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Abstract Modern multiprocessors deploy a variety of weak memory models (WMMs). Total Store Order (TSO) is a

widely-used weak memory model in SPARC implementations and x86 architecture. It omits the store-load constraint by

allowing each core to employ a write buffer. In this paper, we apply Unifying Theories of Programming (abbreviated as

UTP) in investigating the trace semantics for TSO, acting in the denotational semantics style. A trace is expressed as a

sequence of snapshots, which records the changes in registers, write buffers and the shared memory. All the valid execution

results containing reorderings can be described after kicking out those that do not satisfy program order and modification

order. This paper also presents a set of algebraic laws for TSO. We study the concept of head normal form, and every

program can be expressed in the head normal form of the guarded choice which is able to model the execution of a program

with reorderings. Then the linearizability of the TSO model is supported. Furthermore, we consider the linking between

trace semantics and algebraic semantics. The linking is achieved through deriving trace semantics from algebraic semantics,

and the derivation strategy under the TSO model is provided.

Keywords weak memory model, Total Store Order (TSO), trace semantics, algebraic law, Unifying Theories of Program-

ming (UTP)

1 Introduction

When considering parallel programming, there are

mainly two paradigms, namely message passing and

shared memory [1]. The latter one accesses shared data

through reading from and writing to the shared mem-

ory, and many consistency models are applied to this

paradigm [2]. The strongest and most intuitive memory

consistency model is sequential consistency (SC) [3]. It

states that the operations from different threads take

effect in an interleaving manner, and the operations

from the same thread appear in the order specified by

their program order. A weak memory model refers to

a model being optimized but producing the behaviors

which do not conform to SC. Among weak (or relaxed)

memory models, Total Store Order (TSO) is a widely

implemented model [4].

The TSO memory model is supported by the x86 ar-

chitecture and SPARC implementations [5]. As shown

in Fig.1, every memory write (or store) works on its

thread’s write buffer firstly, and the information in

the write buffer will be written to the shared mem-

ory at some point in the future. Thus, the effect of

one memory write may be delayed. Since the write

buffer conforms to the principle named First-In-First-

Out (FIFO) [6], the order of store-store can be guar-

anteed. A read from location x (aka load) always de-

mands to first check whether the processor’s private
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buffer contains such a write to the same location. If so,

the latest value is returned and the read operation ter-

minates successfully. Otherwise, the read will access the

main memory. Consequently, as execution proceeds,

the store-load order can be broken because each core

in this model has a private write buffer. However, this

model still maintains load-load, load-store and store-

store constraints: 1) two loads or stores cannot be re-

ordered, and 2) reordering an earlier load with a later

store causes incorrect behaviors. Also, this memory

model introduces fence instructions to ensure the abso-

lute order of a process [7].

Core 1

Memory

Buffer 1 Buffer n

Location nLocation Location 

Core n

Fig.1. Total Store Order architecture.

Now we use a typical parallel program below in

the store buffering (SB) [8] to help to understand how

the store-load constraint is relaxed in the TSO mem-

ory model through the operations writing to the write

buffer and propagating to the shared memory. The no-

tation “;” denotes the sequential composition operator,

while “||” stands for the parallel composition operator.

The analysis of the program is given as follows.(
x := 1;

a := y

)
‖

(
y := 1;

b := x

)
.

Let variables x and y hold 0 initially. When performing

x := 1 and y := 1, the values of x and y are written to

both write buffers respectively, and then the reads from

y and x may happen before the writes from buffers to

the shared memory. Therefore, it is possible for vari-

ables a and b to both obtain 0 in the same execution.

As described in Hoare and He’s Unifying Theories

of Programming [9], three different mathematical mod-

els are often used to represent a theory of program-

ming, namely, the operational [10], the denotational [11],

and the algebraic approaches [12]. Each of these rep-

resentations has its distinctive advantages for theories

of programming. For instance, the operational seman-

tics provides a set of transition rules that model how

a program performs step by step. The denotational

semantics indicates what a program does. The alge-

braic semantics is well suited in the symbolic calcula-

tion of parameters and structures of an optimal design.

The algebraic approach has been successfully applied in

provably correct compilation [13, 14]. However, there are

few studies on studying both the denotational seman-

tics and the algebraic semantics of the TSO memory

model, which give the intuitive description of all the

program executions containing various reorderings.

In this paper, we consider the denotational seman-

tics for the TSO memory model, where our approach

is based on UTP and the trace structure is applied.

Compared with the technique called pomset presented

in [15], our investigation for denotational semantics

with trace semantics focuses on the results of execution

sequences. Then, for the concept of linearizability [16, 17]

can be reflected by our trace semantics, our approach

can provide the precise understanding of the TSO

model in a simpler way. In our semantic model, a trace

is expressed as a sequence of snapshots which record

the changes of the variables brought by different types

of actions. To calculate all the possible traces, we use

two main functions named po and mo which depict the

program order and the modification order to filter out

those illegal sequences respectively.

This paper also investigates algebraic laws includ-

ing a set of sequential and parallel expansion laws. We

introduce the concept of guarded choice for TSO, which

is made up of a variety of guarded components. The

concept of head normal form is explored, and every

program can be expressed in the head normal form of

guarded choice. Hence, from the perspective of the al-

gebraic semantics, our approach can support the lin-

earizability of the TSO memory model. In addition, we

provide the strategy for deriving trace semantics from

algebraic semantics. Based on the derivation strategy,

the trace semantics of each program can be calculated.

The reminder of this paper is organized as follows.

We study the trace semantics of TSO in Section 2. Sec-

tion 3 lists a set of algebraic laws including sequential

and parallel expansion laws. Section 4 discusses re-

lated work about the TSO memory model, the UTP

approach and semantic linking. We conclude the pa-

per and present the future work in Section 5. We leave

some technical definitions in Appendix.



Li-Li Xiao et al.: Trace Semantics and Algebraic Laws for Total Store Order Memory Model 1271

2 Trace Semantics

2.1 Syntax of TSO

The language of the TSO model which is adapted

and extended from [15] is presented in the following,

where v ranges over real numbers, e over arithmetic ex-

pressions on real numbers, h over Boolean expressions

and p over programs. Fence is a barrier, and two mem-

ory accesses separated by it cannot be reordered. We

have analyzed a simple example program in Section 1.

v ::= ...,−2,−1, 0, 1, 2, ...
e ::= v | x | e1 + e2 | e1 ∗ e2 |...
h ::= true | false | e1 = e2 | ¬h | h1 ∨ h2 | h1 ∧ h2 |...
p ::= x := e | fence | if h then p1 else p2 | while h do p

| p1; p2 |p1||p2

Here:

• The variable x can be global or local.

• The operator “=” means that the value on the left

of “=” is equal to that on the right.

• ¬h, h1 ∨ h2 and h1 ∧ h2 are logic notations. ¬h
denotes the negation of h, the notation h1 ∨ h2 stands

for the disjunction between h1 and h2, and h1 ∧h2 rep-

resents the conjunction between h1 and h2.

2.2 Semantic Model

In this subsection, we investigate the trace semantic

model of TSO. We illustrate the behaviors of a process

with a trace of snapshots, which records the sequence

of actions.

A snapshot in a trace is expressed as a tuple in the

form: (id, cont, oflag, eflag).

Here:

• id is used to number the statements and it starts

from 1 in each program. The reason for using this ele-

ment here is to differentiate two same statements, which

will be explained in detail later.

• cont can be: 1) in the form of (var, val) indicat-

ing the data state of one variable at some point, or 2)

a particular unary element fence.

• We use parameter oflag to distinguish different

kinds of operations, which is simply discussed in Ta-

ble 1.

Table 1. Different Types of Operations Divided by oflag

oflag Type

0 Fence instructions

1 Committing to write buffers

2 Propagating to the shared memory

3 Register writes

1) Considering global assignments, if oflag is 1, the

action committing to the write buffer is carried out,

and the operation propagating to the whole memory is

described when oflag is equal to 2.

2) oflag = 3 denotes writing to local variables (i.e.,

register writes).

3) In addition, a special situation is that the ope-

ration is fence and the corresponding oflag is 0.

• eflag is applied to mark whether the operation

is performed by the process itself or its environment.

Once the process does the action on its own, it sets the

variable to be 1. Otherwise, eflag will be 0.

And the projection function πi (i ∈ {1, 2, 3, 4}) is

defined to get the i-th element of a snapshot.

π1(id, cont, oflag, eflag) = id,

π2(id, cont, oflag, eflag) = cont,

π3(id, cont, oflag, eflag) = oflag,

π4(id, cont, oflag, eflag) = eflag.

If var and val exist (in other words, cont is not

described as fence), we call the projection function

πi (i ∈ {1, 2}) to obtain the variable and value respec-

tively.

π1(π2(id, cont, oflag, eflag)) = var,

π2(π2(id, cont, oflag, eflag)) = val.

We use traces(P ) to describe the set containing all

possible behaviors of process P , and sb(P ) to record

the original order of program statements, which facili-

tates the model of reorderings. When making sequen-

tial composition, sb(P ) is used to check whether the

interleaved trace (explained in Subsection 2.3) is valid

or not with the definition of program order and modi-

fication order. Each element of a sequence in the set sb

has the form of (id, cont). The meanings of id and cont

here are the same as above.

Now two examples are given to intuitively illustrate

the structures of traces and sb.

Example 1. Assume a is a local variable and x is a

global variable.

1... a := x+ 1;

2... a := x+ 1.

Here, we may understand the importance of the use

of id, because the two statements in a := x + 1; a :=

x + 1 are described in the same way (a, r(x + 1)) (i.e.,

(a, (r(x) + 1))). The values 1 and 2, which are prefixes
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of the statements above and framed in the formulas be-

low, have the ability to differentiate them. r(x) is a

function for reading variable x, and its detailed defini-

tion is given in Appendix A.

traces(a := x+ 1; a := x+ 1)

=
{
〈( 1 , (a, r(x+ 1)), 3, 1), ( 2 , (a, r(x+ 1)), 3, 1)〉

}
.

sb(a := x+ 1; a := x+ 1)

=
{
〈( 1 , (a, r(x+ 1))), ( 2 , (a, r(x+ 1)))〉

}
.

Example 2. Assume variable x is global. Consider

the program below.

