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Abstract Community smells are sub-optimal developer community structures that hinder productivity. Prior studies

performed smell prediction and provided refactoring guidelines from a top-down aspect to help community shepherds.

Simultaneously, refactoring smells also requires bottom-up effort from every developer. However, supportive measures and

guidelines for them are not available at a fine-grained level. Since recent work revealed developers’ personalities and working

states could influence community smells’ emergence and variation, we build prediction models with experience, sentiment,

and development process features of developers considering three smells including Organizational Silo, Lone Wolf, and

Bottleneck, as well as two related classes including smelly developer and smelly quitter. We predict the five classes in the

individual granularity, and we also generate forecasts for the number of smelly developers in the community granularity.

The proposed models achieve F-measures ranging from 0.73 to 0.92 in individual-wide within-project, time-wise, and cross-

project prediction, and mean R2 performance of 0.68 in community-wide Smelly Developer prediction. We also exploit

SHAP (SHapley Additive exPlanations) to assess feature importance to explain our predictors. In conclusion, we suggest

developers with heavy workload should foster more frequent communication in a straightforward and polite way to build

healthier communities, and we recommend community shepherds to use the forecasting model for refactoring planning.

Keywords community smell, developer sentiment, socio-technical analysis, empirical software engineering

1 Introduction

Software quality is a major concern of stakeholders.

In response, researchers and practitioners adopt vari-

ous Software Quality Assurance (SQA) approaches in

early and late phases of software release life cycle such

as requirement engineering, static and dynamic analysis

of programs, and code review to address the concern.

However, the potential and the impact of SQA within

the development process are less studied since the pro-

cess contains complex socio-technical interactions that

incorporate both the communication and the collabo-

ration of developers and other stakeholders [1]. Conse-

quently, the outputs of SQA tools in purely technical

aspects are perceived as unhelpful by practitioners [2]

due to the lack of adaptation to the context of deve-

lopers’ tasks and working states [3, 4].
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Inspired by the conception of code smell [5] (i.e., sub-

optimal code implementation choices causing technical

debt [6]), Tamburri et al. [1] coined the term “community

smell” to describe the unhealthy organizational struc-

ture of the Open-Source Software (OSS) developer com-

munities causing social debt [7]. Social debt refers to un-

foreseen project cost connected to the presence of non-

cohesive developer communities having communication

or collaboration issues. Community smells were proved

to be preventers of refactoring [8]. Lacking appropriate

refactoring may cause continuous quality degradation

that accelerates software aging, which is closely related

to software failure.

To evaluate community smells, researchers per-

formed smell detection over collaboration and commu-

nication activities at the granularity of community sub-

groups [1, 8, 9]. Furthermore, top-down strategies and

empirical guidelines [10, 11] to refactor community smells

such as team mentoring, monitoring, and restructur-

ing were proposed for community shepherds (e.g., core

members [12] and architects [13]).

Although OSS development originates from an

iconic culture [14], it is now being shaped to a more

diverse and egalitarian process [14, 15] by recent evolve-

ment based on major social coding platforms such as

GitHub. Unlike the conventions in hierarchical and

centralized organizations, the orders and arrangements

of community shepherds may not be strictly executed

and followed [15] by individual developers (also known

as OSS grassroots [14]). Moreover, shepherds may be

leaving [12] from communities. Consequently, the top-

down guidelines may be ineffective in practice. There-

fore, it is necessary to reflect the interests of the ma-

jority in the developer community and focus on the in-

dividual developers whose opinions and thoughts are

often neglected [14].

Community smells are caused by unhealthy develop-

ment activities. Such activities are driven by deve-

lopers’ motifs [8]. Since restructuring smelly communi-

ties relies on the efforts of every member [10], we intend

to build a bottom-up adaptive measure for individual

developers to prevent community smells from occurring.

Empirical research showed the introduction and the

refactoring of community smells are influenced by deve-

lopers’ personalities [11]. Since developers’ personalities

are hard to capture in software artifacts [11], we focus

on their expression, i.e., developer sentiment. Senti-

ment can significantly affect the quality of work [16].

Developer sentiment was proved to have impact on

various aspects in software engineering including is-

sue reopening [17] and commit changes [18]. Further-

more, we also involve developers’ experience features

and development process metrics to capture their per-

formance and workload, which has been proved effective

in related tasks such as defect severity prediction [19].

To the best of our knowledge, there lacks a commu-

nity smell prediction model designed individually for

developers. This paper fills the gap by creating ma-

chine learners upon a developer sentiment dataset [20] to

predict if a developer is affected by three common com-

munity smells, such as Lone Wolf, Organization Silo,

and Bottleneck [1]. Furthermore, the models also pre-

dict if a developer quitted the community after being

affected by any community smell. Afterwards, discus-

sions are made on the difference of features related to

smelly and non-smelly predictions. We analyze the sig-

nificance of the differences in features’ distributions as

well as the effect sizes of the differences. Finally, we also

forecast the number of Smelly Developer’s occurrence

on a higher granularity, i.e., community-wide, to extend

our scope for community shepherds to make decisions

about community refactoring.

The main contributions of this paper are as follows.

• We build machine learning models integrating

developer sentiment, experience, and process metrics.

To support both the developers and the community

shepherds on community refactoring, we perform pre-

dictions on 1) the individual granularity, i.e., commu-

nity smells’ occurrence on each developer, and 2) the

community granularity, i.e., the number of developers

affected by any of the smell in a given analysis window

respectively.

• For the individual granularity, we reveal that sev-

eral experience features and process metrics (e.g., com-

mented sentences, code churn) are stronger predictors

compared with the sentiment ones, while sentiment fea-

tures also contribute moderate predictive power. Ex-

perimental results show our model has ideal perfor-

mance in most cases in all three validation scenarios.

We also draw a conclusion that developers with heavy

workload should foster more frequent communication in

a straightforward and polite way to ensure community

healthiness after evaluating the relationship between

the prediction results and the features.

• For the community granularity, we build three

kinds of models, including classifiers (i.e., the summa-

tion of individual prediction results), regressors with

the reconstructed dataset using mean and summation

values of the features, and time series based predictors.

We reveal that time series based prediction is less ideal
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than regression and classification. However, regressors

and classifiers have different behaviors, e.g., sentimen-

tal features are more important than other features

for regressors. Experimental results show our model

has good performance for community-wide community

smells’ forecasting in 12 months.

The major improvement based on the preliminary

conference paper [21] of this work includes the follow-

ings.

• We extend our research questions and goals by

introducing new community-wide community smell oc-

currence forecasting to validate whether our approach

would be useful for community shepherds to make plans

about refactoring smells.

• We revise our data and validation strategy with

more explainable time-sensitive approaches. We regen-

erate our dataset to ensure no feature is calculated

based on future data, and we introduce time-wise val-

idation for prediction and model explanation. Mean-

while, we update our online appendix 1○, which in-

cludes additional experimental results and an extended

dataset.

•We update our features for prediction. We discard

the activeness features (i.e., three metrics that can only

be generated in the current analysis window) to avoid

the violation of time series. Meanwhile, we introduce 10

experience features that comply with time-wise predic-

tion, as well as 10 process metrics to capture developers’

activities in VCS (Version Control System).

• We renew the model explanation approach and

provide more visualization, i.e., replacing information

gain with SHAP since it provides more stable and in-

terpretable results for local and global predictions.

•We enhance the former conclusion from the aspect

of developers’ workload and experience, i.e., more fre-

quent communications should be fostered for developers

with heavy workload. Meanwhile, we also discuss the

inconsistency of feature importance between this paper

and the preliminary conference paper [21].

The rest of this paper is organized as follows. In

Section 2 we summarize related literature. Section 3

presents how we construct our dataset, while Section 4

outlines the settings and research questions, as well as

the concerned evaluation metrics. In Section 5 we dis-

cuss the results, while Section 6 overviews the threats

to the validity of the study and our effort to cope with

them. Finally, Section 7 concludes the paper and de-

scribes future research.

2 Related Work

This section describes researches related to two as-

pects of this paper, i.e., community smell, and socio-

technical analysis of software artifacts.

2.1 Community Smells

Researchers contributed a series of studies concern-

ing the definition [1, 22], detection [1], diffuseness [1, 23],

and variability [11] of community smells, as well as their

impact on software maintainability [8]. Tamburri et

al. [1] defined community smells as patterns of motifs

over collaboration and communication graphs, and they

implemented a detection tool called Codeface4Sme-

lls [1]. Furthermore, they validated qualitatively the

acceptance of the detection results, and they discov-

ered the results were all true positives. Palomba et

al. [8] observed that community smells could be the pre-

venters of refactoring. Meanwhile, community smells

also intensify code smells continuously [8]. In terms of

analyzing community smell in the granularity of deve-

lopers individually, Catolino et al. [10] provided prac-

titioners with refactoring suggestions and frameworks.

Catolino et al. [11] also pointed out that communica-

bility is important to prevent community smells, and

developers’ personalities play an important role in pro-

ducing smells. The prediction of community smells has

also been actively studied by the research community.

Palomba and Tamburri [9] built a state-of-the-art model

to predict community smells’ emergence on within- and

cross-project scenarios. They also revealed that socio-

technical congruence, communicability, and turnover-

related metrics are the most powerful predictors to the

occurrence of community smells on community sub-

groups.

The major differences of this work to the above-

mentioned smell prediction papers are: 1) we predict

the occurrence of smells from a bottom-up aspect, i.e.,

in the granularity of developers individually rather than

the top-down aspects from sub-groups or communities;

2) we involve developers’ experience and sentiment fea-

tures as well as process metrics to build predictors, and

we assess their predictive power as well as statistical

characteristics in software projects, which were not cov-

ered in prior studies.

1○https://github.com/SORD-src/JCST Replication, Jan. 2022.
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2.2 Socio-Technical Features of Software

Artifacts

Ortu et al. [20] constructed a multi-aspect developer

sentiment dataset based on comments and sentences in

JIRA Issue Tracking Systems (ITS). This dataset is

regarded as the golden dataset [24] for sentiment ana-

lysis in software engineering. Ortu et al. [20] also found

sentiment may impact software productivity. For exam-

ple, impolite comments [25] and bullies [26] are related to

longer issue fixing time. Meanwhile, certain combina-

tions of VAD [16] (Valence-Arousal-Dominance) scores

may indicate longer issue resolution time, as well as

productivity problems such as burnout.

