ∅} .

5) TS
in j(C)−−−−−→ TS′: car C is changing lanes to join

the platoon. It occupies two lanes simultaneously.

TS′ = (res′, pos, inplt, pre, suc, spd, acc, len, join′)

∧ res′ = res⊕ {C 7→ res(C) ∪ join(C)}
∧ join′ = join⊕ {C 7→ ∅} .

6) TS
fin j(C,A,B)−−−−−−−−−→ TS′: car C has completed the

lane change and entered the platoon. After joining, car

C is in front of car B, followed by car A.

TS′ = (res′, pos, inplt′, pre′, suc′, spd, acc, len, join)

∧ res′ = res⊕ {C 7→ {n}}
∧ inplt′ = inplt⊕ {C 7→ true}
∧ pre′ = pre⊕ {C 7→ A} ∧ suc′ = suc⊕ {C 7→ B}
∧ pre′ = pre⊕ {B 7→ C} ∧ suc′ = suc⊕ {A 7→ C} .

Therefore, to formally model the vehicle’s decision

controller, we first map the traffic snapshot perceived

by vehicles at different moments to TA’s state model.

Then, the observed multi-agent spatial constraint can

be specified as the MASL formula, which is TA’s guard

condition for decision-making. In this way, the vehicle

can issue commands to perform correct actions based

on its driving strategy. These behavioral decisions for

different platoon scenarios constitute TA’s action set.

As a general method, the timed automata model is also

suitable for modeling decision controllers in other pla-

toon scenarios. When verifying other driving behaviors,

we could adjust the action set according to the driving

strategy, and then obtain the state update formula ac-

cording to the characteristics of the action.

1240 J. Comput. Sci. & Technol., Nov. 2021, Vol.36, No.6

5 Model Implementation & Verification

Based on the modeling specifications proposed

above, we will take the behavior of HDV joining the

platoon as a specific case. By modeling decision con-

trollers of the platoon and HDV that interacts with

it, we explain how vehicles perform scenario-based

decision-making and collaborative control during driv-

ing, thereby ensuring the safety of the platoon control

maneuver.

5.1 Case Description

On a three-lane highway with a total length of

LEN , there is a platoon P consisting of five intelli-

gent heavy trucks driving on lane n at a constant speed

of 60 km/h. It is stipulated that the distance between

vehicles in the platoon must be controlled within 20

meters. At a certain moment, an HDV identified as car

X is driving on lane m. It is adjacent to platoon P and

intends to temporarily cut in the platoon to change to

lane n.

First, car X sends a signal to platoon P to declare

its expected position for joining the platoon. After re-

ceiving the signal, each truck will search for the specific

location of car X within its perspective and reports its

observation information to the entire platoon system.

Through information sharing and knowledge inference,

all trucks further confirm car X’s specific location rel-

ative to the entire platoon. Thus, the platoon leader

can make decisions based on global information. It will

interact with car X on behalf of the platoon system and

send corresponding control signals to command mem-

bers to drive cooperatively.

Suppose that car X is allowed to directly join the

platoon, or after several formation adjustments, an ap-

propriate cut-in position is vacated for it. In this case,

the platoon will send a permit signal, allowing car X

to perform lane change operations within the specified

time period. However, if car X is not allowed to join,

the platoon will send it a rejection signal, making it

continue to drive as usual.

5.2 UPPAAL Implementation

UPPAAL is an integrated tool for modeling, sim-

ulation and verification suitable for real-time systems,

which applies to the verification of timing properties.

In addition, UPPAAL is based on the theory of timed

automata [14], and our modeling method utilizes MASL-

based timed automata to construct the vehicle’s deci-

sion controller. UPPAAL can also use signals to control

the parallel execution of models in the network, which

conforms to the characteristics of multi-vehicle cooper-

ative driving in the platoon system. As a result, we

choose UPPAAL as our experimental tool.

In this subsection, we instantiate the decision con-

troller models of different vehicles on UPPAAL, in-

cluding the platoon system, HDV, and cycle controller

shown in Fig.7. These agents can interact with each

other by sending and receiving signals, thereby con-

structing a network of timed automata model of multi-

vehicle cooperative control.

5.2.1 Data Structure

Since the UPPAAL model’s simulation relies on the

execution of functions and the calculation of related

variables, it is necessary to define the model’s data

structures as its data basis. Moreover, UPPAAL uses

C-like code as the programming language but does not

directly support MASL we proposed. Therefore, we de-

fine the data structure and related functions that rep-

resent the semantics of MASL in the form of C code.