1... x := 1;

2... x := 2.

A global assignment may be split into different ac-

tions acting on the write buffer or memory in the se-

quences of traces. However, sb relates to the original

statements merely.

traces(x := 1;x := 2)

=


〈( 1 , (x, 1), 1, 1), ( 1 , (x, 1), 2, 1),
(2, (x, 2), 1, 1), (2, (x, 2), 2, 1)〉,
〈( 1 , (x, 1), 1, 1), (2, (x, 2), 1, 1),

( 1 , (x, 1), 2, 1), (2, (x, 2), 2, 1)〉

 .

sb(x := 1;x := 2) = {〈(1, (x, 1)), (2, (x, 2))〉} .

It is worth noting that the parameter id of the snap-

shot (1, (x, 1), 1, 1) and that of (1, (x, 1), 2, 1) are iden-

tical.

2.3 Trace Semantics

In this subsection, we present the trace semantics for

each program P under the TSO memory model, where

traces(P ) and sb(P ) are defined for each program P .

Local Assignment. The local variables are written

to the private registers directly.

traces(a := e)

= df{s∧〈(1, (a, r(e)), 3, 1)〉} 1○, where π∗4(s) ∈ 0∗.

sb(a := e) =df {〈(1, (a, r(e)))〉}.

The change of data state aiming at a local variable a is

described by the third parameter 3.

Here, s denotes the trace produced by the environ-

ment and we use 0∗ to allow the environment to carry

out any number of operations. Each snapshot in s is in

the form ( , , , 0), i.e., the eflag element is 0. With this

approach to include the environment’s behaviors for a

process, the process can get the contributions produced

by its environment. As mentioned before, the projec-

tion function π4 is to obtain the fourth element of a

snapshot. Then, the notation π∗4(s) represents the re-

peated execution of the function π4 on each snapshot

in trace s. 0* stands for the sequence containing any

number of the integer 0.

Example 3. In this example, we focus on the pro-

gram a := x performed in core 1, where a is a local

variable and x is a global variable.

Firstly, the environment (i.e., the program x := 1 in

core 2) has updated the value of the variable x, through

the actions labeled by (1) and (2) in Fig.2. The mod-

ified value is 1. For the program a := x, one trace

is 〈(1, (x, 1), 1, 0 ), (1, (x, 1), 2, 0 ), (1, (a, r(x)), 3, 1 )〉.
For simplicity, we ignore other environment operations.

The former two snapshots are contributed by the envi-

ronment, and the last with eflag being 1, is produced

by the thread itself.

Buffer

(1)

(2)

(3)

(4)

Memory

Core 1
a./x

y/ z/
x/

x/

x./

Core 2

...

Fig.2. Analysis of local assignment.

Faced with some statements whose values are ex-

pressions instead of constants, we need to apply the

read function r to get the dynamic values. Given a

variable x, the detailed formalization and explanation

of the read function r(x) can be found in Appendix A.

Further, for an expression e, we should carry out the

read function for each variable in it. After getting the

values of those variables, the value of expression e can

be computed. For example, r(x + y) is expressed as

r(x) + r(y) in our model.

Example 3: Continuation. Here, we start to

discuss the read function r appearing in the trace

〈(1, (x, 1), 1, 0), (1, (x, 1), 2, 0), (1, (a, r(x)) , 3, 1)〉.
The value of x, which is going to be assigned to the

local variable a, can be obtained by the actions (3) and

(4) in Fig.2. The buffer in core 1 is explored firstly,

1○The notation =df refers to definitions, whereas s∧t stands for the concatenation of traces s and t. Further, s∧T = {s∧t | t ∈ T}
and S∧T =df {s∧t | s ∈ S ∧ t ∈ T}. It indicates that s∧φ = φ.
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shown by action (3). Because such a snapshot whose

var, oflag and eflag are x, 1 and 1 respectively does

not exist in the above trace, nothing can be returned

from the private buffer. Then the memory is searched

which is exhibited by action (4), and value 1 is provided.

The definition for traces(fence) and sb(fence) is

similar to that of local assignment:

traces(fence)

= df{s∧〈(1, fence, 0, 1)〉}, where π∗4(s) ∈ 0∗.

sb(fence) =df {〈(1, fence)〉}.

Global Assignment. The execution of a global as-

signment x := e can be separated into two steps: writ-

ing into its own thread’s write buffer and then prop-

agating to the shared memory from the write buffer.

And this order is fixed.

traces(x := e)

= df{u∧〈( 1 , (x, r(e)), 1, 1)〉∧v∧〈( 1 , (x, r(e)), 2, 1)〉},

where π∗4(u) ∈ 0∗ and π∗4(v) ∈ 0∗.

Note that committing and propagating the same

memory write have the same value of parameter id

shown in the framed area above.

Similar to local assignments, the environment can

do any number of operations before each step of the

global assignment, which is expressed by adding sub-

traces u and v in the above formula.

For the snapshot (1, (x, r(e)), 1, 1), x := e is the first

statement in the program, and then the first element id

has the value of 1. With the second one (x, r(e)), we

can know the data state currently, which indicates that

the value of x is r(e) when performing x := e. The cal-

culation of expression e can be completed via the read

function r. The third one is used to describe the place

(the write buffer or the main memory) where x := e

plays a role. Here, the value 1 tells that the program

brings an effect to the thread’s write buffer. Because

the action we discuss is carried out by the process itself,

we set the last element to be 1.

In addition we introduce sb to construct sequential

composition in a better way. The function is to record

the serial numbers and data states of the original pro-

gram statements.

sb(x := e) =df {〈(1, (x, r(e)))〉}.

Sequential Composition. In this subsection, we con-

centrate on investigating the trace semantics of sequen-

tial composition, and it mainly reflects the thread local

reordering. The investigation is always separated into

two steps: 1) interleaving two traces s and t to calcu-

late all the sequences, where s and t are the traces of

the two processes which make sequential composition,

and 2) applying the functions named po and mo which

give the description of the program order and the mod-

ification order to remove those invalid executions.

For the first step, to interleave two traces s and

t, where updating the sequence number of statements

(i.e., id) in snapshots is considered, we introduce a func-

tion inleave(s, t, pc) below. Here pc records the new

sequence number in the interleaved trace and it starts

from 1. Thus compared with the traditional interleav-

ing semantics, the one explained in this paper intro-

duces the occurrence of pc. Further, inleave(s, t, 1) is

applied when we give the semantics for sequential com-

position.

Before giving the detailed formalization and expla-

nation of the function inleave, we use example 4 below

to provide intuitive understanding.

Example 4. Let variables x and y be both global,

and a be a local variable. We consider one trace s =

〈(1, (x, 1), 1, 1), (1, (x, 1), 2, 1)〉 of the program x := 1

and another trace t = 〈(1, (a, r(y)), 3, 1)〉 of a := y. For

simplicity, the environment operations are not exhib-

ited here.

The analysis of one trace s; t interleaved from s and

t shown in Fig.3 is given as follows.

s

s,t

t

Fig.3. Illustration of function inleave.

1) The snapshot (1, (a, r(y)), 3, 1) in the latter trace

t is scheduled first. It is added as the head of trace s; t

merely.

2) The first snapshot (1, (x, 1), 1, 1) in trace s is se-

lected to be interleaved. The value of its oflag is 1 and

it is the snapshot of committing the write to location x

to the write buffer. Because there already exists a snap-

shot which originates from another statement in the in-

terleaved trace s; t, parameter id should be changed to

2. At the same time, id of the snapshot of the corre-

sponding propagation action (i.e., the second snapshot

(1, (x, 1), 2, 1) in s) is also modified to 2. Finally we

place the updated snapshot ( 2 , (x, 1), 1, 1) in the sec-

ond of s; t and continue the interleaving procedure.
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3) We put the last snapshot in s (i.e., the updated

snapshot ( 2 , (x, 1), 2, 1)) in the third position of trace

s; t.

Now, we give the formal definition of the function

inleave(s, t, pc). For the function inleave(s, t, pc), the

result of interleaving two empty traces is still empty,

which is illustrated in case 1. For the two traces which

need to be interleaved, if one of them is empty and the

other is nonempty, the result follows the nonempty one,

and case 2 describes it.

case 1 inleave(〈〉, 〈〉, pc) =df {〈〉}.
case 2 inleave(s, 〈〉, pc) =df {s},

inleave(〈〉, t, pc) =df {t}.

For general scenarios, inleave(s, t, pc) can engage

in the first snapshot in s (described by the function

inleavel) or in the next trace t (illustrated by inleaver),

denoted by case 3.

case 3 inleave(s, t, pc)

=df inleavel(s, t, pc) ∪ inleaver(s, t, pc).

Because the treatment of interleaving the two

branches is similar, we illustrate the function

inleavel(s, t, pc) for example.

When making sequential composition of two pro-

grams, what we focus on in the interleaving procedure

is the operations contributed by the programs instead

of their environment. Hence we skip those snapshots

with eflag being 0, which is formalized by (1). Here,

notation hd(s) stands for the first snapshot of trace s,

and tl(s) is applied to denote the result of removing the

first snapshot in trace s.

inleavel(s, t, pc)

= df



hd(s)∧inleave(tl(s), t, pc) (1)
/ π4(hd(s)) = 0 .
hd(s)[pc/π1(hd(s))] ∧inleave( tl(s)[(pc, , 2, 1)/(π1(hd(s)), , 2, 1)] , t, pc+ 1) (2)

/ π3(hd(s)) = 1 . hd(s) ∧inleave(tl(s), t, pc) (3)

/ π3(hd(s)) = 2 .

hd(s)[pc/π1(hd(s))] ∧inleave(tl(s), t, pc+ 1) (4)






.

With regard to the operations performed by the

thread itself, we are supposed to take three situations

into our account. If the interleaving procedure starts

from the first snapshot hd(s) in trace s, whose ope-

ration is writing to the write buffer, there are mainly

three steps modeled by (2). Above all, for the snapshot

whose id is identical to that of hd(s) in the remain-

ing trace tl(s), we change its id to the current program

counter pc. It is formalized in the second boxed area in

(2). Afterwards, the parameter id of hd(s) is modified

to pc, and then the updated hd(s) is placed in the head,

described by the first boxed area in (2). Finally, pc in-

creases by 1 and the interleaving procedure continues.