Experience features are widely applied to calculate

process metrics of software defect and code smell predic-

tion models. Valvida-Garcia et al. [19] integrated experi-

ence features of reporters to build blocking bug predic-

tion models based on various classical machine learning

classifiers. Notably, another contribution [27] reported

a trivial impact of an individual developer experience

metric in purely technical aspects (i.e., the count of

co-committing developers in a file) to similar tasks.

However, empirical evidence showed there exist com-

plex interactions among developer experience, commu-

nity types, and community smells’ emergence [28].

Process metrics are capable of capturing develo-

per workload characteristics in software development.

They have been proved effective in predicting change-

sensitive code smells and software defects at commit

granularity. For example, Yang et al. [29] applied 14 pro-

cess metrics (called change metrics in their paper) re-

lated to the number of subsystems, change size, change

interval, and developer experience to train supervised

and unsupervised models for defect prediction. Based

on these classical features, McIntosh and Kamei [30]

involved code review process metrics to help predict

fix-inducing changes in the OpenStack community. In

terms of code smell-related tasks, Palomba et al. [3] in-

corporated developer-oriented metrics and process met-

rics to predict the severity of code smells, as they were

perceived important by the original developers of code

affected by code smells.

To sum up, the above-mentioned features have con-

nections with major SQA tasks. However, a generally

accepted theorem explaining the pattern and impact of

the connection of socio-technical features in detail is

not available at present.

3 Feature Extraction and Community Smell

Detection

This section describes how we generate our dataset

including the features and the community smells’ oc-

currences.

3.1 Extracting Developer-Oriented Features
and Process Metrics

First, we recover and adjust the raw sentiment

data [20], i.e., sentiments of every developer of specific

projects in JIRA ITS located in two data tables called

jira issue comment and jira user.

Then, we export the experience data using the com-

munity smell detection tool called Codeface4Smells.

Moreover, it also calculates socio-technical metrics in

given analysis windows based on developers’ activities

in mailing lists and VCS. The detailed settings of the

tool will be described in Subsection 3.3.

Afterwards, we use a commonly applied tool in soft-

ware repository mining tasks [3], i.e., PyDriller [31], to

extract process metrics from the software VCS.

Finally, we group the features by time series, deve-

lopers, and projects. Details of the features will be

described in Subsection 4.2.2.

3.2 Selecting Projects and Fetching Mailing
Lists

The JIRA sentiment dataset consists of 23 projects

whose comments were populated with sentiment data.

Among the 23 projects, we first exclude three projects

whose mailing list service providers do not support

archive extraction. Next, we exclude four more projects

as their mailing lists do not cover the time range of

their sentiment data. Afterwards, we remove three soft-

ware projects as they share the same JIRA ITS or VCS

repository with other projects, and such projects are in-

compatible with Codeface4Smells. Finally, we also

filter out one project whose VAD data are missing in

the dataset. To sum up, the actual 12 projects we use

to perform the analysis are listed in Table 1. We fetch

their mailing lists from the archives provided by their

open-source foundations.

3.3 Detecting Community Smells

We apply the state-of-the-art tool Codeface4Sm-

ells to detect community smells. We follow strictly the

instructions of the Codeface4Smells repository, e.g.,

we execute the application in the suggested Vagrant
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Table 1. Analyzed Projects

Project Name Repository Number of Date Range Number of Mailing List Description
Developers Issues

HBase ASF 919 2007-04–2014-04 68 806 hbase-dev 2○ Distributed database

Hadoop Common ASF 1 221 2009-05–2014-02 61 905 commons-dev 2○ Utilities library

Hadoop HDFS ASF 745 2009-05–2011-04 42 188 hadoop-hdfs-dev 2○ Distributed file system

Cassandra ASF 1 161 2009-03–2014-03 41 937 cassandra-dev 2○ Distributed database

Hadoop Map/Reduce ASF 857 2009-05–2011-03 34 747 hadoop-mapreduce-dev 2○ Programming model

Hive ASF 839 2008-09–2014-03 34 449 hive-dev 2○ Data warehouse

Harmony ASF 306 2005-09–2011-07 28 325 harmony-dev 2○ Modular Java runtime

OFBiz ASF 538 2006-07–2014-02 25 667 ofbiz-dev 2○ Business planning

Hibernate ORM JBoss 3 958 2007-06–2014-01 23 549 hibernate-dev 3○ Object relational mapping

Camel ASF 882 2007-04–2014-01 21 758 camel-dev 2○ Application integration

Wicket ASF 1 210 2006-10–2014-01 17 030 wicket-dev 2○ Application framework

Zookeeper ASF 484 2005-09–2011-07 13 634 zookeeper-dev 2○ Application management

instance, and we fix the broken dependencies in order

to avoid platform-specific problems. We do not make

any modifications except adding exportation features

to the socio-technical analysis script in order to derive

names and e-mails of developers affected by community

smells.

As for configurations, community smell analysis

must be performed in a given window. In our case,

the window is three months as prior studies sugges-

ted [1, 9, 22]. According to the settings in the replication

package, we also specify every commit to analyze in con-

figuration files [22], and the commits are exported from

Git repositories using PyDriller [31]. The configura-

tion files are also provided in our online appendix 4○.

Codeface4Smells is able to detect five commu-

nity smells, including Organization Silo, Lone Wolf,

Bottleneck, Black Cloud, and Prima Donnas. How-

ever, Prima Donnas detection is not empirically proved

effective [1] since its first appearance [22], and thus we

do not take this community smell into considera-

tion. Black Cloud is sparsely distributed in software

systems [1]. In our dataset, there are several Black

Cloud appearances. However, the developers affected

are not captured in the sentiment dataset. Conse-

quently, we could not perform Black Cloud predic-

tion. Thus, our research scope includes three commu-

nity smells, namely Organizational Silo, Lone Wolf, and

Bottleneck.

Figs.1–3 illustrate examples of the three concern-

ing community smells. Fig.1 and Fig.2 include exam-

ples of smells detectable based on both communication

and collaboration graphs. Fig. 1 shows a siloed area

of developers (Dev.), while Fig.2 illustrates two deve-

lopers affected by Lone Wolf collaborating on shared

code with indirect communication. To clarify, Organi-

zational (Org.) Silo is a subset of Lone Wolf [22]. Tech-

nically, the major difference between the two smells is

the definition of lacking connectivity in the communi-

cation graph. Organizational Silo is detected if collab-

orating developers are disconnected in the communi-

cation graph. Lone Wolf is detected if collaborating

developers are not neighbours in the communication

graph, i.e., the developers lack one-degree direct con-

nections among them. Fig.3 shows a case of Bottle-

neck, which is detected based on the communication

graph only. The definition of Bottleneck is similar to

the unique boundary spanner in social-network ana-

lysis which blocks communication among community

sub-groups [1]. Apart from the three smells, we also

involve Smelly Developer and Smelly Quitter as predic-

tion classes, and the details will be described in Sub-

section 4.2.1.

4 Empirical Study Setup

The goal of our study is to evaluate to what extent

the occurrence of community smells on developers can

be predicted by their experience and sentiment as well

as process metrics, with the purpose of understanding

the impact of the concerning features on community

smells from the two granularities of individual-wide and

community-wide. This section outlines our methodol-

ogy, which is depicted in Fig.4.

2○http://mail-archives.apache.org/mod mbox/{Mailing List Name}, Nov. 2021.
3○https://lists.jboss.org/archives/list/{Mailing List Name}@lists.jboss.org/, Nov. 2021.
4○https://github.com/SORD-src/JCST Replication, Jan. 2022.
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Fig.1. Lone Wolf community smell.

Smelly Dev.SSSSmmmeeellllllllyyy DDDDeeev.v.v.Smelly Dev.

Collaboration

Org. Silo

&

Lone Wolf

Smelly Dev.

A File in VCS

Change Change

No Direct or Indirect
Communication

Fig.2. Lone Wolf and Organizational Silo community smell.

4.1 Research Questions and Motivation

We define our research questions according to the

two goals of SQA related prediction studies [32], i.e., 1)

to predict the likelihood of the issue’s occurrence, and

2) to understand and to explain the characteristics as-

sociated with the outcome.

RQ1. To what extent can we predict the occurrence

of community smells on individual developers using the

proposed features?

Motivation. RQ1 refers to prediction settings and

performance. Based on the dataset built in Section 3,

we intend to explore if the community smells’ occur-

rence could be predicted using only the data from the

former analysis windows.

Approach. We define dependent and independent

variables, and we build prediction models using ma-

chine learning classifiers. To pick the most appropriate

classifier, we exploit several classical evaluation metrics

to assess their performance.

RQ2. Can we explain the behavior of the best-

performed models of RQ1 in individual-wide predic-

tion?

Motivation. Recent work [32] reveals that most SQA

machine learning papers lack interpretation of the gene-

rated models, while inexplainable models are not ac-

ceptable for practitioners. Moreover, using such mod-

els in practice may violate data privacy regulations [33].

Since predictive power could speak for the impact of

features on the prediction results [3, 9], the local inter-

pretations of model behaviors should reflect the in-

teractions between feature values and community smell

Smelly Dev.SmeSmeSmeSmeSmellyllyllyllylly De De De De Dev.v.v.Smelly Dev. Smelly Dev.SmeSmeSmeSmeSmellyllyllyllylly De De De De Dev.v.v.Smelly Dev.
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Fig.3. Bottleneck community smell.
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occurrences [34], because 1) we analyze correctly pre-

dicted instances in the classes that the model is well-

performed, and 2) SHAP produces feature importance

close to human intuition [35]. Thus, we propose this RQ

to understand the rankings and characteristics of fea-

tures’ importance generally by explaining the features’

interactions with the model behaviour. We try to figure

out if higher (lower) values of certain features lead to

smelly (non-smelly) prediction results. Based on these

observations, we intend to explain how sentiment, expe-

rience, and workload impact the healthiness of develo-

per communities by differentiating the feature values

related to smelly and non-smelly predictions. Further-

more, we attempt to make suggestions to practitioners

based on the discovered relationships.