This self-defined method can reflect the structure and

connotation of MASL and is more flexible.

We first define a structure called VelInfo, as shown

in Fig.8, which corresponds to the traffic snapshot tu-

ple. In the data structure, index represents the vehi-

cle’s ID number, and thus VelInfo applies to both pla-

toon cars and non-queue cars. inplt is a boolean value

indicating whether the vehicle is in the platoon. pre is

the ID number of the preceding car in the platoon, and

suc represents the succeeding car’s ID number. Array

res represents the lane number currently occupied by

the vehicle since it can occupy at most two lanes si-

multaneously. join represents the lane where the car

declares to change for joining the platoon. pos repre-

sents the position of the vehicle, i.e., the ordinate on the

map. spd, acc, and len represent the vehicle’s speed,

acceleration, and body length, respectively.

To represent the driving scene information observed

from the single-vehicle perspective, we define a struc-

ture named BiPerspect, as shown in Fig.9. It consists

of the following parts: observer is the ID number of the

observer vehicle, array occIndicator indicates whether

the observer has discovered HDV in a certain direc-

tion, and array spatialInfo represents the spatial logic

information in the discovered area, which is located

in the direction indicated by occIndicator. The ba-

sic spatial logic formula uses _ operator to concate-

nate the spatial information on each sub-region, which

corresponds to each element in the array spatialInfo.

Jingwen Xu et al.: Modeling and Verification of Platoon Systems 1241

q_init

t ./

q_cycle
t clk

Ticω
t // clk
t ./

q _initial

q _VV

q _continue

q _adjust

q _decisionmaking

q_allow

success

Tic?

JoinReq?

Confirm?

Refuseω Withdraw?

Finish?

Goω

Communicateω
con // Agreeω

Tic?

failure

con // P_SIZE

AdjustCase↼↽ AdjustCase↼↽

AllowJoin↼↽ t_p t_cutin

targetHDV↼↽

adjustment↼↽↪
adj_cnt ./adj_cnt ⇁

adjustment↼↽↪
adj_cnt ./ adj_cnt ⇁

RefuseJoin↼↽

alignment↼↽ checkDistance↼↽

go↼clk↽

con ./ con ⇁

go↼clk↽↪
con ./ ↪

t _ _adj ./ t adj ⇁

faliure

Refuse?

q_initial

JoinReqω

clm_j↼X↪ ↽↪ t_h./

wd_j↼X↽

q _request

Go?

Tic?
go↼clk↽

q _continue

Agree?

t_h t_ cutin

q_joining

ωcollide↼X↽
Tic?

go↼clk↽

Finishω
fin_j↼X↪ PRE↪ SUC↽↪ SUC./SUC⇁

t_h t_cutin ςς ωcollide↼X↽
success

t_h t_cutin ςς collide↼X↽

Withdrawω
wd_j↼X↽

t_h./↪ in_j↼X↽
acc↼X↪ regulate_acc↽

(b)

(a)

(c)

<-

<-

<-

<-

<-

Fig.7. Decision controller models of different agents. (a) Cycle controller. (b) HDV controller. (c) Platoon controller.

1242 J. Comput. Sci. & Technol., Nov. 2021, Vol.36, No.6

For instance, the observer finds that HDV appears

in its northeast, and the basic spatial logic formula

from its own perspective for this area is expressed as

φ = 〈gap1 _ re(X) _ gap2〉. Thus, the value of BiPer-

spect satisfies: occIndicator[N E] = 1, spatialInfo =

(gap1, re(X), gap2).

Fig.8. Definition of structure VelInfo.

Fig.9. Definition of structure BiPerspect.

The inference rules can merge the single-vehicle per-

spective of all platoon vehicles into the entire platoon’s

multi-vehicle perspective. Therefore, we define the

structure MulPerspect shown in Fig.10. In the data

structure, PPRE represents the preceding vehicle rel-

ative to HDV, i.e., the PPRE-th platoon member is at

the front side of HDV. Similarly, the PSUC-th member

is at the rear side. indicator represents the position of

HDV relative to the entire platoon, to be precise, the

position relative to PPRE vehicle. Array spatialInfo

maintains the spatial scene information of the area

where HDV is located under the multi-vehicle perspec-

tive. For example, from the platoon’s perspective, the

MASL formula for the area where HDV is located is

ψ = 〈SW2φ〉∧φ = 〈gap1 _ re(X) _ gap2〉. Hence, the

value of MulPerspect satisfies: PPRE = 2, PSUC = 3,

indicator = S W , spatialInfo = (gap1, re(X), gap2).