Here, e / b . f represents e if condition b is true;

otherwise f . The notation hd(s)[u/v] describes the re-

placement of v by u in snapshot hd(s).

If the interleaving procedure is triggered by the

snapshot whose oflag is 2, we only need to put the

snapshot in the head of the interleaving of traces s and

t, since its id has been changed previously, denoted by

(3). Otherwise, before placing the first snapshot, we

should set its id to pc, and make pc add 1 subsequently,

illustrated by (4) above.

Based on the above analysis, we can know that

these situations modeled by (2) and (4) result in the

difference between the traditional interleaving seman-

tics and the one introduced here.

Now we use example 5 below to discuss the trace se-

mantics of sequential composition with the application

of the function inleave.

Example 5. Consider the sequential composition

x := 1; fence; a := x, where

s = traces(x := 1) = {〈(1, (x, 1), 1, 1), (1, (x, 1), 2, 1)〉},
t = traces(fence; a := x)

= {〈(1, fence, 0, 1), (2, (a, r(x)), 3, 1)〉}.

Variable x is global and a is a local variable. For sim-

plicity, we do not take the environment operations into

our consideration here.

Step 1. We use the function inleave to generate the
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original traces.

inleave(s, t, 1)

=



〈(1, (x, 1), 1, 1), (1, (x, 1), 2, 1),
(2, fence, 0, 1), (3, (a, r(x)), 3, 1)〉, (5)
〈(1, (x, 1), 1, 1), (2, fence, 0, 1),
(1, (x, 1), 2, 1), (3, (a, r(x)), 3, 1)〉, (6)
〈(1, (x, 1), 1, 1), (2, fence, 0, 1),
(3, (a, r(x)), 3, 1), (1, (x, 1), 2, 1)〉, (7)
〈(1, fence, 0, 1), (2, (x, 1), 1, 1),
(2, (x, 1), 2, 1), (3, (a, r(x)), 3, 1)〉, (8)
〈(1, fence, 0, 1), (2, (x, 1), 1, 1),
(3, (a, r(x)), 3, 1), (2, (x, 1), 2, 1)〉, (9)
〈(1, fence, 0, 1), (2, (a, r(x)), 3, 1),
(3, (x, 1), 1, 1), (3, (x, 1), 2, 1)〉 (10)



.

Intuitively, we discover that cases (6), (7), (8), (9)

and (10) are not in line with reality and should be re-

moved. Then we complete it with the functions defined

below.

Owing to the fact that the environment does not

affect the interleaving process, the following functions

only act on those snapshots with eflag being 1. Now,

we give the introduction to function po to illustrate

the program order specified by a program. po can be

achieved through selecting the quads (i.e., the snap-

shots in the trace) with the value of the third element

being 0 or 1 or 3. Because we are going to compare

the result with the sequence in the sb set, the first two

elements of the quad are within our consideration. It

says that the parameter of the function po is a trace,

and its return value is the sequence of (id, cont). The

definition is provided in the following.

po(〈event〉 ∧ tr)

= df


〈(π1(event), π2(event))〉 ∧ po(tr)

/

 π3(event) = 0 ∨
π3(event) = 1 ∨
π3(event) = 3

 ∧ π4(event) = 1.

po(tr)

 ,

po(〈〉) =df 〈〉.

In addition to program order, we illustrate the pro-

gram’s modification order with function mo. This case

is connected with the operations propagating to the

whole memory and the special instruction fence.

mo(〈event〉 ∧ tr)

= df


〈(π1(event), π2(event))〉 ∧ mo(tr)

/

(
π3(event) = 0 ∨
π3(event) = 2

)
∧ π4(event) = 1 .

mo(tr)

 ,

mo(〈〉) =df 〈〉.

Finally, based on the above formalizations, we give

the trace semantics of the sequential composition P ;Q.

This process can be split into four steps below.

• Firstly, we need to choose one trace s contributed

by program P and one trace t produced by Q. And

then we interleave them.

• One execution order of statements in P is recorded

by sb1 and that in Q is sb2. These parameters can be

obtained through the definition of c(P,Q). Then, we

define notation sb1 + sb2 to denote the execution order

of P ;Q.

• For the interleaved trace u, it is necessary to check

whether the result of the function po acting on u is

a subsequence of sb1 + sb2. And it is the same to

mo. When finishing these examinations formalized by

(s; t, sb) below, if trace u is invalid, it will be deleted.

Here, function subseq(u, v) indicates that u is a subse-

quence of v.

• If all the traces generated by P and Q are inter-

leaved and examined by the above three steps, we can

achieve the trace semantics of the sequential program

P ;Q.

(s; t, sb)

= df

{
u|subseq(po(u), sb) ∧ subseq(mo(u), sb)
∧ u ∈ inleave(s, t, 1)

}
,

traces(P ;Q) =df

⋃
c(P,Q)

(s; t, sb1 + sb2),

where

c(P,Q) =df

(
s ∈ traces(P ) ∧ t ∈ traces(Q)∧
sb1 ∈ sb(P ) ∧ sb2 ∈ sb(Q)

)
,

sb1 + sb2 =df sb
∧
1 sb
′
2,

where

sb′2 =df ∀(id, cont) ∈ sb2 •
sb2[((len(sb1) + id), cont)/(id, cont)].

Here,
⋃

stands for the union of the trace sets. The

symbol “•” means “such that” [9].

Example 5: Continuation.

Step 2. We know that one execution sequence

sb1 of sb(P ) is 〈(1, (x, 1))〉, and sb2 of sb(Q) is

〈(1, fence), (2, (a, r(x)))〉. After checking whether the

return values of functions po and mo are both subse-

quences of sb1 + sb2, we filter the results presented in

step 1.

sb1 + sb2 = 〈(1, (x, 1)), (2, fence), (3, (a, r(x)))〉,
mo((6)) = 〈(2, fence), (1, (x, 1))〉,
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mo((7)) = 〈(2, fence), (1, (x, 1))〉,

po((8)) = 〈(1, fence), (2, (x, 1)), (3, (a, r(x)))〉,

po((9)) = 〈(1, fence), (2, (x, 1)), (3, (a, r(x)))〉,

po((10)) = 〈(1, fence), (2, (a, r(x))), (3, (x, 1))〉.

Obviously, mo((6)) and mo((7)) are not the subse-

quences of sb1 + sb2, and po((8)), po((9)) and po((10))

are also not. Therefore the five cases are deleted. Thus

the final trace is:

traces(x := 1; fence; a := x)

=

{
〈(1, (x, 1), 1, 1), (1, (x, 1), 2, 1),

(2, fence, 0, 1), (3, (a, r(x)), 3, 1)〉

}
.

From the unique trace above, we can see that the

effect of the write to location x must appear firstly, if

statement x := 1 precedes the instruction fence.

In particular, the simplest composition without any

reordering between a and P is formalized as below.

traces(a→ P )

= df traces(a)∧traces(P ), where traces(a) =df {〈a〉}.

Conditional. Taking the execution of Conditional

into our consideration, it will behave the same as P if

h is true. Otherwise, it acts like process Q.

traces(if h then P else Q)

= df traces(P ) / h . traces(Q).

sb(if h then P else Q) =df sb(P ) / h . sb(Q).

The notation e / b . f stands for e if b is true; otherwise

f . If there is some variable x in the Boolean condition

h, the read function will be applied to achieve the value

of x.

Iteration. For “while h do P”, we take the under-

standing as “if h then (P ; while h do P ) else II”. Based

on the analysis of Conditional, traces(while h do P )

and sb(while h do P ) can be obtained by applying the

least fixed point concept [18–20].

traces(while h do P ) =df

∞⋃
n=0

traces{Fn(STOP)},

sb(while h do P ) =df

∞⋃
n=0

sb{Fn(STOP)},

where, F (X) =df if h then (P ;X) else II,

F 0(X) =df X,

Fn+1(X) =df F (Fn(X))

= F (...(F︸ ︷︷ ︸
n times

(F (X)))...),

traces(II) =df {ε}, sb(II) =df {ε},
and traces(STOP) =df {}, sb(STOP) =df {}.
Here, II and STOP are applied to facilitate giving the

definition of the trace semantics of Iteration.

Parallel Construct. Now, we explore the trace se-

mantics of parallel construct. The traces of parallel

construct are formed by the merging of snapshots per-

formed by the two components.

Example 6. Consider the parallel program P ||Q,

where P =df x := 1; a := y, Q =df b := x, x and y

are global variables, and a and b are local variables.

P ||Q is activated with x = y = 0.

Although there are many executing cases, here we

only take one scenario below into account. Assume pro-

gram P is scheduled to execute first, and then P com-

mits the write to x to the store buffer. Next, P and Q

choose to read the values of variables y and x respec-

tively. Finally, P moves the write from its own write

buffer to the shared memory.

Fig.4 illustrates one trace of P (i.e., seq1) and Q

(i.e., seq2) respectively, i.e., the above scenario. seq is

one trace of P ||Q, which is merged from P and Q.

Let us consider the first element for the above three

traces. The first element of seq1 indicates that the ac-

tion is contributed by P itself. Thus eflag of the first

element in seq2 is 0, representing that this action is Q’s

environment’s contribution. No matter whether an ac-

tion is done by program P or Q, it is contributed by

the parallel program P ||Q. Therefore, the parameter

eflag of the first element in seq is 1.

What we should pay attention to is that the read

functions r(y) and r(x) are both executed at the point

that the sequential composition just completes. The

reason is that only before the parallel composition,

each thread can classify the private information and

the shared data. As shown in Fig.4, the values of r(y)

and r(x) are both the initial value 0.

The sequence seq1 of process P and seq2 of process

Q are said to be comparable, if

1) π∗i (seq1) = π∗i (seq2), where i ∈ {1, 2, 3}: i = 1

denotes that the id sequences for the two traces are the

same, and i = 2 represents that they are built from the

same sequence of data states, and i = 3 indicates that

the sequences of action types are identical;

2) none of their snapshots is made by both the com-

ponents: 2 /∈ π∗4(seq1) + π∗4(seq2).

Then, their trace merging is defined as below.