Approach. We investigate the predictive power (i.e.,

the absolute value of SHAP feature importance) of each

feature to reveal the contribution of every feature to the

five prediction classes of our prediction model. Further-

more, we assess the statistical relationships between

features and their prediction results for the correct cases

in Smelly Developer prediction. Such relationships in-

clude: 1) the correlation between the features’ values

and the Shapley values of the features calculated by

SHAP, 2) the significance of differences in distribution

as well as the effect sizes of feature values that produce

positive and negative Shapley values, and 3) mean and

variance of the features that produce positive and neg-

ative Shapley values.

RQ3. What is the accuracy that we can forecast

the number of smelly developers in a community?

Motivation. In RQ3, we intend to investigate

whether we can provide decision support for commu-

nity shepherds to monitor community healthiness and

to refactor community smells based on the number of

developers affected.

Approach. We transform our dataset to reflect the

number of smelly developers in every analysis window.

Then, we exploit three types of time-sensitive predic-

tion approaches, i.e., the time-wise classifier based ap-

proach which unifies the prediction results in RQ1,

the time-wise regressor based approach built upon the

mean and summation values of the features, and the

time series based forecasting approaches.

RQ4. Can we explain the behavior of the best-

performed models of RQ3 in community-wide predic-

tion?

Motivation. Since the community-wide dataset may

lose information compared with the individual-wide

original one (e.g., only one entity for each analysis win-

dow instead of multiple entities concerning all deve-

lopers), interpreting the results may be challenging.

Nevertheless, we can still inspect the best-performed

model and analyze the features’ importance. Further-

more, we check the consistency with our results in RQ2.

We also discuss the reason why our model works or not.

Approach. We evaluate the models if any XAI (eX-

plainable Artificial Intelligence) technique is applica-

ble. For classifiers and regressors other than Linear

Regression, we exploit SHAP and Scott-Knott Effect

Size Difference (SK-ESD) to extract and to rank feature

importance. For light-weight models such as Linear Re-

gression, we use directly the coefficients of features.

4.2 RQ1: Individual-Wide Prediction Model
Definition and Validation

4.2.1 Dependent Variables

In this paragraph, we list the definitions of the five

smell-related prediction classes of our model. The three

concerning community smells are defined as follows.

Organizational Silo. It refers to the presence of

siloed areas of the developer community that do not

communicate, except through one or two of their re-

spective members [1], i.e., co-committing developers do

not directly communicate at all [22].

Lone Wolf. It reflects co-committing software deve-

lopers who exhibit uncooperative behavior and mistrust

by not appropriately communicating [1], i.e., the col-

laboration edges that do not have a communication

counterpart [22].

Bottleneck. Unique boundary spanners interpose

themselves into every interaction across sub-communi-

ties [1].

An introduction of the three community smells is

available in Subsection 2.1. Despite the three smells,

we also consider two related classes.

Smelly Developer [9]. Smelly developers are deve-

lopers affected by any of the three above-mentioned

community smells. Since community smells are all re-

lated to the quality of collaboration and communication

among community members, we intend to provide com-

munity shepherds with a higher-level observation of the

community healthiness.

Smelly Quitter. Smelly quitters are developers who

were affected by community smell in the previous ana-

lysis window and left the community (i.e., not present in

the current analysis window) [9]. Our motivation to in-

volve Smelly Quitter prediction is 2-fold. First, develo-

per turnover is a major issue to consider when moni-

toring the activeness and healthiness of OSS developer
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communities since they are established based on volun-

teered cooperations [12, 14]. Meanwhile, turnover is also

proved related to software quality [29, 30]. Second, litera-

ture reported that negative sentiment may cause the

developers to “destroy codebase” [36], and to “quit over

mistreatment” [37]. Similarly, we assume it may also

lead to the discharge of the community, and we intend

to explore if they could help predict smelly quitters.

4.2.2 Independent Variables

We use features in Table 2 as independent variables.

The valence, arousal, and dominance features are mea-

sured by extending lexicons [16] in SentiStrength [38].

The positive and negative sentiments are also measured

using the original lexicons in SentiStrength. The

values of the features are calculated by the mean occur-

rences of the sentiment-related lexicons of developers’

Table 2. Features Extracted from the Developer Sentiment Dataset, Codeface4Smells-defined Metrics, and Software VCS

Name Type Abbreviation Description

Mean valence Sentiments VAL Mean intensity of valence, i.e., how a developer enjoys a situation

Mean arousal Sentiments ARO Mean intensity of arousal, i.e., increased alertness

Mean dominance Sentiments DOM Mean intensity of the extent that a developer was feeling in control

Mean positive sentiment Sentiments POS Mean intensity of all sentiment values lower than 0

Mean negative sentiment Sentiments NEG Mean intensity of all sentiment values greater than 0

Mean sadness Sentiments SAD Mean intensity of all sadness expressions

Mean anger Sentiments ANG Mean intensity of all angry expressions

Mean love Sentiments LOV Mean intensity of all love expressions

Mean joy Sentiments JOY Mean intensity of all joyful expressions

Politeness proportion Sentiments POL Proportion of polite expressions in all commentary sentences of a
developer

Indicative GM proportion Sentiments IND Proportion of sentences that express the fact or belief

Imperative GM proportion Sentiments IMP Proportion of sentences that express the command or warning

Conditional GM proportion Sentiments CON Proportion of sentences in the form like would, may, or will

Subjunctive GM proportion Sentiments SUB Proportion of sentences in the form like wish or were

Mean degree of modality Sentiments MOD Degree of uncertainty of a sentence

Total sentences commented Experience EXP SEN Number of total sentences commented in the JIRA ITS

Core developer experience Experience EXP COR Number of total windows that a developer acted as a core developer

Mailing list experience Experience EXP ML Number of total windows that a developer commented in the mailing
list

Development experience Experience EXP DEV Number of total windows that a developer made code commits

Sponsored experience Experience EXP SPO Number of total windows that a developer committed only in working
hours [9]

Organizational silo exp. Experience EXP OS Number of total windows that a developer was influenced by Organi-
zational Silo

Lone Wolf experience Experience EXP LW Number of total windows that a developer was influenced by Lone
Wolf

Bottleneck experience Experience EXP BN Number of total windows that a developer was influenced by Bottle-
neck

Smelly experience Experience EXP S Number of total windows that a developer was influenced by any com-
munity smells

Smelly Quitter experience Experience EXP QUIT Number of total windows that a smelly developer quitted the
community [9]

Average commit size Process AVGCS Mean number of modified files of all code commits made by a develo-
per

Code churn Process CHURN Number of changed lines of all code commits made by a developer

Number of changed files Process NF Number of files changed by a developer

Number of commits Process NC Number of code commits made by a developer

Number of bug fixes Process NBF Number of bug-fixing commits made by a developer

Number of refactoring Process NR Number of refactoring commits made by a developer

Mean co-committers Process MC Mean number of committers work on the files modified by a developer

Dev. scattering changes Process DSC Mean number of distinct sub-systems (packages) modified by a develo-
per

Change entropy Process CE Average Shannon’s Entropy of the number of changes of the modified
files

Code ownership Process OWN Number of commits of a developer over total commits for all changed
files
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comments, and the range of the values is between [−1,

1]. The sadness, anger, love, and joy features are man-

ually labeled binary values. The politeness features are

presented by binary values measured using Danescu-

Niculescu-Mizil et al.’s tool [39]. The four grammat-

ical moods (GM) and the modality feature range in

[−1, 1], and they are measured by auxiliary verbs and

adverbs [40]. The examples of the sentimental expres-

sions extracted from the developer sentiment dataset

are available in our online appendix 5○. The experience

features reflect the developers’ former working states.

The smelly features demonstrate the count of analysis

windows in which developers are smelly. The process

features measure developers’ code commit activities in

the previous analysis windows [3].

To comply with the features’ definition in Table 2,

we make necessary modifications when extracting raw

sentiment features. Similar to [41], we divide the sen-

timent feature by zero and construct two positive and

negative sentiment features, i.e., POS and NEG. We

do not include an impoliteness proportional feature be-

cause the politeness labels available in the dataset are

either polite or impolite, which will result in a high cor-

relation if we involve both. We ignore the confidence

coefficients of the politeness scores since Ortu et al. [20]

already discarded the scores with the coefficients less

than a conventional threshold (0.5) [25]. The dataset

also contains a mood column whose proper meaning

was not clearly described in the original paper [26]. We

look into the documentation of the detection tool [40]

and confirm this feature measures the GM of a sen-

tence, and the results are mapped into four classes, i.e.,

indicative, imperative, conditional, and subjunctive. In

the dataset, the four classes are presented in four values,

namely 0, 1, 2, and 3. We map the mood attribute into

four proportional features to measure the developers’

characteristics of expression.

Furthermore, we introduce 10 experience features

derived from the JIRA sentiment dataset and detec-

tion results of Codeface4Smells. Our motivation

to introduce experience features comes from multiple

community smell empirical studies [10, 11,23], as they

found that practitioners believed that developers’ ex-

perience may make a community more prone to be af-

fected by smells. Meanwhile, related work in bug report

re-opening [17] found that a problematic component is

more likely to be affected again, which makes us as-

sume developers affected by community smells in the

past may be more prone to smells in the future.

Additionally, we also involve and transform 10 pro-

cess metrics that have been proved effective for code

smell detection [3] and were commonly applied in soft-

ware defect prediction [29, 30]. Different from socio-

technical features measuring developer centrality such

as EXP COR, process metrics features measure the

workload of developers and their collaborators. Since

community smell is related to collaboration, we believe

process metrics reflecting the states of collaboration

would be a useful source of information for prediction.

4.2.3 Data Balancing and Feature Selection

Community smell datasets are highly imbalanced [9].

In our dataset, smelly developers account for 4.80%

of the overall developer population, which may hinder

model performance. Therefore, we preprocess our data

with SMOTE, Random Oversampling, and Random

Undersampling strategies if they lead to better perfor-

mance. We also address the potential multicollinearity

problem by removing the correlated features as prior

researches suggested [9].

4.2.4 Performance Assessment and Validation

We build models separately in cross-project, within-

project, and time-wise validation scenarios (see Fig.4).