Fig.10. Definition of structure MulPerspect.

5.2.2 Cycle Controller

We start to model the cycle controller to control the

elapse of time. The automaton sends a broadcast signal

Tic to all vehicles every cycle, to make all automata run

synchronously, and vehicles will take prescribed actions

to drive a certain distance.

5.2.3 Platoon Controller

In a platoon system, the leading vehicle is respon-

sible for making decisions and sending correct instruc-

tions to members for coordinated driving. After receiv-

ing signal JoinReq sent by HDV, the platoon will no-

tify all members to detect the relative position of HDV

within their respective field of view. The member vehi-

cles report their observation information through V2V

communication. By executing function targetHDV (),

each vehicle’s individual knowledge under the single-

vehicle perspective is reasoned into the joint knowledge

of the entire platoon. As a formal description of the pla-

toon driving scene, the joint knowledge implies the spa-

tial information of HDV relative to the platoon, which

is the basis for decision-making.

Case 1. Let us assume that there is no collision after

HDV cutting into the platoon according to the initially

declared space, and the new platoon can still maintain

a reasonable spacing. In that case, the automaton sat-

isfies guard condition Allow2Join(). Hence, the leader

will send out the signal Agree, allowing HDV to join the

platoon directly without making any adjustments. The

MASL formula of the judgment function Allow2Join()

is expressed as:

TS,A, P,υ |= EPψ

∧ ψ = 〈SWiφ〉 ∨ 〈SEiφ〉
∧ φ > 〈gap2 _ re(X) _ gap2〉 .

We use C code to synonymously implement the

MASL formula in UPPAAL based on the data struc-

tures, which is shown in Fig.11.

Fig.11. Implementation of function Allow2Join.

Jingwen Xu et al.: Modeling and Verification of Platoon Systems 1243

Case 2. Suppose that the position declared by

HDV is too close to or intersects with the preceding

vehicle in the platoon, which satisfies guard condition

AdjustCase1(). In this case, if HDV directly joins the

platoon without any adjustments, it will collide with

the vehicle in front. Thus, the platoon executes func-

tion adjustment1(), controlling the preceding car to ac-

celerate appropriately to provide a suitable space for

HDV to cut in. The MASL formula of the judgment

function AdjustCase1() is expressed as:

TS,A, P,υ |= EPψ

∧ ψ = 〈SWiφ〉 ∨ 〈SEiφ〉
∧ φ 6 〈gap2 _ re(X) _ gap1〉 .

The code implementation of the MASL formula in UP-

PAAL is shown in Fig.12.

Fig.12. Implementation of function AdjustCase1.

Case 3. Similar to AdjustCase1(), guard con-

dition AdjustCase2() is satisfied when the position

declared by HDV is too close to or intersects with

the rear vehicle. In this case, the platoon executes

function adjustment2() to make the rear car decel-

erate appropriately so that the distance can be in-

creased to facilitate HDV cut-in. The judgment func-

tion AdjustCase2() is equivalent to the MASL formula:

TS,A, P,υ |= EPψ

∧ ψ = 〈SWiφ〉 ∨ 〈SEiφ〉
∧ φ 6 〈gap1 _ re(X) _ gap2〉 .

The code implementation of function AdjustCase2() is

similar to that of AdjustCase1().

Case 4. When one of the following conditions is sat-

isfied, function Refuse2Join() returns true. 1) HDV is

not allowed to join the platoon due to its location. 2)

None of the above three cases have been met. 3) The

platoon has adjusted its formation too frequently. At

this time, the leader will send signal Refuse to HDV to

refuse its joining.

5.2.4 HDV Controller

To change lanes and join the platoon, HDV first

sends signal JoinReq and declares the expected posi-

tion in the platoon. When receiving signal Go for the

platoon’s formation adjustment, HDV could not cut in

currently and can only drive forward synchronously. If

receiving signal Refuse, HDV is prohibited from join-

ing the platoon and cancels its declaration. However,

if HDV receives signal Agree, it will manage to change

lanes and adjust its speed to be consistent with the pla-

toon during the period. Only when the action is com-

pleted within a limited time t cutin and HDV ensures

collision freedom with any platoon member can HDV

be considered to have successfully joined the platoon.