Li-Li Xiao et al.: Trace Semantics and Algebraic Laws for Total Store Order Memory Model 1277

M

M

seq↼P 's Trace↽

seq↼Q 's Trace↽

seq↼PQ 's Trace↽

↼↪ ↼x↪ ↽↪ ↪ ↽ ↼↪ ↼a↪ r↼y↽↽↪ ↪ ↽ ↼↪ ↼b↪ r↼x↽↽↪ ↪ ↽ ↼↪ ↼x↪ ↽↪ ↪ ↽

↼↪ ↼x↪ ↽↪ ↪ ↽

↼↪ ↼x↪ ↽↪ ↪ ↽

↼↪ ↼b↪ r↼x↽↽↪ ↪ ↽

↼↪ ↼b↪ r↼x↽↽↪ ↪ ↽↼↪ ↼a↪ r↼y↽↽↪ ↪ ↽

↼↪ ↼a↪ r↼y↽↽↪ ↪ ↽

↼↪ ↼x↪ ↽↪ ↪ ↽

↼↪ ↼x↪ ↽↪ ↪ ↽

Fig.4. Illustration of merging.

Merge(seq1, seq2, pc)

=df



M3(seq1, seq2, pc)

/ π4(hd(seq1)) + π4(hd(seq2)) = 0 .
M1(seq1, seq2, pc)

/ π4(hd(seq1)) = 1 .

M2(seq1, seq2, pc)




,

Merge(〈〉, 〈〉, 1) =df 〈〉.

Here, the notation hd(seq1) stands for the first snap-

shot of the sequence seq1. The merged sequence seq

is produced by the function Merge, with the initial

value being 〈〉, and the notation 〈〉 denotes the empty

sequence.

For facilitating explaining the above function, we

make such an assumption that the parallel composition

is in the form of (P ||Q)||R firstly. When merging one

trace seq1 of P and seq2 of process Q, we take two

situations into our consideration. One is that the snap-

shots hd(seq1) and hd(seq2) want to be merged and

the formula π4(hd(seq1)) + π4(hd(seq2)) = 0 holds. It

means that the operation corresponding to the snapshot

hd(seq1) is performed by the environment (i.e., process

R). Then the parameter eflag of the snapshot merged

from hd(seq1) and hd(seq2) is still 0. In other words,

the merged snapshot, which is the same as hd(seq1), is

added in seq.

M3(seq1, seq2, pc)

=df hd(seq1) ∧Merge(tl(seq1), tl(seq2), pc).

The other situation is that the action is carried out

by process P ||Q, i.e., either by P or by Q. We intro-

duce function M1 to complete the procedure of merging

the snapshots in seq1 which are contributed by process

P with the corresponding snapshots in seq2. M2 is de-

fined similarly with the contribution produced by pro-

gram Q. Thus we ignore the detailed explanation of

function M2 later. As shown in Fig.4, function M1 acts

on the transformations in the dotted boxes, while M2

plays a role in the solid box.

There are two reasons for introducing the program

counter pc. One is facilitating generating new id for the

parallel process P ||Q, depicted by seq in Fig.4. The

other is to guarantee that the two snapshots split by

a global assignment still have the same sequence num-

ber (i.e., id), which is described by the yellow line in

Fig.4. The initial value of pc is 1, and the function

Merge(s, t, 1) is applied in constructing the trace se-

mantics of parallel composition.

Now, we introduce the function M1, whose defini-

tion is similar to that of inleavel in Subsection 2.3. For

M1, what we need to do is judging whether the para-

meter oflag in the first snapshot hd(seq1) is 1 or not.

If so, because this snapshot is related to committing a

memory write, the other snapshot in the rest sequence

tl(seq1), whose id and eflag are π1(hd(seq1)) and 1 re-

spectively, should update its id to the current program

counter pc firstly. Its purpose is to keep consistent be-

tween the parameter id of committing a memory write

and that of propagating the same write. This operation

is modeled by the latter framed area in (11) below. Sec-

ondly, before attaching hd(seq1) to seq, its id should

be modified to pc, and other parameters remain un-

changed, which is described as the former framed area
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in (11). Thirdly, pc adds 1 subsequently.

If the parameter oflag of hd(seq1) is 2, we move

hd(seq1) to the tail of sequence seq merely, since such

snapshots have been updated in the above case. And

it is formalized in (12). For other cases denoted by

(13), the difference from the first case is that the cases

discussed here do not have to make changes to the snap-

shots in tl(seq1).

M1(seq1, seq2, pc)

= df


hd(seq1)[pc/π1(hd(seq1))] ∧Merge( tl(seq1)[(pc, , 2, 1)/(π1(hd(seq1)), , 2, 1)] , tl(seq2), pc+ 1) (11)

/ π3(hd(seq1)) = 1 . hd(seq1) ∧Merge(tl(seq1), tl(seq2), pc) (12)

/ π3(hd(s1)) = 2 .

hd(seq1)[pc/π1(hd(seq1))] ∧Merge(tl(seq1), tl(seq2), pc+ 1) (13)



 .

An example is given below to provide an intuitive

illustration of function Merge.

Example 7. Consider the three sequences in Fig.5.

seq is 〈〉, and pc is 1 initially.

1) In the beginning, we would like to merge

the first snapshot (1, (x, 1), 1, 1) by process P

and (1, (x, 1), 1, 0) by another process Q. The

merge function M1 is triggered. We find that

π3((1, (x, 1), 1, 1)) = 1 holds in trace seq1, and

the snapshots (1, (x, 1), 2, 1) in the remaining trace

〈(2, (a, r(y)), 3, 1), (1, (b, r(x)), 3, 0), (1, (x, 1), 2, 1)〉 and

(1, (x, 1), 1, 1) are contributed by the same thread,

and parameter id of (1, (x, 1), 2, 1) is equal to that

of (1, (x, 1), 1, 1). Then we update the element id of

(1, (x, 1), 2, 1) to the current program counter pc (i.e.,

the value 1 presented in Fig.5). Afterwards, for snap-

shot (1, (x, 1), 1, 1), if its id is also changed to current

pc, it will be added to the tail of seq. Consequently,

the newly generated seq is 〈(1, (x, 1), 1, 1)〉. Finally pc

is updated to 2.

2) For snapshots (2, (a, r(y)), 3, 1) and

(2, (a, r(y)), 3, 0), we still carry out the merge function

M1, and the snapshot (2, (a, r(y)), 3, 1) is attached to

seq. Now pc increases by 1, and is equal to 3.

3) The function M2 is performed when meet-

ing snapshot (1, (b, r(x)), 3, 0) by process P and

(1, (b, r(x)), 3, 1) contributed by Q. seq is updated

to 〈(1, (x, 1), 1, 1), (2, (a, r(y)), 3, 1), (3, (b, r(x)), 3, 1)〉,
and then pc is changed to 4.

4) The updated snapshot (1, (x, 1), 2, 1) contributed

by P is moved to the tail of seq directly with the appli-

cation of M1. The program counter pc does not change

through this step.

Next, we give the definition of the trace semantics of

parallel composition. To facilitate merging, we concate-

nate sequence s contributed by P ’s environment with

trace tr1 in process P , and it is the same for Q, where

π∗4(s) ∈ 0∗ and π∗4(t) ∈ 0∗.

traces(P ||Q)

=df

 tr|tr1 ∈ traces(P ) ∧ tr2 ∈ traces(Q)∧(
tr = Merge(tr∧1 s, tr2, 1)∨
tr = Merge(tr1, tr

∧
2 t, 1)

)  .

Now we introduce the function generate to generate

a sequence of sb from a trace of a program.

generate(tr, pc)

=df

 generate(tl(tr), pc)
/ π4(hd(tr)) = 0 ∨ π3(hd(tr)) = 2 .
〈(pc, π2(hd(tr)))〉∧generate(tl(tr), pc+ 1)

 ,

generate(〈〉, 1) =df 〈〉.

Because sb(P ) is used to record the information of

the statements in P , we need to filter out the elements

seq ↼Q 's Trace↽

seq ↼PQ 's Trace↽

seq ↼P 's Trace↽
pc/ pc/ pc/ pc/ pc/

Fig.5. Illustration of function Merge.
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with eflag being 0 or oflag being 2. Then the defini-

tion of sb(P ||Q) is given as below.

sb(P ||Q)

=df{s | tr ∈ traces(P ||Q) ∧ s = generate(tr, 1)}.

3 Algebraic Properties

Our work towards the formalization of the TSO

memory model aims to deduce its interesting proper-

ties, which are usually expressed using algebraic laws

in the form of equations. In this section, we explore

algebraic laws for the TSO model, including a set of se-

quential and parallel expansion laws. Our approach is

that every program can be presented in the head nor-

mal form of the guarded choice. Based on this, the

linearizability of TSO can be supported.

3.1 Guarded Choice

A configuration in a program is supposed to be ex-

pressed in the form of h&(act, tid, idx).

Here:

• h is a Boolean condition;

• the element act can be a general action, such as

writing to the write buffer or local assignments, a mem-

ory action or a special action fence;

• tid records the ID of the thread which performs

the action;

• we use parameter idx to denote the location of

an action. It can also distinguish whether the action

is propagating to the shared memory or not. If the

judgment is true, idx is equal to 2. Otherwise, it is 1.

Example 8 below helps to illustrate the intuitive under-

standing of idx.

Example 8. Consider the three different statements

in the following.

Here x is a global variable. The actions 〈x = 1〉 and

x = 1 are split from x := 1. 〈x = 1〉 is committing the

write to x to the write buffer and its index is 〈1〉, while

x = 1 is to move the same write to the main mem-

ory and then the index of this action is 〈2〉, as shown

in Fig.6. Action a = 1 is corresponding to statement

a := 1, and a is a local variable, and then its index is

〈1〉. The analysis of a fence instruction is similar. For

the program which has more than one statement, the

generation of idx of each action in the program is ex-

plained by the following law (seq–2) in Subsection 3.3.

The thread ID tid is to indicate which thread an

action is due to for a parallel program. We assign λ

to it for sequential process, whereas we use example 9

below to illustrate the concept of tid (in other words,

the locality of a thread) in the parallel environment.

<x/>

 

Fence



x/ a/

Fig.6. Illustration of parameter idx.

Example 9. Let P = U ||V , and U = A||B.