Afterwards, we compute performance metrics includ-

ing precision, recall, F-measure, and AUC-ROC to pick

the best classifier in the three scenarios. Apart from

the traditional metrics such as F-measure, we also in-

volve AUC-ROC because it is insensitive to imbalanced

data [9]. The definitions of the metrics are listed in (1)–

(4):

Precision =
TP

TP + FP
, (1)

TPR = Recall =
TP

TP + FN
, (2)

F -measure =
2× Precision×Recall
Precision+Recall

, (3)

FPR =
TN

FP + TN
, (4)

where TP is for true positive (positive samples pre-

dicted as positive), FN is for false negative (positive

samples falsely predicted as negative), TN is for true

negative, and FP is for false positive. AUC-ROC is

calculated as the area under the TPR-FPR curve.

In order to rank the performance with effect size

awareness, we also involve the SK-ESD [42] test. The

5○https://github.com/SORD-src/JCST Replication, Jan. 2022.
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Scott-Knott test [43] is a statistical measure to com-

pare and differentiate model performance using a hi-

erarchical clustering approach to group the means of

assessment metrics, e.g., F-measures of multiple mod-

els. The Scott-Knott test assumes input data to be

normally distributed, and thus it may be ineffective for

non-normally distributed data. The SK-ESD test is

an enhanced version of the Scott-Knott test that cor-

rects the non-normal distribution of the input to make

it comply with the requirements to perform the Scott-

Knott test. Meanwhile, it uses Cliff’s Delta as an effect

size measure to merge groups having negligible effect

sizes. We use the original R implementation of Tan-

tithamthavorn et al. [42].

For cross-project validation, we apply a strategy

similar to [9], which is a project-wide Leave-One-Out

Cross-Validation (LOOCV), i.e., we use one out of 12

projects as the test set, and the others as the train-

ing set to build our model. We merge the developers’

features in the training set regardless of the projects

they were working on. Notably, the same developers

appearing in multiple projects are treated as different

ones. Such a process is performed 12 times.

For within-project validation, we apply LOOCV in

each project, i.e., we build models separately for each

project, and we use a developer’s data in an analysis

window for testing and the others for training. Since

LOOCV is proved reliable [42] for software engineer-

ing, we still acknowledge the potential flaw of such a

method, as it may use the future data to predict the

earlier targets [29]. To this end, we also involve time-

wise validation to eliminate the drawbacks of LOOCV.

For time-wise validation, we group the data in two

analysis windows, and each group contains developers’

data in six months. Due to the characteristics of ver-

sion iteration [29], we train our models using the data

in the j-th and the (j + 1)-th analysis windows, and

validate the model using the data in the (j + 3)-th and

the (j + 4)-th windows. For each iteration, we move

forward by one analysis window, i.e., the next iteration

for the above-mentioned example will be training our

model based on the (j + 1)-th and the (j + 2)-th win-

dows, and validating in the (j+4)-th and the (j+5)-th

windows. Assuming that we have K windows of data,

such a process is performed for K − 4 times in each

project.

4.2.5 Training Machine Learners

We apply the scikit-learn package [44] to train

machine learners using multiple classifiers that have

been used in prior studies [3, 9, 45], including RF, Deci-

sion Tree (DT), Support Vector Machine (SVM), Mul-

tilayer Perceptron (MLP), Adaboost (ADA), Naive-

Bayes (NB), and Logistic Regression (LogR). As related

work suggested [3], instead of using default settings, we

configure the hyper-parameters of the classifiers by ex-

ploiting Exhaustive Grid Search with a 10-fold cross-

validation strategy to calculate the performance of ev-

ery combination of parameters.

4.3 RQ2: Predictive Power of Features for
RQ1

To answer this RQ, we expect to find statistical

significance to explain the extent of predictive power

that each independent variable contributes to the best-

performed classifier in RQ1.

Since complex machine learning models are difficult

to understand, their built-in feature importance results

(i.e., classifier-specific importance [34]) are also hard to

interpret. However, the explanation of models is essen-

tial for practitioners and developers to make decisions

about building models and perform SQA activities [46].

In response, Jiarpakdee et al. [32, 33] explained the beha-

vior of complex models using an interpretable approxi-

mation of the original model.

We apply the SHAP algorithm, which has been

studied empirically in a recent software engineering

paper [34] validating the stability of feature importance

methods and predicting software defects. SHAP mea-

sures the contribution of a feature value to the diffe-

rence between the actual local prediction and the global

mean prediction [35] to distribute the credit for a clas-

sifier’s output among its features [34] using the game-

theory based Shapley values [47]. For each instance in

the training set, SHAP transforms the features of the

instance into a space of simplified binary features as

input. Afterwards, SHAP builds the model g for ex-

planation defined as a linear function of binary values,

more specifically in (5):

g(z) = φ0 +

M∑
i=1

φizi, (5)

where z ∈ {0, 1}M is the coalition vector (also known

as simplified features [47]), and M is the maximum size

of the coalition vector (i.e., the number of simplified

features). Specifically, zi is the i-th binary value in z,

where zi = 1 means the corresponding feature is in-

cluded in the coalition, and zi = 0 indicates the feature

is absent from the coalition. φ0 is the average predic-

tion value of the model, and φi is the Shapley value
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of the i-th feature. A larger positive φi indicates a

greater impact of the i-th feature to the positive pre-

diction result of the model. Note that |φi| are SHAP

feature importance scores that are guaranteed in the-

ory to be locally, consistently, and additively accurate

for each data point [34]. We use the Python imple-

mentation of SHAP [35] in our study. Meanwhile, we

also exploit SK-ESD to rank feature importance. Both

SHAP and SK-ESD algorithms are executed on each

prediction class independently. We report the results

from all three validation scenarios.

Then, we take a closer look at the relationships

of features’ distribution and the prediction results for

Smelly Developer, which is positive (φi > 0) for smelly

and negative (φi < 0) for non-smelly. Since our data are

not normally distributed, we apply the non-parametric

Spearman’s Rank Correlation Test [48] to measure the

correlation between the features’ values and their φi
values calculated by SHAP. Given two sets of values

equal in length, the test produces a correlation coeffi-

cient ρ with a p-value to measure the significance level.

The p-value is the probability of obtaining a test statis-

tic result at least as extreme as the result that was

observed, and the correlation is statically significant if

p-value < 0.05. We consider the rank of correlation is

trivial if | ρ |< 0.10, low if 0.10 6| ρ |< 0.30, moderate

if 0.30 6| ρ |< 0.50, high if 0.50 6| ρ |< 0.70, very high

if 0.70 6| ρ |< 0.90, and perfect if | ρ |> 0.90 [49]. We

also apply the Wilcoxon Ranksum Test measuring sta-

tistical significance [48] to analyze the significance of the

difference in the distributions of the features. Wilcoxon

Ranksum Test also produces a p-value, and we use p-

value < 0.05 as an indicator of statistical significance.

Meanwhile, we calculate Cliff’s Delta (δ) to measure the

effect size (i.e., the extent of the difference) for each pair

of feature values that produce positive and negative φi
values. The effect size is negligible if | δ |< 0.147, small

if 0.147 6| δ |< 0.33, medium if 0.33 6| δ |< 0.474, and

large if | δ |> 0.474. Additionally, we also report the

mean and variance of the features leading to positive

and negative prediction results.

4.4 RQ3–RQ4: Community-Wide Smelly
Developer Forecasting

4.4.1 Performance Assessment and Validation

In this subsection, we intend to demonstrate the

performance of the model to predict the number of

smelly developers in the last four analysis windows (i.e.,

12 months). We forecast 12 months because an em-

pirical study [30] reported the commit-level defect pre-

diction model will lose its effectiveness without being

retrained after one year. For classifiers and regressors,

since forecasting is time-sensitive, we use settings simi-

lar to the time-wise prediction in RQ1. We generate a

new model for each predicted data, i.e., our prediction

is 4-fold. Assuming that we have K windows of data,

for each fold i (i > 0), we use the data of the first to

the (K − i− 4)-th analysis window as the training set,

and predict smelly developers from the (K − i − 2)-

th to the (K − i + 1)-th analysis windows. Note that

the (K − i− 3)-th window is skipped as [29] suggested.

Finally, we calculate the summation of the predicted

smelly developers as the result. For time series based

approaches, we use the data from the first window to

the (K− i−3)-th window as the training set to predict

the last four analysis windows because such approaches

support forecasting of multiple time windows by nature.

To demonstrate the performance of the models, we

use three metrics for regression assessment including co-

efficient of determination (i.e., R2), root mean squared

error (RMSE), and mean absolute error (MAE), whose

definitions are listed below in (6)–(8).

R2 = 1−
∑n

i=1(Ai − Fi)
2∑n

i=1(Ai − Āi)2
, (6)

RMSE =

√∑N
i=1(Ai − Fi)

2

N
, (7)

MAE =
1

N

N∑
i=1

|Ai − Fi|, (8)

where Ai, Āi, Fi are the actual, the mean, and the fore-

casted number of smelly developers respectively. Lower

RMSE and MAE values indicate better performance.

On the contrary, the model with a larger R2 value is

considered to be the best model. The RMSE and MAE

values range from 0 to ∞. R2 measures the degree of

relationship between the forecasted and the real data,

and it ranges from 0 to 1. If the result of any model is

extremely irrelevant with the test set, the R2 value may

be negative. Since we are not interested in how badly

the models perform [50], we treat negative values as ze-

ros. We calculate the three assessment metrics for each

project, and we use the mean value as the performance

of each model.

4.4.2 Training Fine-Grained Classifier

The prediction in this subsection is performed in the

individual-wide scenario using the best fine-grained ap-

proach in RQ1. After we generate the prediction results
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for smelly developers, we perform a summation of the

classifiers’ outcomes to generate the result.

4.4.3 Training Coarse-Grained Regressors

We use regressors to predict the number of smelly

developers based on coarse-grained features of every

analysis window. We create two datasets using diffe-

rent approaches, i.e., mean and summation for every

feature. Then, we use 10 regressors which were usu-

ally applied in SQA tasks [51], including tree-based re-

gressors, linear regressors, and other state-of-the-arts,

i.e., Gradient Boosting Regressor (GBR), Random For-

est Regressor (RFR), Decision Tree Regressor (DTR),

K-Neighbors Regressor (KNR), LogR, Linear Regres-

sor (LR), Bayesian Ridge Regressor (BRR), Gaussian

Process Regressor (GPR), Neural Network Based MLP

Regressor (NNR), and Stochastic Gradient Descent Re-

gressor (SDGR). We also tune hyper-parameters ac-

cording to [51] and perform feature selections. How-

ever, data balancing techniques are not used since they

are only applicable to classification tasks.