When HDV is joining the platoon, it is necessary

to ensure that HDV will not collide with any member

vehicle. Therefore, we define collision detection func-

tion collide() as the guard condition. Once a collision

is detected during lane changing, it is determined that

HDV failed to join the platoon. We also define an auxi-

liary function intersect() to detect collisions by check-

ing whether the positions of two cars overlap. The code

implementation of the functions is shown in Fig.13.

Fig.13. Implementation of functions collide and intersect.

The model implementation of this case is quite com-

plicated and contains many details. To ensure the

model’s semantic consistency and normal execution on

UPPAAL, we have also defined and utilized many tem-

porary variables, auxiliary functions, signals, and con-

1244 J. Comput. Sci. & Technol., Nov. 2021, Vol.36, No.6

trollers that execute in the background. Due to space

limitations, these details are not specifically listed. All

model files about this case study are available on the

online repository 1○.

5.3 Simulation & Verification

Through modeling and function implementation, we

have constructed a network of timed automata of multi-

agent interaction and control, and have simulated the

complete process on the UPPAAL simulator. Accord-

ing to the simulation trace and variables’ value change

in Fig.14, it is shown that it took five seconds for HDV

from declaration to finally join the platoon. During

this period, it has undergone formation adjustments

twice and the lane-changing operation for three cycles.

Finally, HDV cut in the position located between the

previous second and third members.

To verify the safety of vehicles’ spacing, we also

introduce automaton Observer, checking whether the

distance between any adjacent cars is within the spe-

cified safety range (5, 20]. When detected to be out

of the safe range, the automaton will transfer to the

unbalance spacing state. Otherwise, it will always re-

main in the maintain fine spacing state to indicate a

safe distance.

Fig.15 shows the properties verification results,

where these properties correspond to the specifications

of the platoon decision controllers. P1 proves that our

model is deadlock-free and bug-free. P2 and P3 prove

that HDV will not fail to join the platoon due to un-

satisfied conditions for joining or collision with the pla-

toon. P4 and P5 prove that HDV can successfully join

the platoon under correct decision control. P6 verifies

that the platoon can always maintain a safe distance,

and P7 shows that the new platoon can still keep a rea-

sonable intra-platoon spacing after HDV cuts in. P8

indicates that the total time for HDV to successfully

join the platoon will not exceed the formation adjust-

ment time plus the lane change time. These verifica-

tion results show that the vehicles’ decision controller

can ensure normal operation and the safety of driving

behaviors at the same time.

6 Related Work

6.1 Developing Reliable Autonomous Systems

In recent years, many formal solutions have been

proposed to develop trustworthy autonomous driving

systems. Nyberg et al. [15] applied a verification tech-

nique to embedded safety-critical code, and summa-

rized the application experience of Scania software

development. Both Selvaraj et al. [16] and Todorov et

al. [17] introduced static analysis, model checking, and

deductive verification techniques into the development

of automotive embedded software, bringing higher relia-

bility, robustness, and confidence. Sifakis [18] proposed

a computational model consisting of a system archi-

tecture model and an agent model, which combined

Fig.14. Model simulation results.

1○https://gitee.com/ashley-ecnu-2021/platoon-modeling-verification, Sept. 2021.

Jingwen Xu et al.: Modeling and Verification of Platoon Systems 1245

data-driven and model-driven methods to design au-

tonomous systems. By applying a formal verification

approach to the vehicle’s supervisor functions, Yasmine

et al. [19] validated the design model and ensured that

the developed software is compliant with functional re-

quirements. Kinoshita et al. [20] constructed a commu-

nicating sequential process (CSP) [21] model to analyze

the interaction between the driver and the driving sys-

tem, to guarantee that the system can always capture

the driver’s status to hand over control in an emer-

gency. Roohi et al. [22] explained that there is currently

a lack of automatic verification tools to support de-

veloping autonomous driving systems. There are still

great prospects for exploration in the formal methods

and automatic verification tools of autonomous driving

technology.

P1

P2

P3

P4

P5

P6

P7

P8

Fig.15. Properties verification results.

In this paper, we focus on the critical function of the

autonomous driving system, the decision-making mod-

ule. We utilize timed automata modeling and model

checking methods to verify how the decision-making

function is executed to ensure safe driving from the per-

spective of system modeling.