The thread ID of process U is 〈1〉, and that of V

is 〈2〉. Then processes A and B can be marked by

〈1〉∧〈1〉 and 〈1〉∧〈2〉 respectively. In the structure of

P described in Fig.7, processes A, B and V are leaf

processes, whereas process U is not.

P

U

A B

V









Fig.7. Structure of process P .

Note that we use 〈1, 1〉 instead of 〈1〉∧〈1〉 for sim-

plicity. Further for any tid, we have tid∧λ = tid.

Now we introduce the concept of guarded choice

for the TSO memory model expressed in the form of

[]i∈I{hi&(acti, tidi, idxi) # P ′i [qi]}. It is able to model

the execution of a program with a variety of reorderings.

Here, hi&(acti, tidi, idxi) # P ′i [qi] is a guarded compo-

nent, and if the Boolean condition hi is satisfied, the

subsequent program is (acti, tidi, idxi) # P ′i [qi]. Here:

1) If acti is the operation committing a mem-

ory write to the store buffer, qi is in the form of

h′i&(act′i, tidi, idx
′
i), where act′i is the corresponding

operation propagating the mentioned write to the main

memory. For h′i&(act′i, tidi, idx
′
i), h

′
i is true as well.

2) If acti is a local assignment or fence instruction,

then qi is ε.

3) When meeting the condition judgment in “if” or

“while” structure, hi is used to describe the conditional

guard and acti is ε.

4) qi may reorder with some configurations in P ′i ,

and the precise definition of their relation is given in

the following law (seq–3) in Subsection 3.3.
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Every program can be represented in the form of

the guarded choice. And it can have three types under

the TSO model.

1) []i∈I{hi&(acti, tidi, idxi) # P ′i [(act
′
i, tidi, idx

′
i)]}.

The first type of guarded choice is composed of a set of

buffer action components. If a Boolean condition is sat-

isfied, the corresponding buffer action can be selected

to execute.

2) []i∈I{hi&(acti, tidi, idxi) # P ′i}. The second type

of guarded choice consists of a set of local assignment or

fence or branching condition components. Any assign-

ment or fence instruction or condition judgment can be

activated when the corresponding Boolean condition is

satisfied.

3) []i∈I{hi&(acti, tidi, idxi) # P ′i [(act
′
i, tidi, idx

′
i)]} []

[]j∈J{hj&(actj , tidj , idxj) # Q′j}. The third type is

formed by combining the first and the second types of

guarded choice.

3.2 Head Normal Form

In this subsection, we assign every program P a nor-

mal form which is named as head normal form HF (P ).

1) For a local assignment, the remaining part after

the first step expansion is empty. We use the notation

E to denote the empty process.

HF (a := e) =df []{true&(a = e, λ, 〈1〉) # E}.

2) The head normal form of fence is similar to that

of local assignment.

HF (fence) =df []{true&(fence, λ, 〈1〉) # E}.

3) Below is the analysis of global assignment. What

is different from local assignment is that global assign-

ment is not atomic. This assignment can be divided

into two parts, and the first part is committing a mem-

ory write to the store buffer. The second part propagat-

ing the same write to the memory is left in the square

brackets.

HF (x := e)

=df []{true&(〈x = e〉, λ, 〈1〉) # E[(x = e, λ, 〈2〉)]}.

4) For Conditional, the configurations h&(ε, λ,null)

and ¬h&(ε, λ,null) are applied to generate the head

normal form. They indicate that the evaluation h does

not make any effect in the private registers or write

buffers, or the shared memory. Moreover, we have to

pay attention to the location in which the evaluation

can carry out through the thread ID, and the thread

ID may change according to the placement in different

concurrent environments. Since the parameter idx in

the Boolean condition is null, and the reorder between

a Boolean condition and the instructions in a branch

is not allowed under the TSO memory model, we use

the symbol “→” instead of “#” here. We will explain

these two symbols in detail in Subsection 3.3.

HF (if h then P else Q)

= df []{h&(ε, λ,null) # P,¬h&(ε, λ,null) # Q}
= []{h&(ε, λ,null)→ P,¬h&(ε, λ,null)→ Q}.

5) Considering Iteration, its description is similar to

that of Conditional, i.e., HF(4).

HF (while h do P )

= df []

{
h&(ε, λ,null) # (P ; while h do P ),
¬h&(ε, λ,null) # E

}
= []

{
h&(ε, λ,null)→ (P ; while h do P ),
¬h&(ε, λ,null)→ E

}
.

Afterwards, the definition of the head normal form

for sequential and parallel composition is obtained with

the application of the corresponding expansion laws

(please refer to the algebraic laws (seq) and (par) in

Subsection 3.3).

3.3 Algebraic Laws

This subsection focuses on the algebraic laws includ-

ing a set of sequential and parallel expansion laws.

Firstly, we take the sequential expansion laws into

account. Law (guar–1) indicates that sequential com-

position distributes leftward over guarded choice. Be-

cause the subsequent program Q is not constrained by

parameter i, it does not make a difference whether pro-

gram Q is placed in the guarded choice or not.

(guar–1) []i∈I{Pi};Q = []i∈I{Pi;Q}.

Definition 1 is presented for facilitating illustrat-

ing the important feature “reordering” under the TSO

memory model. When the subsequent program Q

comes to make sequential composition, the memory

operation q (if exists) is supposed to act on the whole

program P ′;Q. Because the definition is given recur-

sively, the store-store order will not be broken with the

application of some constraints given in the following

laws.

Definition 1.

P ′[q];Q =df (P ′;Q)[q].

Then, the investigation of the remaining sequential

laws can be divided into three steps: 1) extracting the
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first configuration; 2) modifying the indices of the re-

mainder (excluding the memory operation related to

the extracted one); 3) completing the generation of

all possible configuration sequences through the con-

strained interleaving between the memory actions and

others. Those three procedures are performed recur-

sively, and they are formalized by the laws (seq–1),

(seq–2) and (seq–3) shown below.

(seq–1)

Let P = []i∈I{hi&(acti, tidi, idxi) # P ′i [qi]}.
Then P ;Q = []i∈I{hi&(acti, tidi, idxi) # (P ′i ;Q)[qi]}.

Law (seq–1) can be regarded to be the extension of

Definition 1 and Law (guar–1). For the program P ;Q,

after a configuration is extracted, configuration qi of

the corresponding memory action working for P ′i now

can work for the sequential composition P ′i ;Q.

With regard to idx, as discussed in Subsection 3.1,

the configuration of every single statement has the

value of 1 or 2. When making sequential composition,

once the first configuration is chosen, the corresponding

memory action (if exists) remains unchanged and the

indices of the following configurations are supposed to

add a 〈1〉 prefix. It is formalized by the law (seq–2).

(seq–2) h&(act, tid, idx) # P ′[q]

= h&(act, tid, idx)→ (〈1〉∧P ′)[q],
where (〈1〉∧E) = E, E[q] = q.

The function 〈1〉∧P makes such an effect that the

indices of all the configurations in P add the extra pre-

fix 〈1〉, which is formalized in the following.

〈1〉∧P =df ∀h&(act, tid, idx) ∈ P •
P [h&(act, tid, 〈1〉∧idx)/h&(act, tid, idx)],

where 〈1〉∧null = null, and “null” stands for idx for

the configuration of a branching condition. “•” means

“such that” [9].

When presenting the sequential laws, there are

mainly two operators involved here. One is the ope-

rator “#”, and it is applied to connect configurations

with original indices. If the indices are updated, we use

the operator “→” to connect.

Example 10. Let P =df x := 1 and Q =df y := 1,

where x and y are both global variables. With the ap-

plication of the sequential laws (seq–1) and (seq–2), the

normal form of P ;Q (i.e., x := 1; y := 1) is formalized

as below.

HF (P ) = (〈x = 1〉, λ, 〈1〉) # E[(x = 1, λ, 〈2〉)].

HF (P ;Q) = (〈x = 1〉, λ, 〈1〉) # (E;Q)[(x = 1, λ, 〈2〉)]

= (〈x = 1〉, λ, 〈1〉) # ((〈y = 1〉, λ, 〈1〉) # E[(y = 1, λ, 〈2〉)])[(x = 1, λ, 〈2〉)]

= (〈x = 1〉, λ, 〈1〉)→ (〈1〉∧((〈y = 1〉, λ, 〈1〉) # E[(y = 1, λ, 〈2〉)]))[(x = 1, λ, 〈2〉)]

= (〈x = 1〉, λ, 〈1〉)→ ((〈y = 1〉, λ, 〈1, 1〉 ) # E[(y = 1, λ, 〈1, 2〉 )])[(x = 1, λ, 〈2〉)]

= (〈x = 1〉, λ, 〈1〉)→ ((〈y = 1〉, λ, 〈1, 1〉 )→ (y = 1, λ, 〈1, 2〉 ))[(x = 1, λ, 〈2〉)].

As we can see in Fig.8, after sequential composi-

tion, the indices of the actions 〈y = 1〉 and y = 1 are

transfered to 〈1, 1〉 and 〈1, 2〉 respectively.

<x/>

<x/>

<y/>

<y/>







 





x/

x/

y/

y/

Fig.8. Combination of two statements.

Applying the law (seq–3), all the possible configu-

ration sequences including a variety of reorderings can

be achieved. We give the illustration of the constraints

between two actions (one or more actions are related

to the main memory). 1) The memory actions are

supposed to be performed sequentially, since the write

buffer conforms to the FIFO principle. 2) If a general

action and a memory action have the same origin, they

must carry out in order. 3) In addition, when meeting

a fence instruction, the memory action belonging to the

statement before fence should be executed in advance.

Constraint 2 has been realized by the law (seq–2), and

condition cond in the following gives the formalization

of constraints 1 and 3.

(seq–3) (p→ P ′)[q] = (q → (p→ P ′))

[](p→ P ′[q]) if cond.
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Here cond is defined as below.

cond

=df


(
π3(p) does not end in 2 ∧
π1(p) is not a fence instruction

)
∨
(

(π3(p) ends in 2 )∧
((len(π3(p))) < (len(π3(q))))

)
 ,

where p and q are both configurations, and the notation

len(idx) records the length of the parameter idx.

(guar–2) a→ []i∈I{bi → Qi} = []i∈I{a→ bi → Qi}.