4.4.4 Training Time Series Based Models

ARIMA (AutoRegressive Integrated Moving Ave-

rage) is a commonly used time series based prediction

model in software evolution prediction [52] since it can

cope with non-stationary series. We tune the three

most-sensitive hyper-parameters [52] of ARIMA (i.e., p,

d, and q) in a range of [0, 15]. In addition, we in-

volve other approaches applied in SQA-related forecast-

ing tasks [53] including Prophet, Exponential Smooth-

ing (ExpS), and Theta which are capable of capturing

trends and seasonal patterns of time series. We use the

implementation of Python Darts package 6○. Such

methods perform predictions directly based on the pre-

vious smelly developers, and they do not require the in-

put of any additional features. Apart from the univari-

ate approaches mentioned above, we also try Temporal

Convolutional Network (TCN) using multiple inputs of

other time series as covariates, i.e., we specifically trans-

form other features to covariates for TCN.

4.4.5 Explaining the Models

We exploit a process similar to RQ2 to explain re-

gressors and classifiers except for lightweight models

such as LR. The feature importance of LR could be

determined by the coefficients of features. However,

since features are not available for univariate time se-

ries based models, we may not be able to explain them.

5 Results and Discussion

In this section, we answer the proposed research

questions by demonstrating and discussing the results

of our experiment. We also draw conclusions and

demonstrate our findings.

5.1 RQ1: Individual-Wide Model Performance

First, we assess the correlations of our features,

and the correlation heat-map is available in our online

appendix 7○. Results show the VAD features correlate

with each other (ρ > 0.7). Although we find removing

any two of them does not cause a significant change

in the classifier’s performance (< 2%), we still exclude

VAL and DOM to avoid multicollinearity. We also ex-

clude CON, EXP DEV, EXP ML, EXP LW, EXP OS,

EXP S, NBF, NF, and CE for the same reason. Conse-

quently, we remove 11 features out of 35 original ones.

Then, we train multiple classifiers on the dataset,

and RF is the best-performed one. The performance

of the trained classifiers is available in our online

appendix 7○. We present the weighted average perfor-

mance of RF models in within-project, time-wise, and

cross-project validation scenarios in Table 3. More-

over, the boxplots of the RF model performance as

well as the settings including parameters and data bal-

ancing strategies applied are available in our online

appendix 7○.

Our model shows good overall performance in all

three scenarios, e.g., F-measure > 0.73 in all cases with

acceptable AUC-ROC > 0.69.

To compare the effectiveness of the approach in

this paper and its preliminary conference version [21],

we demonstrate the performance using features in the

conference paper in the context of time-sensitive data

generation and validation approaches. The compar-

isons are available in the D.-O. column and the Full col-

umn in Table 3. We can conclude that since using only

experience and sentiment features already produces ac-

ceptable results in four classes except for Smelly Quit-

ter, involving process metrics significantly improves the

performance of the model by 3%–17% in terms of AUC-

ROC. In Smelly Quitter prediction, our model signifi-

cantly improves AUC-ROC performance from 19% to

6○https://github.com/unit8co/darts, Nov. 2021.
7○https://github.com/SORD-src/JCST Replication, Jan. 2022.
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Table 3. Performance of Individual-Wide RF Models

Prediction Class Validation/Feature Precision Recall F-Measure AUC-ROC

D.-O. Full D.-O. Full D.-O. Full D.-O. Full

Bottleneck Within-Project 0.83 0.85 0.83 0.85 0.83 0.85 0.79 0.82

Time-Wise 0.72 0.79 0.73 0.78 0.72 0.78 0.66 0.74

Cross-Project 0.75 0.79 0.77 0.71 0.73 0.73 0.64 0.74

Lone Wolf Within-Project 0.88 0.92 0.88 0.92 0.88 0.92 0.81 0.87

Time-Wise 0.87 0.87 0.87 0.85 0.86 0.86 0.72 0.81

Cross-Project 0.80 0.88 0.81 0.86 0.80 0.86 0.68 0.82

Organizational Silo Within-Project 0.88 0.92 0.88 0.92 0.88 0.92 0.83 0.88

Time-Wise 0.87 0.87 0.87 0.85 0.86 0.86 0.71 0.81

Cross-Project 0.79 0.89 0.79 0.87 0.77 0.87 0.66 0.83

Smelly Developer Within-Project 0.81 0.85 0.81 0.85 0.81 0.85 0.79 0.83

Time-Wise 0.80 0.82 0.80 0.79 0.80 0.79 0.75 0.77

Cross-Project 0.79 0.82 0.75 0.83 0.76 0.82 0.74 0.78

Smelly Quitter Within-Project 0.95 0.98 0.96 0.80 0.96 0.87 0.49 0.82

Time-Wise 0.94 0.89 0.95 0.96 0.94 0.92 0.50 0.69

Cross-Project 0.96 0.98 0.98 0.78 0.97 0.85 0.50 0.87

Note: D.-O. refers to developer-oriented features (i.e., experience and sentiment features) applied in our preliminary conference
version [21], while Full refers to using all features available in this paper. Better performance is in bold.

37%, showing that process metrics are vital for Smelly

Quitter prediction, and sentiment features are not nec-

essarily related to work withdrawal. The features in

the preliminary version achieve better F-measure per-

formance because F-measure is biased for extremely

imbalanced data, i.e., the classifier predicts almost all

developers as non-smelly quitters, which accounts for

the vast majority of the population. Consequently, the

AUC-ROCs of Smelly Quitter prediction are around

0.5, indicating that it is no better than random guess-

ing. Thus, we can conclude that the approach in this

paper is better than the ones transformed from the

conference paper [21] in terms of AUC-ROC and F-

measure.

However, we suggest not to directly compare the

performance of our paper and the conference paper [21]

because the latter uses a time-insensitive validation

and data generation approach which results in over-

estimated performance. Comparing the performance of

the model in the conference paper [21] with the perfor-

mance in the D.-O. column of Table 3, we can see the

overestimation is 11% and 4% on average in terms of

AUC-ROC and F-measure respectively. The conference

paper [21] uses data in the analysis windows later than

the predicted analysis window, which causes a poten-

tial flaw. In practical scenarios, the future data would

not be acknowledged in the present model. Otherwise,

community smells can be detected precisely by Code-

face4Smells, and thus we actually do not need any

prediction. Nevertheless, compared with the overesti-

mated results, this paper still improves the performance

up to 11% in all cases in terms of AUC-ROC, while the

difference in F-measure is −5%–1%. In consideration of

the overestimation, our model is significantly superior

in AUC-ROC with a similar performance in F-measure.

Finding 1. Our model could predict the occurrence

of the concerning community smells on developers in

most cases. It achieves mean F-measures ranging from

73% to 92% in five prediction classes. Meanwhile, the

involvement of the process metrics improves the per-

formance based on the features used in the conference

paper [21]. Specifically, it improves the AUC-ROC of

Smelly Quitter prediction by 19%–37%.

5.2 RQ2: Features’ Importance and
Distribution

Table 4 lists the features’ importance of the cor-

rectly predicted cases of all five prediction classes in

descendant order. The importance values measure the

contributions of features to the performance. The box-

plots demonstrating the distribution of feature impor-

tance scores are available online 8○.

8○https://github.com/SORD-src/JCST Replication, Jan. 2022.
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Table 4. Ranking and Mean SHAP Importance of Features

Feature Mean Within-P Time-W Cross-P

EXP SEN 0.028 1 1 1

EXP BN 0.020 2 1 1

AVGCS 0.018 1 2 2

CHURN 0.017 1 2 2

NC 0.016 1 2 2

OWN 0.012 1 3 7

MC 0.012 2 3 3

EXP COR 0.012 2 3 3

JOY 0.011 2 3 4

ANG 0.010 2 4 4

DSC 0.010 2 3 5

NEG 0.009 2 3 5

IMP 0.009 2 4 4

SUB 0.008 2 5 6

ARO 0.008 3 4 7

POS 0.007 3 5 7

SAD 0.007 3 5 7

LOV 0.007 3 5 7

POL 0.006 3 5 7

IND 0.006 3 5 8

MOD 0.006 3 5 8

EXP QUIT 0.002 4 6 9

NR 0.001 5 7 10

EXP SPO 0.000 5 7 10

Note: Within-P refers to the ranking in within-project predic-
tion. Similarly, Time-W refers to time-wise, and Cross-P refers
to cross-project. The Mean column demonstrates the mean of
the absolute value of SHAP feature importance.

Practitioners mainly focus on the top-1 and the top-

3 features when using feature importance algorithm for

interpretation [33]. The only top-ranked metric in all

three validations is EXP SEN. The metrics ranked in

top-3 in all three validation scenarios include experi-

ence features (EXP SEN, EXP BN, and EXP COR)

and process metrics (AVGCS, CHURN, NC, and MC).

Such a trend reflects that developers’ experience and

activities of communication and collaboration are a de-

termining aspect of community smell occurrence, and

the centrality and the discussion activeness of deve-

lopers are stronger predictors than several sentiments.

In particular, the number of commented sentences and

the experience of acting as core developers are the fea-

tures having the most predictive power. A related

study [9] observed similar circumstances that communi-

cability and the number of core developers were among

the top predictors of community smells. Moreover, re-

cent work [54] also reported that the number of commits

is related to community smells’ occurrence.

The rankings of the sentiment features’ contribu-

tions are lower than the ones of the experience and pro-

cess metrics. However, their contributions are average

and moderate. For example, all 12 sentiment features

appear at least once in the top-3 rankings.

Furthermore, we assess the feature importance in

each validation scenario of every smell. The detailed

feature importance data are available in our online

appendix 9○. In general, the results follow a trend simi-

lar to Table 4, i.e., experience features (e.g., EXP SEN

and EXP BN) and process metrics (e.g., AVGCS,

CHURN, OWN, NC, MC) are the most determining

features. Specifically, experience features are the top

contributors of Bottleneck and Smelly Developer pre-

dictions, while both experience and process features are

the most important ones for Organizational Silo and

Lone Wolf predictions. For Smelly Quitter, all top-

ranked features are process metrics.