6.2 Modeling of Vehicle’s Decision Controller

For the safety verification of vehicle decision con-

trol, most of the existing work only considers a sin-

gle vehicle’s behaviors. An abstract model is utilized

to prove the lane-change controller’s safety on high-

ways, where the controller model uses MLSL formu-

las as guards and state invariants [2, 23]. Hilscher and

Schwammberger expanded MLSL to Urban Multi-Lane

Spatial Logic (UMLSL) [4] by introducing the network

topology of urban roads to deal with urban traffic’s

crossing maneuvers. For driving behaviors on com-

plex road conditions such as T-junction, blocked roads,

and roundabout, Xu et al. [24, 25] defined the basic scene

structure for dividing driving tasks. They also consi-

dered spatio-temporal constraints of driving scenes in

limited time and space, and behavior estimation of sur-

rounding vehicles for quantitative safety verification.

Ro et al. [6] constructed a car-following model based on

Hybrid Input Output Automata (HIOA) [26, 27] to com-

pute more accurate vehicle spacing.

The above work has simulated the driving behaviors

of a single vehicle in various scenarios. However, with

the advancement of IoV (Internet of Vehicles) and 5G

technology, vehicles can be interconnected to achieve

collaborative driving. It is necessary to extend single-

vehicle control to multi-vehicle coordinated control. To

this end, we extend the scenario observed from the

single-vehicle perspective to multi-vehicles, and model

different vehicles’ behavioral decisions, thereby simu-

lating coordinated control through signal interaction.

6.3 Safety Verification of Platoon Behaviors

When multiple vehicles manage to complete a uni-

fied task through collaboration, it is necessary to adopt

methods applicable for multi-vehicles to ensure their

safety. Volker et al. [28] modeled the roadway and co-

operative vehicles’ behaviors as automata, proving the

safety of the local traffic system. Regarding the platoon

as a multi-agent system, an agent-based architecture [9]

ensures that the deployed platoon system meets safety

requirements. Mallozzi et al. [10] and Van and Geihs [11]

used the UPPAAL [29] model checker to guarantee the

platoon’s functions never violate safety properties, in-

cluding platoon forming, following, leaving, and nego-

tiation behaviors. Focusing on platoon’s internal and

external safety uncertainties, Hyun et al. [30] proposed

a statistical verification framework to automatically

generate scenario configurations with uncertain factors,

bypassing the state explosion problem.

In addition to modeling and verifying platoon beha-

viors, we also consider the impact of driving scenarios

on decision-making, which is the difference from the

above work. The formal specification language MASL

is proposed to specify spatial scenes as the decision

model’s guard condition. In this way, the importance

of the scenario is reflected, and the perception and the

decision-making process of the autonomous driving sys-

tem are well-connected.

7 Conclusions

In this paper, we proposed a formal framework for

the safety assurance of platoon driving on cross-sea

highways. The abstract model in the framework can

1246 J. Comput. Sci. & Technol., Nov. 2021, Vol.36, No.6

formally describe the spatial characteristics of the driv-

ing scene, and MASL can be used to specify the spatial

constraints of platoon driving scenes. In addition, the

modeling method based on time automata can solve

the problem of modeling decision controller, and then

combine the MASL specification to define the model’s

guard conditions. The experimental results proved that

our formal solution can effectively model and verify the

safety properties of the decision controller of platoon

vehicles, thereby obtaining a safety-guaranteed platoon

control system.

In the future, we will explore other significant prop-

erties of SOI operators and AKR operators in MASL to

establish a complete reasoning system. We can compre-

hensively consider more factors in the platoon driving

scenario to expand MASL, such as probability estima-

tion, communication delay, and failure events. Thus,

MASL will be able to characterize richer scene features.

It is also necessary to optimize our solution and develop

tools to verify the decision model’s safety in different

scenarios automatically.

References

[1] Okuda R, Kajiwara Y, Terashima K. A survey of tech-

nical trend of ADAS and autonomous driving. In Proc.

the 2014 International Symposium on VLSI Technology,

Systems and Application, Apr. 2014. DOI: 10.1109/VLSI-

TSA.2014.6839646.

[2] Hilscher M, Linker S, Olderog E R, Ravn A P. An abstract

model for proving safety of multi-lane traffic manoeuvres. In

Proc. the 13th International Conference on Formal Engi-

neering Methods, Oct. 2011, pp.404-419. DOI: 10.1007/978-

3-642-24559-6 28.