Law (guar–2) represents that the prefix operator

distributes leftward over guarded choice. Due to the

fact that event a is not bound by parameter i, it can

be placed inside the guarded choice. Also, a can be put

outside the guarded choice. The prefix operator has

been introduced in Subsection 2.3.

Assuming P ′ satisfies the property linearizability,

obviously, (p → P ′)[q] also conforms to linearizability

according to the law (guar–2).

Example 10: Continuation. For the subsequence

((〈y = 1〉, λ, 〈1, 1〉) → (y = 1, λ, 〈1, 2〉))[(x = 1, λ, 〈2〉)],
with the law (seq–3), there are only two cases. One is

that the configuration (〈y = 1〉, λ, 〈1, 1〉) is first sched-

uled. The other is that (x = 1, λ, 〈2〉) is selected firstly.

The order between the configurations (x = 1, λ, 〈2〉)
and (y = 1, λ, 〈1, 2〉) is fixed according to constraint 1.

Hence all the configuration sequences of the sequential

program P ;Q are exhibited as below.

HF (P ;Q) = (〈x = 1〉, λ, 〈1〉)→ ((〈y = 1〉, λ, 〈1, 1〉)→ (y = 1, λ, 〈1, 2〉))[(x = 1, λ, 〈2〉)]

= (〈x = 1〉, λ, 〈1〉)→

 (〈y = 1〉, λ, 〈1, 1〉)→ (y = 1, λ, 〈1, 2〉)[(x = 1, λ, 〈2〉)]
[]
(x = 1, λ, 〈2〉)→ (〈y = 1〉, λ, 〈1, 1〉)→ (y = 1, λ, 〈1, 2〉)


= (〈x = 1〉, λ, 〈1〉)→

 (〈y = 1〉, λ, 〈1, 1〉)→ (x = 1, λ, 〈2〉)→ (y = 1, λ, 〈1, 2〉)
[]
(x = 1, λ, 〈2〉)→ (〈y = 1〉, λ, 〈1, 1〉)→ (y = 1, λ, 〈1, 2〉)


=

 (〈x = 1〉, λ, 〈1〉)→ (〈y = 1〉, λ, 〈1, 1〉)→ (x = 1, λ, 〈2〉)→ (y = 1, λ, 〈1, 2〉)
[]
(〈x = 1〉, λ, 〈1〉)→ (x = 1, λ, 〈2〉)→ (〈y = 1〉, λ, 〈1, 1〉)→ (y = 1, λ, 〈1, 2〉)

 .

Now, we continue to consider the parallel expansion

law. Our parallel model is based on the configuration

sequences produced by the above sequential expansion

laws, and it can be explained as an interleaving model.

(par–1)

Let P = []i∈I{hi&(acti, tidi, idxi)→ P ′i},
Q = []j∈J{hj&(actj , tidj , idxj)→ Q′j}.

Then

P ||Q = []i∈I{hi&(acti, 〈1〉∧tidi, idxi)→ (P ′i ||Q)}
[][]j∈J{hj&(actj , 〈2〉∧tidj , idxj)→ (P ||Q′j)}.

If the configuration in the left branch (i.e., process P ) is

chosen, 〈1〉 is attached to the head of the corresponding

tidi. When selecting the configuration in the right (i.e.,

process P ), the prefix 〈2〉 is added to the corresponding

tidj .

Example 11. Consider the parallel program P ||Q,

where P =df x := 1; a := y, Q =df y := 1; b := x, a

and b are local, and x and y are global variables. Now

we calculate the head normal form for P ||Q through

the mentioned algebraic laws. For simplicity, we only

exhibit one configuration sequence of P ||Q in Fig.9.

HF (P ||Q)

=

 ( (〈x = 1〉 , λ, 〈1〉) # a := y[(x = 1, λ, 〈2〉)]
)

||(
(〈y = 1〉 , λ, 〈1〉) # b := x[(y = 1, λ, 〈2〉)]

)


=

 ( (〈x = 1〉 , λ, 〈1〉) # ((a = y, λ, 〈1〉) # E)[(x = 1, λ, 〈2〉)]
)

||(
(〈y = 1〉 , λ, 〈1〉) # ((b = x, λ, 〈1〉) # E)[(y = 1, λ, 〈2〉)]

)


=

 ( (〈x = 1〉 , λ, 〈1〉)→ (〈1〉∧((a = y, λ, 〈1〉) # E))[(x = 1, λ, 〈2〉)]
)

||(
(〈y = 1〉 , λ, 〈1〉)→ (〈1〉∧((b = x, λ, 〈1〉) # E))[(y = 1, λ, 〈2〉)]

)

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=


(

(〈x = 1〉 , λ, 〈1〉 )→ (a = y, λ, 〈1, 1〉 )[(x = 1, λ, 〈2〉 )]
)

||(
(〈y = 1〉 , λ, 〈1〉 )→ (b = x, λ, 〈1, 1〉 )[(y = 1, λ, 〈2〉 )]

)


=

 (〈x=1〉 , λ, 〈1〉)→(a = y, λ, 〈1, 1〉)→(x=1, λ, 〈2〉)
[]

(〈x=1〉 , λ, 〈1〉)→(x=1, λ, 〈2〉)→(a = y, λ, 〈1, 1〉)


∥∥∥∥∥∥∥
 (〈y=1〉 , λ, 〈1〉)→(b = x, λ, 〈1, 1〉)→(y=1, λ, 〈2〉)

[]

(〈y=1〉 , λ, 〈1〉)→(y=1, λ, 〈2〉)→(b = x, λ, 〈1, 1〉)

.
To sum up, any finite program P can be expressed

as below.

P = []i∈I{c1 → c2 → ...→ cn},

where cj = (actij , tidij , idxij) or hij&(ε, tidij ,null).

3.4 Deriving Trace Semantics from Algebraic
Semantics

Now we consider how to derive trace semantics from

algebraic semantics under the TSO memory model.

Our approach only focuses on finite programs. Let

seq = c1 → c2 → ... → cn represent a configuration

sequence of the given program P .

If seq is the configuration sequence of the single pro-

cess P , its derived trace semantics can be achieved with

the application of Atraces(seq) whose definition is put

in the following. The single process P means that it

does not include any parallel composition. The para-

meter tid of each configuration in seq can be λ0 con-

tributed by P itself, or λi produced by the environment

of P where i > 0.

With regard to one sequence seq of the parallel

program P , for facilitating deriving the corresponding

trace semantics from seq in the algebraic model, we

define the function M+(seq) as below.

M+(seq) separates the derivation into three steps.

1) The configuration sequence of each single pro-

cess is extracted. It is worth noting that in the parallel

construct (A||B)||V , for the extracted sequence seqA of

the single process A, the thread ID of the configuration

which is contributed by the outer environment process

V in seqA is λ1, and that of the inner environment B

is λ2. Generally speaking, the environment processes

with different levels have different values of tid. This

step is formalized as the functions sep1 and sep2.

Example 12. Let us consider such a parallel compo-

sition P = U ||V and U = A||B, where A =df a := 1,

B =df b := 1 and V =df c := 1, which is illustrated in

Fig.10. Variables a, b and c are local variables.

From the perspective of the single process A, action

a = 1 corresponding to statement a := 1 running in

process A is performed by itself. The action b = 1 is

contributed by the inner environment process (i.e., pro-

cess B), while the operation c = 1 is produced by the

outer environment process (i.e., V ).

Based on the above analysis, for a given sequence

seq = (b = 1, 〈1, 2〉, 〈1〉) → (a = 1, 〈1, 1〉, 〈1〉) → (c =

1, 〈2〉, 〈1〉) of the parallel construct P , the correspond-

ing sequence for the single process A is seqA = (b =

1, λ2 , 〈1〉) → (a = 1, λ0 , 〈1〉) → (c = 1, λ1 , 〈1〉).
The procedure extracting seqA from seq will be intro-

duced later.

2) Then we achieve the derived trace semantics of

each single process with the application of the definition

of Atraces. It is formalized by (14).

3) The Merge function introduced in Subsection 2.3

works on these derived traces, and produces the trace

semantics of the parallel composition.

Here parameter c is applied to distinguish the envi-

ronment with different levels, and it is 1 initially.

y

Fig.9. Application of law (par–1).
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P

U

A
B

c./

b./a./

V









Fig.10. Introduction to process identity in extracted sequence.

M+(seq, c)

= df


Atraces(seq) (14)
/ π∗2(seq) ∈ λ∗ .{
Merge(u, v)|u ∈M+(sep1(seq, c), c+ 1)∧

v ∈M+(sep2(seq, c), c+ 1)

}
 ,

where Atraces(seq) =df DAtraces(seq,1,Φ).

Now, we explain functions sep1 and sep2. The func-

tion sep1 is applied to extract the sequence of the pro-

cess in the left branch of operator “||”. If the prefix

of tid of one configuration is 〈1〉 (denoted by 6), this

configuration belongs to the left process, and then its

tid is modified by removing the prefix, which is denoted

by the framed area in (15). Note that 〈1〉\〈1〉 = λ0.

sep1(seq, c)

= df


(hd(seq)\〈1〉) ∧sep1(tl(seq)) (15)

/ 1 6 π2(hd(seq)) . (hd(seq)[λc/tid]) ∧sep1(tl(seq)) (16)

/ 2 6 π2(hd(seq)) .

hd(seq) ∧sep1(tl(seq))



 ,

sep1(ε, c) =df ε.

Once the thread ID of a configuration has such a pre-

fix whose value is 2, the configuration is contributed

by the right (i.e., the environment of the left process),

we use notation λc to take place of tid, shown in (16).

Otherwise, for other cases, the thread ID tid remains

unchanged.

Afterwards, removing the prefix 〈1〉 is formalized in

the following.

h&(act, 〈1〉∧tid, idx)\〈1〉 =df h&(act, tid, idx).

The function sep2 is performed from the perspec-

tive of the right side of the operator “||”. Because the

definition is similar to that of sep1, we do not give its

detailed explanation here.

sep2(seq, c)

= df


(hd(seq)\〈2〉) ∧sep2(tl(seq))

/ 2 6 π2(hd(seq)) . (hd(seq)[λc/tid]) ∧sep2(tl(seq))

/ 1 6 π2(hd(seq)) .

hd(seq) ∧sep2(tl(seq))



 ,

sep2(ε, c) =df ε.