To assess the features’ interactions with the model

behavior, we further investigate the impact of feature

values on prediction results. Fig. 5 depicts a SHAP

beeswarm plot displaying the feature values’ impact

on the correct prediction cases of Smelly Developer.

Darker (lighter) points represent higher (lower) feature

values. Meanwhile, data points in the right (left) repre-

sent higher (lower) φi values that lead to the prediction

results of smelly (non-smelly) [46]. The SK-ESD ranking

of each feature’s importance calculated based on their

|φi| values is also presented in the Y-axis. To explain

Fig.5 in detail, we demonstrate the statistical relation-

ships between the values of features and their φi values

in Table 5. We present Spearman’s ρ and Cliff’s δ if the

results are statistically significant, and we mark “–” for

insignificant results.

For most experience and process metrics (e.g.,

EXP SEN, EXP BN, EXP COR, CHURN, AVGCS,

NC, DSC, and OWN), we can see that they follow an

easily recognizable trend. In terms of process metrics,

developers with heavier workload (e.g., having larger

commit sizes, more modifications and changes, more

sub-systems to work on, and more code ownership)

tend to be predicted as smelly. In terms of experi-

ence, lower EXP SEN leads to smelly prediction, in-

dicating that the lack of communication may decrease

community healthiness, which was also found in a prior

research [11] suggesting more communication is an effec-

tive solution to community smells. In contrast, higher

core experience and more smelly experience such as

Bottleneck lead to smelly prediction. Such a trend is

also quantifiably presented in Table 5. For example,

9○https://github.com/SORD-src/JCST Replication, Jan. 2022.
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Fig.5. Feature values’ impact on the correct prediction cases of model.

mean EXP SEN values that lead to non-smelly predic-

tion (φi < 0) are larger than the ones that lead to

smelly prediction, and they are significantly different

in distribution. Moreover, the overall EXP SEN values

are moderately correlated with the SHAP φi values of

the EXP SEN feature.

The relationship between sentiment features and

prediction results is not so clear as the other features,

which cannot be easily concluded from Fig.5. To pr-

esent the characteristics of sentiment features more

clearly, we also depict the distribution of sentiment fea-

tures that lead to smelly and non-smelly predictions

in Fig.6 using an enhanced version of box-plot called

boxen-plot [55]. Boxen-plot is more capable of display-

ing tails of large-sampled data, as it cuts the data into

more quantiles.

In terms of the predictive power of GM, the IMP

feature (i.e., imperative expressions of commands and

warnings) is one of the top-ranked sentiment features.

From experience, we assume instructive expressions are

more likely to be serious and impolite, which would

become an obstacle for cooperation. However, results

show the distribution of the proportion of IMP is signifi-

cantly different for related smelly and non-smelly pre-

dictions with a large effect size. In terms of feature

values, the results also reveal that the IMP feature

values deriving non-smelly predictions are 47% greater

than the ones that derive smelly predictions. More-

over, another feature about certainty, i.e., indicative

GM (IND), is also showing that using less indicative

expressions yields the smelly prediction results. Hence,

we conclude that ensuring certainty is vital to deve-

lopers’ communication and collaboration quality.

Since there exist several studies suggesting the rela-

tionship between software defect-proneness and polite-

ness of developers [25, 26], we expect to find a significant
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Table 5. Results of Statistical Analysis

Feature Spearman’s Rho Cliff’s Delta Mean Variance

ρ Rank δ Effect Size Smelly Non-Smelly Smelly Non-Smelly

EXP SEN −0.47 ++ −0.65 L 23.00 52.18 979.89 1 231.87
EXP BN 0.60 +++ 0.53 L 6.09 1.95 33.56 1.83
CHURN 0.48 ++ 0.69 L 26 267.71 2 903.22 1.80E+10 2.90E+08
AVGCS 0.28 + 0.41 M 9.15 4.77 1 789.84 88.28
NC 0.52 +++ 0.78 L 48.95 4.92 6 368.45 198.35
JOY 0.13 + 0.05 − 0.11 0.10 0.02 0.01
IMP 0.31 ++ −0.37 M 0.07 0.10 0.02 0.01
MC −0.11 + 0.03 − 6.54 7.29 17.04 37.43
NEG −0.16 + −0.22 S −0.17 −0.15 0.01 0.01
POL −0.18 + −0.16 S 0.48 0.53 0.06 0.04
EXP COR 0.45 ++ 0.42 M 5.96 3.06 28.70 12.24
DSC 0.26 + 0.62 L 7.23 4.21 8.48 7.30
ANG 0.01 − −0.07 − 0.04 0.04 0.00 0.00
OWN 0.13 + 0.41 M 0.17 0.09 0.02 0.02
ARO −0.29 + −0.31 S 0.96 1.05 0.05 0.05
POS 0.44 ++ 0.44 M 0.23 0.19 0.00 0.01
SAD 0.18 + 0.10 − 0.32 0.30 0.08 0.08
IND −0.12 + −0.16 S 0.64 0.70 0.02 0.04
SUB − − −0.04 − 0.03 0.02 0.01 0.01
LOV −0.33 ++ 0.20 S 0.21 0.18 0.04 0.04
MOD 0.13 + −0.14 − 0.56 0.60 0.03 0.03
EXP QUIT 0.40 ++ − − 1.29 1.27 0.42 0.35
NR −0.52 +++ − − 2.48 2.35 5.57 4.02
EXP SPO −0.18 + − − 1.74 1.87 3.40 3.61

Note: Effect sizes in {Large, Medium, Small, Negligible} are mapped to {L, M, S, −} respectively. Correlation ranks in {Perfect,
High, Moderate, Low, Trivial} are mapped to {++++, +++, ++, +, −} respectively. Features with non-trivial correlation and
non-negligible effect sizes are bolded.

predictive power of the politeness feature. Although

it is one of the top-ranked sentiment features, the ef-

fect size of the difference of the features that produce

smelly and non-smelly predictions is relatively small.

Nevertheless, it still indicates that smelly and non-

smelly developers communicate differently. Moreover,

politeness has a low negative correlation with φi val-

ues, revealing that lower politeness is likely to produce

a smelly prediction.
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Fig.6. Distribution of sentiment features.

In terms of specific positive emotions, prior

research [56] in developer sentiment regarded happiness

as a positive factor to development tasks. However, we

also notice that [18] reporting a great number of posi-

tive comments is related to bug occurrence. Our model

shows that more positive emotions (POS) may also indi-

cate community smells’ occurrence. In our case, expres-

sions containing more joy and love lead to non-smelly

prediction. However, this relationship is relatively weak

(e.g., having negligible or low effect size).

Negative emotions have always been an indicator

of potential problems in software engineering [57]. Un-

expectedly, except for the general negative sentiments

(NEG), no notable difference of feature values is found

for smelly and non-smelly predictions. However, ac-

cording to their mean values and φi values calculated

by SHAP, developers with negative sentiments are more

likely to become smelly. Still, the effect sizes of such

a trend are small or trivial. In case studies, we also

recognize that neutral comments with test case results

attached were very likely to be recognized as negative

comments since the description of the results may be in

a strict tone, which introduce noises into our dataset.

However, simply discarding these comments is inappro-

priate, and recognizing the appearance of such con-
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tent is also a challenge. Although sentiment analysis

on developers has made significant progress, improving

sentiment recognition in domain-specific comments still

remains a problem for both natural language processing

and software analytics communities to solve [58].

Due to the multi-facet and complex nature of sen-

timent and development activities, the difficulties in

interpretations occurred frequently in developer sen-

timent analysis [12, 16,17]. Similar to the three above-

mentioned studies, our attempt to empirically explain

why the model leads to conflicting or small effect-size

observations in terms of the impact of positive and

negative sentiments. The difficulties in interpreting

the sentiment part of the results shed light on the

necessity of a deeper understanding of developer sen-

timent and their impact on the software community

through a qualitative and quantitative study. We be-

lieve the lack of comprehension of the task context [4] of

developers’ emotional expressions in different types of

communities [28] and tasks is the reason why we cannot

interpret the conflicting observations. It is necessary to

improve and reshape the framework of comprehending

developers’ perception [3] as well as their task context [4]

in both social and technical aspects.

Practically, we suggest developers should make more

communications in a straightforward and polite way,

especially for the busiest developers who have already

been affected by community smells.

The above-mentioned observation has some conflict

with the preliminary version of our paper [21] in terms

of the overall rankings among sentiment and developer

experience features due to the followings. 1) In this

paper, we change the original feature importance al-

gorithm (i.e., Information Gain) to SHAP which is less

sensitive to feature interaction [34], more adaptive to hu-

man intuition [35], and provide the explanation for every

local prediction instance, allowing us to focus only on

the correctly predicted cases. 2) The two algorithms

focus on different aspects of feature importance. The

information Gain algorithm calculates the reduction in

Shannon’s Entropy for prediction results globally after

involving each feature [3]. SHAP measures the impact

of each feature on prediction results locally by com-

paring the output of every local prediction with the

mean prediction to explain feature importance, i.e., its

global explanation is constructed by local explanations.

3) The preliminary version of our paper [21] is not time-

sensitive. To figure out the extent of agreement between

SHAP and Information Gain, we also evaluate the gain

ratio of the transformed time-wise features (i.e., using

the model based on D.-O. features in Table 3), and we

discover that both sentiment (e.g., ARO, MOD, POS,

NEG, IND, IMP) and EXP COR appear at the first

rank. Apparently, the two algorithms only agree on

EXP COR in terms of the top-ranked feature. The

inconsistency of the feature importance algorithm has

been discussed in recent studies [32–34], and related work

concludes model agnostic methodologies such as SHAP

are more stable and reliable [34].

Moreover, this paper outlines the significant impor-

tance of process metrics compared with sentiment and

experience features, especially for Smelly Quitter pre-

diction. Since sentiment and experience features ap-

plied in our preliminary conference paper [21] reflect the

working states of developers, the new process metrics

provide the quantified workload data, which are able

to measure the two major aspects that lead to com-

munity smells [10, 13,23], i.e., productivity issues such as

burnout [16] as well as the importance and diversity of

developers [13]. As a result, a great improvement in

prediction performance is achieved after involving such

features. Nevertheless, the features presented in our

conference version [21] still manage to improve the mod-

els’ performance, and they also contribute to predictive

power. Based on our findings, we believe direct and in-

direct data to measure developers’ workload and work-

ing states are both essential for prediction.