[3] Zita A, Mohajerani S, Fabian M. Application of formal

verification to the lane change module of an autonomous

vehicle. In Proc. the 13th IEEE Conference on Automa-

tion Science and Engineering, Aug. 2017, pp.932-937. DOI:

10.1109/COASE.2017.8256223.

[4] Hilscher M, Schwammberger M. An abstract model for

proving safety of autonomous urban traffic. In Proc. the

13th International Colloquium on Theoretical Aspects of

Computing, Oct. 2016, pp.274-292. DOI: 10.1007/978-3-

319-46750-4 16.

[5] Xu B, Li Q. A spatial logic for modeling and ver-

ification of collision-free control of vehicles. In Proc.

the 21st International Conference on Engineering of

Complex Computer Systems, Nov. 2016, pp.33-42. DOI:

10.1109/ICECCS.2016.014.

[6] Ro J W, Roop P S, Malik A, Ranjitkar P. A for-

mal approach for modeling and simulation of human

car-following behavior. IEEE Transactions on Intelli-

gent Transportation Systems, 2018, 19(2): 639-648. DOI:

10.1109/TITS.2017.2759273.

[7] An D, Liu J, Zhang M, Chen X, Chen M, Sun H. Uncer-

tainty modeling and runtime verification for autonomous

vehicles driving control: A machine learning-based ap-

proach. Journal of Systems and Software, 2020, 167: Article

No. 110617. DOI: 10.1016/j.jss.2020.110617.

[8] El-Zaher M, Gechter F, Gruer P, Hajjar M. A new linear

platoon model based on reactive multi-agent systems. In

Proc. the 23rd International Conference on Tools with Arti-

ficial Intelligence, Nov. 2011, pp.898-899. DOI: 10.1109/IC-

TAI.2011.146.

[9] Kamali M, Dennis L A, Mcaree O, Fisher M, Veres S M.

Formal verification of autonomous vehicle platooning. Sci-

ence of Computer Programming, 2017, 148: 88-106. DOI:

10.1016/j.scico.2017.05.006.

[10] Mallozzi P, Sciancalepore M, Pelliccione P. Formal veri-

fication of the on-the-fly vehicle platooning protocol. In

Proc. the 13th International Workshop on Software Engi-

neering for Resilient Systems, Sept. 2016, pp.62-75. DOI:

10.1007/978-3-319-45892-2 5.

[11] Van Nguyen T, Geihs K. Formal verification of multi-agent

plans for vehicle platooning. In Proc. the 9th EAI Interna-

tional Conference on Context-Aware Systems and Applica-

tions, and the 6th EAI International Conference on Nature

of Computation and Communication, Nov. 2020, pp.3-15.

DOI: 10.1007/978-3-030-67101-3 1.

[12] Rashid A, Siddique U, Hasan O. Formal verification of

platoon control strategies. In Proc. the 16th International

Conference on Software Engineering and Formal Methods,

Jun. 2018, pp.223-238. DOI: 10.1007/978-3-319-92970-5 14.

[13] Peng C, Bonsangue M M, Xu Z. Model checking longitudi-

nal control in vehicle platoon systems. IEEE Access, 2019,

7: 112015-112025. DOI: 10.1109/ACCESS.2019.2935423.

[14] Alur R, Dill D. Automata for modeling real-time systems.

In Proc. the 17th International Colloquium on Automata,

Languages, and Programming, Jul. 1990, pp.322-335. DOI:

10.1007/BFb0032042.

[15] Nyberg M, Gurov D, Lidström C, Rasmusson A, Westman

J. Formal verification in automotive industry: Enablers and

obstacles. In Proc. the 8th Leveraging Applications of For-

mal Methods, Verification and Validation. Industrial Prac-

tice, Nov. 2018, pp.139-158. DOI: 10.1007/978-3-030-03427-

6 14.

[16] Selvaraj Y, Ahrendt W, Fabian M. Verification of decision

making software in an autonomous vehicle: An industrial

case study. In Proc. the 24th Formal Methods for Industrial

Critical Systems, Aug. 2019, pp.143-159. DOI: 10.1007/978-

3-030-27008-7 9.

[17] Todorov V, Boulanger F, Taha S. Formal verification of au-

tomotive embedded software. In Proc. the 6th International

FME Workshop on Formal Methods in Software Engineer-

ing, June 2018, pp.84-87. DOI: 10.1145/3193992.3194003.

[18] Sifakis J. Autonomous systems — An architectural charac-

terization. arXiv: 1811.10277, 2018. https://arxiv.org/ab-

s/1811.10277, Sept. 2021.