Example 13. Let P = U ||V , and U = A||B, where

A =df x := 1, B =df a := x and V =df b := y.

Variables x and y are global, while a and b are local

variables. Assume seq = (〈x = 1〉, 〈1, 1〉, 〈1〉) → (a =

x, 〈1, 2〉, 〈1〉) → (x = 1, 〈1, 1〉, 〈2〉) → (b = y, 〈2〉, 〈1〉) is

a configuration sequence of process P .

sep1(seq, 1 ) = (〈x = 1〉, 〈1〉, 〈1〉)→ (a = x, 〈2〉, 〈1〉)→ (x = 1, 〈1〉, 〈2〉)→ (b = y, λ1, 〈1〉),

sep2(seq, 1 ) = (〈x = 1〉, λ1, 〈1〉)→ (a = x, λ1, 〈1〉)→ (x = 1, λ1, 〈2〉)→ (b = y, λ0, 〈1〉),

sep1(((〈x = 1〉, 〈1〉, 〈1〉)→ (a = x, 〈2〉, 〈1〉)→ (x = 1, 〈1〉, 〈2〉)→ (b = y, λ1, 〈1〉)), 2 )

= (〈x = 1〉, λ0, 〈1〉)→ (a = x, λ2, 〈1〉)→ (x = 1, λ0, 〈2〉)→ (b = y, λ1, 〈1〉),
sep2(((〈x = 1〉, 〈1〉, 〈1〉)→ (a = x, 〈2〉, 〈1〉)→ (x = 1, 〈1〉, 〈2〉)→ (b = y, λ1, 〈1〉)), 2 )

= (〈x = 1〉, λ2, 〈1〉)→ (a = x, λ0, 〈1〉)→ (x = 1, λ2, 〈2〉)→ (b = y, λ1, 〈1〉),
M+(seq, 1 )

= Merge(M+(((〈x = 1〉, 〈1〉, 〈1〉)→ (a = x, 〈2〉, 〈1〉)→ (x = 1, 〈1〉, 〈2〉)→ (b = y, λ1, 〈1〉)), 2 ),

M+(((〈x = 1〉, λ1, 〈1〉)→ (a = x, λ1, 〈1〉)→ (x = 1, λ1, 〈2〉)→ (b = y, λ0, 〈1〉)), 2 ))

= Merge(Merge(M+(((〈x = 1〉, λ0, 〈1〉)→ (a = x, λ2, 〈1〉)→ (x = 1, λ0, 〈2〉)→ (b = y, λ1, 〈1〉)), 3 ),

M+(((〈x = 1〉, λ2, 〈1〉)→ (a = x, λ0, 〈1〉)→ (x = 1, λ2, 〈2〉)→ (b = y, λ1, 〈1〉))), 3 ),

M+(((〈x = 1〉, λ1, 〈1〉)→ (a = x, λ1, 〈1〉)→ (x = 1, λ1, 〈2〉)→ (b = y, λ0, 〈1〉)), 2 )).
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The procedure of extracting the sequences of U and

V is exhibited in Fig.11(a), and we show how to extract

the sequences of A and B in Fig.11(b). And the formal-

ization of the procedures is given above. The numbers

framed in the formulas reflect the changes of program

counter c.

After discussing how to extract sequence seq of each

single process, we give the introduction to Atraces(seq)

presented in (14). The function DAtraces(seq,1,Φ)

is applied in defining the trace semantics (de-

rived from algebraic semantics) Atraces(seq) for seq.

Now, we give the formalization and explanation of

DAtraces(seq, pc, tb) as below.

For configuration hd(seq) in sequence seq, it is in

the form of h&(act, tid, idx). If the Boolean condition

h is not satisfied, the derived trace semantics of seq is

φ, formalized in (20). The condition judgment is com-

pleted through the function guard. In addition, when h

is true but the parameter act in hd(seq) is ε, the trace

semantics derived from hd(seq) is {ε}. (19) gives its

formal description.

DAtraces(seq, pc, tb)

=df








s∧〈( tbi[len(π3(hd(seq)))] , cont, oflag, eflag)〉 ∧DAtraces(tl(seq), pc, tb) (17)

/ last(π3(hd(seq))) = 2 .

s∧〈( pci , cont, oflag, eflag)〉 ∧DAtraces(tl(seq), pc[(pci + 1)/pci] , tb[tbi + /tbi] ) (18)


/ π2(hd(seq)) = λi .

DAtraces(tl(seq), pc, tb)


/ π1(hd(seq))! = ε .

DAtraces(tl(seq), pc, tb) (19)


/ guard(hd(seq)) = true .

φ (20)


,

DAtraces(ε, pc, tb) =df {ε},

where, tbi+ =df tbi ⇐ (len(π3(hd(seq))), pci).

Otherwise, the derived trace semantics of such

a configuration hd(seq) is always in the form of

{s∧〈(id, cont, oflag, eflag)〉 | π∗4(s) ∈ 0∗}, and con-

straint π∗4(s) ∈ 0∗ indicates trace s is performed by the

environment. The transformation of these three para-

meters cont, oflag and eflag is not complex, and it is

listed in the following.

1) The element cont can be obtained from the ac-

tion act, and the moment when the read function r( )

works is that the recursion reaches the leaf processes.

Then other processes can use the value gotten in the

above read function directly.

2) We assign 0, 1, 2, 3 to variable oflag once the

action act is in the form of fence, 〈x = e〉, x = e and

(b)

(a)

Fig.11. Extracting configuration sequence of each single process.
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a = e respectively.

3) If one configuration contains value λ0, the corre-

sponding snapshot in the derived trace semantics has

such eflag whose value is 1. Otherwise, the value of

eflag is 0.

In addition, we illustrate how to generate parameter

id in the derived trace semantics. Given one sequence

of the single process P , for the configurations with tid

being λ0, different snapshots derived from those con-

figurations have different sequence numbers (i.e., para-

meter id). The numbers are increasing, but commit-

ting and propagating the same memory write have the

same number. It is the same for the configurations con-

tributed by each environment process.

Then for facilitating generating id in the trace se-

mantic model, we introduce the auxiliary variable pci
where i > 0, which is corresponding to the thread ID

λi. Their relation is shown in Table 2. The initial value

of the program counter pci is 1. Parameter pc used in

function DAtraces(seq, pc, tb) is the set of the above

auxiliary variables and its initial value is 1.

When coming with a configuration hd(seq), we first

observe its tid to decide which program counter pci will

be used in the following steps. Then we check whether

idx of the above configuration ends in 2. If not, be-

cause the snapshots describing committing and prop-

agating the same memory write have the same id, we

need to generate the same id if two configurations have

the same length of indices. Thus, we record the pair in-

cluding the length of this configuration’s idx and pci in

the corresponding tbi, which is modeled as tbi+. Here,

the initial value of tbi is 〈〉, and operator ⇐ is used to

attach a pair to the tail of tbi. Any tbi is included in

the tb set (i.e., one parameter in DAtraces(seq, pc, tb)),

and tb is Φ initially. Then we make pci add 1, as de-

scribed in the middle framed area in (18). Otherwise,

we do not need to do any update.

Table 2. Corresponding Program Counter

Thread ID Corresponding Program Counter

λ0 pc0
λ1 pc1
λ2 pc2
...

...

λn pcn

When all the preparation has been done, if the suf-

fix of the configuration’s idx is 2 with the function

last, the parameter id of the derived snapshot is set

to be tbi(len(π3(hd(seq)))). The framed area in (17)

describes the update. Otherwise, it has the value pci,

as modeled in the first framed area of (18).

Example 14. The full derivation of the trace seman-

tics of P =df (x := 1||a := x)||b := y is formalized as

below. Here, ui where i ∈ {1, 2, 3, 4} denotes the trace

produced by the environment of the parallel composi-

tion P . In the following formalization, the numbers in

bold show the changes of id during the execution of the

function Merge.

M+(seq, 1 )=Merge(Merge(M+(((〈x = 1〉, λ0, 〈1〉)→ (a = x, λ2, 〈1〉)→ (x = 1, λ0, 〈2〉)→ (b = y, λ1, 〈1〉)), 3 ),

M+(((〈x = 1〉, λ2, 〈1〉)→ (a = x, λ0, 〈1〉)→ (x = 1, λ2, 〈2〉)→ (b = y, λ1, 〈1〉))), 3 ),

M+(((〈x = 1〉, λ1, 〈1〉)→ (a = x, λ1, 〈1〉)→ (x = 1, λ1, 〈2〉)→ (b = y, λ0, 〈1〉)), 2 ))

={Merge(Merge(u∧1 〈(1, (x, 1), 1, 1)〉∧u∧2 〈(1, (a, r(x)), 3, 0)〉∧u∧3 〈(1, (x, 1), 2, 1)〉∧u∧4 〈(1, (b, r(y)), 3, 0)〉,

u∧1 〈(1, (x, 1), 1, 0)〉∧u∧2 〈(1, (a, r(x)), 3, 1)〉∧u∧3 〈(1, (x, 1), 2, 0)〉∧u∧4 〈(1, (b, r(y)), 3, 0)〉),

u∧1 〈(1, (x, 1), 1, 0)〉∧u∧2 〈(2, (a, r(x)), 3, 0)〉∧u∧3 〈(1, (x, 1), 2, 0)〉∧u∧4 〈(1, (b, r(y)), 3, 1)〉)}

={Merge(u∧1 〈(1, (x, 1), 1, 1)〉∧u∧2 〈(2, (a, r(x)), 3, 1)〉∧u∧3 〈(1, (x, 1), 2, 1)〉∧u∧4 〈(1, (b, r(y)), 3, 0)〉,

u∧1 〈(1, (x, 1), 1, 0)〉∧u∧2 〈(2, (a, r(x)), 3, 0)〉∧u∧3 〈(1, (x, 1), 2, 0)〉∧u∧4 〈(1, (b, r(y)), 3, 1)〉)}

={u∧1 〈(1, (x, 1), 1, 1)〉∧u∧2 〈(2, (a, r(x)), 3, 1)〉∧u∧3 〈(1, (x, 1), 2, 1)〉∧u∧4 〈(3, (b, r(y)), 3, 1)〉}.