Finding 2. In terms of community smells’ occur-

rence on developers, experience features (e.g., sentences

commented) and process metrics (e.g., average com-

mit size) are stronger predictors than the sentimental

ones. Moreover, the model behavior shows 1) the less

communicated developers and the core developers with

higher workload are more likely to be affected by com-

munity smells, 2) the less polite developers and deve-

lopers using less certain expressions such as statements,

instructions, and warnings tend to be affected by com-

munity smells, and 3) the developers frequently affected

by community smells are more likely to become smelly

again. To ensure community healthiness, we suggest

developers should foster more frequent communication

in a straightforward and polite way.

5.3 RQ3: Community-Wide Model

Performance

In the data processing phase, we notice a serious

extent of feature correlation for community-wide pre-

diction, i.e., most features have a correlation greater

than 0.7 with at least one feature, which is hard for
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manual processing. Thus, we mitigate correlation by

Autospearman [59], a state-of-the-art feature selection

method to resolve multicollinearity while preserving

performance to a great extent. However, removing cor-

related features still causes a significant decline in per-

formance since there would be only eight features left

in the coarse-grained dataset. Since performance and

explainability are both our primary concern, we eva-

luate the classifiers using the data before and after fea-

ture selections. The boxplots demonstrating R2 perfor-

mance and the SK-ESD ranks of all evaluated models

are available in our online appendix 10○.

Table 6 presents the models with the best perfor-

mance. The models using selected features are marked

with FS in their suffixes. Since R2 > 0.5 could be re-

garded as good performance and R2 > 0.7 is very good

performance [50], we can conclude that the models using

selected features can derive good performance, and the

performance of models using all features can be close

to very good.

To our great astonishment, the simpler LR model is

also among the top predictors when using the dataset

without any feature selection. Except for this case, tree-

based models have the best performance. Among these

models, although they are in the same rank in terms of

R2, regressors using the coarse-grained dataset perform

significantly better than the classifiers in RQ1 in terms

of MAE and RMSE.

Finding 3. The tree-based regression model and the

simple LR model using the coarse-grained dataset of

summation of feature values can produce good perfor-

mance (e.g., with R2 metrics close to 0.7) when fore-

casting community-wide community smell. However,

feature selection would significantly impact the perfor-

mance. Moreover, classifiers and time series based ap-

proaches perform worse than the regressors. In conclu-

sion, we suggest community shepherds use our model

built with full features to make community-wide refac-

toring decisions.

5.4 RQ4: Explaining Community-Wide
Regression Models

In this subsection, we explain separately the models

before and after feature selection. Note that the results

of the model built with the correlated features may be

biased because regressors may not be able to determine

which feature is more important for prediction when

dealing with the correlated ones. For the dataset with-

out feature selection, we explain the LR model since

it is a simple model with the top-ranked performance

and high interpretability. We choose GBR FS as our

model for the dataset with feature selection since all the

candidates are tree-based models explainable by SHAP,

and GBR FS has the best performance. Fig.7 demon-

strates the feature importance and their SK-ESD ranks

of the two classifiers. Fig.7(a) is a boxplot of LR feature

coefficients, and Fig.7(b) is a SHAP violin plot show-

ing features’ values, distributions, and their impact on

the model behavior. Note that excessive large outliers

are not displayed in Fig.7(a) since showing them will

cause a sparse distribution of data in the scope and

lead to an unreadable graph. We use the violin plot

for Fig.7(b) because trends can hardly be interpreted

in the beeswarm plot if there exist fewer data.

In Fig.7, we can observe a trend that the ranks of

sentiment features are higher than those of the other

features, which is different from conclusions in RQ2.

However, it is hard to comprehend the overall senti-

ment of a community. Except for this trend, we can

barely draw clear conclusions. For example, in Fig.7(b)

we can hardly inspect the variation of feature values.

Meanwhile, in Fig.7(a), most mean values of coefficients

Table 6. Performance of Community-Wide Models

Classifier Type Dataset MAE RMSE R2 Parameter

GBR Regressor Sum 1.94 2.76 0.68 (190, 1)

RFR Regressor Sum 2.19 2.78 0.68 (110, 13)

LR Regressor Sum 1.90 2.84 0.68 True

RF Classifier Original 15.84 17.67 0.61 (110, 9)

GBR FS Regressor Sum 3.20 4.78 0.51 (100, 13)

RFR FS Regressor Sum 5.68 6.71 0.48 (10, 13)

RF FS Classifier Original 16.89 18.84 0.51 (200, 9)

Note: The parameter of the LR model refers to whether the features should be normalized. GBR, RFR and RF share the same im-
portant hyper-parameters, i.e., (max depth, n estimators). The sum dataset refers to the coarse-grained dataset using the summation
of features. The fine-grained original dataset is only applicable for the classifiers. Better performance values are bolded.

10○https://github.com/SORD-src/JCST Replication, Jan. 2022.



Zi-Jie Huang et al.: Community Smell Occurrence Prediction on Multi-Granularity 201

POS(1)
JOY(1)
NEG(1)
POL(2)
IMP(2)
ANG(2)
CON(2)
SUB(2)
LOV(2)
IND(3)

MOD(3)
VAL(3)

DOM(3)
ARO(3)
SAD(4)

EXP_QUIT(5)
OWN(5)

EXP_SPO(5)
CE(6)

EXP_S(7)
EXP_OS(7)

EXP_DEV(8)
EXP_COR(8)

NR(8)
EXP_LW(8)

DSC(9)
EXP_ML(10)

MC(10)
EXP_BN(10)

NBF(11)
AVGCS(11)

NC(12)
EXP_SEN(13)

NF(13)
CHURN(14)

0 1 2 3 4 5-6-7-8 -5 -4 -3 -2 -1

0 10 20-20 -10

ANG(1)

EXP_QUIT(2)

EXP_BN(3)

NC(3)

OWN(3)

EXP_SPO(4)

AVGCS(4)

NR(5)

Low

High
F
e
a
tu

re
 V

a
lu

e

SHAP Value (Impact on Model Output)

(b)

(a)

Fig.7. Regression model feature importance. (a) LR feature coefficients. (b) GBR FS SHAP-feature value violin plot.



202 J. Comput. Sci. & Technol., Jan. 2022, Vol.37, No.1

are around 0, and these coefficients range from the neg-

ative to the positive values. A better explanation may

be that the trend (or concept) of every window varies

greatly, which may also explain why univariate fore-

casting cannot achieve good performance.

Compared with the regressors, the bad performance

of the time series based models is unexpected. As the

univariate methods do not derive good results, trans-

forming features to covariates for TCN forecasting is

also unhelpful. Since covariates in multivariate ap-

proaches refer to the variables out of the system (e.g.,

holidays and seasons), we think involving more features

out-of-the-box may be useful. However, since the ba-

sic performance of the time series based approaches is

significantly inferior, we do not continue to explore.

We also perform the Augmented Dickey-Fuller

(ADF) test [52] for the numbers of smelly developers to

check if the time series are stationary. We find the time

series in half of the projects are not stationary (with p-

value < 0.05 and test result values greater than the crit-

ical level of 10%), while the other half of the time series

are stationary. The performance of time series based

approaches is below 0.4 for every project, revealing that

such models may not be ideal for community smell fore-

casting. From the bad performance, we may also in-

fer that the occurrence of community smells is hard to

be fit with any patterns (e.g., seasonal, trending, or

cyclical) of time series data supported by the applied

forecasting models. Thus, we suggest investigating fur-

ther the variation of community type and nature [11, 28]

to understand the pattern of community healthiness

and to design computational models for specific types

of communities, since they have already outperformed

time series based approaches in other tasks [52].

Finding 4. Community-wide regression models are

harder to interpret. However, we can still observe the

trend that sentiment features are more important than

the others. Meanwhile, the regressors have different

behaviors compared with the individual-wide classifiers.

Since there still exists some room for the model perfor-

mance to improve, more higher-level community-wide

patterns should be captured. Moreover, we suggest

developing computational models for different types

of communities to support the forecasting of Smelly

Developer.

6 Threats to Validity

Some threats may have influenced our study. Con-

struct validity refers to the relationship between the-

ory and observation. Conclusion validity is related to

treatment and outcome. Internal validity concerns the

factors other than the considered independent variable

that could affect the occurrence of community smells.

External validity is about the generalizability of results.

6.1 Construct Validity

The major threat to construct validity is the relia-

bility of our datasets. We combine two sources of in-

formation, i.e., community smell detection results and

developer sentiment.

In terms of community smell detection, we employ

an open-source tool called Codeface4Smells. Tam-

burri et al. [1] provided detailed replication data to

prove the dependability of the tool, i.e., its outputs

were all true positives. Hence, we believe the tool is

reliable. In addition, we follow strictly the installation,

configuration, and execution guides [22] of the detection

tool. As for software repositories and mailing lists, we

fetch them from original sources of ASF and JBoss.

To a great extent, we can confirm the reliability of this

source.

The developer sentiment dataset was proposed

and improved progressively by Mantyla et al. [16, 20,25].

Most data are automatically evaluated by lexicon-based

tools, and all tools employed are state-of-the-arts. For

example, the sentiment evaluation tool called Sen-

tiStrength [38] has also been proved reliable [24].

The process of combining the community smell de-

tection result and the developer sentiment dataset may

cause some loss in information. We make our best effort

to match developers from both sides according to their

e-mails and names. However, 8.8% of the smelly deve-

lopers are not found in the sentiment dataset. Thus,

their data are dropped. Nevertheless, we still manage

to preserve most of the data.

The coherence of mailing lists and developer com-

ments in JIRA may be a threat as well. Therefore, we

investigate the contents of mailing lists. In eight out

of 12 projects, they are automatically generated JIRA

discussions. Otherwise, they contain JIRA-centered

discussions, i.e., comments attaching links of JIRA is-

sues.

6.2 Conclusion Validity

In terms of the reliability of model settings, we con-

figure the hyper-parameters using Grid Search, and we

employ three different validation strategies which were

proved stable by prior studies [29, 42]. We also report re-

sults of classical evaluation metrics, i.e., precision, re-



Zi-Jie Huang et al.: Community Smell Occurrence Prediction on Multi-Granularity 203

call, F-measure, and AUC-ROC. Furthermore, we ap-

ply statistical tests, e.g., Cliff’s Delta and SK-ESD, to

validate the significance of our conclusions.