[19] Yasmine A, Rabea A B, Patricia G O. Towards formal verifi-

cation of autonomous driving supervisor functions. In Proc.

the 10th European Congress on Embedded Real Time Soft-

ware and Systems, Jan. 2020.

[20] Kinoshita S, Yun S, Kitamura N, Nishimura H. Analysis of

a driver and automated driving system interaction using a

communicating sequential process. In Proc. the 2015 Inter-

national Symposium on Systems Engineering, Sept. 2015,

pp.272-277. DOI: 10.1109/SysEng.2015.7302769.

https://doi.org/10.1109/VLSI-TSA.2014.6839646
https://doi.org/10.1109/VLSI-TSA.2014.6839646
https://doi.org/10.1007/978-3-642-24559-6_28
https://doi.org/10.1007/978-3-642-24559-6_28
https://doi.org/10.1109/COASE.2017.8256223
https://doi.org/10.1007/978-3-319-46750-4_16
https://doi.org/10.1007/978-3-319-46750-4_16
https://doi.org/10.1109/ICECCS.2016.014
https://doi.org/10.1109/TITS.2017.2759273
https://doi.org/10.1016/j.jss.2020.110617
https://doi.org/10.1109/ICTAI.2011.146
https://doi.org/10.1109/ICTAI.2011.146
https://doi.org/10.1016/j.scico.2017.05.006
https://doi.org/10.1007/978-3-319-45892-2_5
https://doi.org/10.1007/978-3-030-67101-3_1
https://doi.org/10.1007/978-3-319-92970-5_14
https://doi.org/10.1109/ACCESS.2019.2935423
https://doi.org/10.1007/BFb0032042
https://doi.org/10.1007/978-3-030-03427-6_14
https://doi.org/10.1007/978-3-030-03427-6_14
https://doi.org/10.1007/978-3-030-27008-7_9
https://doi.org/10.1007/978-3-030-27008-7_9
https://doi.org/10.1145/3193992.3194003
https://doi.org/10.1109/SysEng.2015.7302769

Jingwen Xu et al.: Modeling and Verification of Platoon Systems 1247

[21] Brookes S D, Hoare C A R, Roscoe A W. A theory of com-

municating sequential processes. Journal of the ACM, 1984,

31(3): 560-599. DOI: 10.1145/828.833.

[22] Roohi N, Kaur R, Weimer J, James S, Sokolsky O,

Lee I. Self-driving vehicle verification towards a bench-

mark. arXiv: 1806.08810, 2018. https://arxiv.org/abs/18-

06.08810, Sept. 2021.

[23] Schwammberger M. Introducing liveness into multi-lane

spatial logic lane change controllers using UPPAAL. Elec-

tronic Proceedings in Theoretical Computer Science, 2018,

269: 17-31. DOI: 10.4204/eptcs.269.3.

[24] Xu B, Li Q. A bounded multi-dimensional modal logic

for autonomous cars based on local traffic and estima-

tion. In Proc. the 2017 International Symposium on The-

oretical Aspects of Software Engineering, Sept. 2017. DOI:

10.1109/TASE.2017.8285637.

[25] Xu B, Li Q, Guo T, Du D. A scenario-based approach for

formal modelling and verification of safety properties in au-

tomated driving. IEEE Access, 2019, 7: 140566-14058. DOI:

10.1109/ACCESS.2019.2943184.

[26] Lygeros J, Sastry S. Hybrid systems: Modeling, analysis

and control. Technical Report, Electronic Research Labo-

ratory, University of California, 2008. https://www2.eec-

s.berkeley.edu/Pubs/TechRpts/1999/ERL-99-34.pdf, Sept.

2021.

[27] Alur R, Courcoubetis C, Henzinger T A, Ho P H. Hy-

brid Automata: An algorithmic approach to the specifi-

cation and verification of hybrid systems. In Hybrid Sys-

tems, Grossman R L, Nerode A, Ravn A P, Rischel H

(eds.), Springer, 1992, pp.209-229. DOI: 10.1007/3-540-

57318-6 30.

[28] Völker M, Kloock M, Rabanus R, Alrifaee B, Kowalewski

S. Verification of cooperative vehicle behavior using tempo-

ral logic. IFAC-PapersOnLine, 2019, 52(8): 99-104. DOI:

10.1016/j.ifacol.2019.08.055.