We should pay attention to that the read functions

r(x) and r(y) get the concrete value before the Merge

function executes. It is to say that the values of them

are both 0 in the trace semantics shown above.

In order to describe the intuitive understanding of

the generation of id, we consider the generation of one

sequence (〈x = 1〉, λ0, 〈1〉) → (a = x, λ2, 〈1〉) → (x =

1, λ0, 〈2〉) → (b = y, λ1, 〈1〉) shown in Fig.12. Initially,

the values of pc0, pc1 and pc2 are all 1.

1) For the first configuration (〈x = 1〉, λ0, 〈1〉), be-

cause of π3((〈x = 1〉, λ0, 〈1〉)) = 〈1〉, the value 1 of the

program counter pc0 is returned to the parameter id of
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Fig.12. Generation of parameter id.

the snapshot generated from (〈x = 1〉, λ0, 〈1〉). It is de-

scribed by the arrow (1) in Fig.12. Then the pair (1, 1)

is added in tb0, and pc0 is updated to 2.

2) The treatment of (a = x, λ2, 〈1〉) is similar to that

of (〈x = 1〉, λ0, 〈1〉). By using another program counter

pc2, the generated id is 1.

3) π3((〈x = 1〉, λ0, 〈2〉)) = 〈2〉 requires us to search

tb0. The length of 〈2〉 is 1; hence the corresponding

value 1 is assigned to id.

4) The treatment of the configuration (b =

y, λ1, 〈1〉) is also similar to that of (a = x, λ2, 〈1〉). The

only difference is that the program counter pc1 is used

here, and then the value 1 is returned to id.

4 Related Work

Several effects have been made to model Total Store

Order (TSO) formally. Abdulla et al. presented an

efficient stateless model checking technique to check

the programs under TSO and PSO memory models,

whose basis is chronological traces [21]. Apart from the

model checking technique, different program semantics

is defined to describe the TSO model. Two provably-

equivalent models of x86-TSO, including an intuitive

operational model based on local write buffers and an

axiomatic model were presented in [5]. Hóu et al. [22]

gave the axiomatic TSO model and the operational

TSO model on the top of the high-level ISA model

and the low-level ISA model respectively. Khyzha

and Gotsman [23] formalized the valid executions of

the TSO memory model as graphs of memory access

events subject to a set of validity axioms, inspired by

the definition of C++ memory model [24]. Ridge in-

troduced a Rely-Guarantee proof system for concur-

rent low-level assembly code and the weak x86-TSO

memory model [25]. Process assertions included in the

logic could refer to the local state of other processes.

Kavanagh and Brookes used the concept of partially-

ordered multiset (pomset) to give the denotational se-

mantics, which could capture the behaviors permitted

by SPARC TSO [26].

Unifying Theories of Programming (abbreviated as

UTP) [9] developed by Hoare and He has been success-

fully applied in investigating the semantics and alge-

braic laws of a variety of programming languages. In

this paper, we studied the denotational semantics of

TSO, where our approach is based on UTP and the

trace structure is applied. We also explored the alge-

braic laws of the TSO model, including a set of se-

quential and parallel laws. Based on them, every pro-

gram could be converted into the head normal form of

guarded choice. Then our approach can support the

linearizability [16, 17] of TSO.

The UTP approach aims at proposing a convincing

unified framework to combine and link denotational,

algebraic and operational semantics. For the study of

semantic linking, Hoare and He investigated the deriva-

tion of the operational semantics from the algebraic

semantics [27]. According to the corresponding deriva-

tion strategy, the operational semantics of Communi-

cating Sequential Processes (CSP) [20] could be derived

from its algebra. The operational semantics of Guarded

Command Language (GCL) was derived from its al-

gebraic laws, using the derivation strategy called the

step relation. Recently, Hoare and van Staden pro-

posed a challenge research topic of the linking theory of

semantics among algebra, denotations, transitions and

deductions [28, 29]. Its starting point is from the alge-

braic semantics. Sheng et al. studied how algebraic

semantics links with the corresponding operational se-

mantics and denotational semantics for MDESL, where

the mechanical approach is applied [30, 31]. This paper

provides a derivation strategy for generating the trace

semantics from the algebraic semantics under the TSO

memory model.

5 Conclusions

TSO is a weak memory model which allows store-

load reorder through each core’s write buffer. This pa-

per presented the trace semantics for the TSO memory

model, acting in the denotational semantics style. Two

functions po and mo depicting the program order and

modification order were defined to remove all the in-

valid traces. The concept of guarded choice was intro-

duced to express the execution of a program including

a variety of reorderings, and then we investigated the

algebraic laws for TSO, including a set of sequential
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and parallel expansion laws. Further, we provided the

derivation strategy to derive the trace semantics from

its algebraic semantics. The method proposed in this

paper can also be adapted to suit other weak memory

models.

In the future, we will continue our work on the

TSO memory model. We will explore the linking theo-

ries among the program semantics of TSO [32–34]. With

some optimization for our semantic model, we will also

consider the mechanization of the program semantics

for TSO in proof assistant Coq/PVS [35, 36].
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Appendix

A. Read Function

Here we introduce the read function r in detail.

Firstly, we check whether the variable read from is

global or not, and use the functions g and l to obtain

the value of a global or local variable respectively, be-

cause the treatment of them is not the same. We use

global to represent the set of all the global variables.

r(x, tr∧〈event〉)
=df g(x, tr∧〈event〉) / x ∈ global . l(x, tr∧〈event〉),
r(x, 〈〉) =df g(x, 〈〉) / x ∈ global . l(x, 〈〉),

where tr∧〈event〉 represents the trace prefixing the read

statement. The symbol e / h . f stands for e if the con-

dition judgment h is true; otherwise f . Note that, for

simplicity we only use r(x) in the snapshots in a trace.

For global variables, in the beginning we need to

search the corresponding thread’s write buffer. Once

the value can be obtained, the procedure terminates im-

mediately. If not, the shared memory will be explored

for the final answer. Considering our trace model, both

two search processes are carried out in the reverse or-

der, and we will use the initial value 0 if nothing can

be found in the memory.

g(x, tr∧〈event〉)

= df


m(x, tr∧〈event〉)

/

w(x, tr∧〈event〉) = null ∨
cnt1(x, tr∧〈event〉) =

cnt2(x, tr∧〈event〉)

 .

w(x, tr∧〈event〉)

 ,

g(x, 〈〉) =df m(x, 〈〉).

There are two situations when illustrating that

nothing can be obtained from the store buffer. One

is that for location x, the writes to it have not been

committed to the buffer. The other is that the writes

to x have all been propagated from the buffer to the

main memory.
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In our trace model, the latter situation indicates

that the number of the snapshots which contain loca-

tion x and target at the write buffer, and that targeting

at the shared memory contributed by the same thread

are the same. These numbers can be achieved with the

application of functions cnt1 and cnt2 respectively. The

definition of them is similar, and then we only present

the formalization of function cnt1.

cnt1(x, tr∧〈event〉)

= df


cnt1(x, tr) + 1

/

(
ASCII(π1(π2(event))) = ASCII(x)
∧π3(event) = 1 ∧ π4(event) = 1

)
.

cnt1(x, tr)

 ,

cnt1(x, 〈〉) =df 0.

Function w is applied to get the value of a specific

variable from write buffer.

w(x, tr∧〈event〉)

= df


 π2(π2(event))

/ASCII(π1(π2(event))) = ASCII(x).
w(x, tr)


/ π3(event) = 1 ∧ π4(event) = 1.

w(x, tr)

 ,

w(x, 〈〉) =df null.

We search the trace, and when meeting a snapshot,

we check if its oflag and eflag are both 1, because

each thread can only see its private write buffer. If the

previous conditions are satisfied, we judge whether the

variable contained in the snapshot is the one we want

to read. If the judgment is true, we get the value of

the variable and terminate the searching process. Oth-

erwise, null will be assigned to this function. As known

to all, ASCII is used to specify the binary numbers of

common symbols.

Due to the fact that the memory is visible to all

threads, what we concern about is whether the snap-

shot we check contains the variable x, denoted by the

latter in the conjunction (∧) formula. The former states

if this snapshot takes effect in the shared memory.

m(x, tr∧〈event〉)

= df


π2(π2(event))

/

(
π3(event) = 2∧
ASCII(π1(π2(event))) = ASCII(x)

)
.

m(x, tr)

 ,

m(x, 〈〉) =df 0.

Example 15. We use the programs below to illus-

trate different scenarios we can get values.

1) Reading from Write Buffer: Consider the Pro-

gram Below. x := 1;
a := x;
b := y

 ‖
 y := 1;
c := y;
d := x

 .

Assume the pre-existing trace is 〈(1, (x, 1), 1, 1)〉 before

performing a := x. Hence, when executing the read

function relevant to x, we can get the value 1 from the

buffer described by the third element 1.

2) Reading From Memory: Consider the Parallel

Program Below.(
x := 1;
a := y

)
‖
(
y := 1;
b := x

)
.

Suppose that the program x := 1; a := y is performed

in core 1, while y := 1; b := x is carried out in core 2.

When we are going to read the value of y, the availa-

ble trace of core 1 is 〈(1, (x, 1), 1, 1), (1, (x, 1), 2, 1)〉,
or 〈(1, (x, 1), 1, 1)〉. That is to say, nothing can be ob-

tained from the write buffer because something that

is related to y is absent. Then, we need to observe

the states of the shared memory. If the snapshot

(1, (y, 1), 2, 1), a part of the trace of the program in

core 2, has been generated in the memory which is vis-

ible to both core 1 and core 2, variable y can get 1;

otherwise it can get the initial value of 0.

Considering local variables, the model requires us to

search the thread’s register. If we do not find the value

from the previous trace, the initial value 0 is used.

l(x, tr∧〈event〉)

= df


π2(π2(event))

/

(
ASCII(π1(π2(event))) = ASCII(x)∧
π3(event) = 3 ∧ π4(event) = 1

)
.

l(x, tr)

 ,

l(x, 〈〉) =df 0.

We can know that based on the read function pro-

duced by the read mechanism under the TSO memory

model, the private information is not visible to others.
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