[29] Behrmann G, David A, Larsen K G. A tutorial on Up-

paal. In Proc. the International School on Formal Methods

for the Design of Computer, Communication, and Software

Systems, Sept. 2004, pp.200-236. DOI: 10.1007/978-3-540-

30080-9 7.

[30] Hyun S, Song J, Shin S, Bae D H. Statistical ver-

ification framework for platooning system of systems

with uncertainty. In Proc. the 26th Asia-Pacific Soft-

ware Engineering Conference, Dec. 2019, pp.212-219. DOI:

10.1109/APSEC48747.2019.00037.

Jingwen Xu received her B.S.

degree in software engineering from

Fuzhou University, Fuzhou, in 2019. She

is currently a Master student in soft-

ware engineering from East China Nor-

mal University, Shanghai. Her current

research interests include model-driven

development, formal methods, model

checking, and related applications for autonomous driving

systems.

Yanhong Huang received her B.S.

degree in software engineering and

Ph.D. degree in computer science from

East China Normal University, Shang-

hai, in 2009 and 2014, respectively.

She is an associate researcher with

National Trusted Embedded Software

Engineering Technology Research Center, East China Nor-

mal University, Shanghai. Her current research interests

include formal method, semantics theory, and analysis and

verification of embedded systems and industry software.

Dr. Huang was the recipient of National Scholarship

Award in 2013, IBM China Excellent Students in 2013,

and Shanghai Excellent Graduates in 2009 and 2014.

Jianqi Shi received his B.S. degree in

software engineering and Ph.D. degree

in computer science from East China

Normal University, Shanghai, in 2007

and 2012, respectively. He is currently

an associate researcher with National

Trusted Embedded Software Engineer-

ing Technology Research Center, East

China Normal University, Shanghai. His current research

interests include formal method, formal modeling and

verification of real-time or control systems, and IEC 61508

and IEC 61131 standards. Dr. Shi was the recipient of

Shanghai Science and Technology Committee Rising-Star

Program in 2018, and ACM and CCF nomination of

Excellent Doctor in Shanghai in 2014.

Shengchao Qin got his Ph.D. degree

in applied mathematics from Peking

University, Beijing, and he also worked

as a postdoctoral research fellow in Na-

tional University of Singapore under the

Singapore-MIT Alliance program, Sin-

gapore, before moving his job to UK.

While in UK, he worked as a university

lecturer in Durham University, Bedfordshire, and reader in

Teesside University, Middlesbrough, in 2011. His research

interests lie mainly in formal methods, software engineer-

ing and programming languages, in particular, formal spec-

ification and modelling, program analysis and verification,

theories of programming, and program logic such as separa-

tion logic. To this date he has published over 130 papers in

international journals and peer-refereed international con-

ferences. He is a senior member of ACM and IEEE. He

serves as a full member of EPSRC peer review college and

a member of UKRI Future Leaders Fellowship peer review

college.

https://doi.org/10.1145/828.833
https://doi.org/10.4204/eptcs.269.3
https://doi.org/10.1109/TASE.2017.8285637
https://doi.org/10.1109/ACCESS.2019.2943184
https://doi.org/10.1007/3-540-57318-6_30
https://doi.org/10.1007/3-540-57318-6_30
https://doi.org/10.1016/j.ifacol.2019.08.055
https://doi.org/10.1007/978-3-540-30080-9_7
https://doi.org/10.1007/978-3-540-30080-9_7
https://doi.org/10.1109/APSEC48747.2019.00037

	1 Introduction
	2 Basic Spatial Logic and Its Dedicated Abstract Model
	2.1 Abstract Model
	2.1.1 Static Map Information
	2.1.2 Traffic Snapshot
	2.1.3 Observation Area

	2.2 Basic Spatial Logic

	3 Multi-Agent Spatial Logic
	3.1 Spatial Orientation Indication Operators
	3.2 Agent Knowledge Reasoning Operators
	3.3 Inference Rules

	4 Timed Automata for Decision Controller
	5 Model Implementation & Verification
	5.1 Case Description
	5.2 UPPAAL Implementation
	5.2.1 Data Structure
	5.2.2 Cycle Controller
	5.2.3 Platoon Controller
	5.2.4 HDV Controller

	5.3 Simulation & Verification

	6 Related Work
	6.1 Developing Reliable Autonomous Systems
	6.2 Modeling of Vehicle's Decision Controller
	6.3 Safety Verification of Platoon Behaviors

	7 Conclusions