The reliability of the feature importance algorithm

is also a threat to conclusion validity. The reason why

we replace the Information Gain algorithm exploited in

the conference version of our paper [21] is described in

Subsection 5.2. Since model explanation is an emerging

topic [32], these solutions may need improvement.

Moreover, the approach of building a new model

for Smelly Developer may be questionable, since we

can use the unification of the prediction results of the

three smells. However, compared with the unifica-

tion approach, building the classifier improves AUC-

ROC performance for 2%, 2%, and 6% for time-

wise, cross-project, and within-project scenarios respec-

tively. Meanwhile, it improves cross-project and within-

project F-measure performance by 4% and 7% respec-

tively, while there is no difference in time-wise perfor-

mance. Thus, to achieve better performance, it is more

ideal to build a new model.

Finally, the choice of implementation to build a time

series based model may also be a threat. In terms of

classical univariate models, Darts serves as a wrapper

of widely-used implementations; thus we believe it is

reliable.

6.3 Internal Validity

A notable internal validity may be the unidentifiable

offline communications among developers. We observe

certain developers prefer informal offline communica-

tions, as they mentioned the experience of offline talks

frequently in ITS comments. In most cases, they made

long comments to directly state the conclusion of offline

communications. Evaluation based on online systems

may underestimate their communicability. Moreover,

there exist some lower-level metrics related to code qua-

lity that we do not involve, e.g., the naturalness of code,

coupling and cohesion metrics. Meanwhile, we do not

involve code review metrics [30] due to the lack of infor-

mation sources.

6.4 External Validity

Since different projects may involve developers and

communities in various backgrounds [23, 28], the multi-

faceted nature of software development and developer

sentiment is an unavoidable threat to external validity.

To address this issue, we perform our study in 12 estab-

lished OSS projects of two major open-source ecosys-

tems to maximize the generality of our conclusion. Such

systems have been analyzed in prior studies of software

engineering [3, 45]. Note that 11 out of 12 projects ana-

lyzed in our paper are registered in the ASF founda-

tion, because ASF provides better support for a va-

riety of software development infrastructures such as

ITS and mailing lists, and the infrastructures support

data extraction, making ASF projects ideal sources for

software analytics research.

7 Conclusions

This paper investigated whether the individual-

wide and the community-wide occurrence of commu-

nity smells could be predicted by the developers’ ex-

perience, sentiment, and process metrics. We mainly

considered three community smells, i.e., Lone Wolf,

Organization Silo, and Bottleneck. Moreover, we in-

cluded Smelly Developer and Smelly Quitter for predic-

tion. We built machine learning models to predict the

community smells’ occurrence, and to understand the

features’ interactions with community smells. The re-

sults showed our individual-wide model achieves mean

F-measures ranging from 0.73 to 0.92 in individual-wide

within-project, time-wise, and cross-project prediction.

Moreover, good performance of 0.68 in terms of R2 is

achieved in community-wide Smelly Developer predic-

tion. We also revealed that developers with less com-

municability and heavier workload tend to be predicted

as smelly. Meanwhile, being less polite or less certain

in comments is also an indicator of smell occurrence.

To conclude, we suggest core developers with heavier

workload should foster more frequent communication in

a straightforward and polite way. Future work includes:

1) integrating more effort-aware process metrics, 2) in-

terpreting the pattern of sentiments’ interactions with

community smells, and 3) using graph neural networks

to capture more community smells.
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[16] Mäntylä M, Adams B, Destefanis G, Graziotin D, Ortu M.

Mining valence, arousal, and dominance: Possibilities for

detecting burnout and productivity? In Proc. the 13th Int.

Conference on Mining Software Repositories, May 2016,

pp.247-258. DOI: 10.1145/2901739.2901752.

[17] Cheruvelil J, Da Silva B C. Developers’ sentiment and is-

sue reopening. In Proc. the 4th Int. Workshop on Emotion

Awareness in Software Engineering, May 2019, pp.29-33.

DOI: 10.1109/SEmotion.2019.00013.

[18] Huq S F, Sadiq A Z, Sakib K. Understanding the effect

of developer sentiment on Fix-Inducing Changes: An ex-

ploratory study on Github pull requests. In Proc. the 26th

Asia-Pacific Software Engineering Conference, December

2019, pp.514-521. DOI: 10.1109/APSEC48747.2019.00075.

[19] Valdivia-Garcia H, Shihab E, Nagappan M. Characteri-

zing and predicting blocking bugs in open source

projects. J. Syst. Softw., 2018, 143: 44-58. DOI:

10.1016/j.jss.2018.03.053.

[20] Ortu M, Murgia A, Destefanis G, Tourani P, Tonelli R,

Marchesi M, Adams B. The emotional side of software deve-

lopers in JIRA. In Proc. the 13th International Conference

on Mining Software Repositories, May 2016, pp.480-483.

DOI: 10.1145/2901739.2903505.

[21] Huang Z, Shao Z, Fan G, Gao J, Zhou Z, Yang K, Yang

X. Predicting community smells’ occurrence on individual

developers by sentiments. In Proc. the 29th IEEE/ACM

Int. Conference on Program Comprehension, May 2021,

pp.230-241. DOI: 10.1109/ICPC52881.2021.00030.

[22] Magnoni S. An approach to measure community smells in

software development communities [Master Thesis]. Dipar-

timento di Elettronica, Informazione e Bioingegneria, Po-

litecnico di Milano, 2016.

[23] Catolino G, Palomba F, Tamburri D A, Serebrenik A, Fer-

rucci F. Gender diversity and community smells: Insights

from the trenches. IEEE Softw., 2020, 37(1): 10-16. DOI:

10.1109/MS.2019.2944594.

[24] Jongeling R, Datta S, Serebrenik A. Choosing your

weapons: On sentiment analysis tools for software

engineering research. In Proc. the 31st IEEE Int.

Conference on Software Maintenance and Evolution,

September 29–October 1, 2015, pp.531-535. DOI:

10.1109/ICSM.2015.7332508.

[25] Ortu M, Destefanis G, Kassab M, Counsell S, Marchesi M,

Tonelli R. Would you mind fixing this issue? — An em-

pirical analysis of politeness and attractiveness in software

developed using agile boards. In Proc. the 16th Int. Confe-

rence on Agile Software Development, May 2015, pp.129-

140. DOI: 10.1007/978-3-319-18612-2 11.

[26] Ortu M, Adams B, Destefanis G, Tourani P, March-

esi M, Tonelli R. Are bullies more productive? Em-

pirical study of affectiveness vs. issue fixing time. In

Proc. the 12th IEEE/ACM Working Conference on Min-

ing Software Repositories, May 2015, pp.303-313. DOI:

10.1109/MSR.2015.35.

[27] Bell R M, Ostrand T J, Weyuker E J. The limited im-

pact of individual developer data on software defect pre-

diction. Empir. Softw. Eng., 2013, 18(3): 478-505. DOI:

10.1007/s10664-011-9178-4.

[28] Catolino G, Palomba F, Tamburri D A. The secret life of

software communities: What we know and what we don’t

know. In Proc. the 18th Belgium-Netherlands Software Evo-

lution Workshop, November 2019.

https://doi.org/10.1145/3379597.3387457
https://doi.org/10.1109/ICPC.2016.7503705
https://doi.org/10.1016/j.jss.2018.04.035
https://doi.org/10.1109/TCSS.2018.2886433
https://doi.org/10.1109/TSE.2018.2883603
https://doi.org/10.1016/j.jss.2020.110847
https://doi.org/10.1145/3377815.3381380
https://doi.org/10.1109/ICSE-SEIS52602.2021.00017
https://doi.org/10.1109/ICSE-SEIS52602.2021.00017
https://doi.org/10.1109/SEmotion.2019.00011
https://doi.org/10.1109/MS.2016.144
https://doi.org/10.1109/CHASE52884.2021.00016
https://doi.org/10.1007/s10606-005-9000-1
https://doi.org/10.1007/s10606-005-9000-1
https://doi.org/10.1145/2901739.2901752
https://doi.org/10.1109/SEmotion.2019.00013
https://doi.org/10.1109/APSEC48747.2019.00075
https://doi.org/10.1016/j.jss.2018.03.053
https://doi.org/10.1145/2901739.2903505
https://doi.org/10.1109/ICPC52881.2021.00030
https://doi.org/10.1109/MS.2019.2944594
https://doi.org/10.1109/ICSM.2015.7332508
https://doi.org/10.1007/978-3-319-18612-2_11
https://doi.org/10.1109/MSR.2015.35
https://doi.org/10.1007/s10664-011-9178-4


Zi-Jie Huang et al.: Community Smell Occurrence Prediction on Multi-Granularity 205

[29] Yang Y, Zhou Y, Liu J, Zhao Y, Lu H, Xu L, Xu B, Leung

H. Effort-aware just-in-time defect prediction: Simple un-

supervised models could be better than supervised models.

In Proc. the 24th ACM SIGSOFT Int. Symp. Foundations

of Software Engineering, November 2016, pp.157-168. DOI:

10.1145/2950290.2950353.

[30] McIntosh S, Kamei Y. Are fix-inducing changes a moving

target? A longitudinal case study of just-in-time defect pre-

diction. IEEE Trans. Softw. Eng., 2018, 44(5): 412-428.

DOI: 10.1109/TSE.2017.2693980.

[31] Spadini D, Aniche M F, Bacchelli A. PyDriller: Python

framework for mining software repositories. In Proc. the

26th ACM Joint Meeting on European Software Engi-

neering Conference and Symp. the Foundations of Soft-

ware Engineering, November 2018, pp.908-911. DOI:

0.1145/3236024.3264598.

[32] Jiarpakdee J, Tantithamthavorn C, Grundy J. Practition-

ers’ perceptions of the goals and visual explanations of de-

fect prediction models. In Proc. the 18th IEEE/ACM Int.

Conference on Mining Software Repositories, May 2021,

pp.432-443. DOI: 10.1109/MSR52588.2021.00055.

[33] Jiarpakdee J, Tantithamthavorn C, Dam H K, Grundy J.

An empirical study of model-agnostic techniques for de-

fect prediction models. IEEE Trans. Softw. Eng.. DOI:

10.1109/TSE.2020.2982385.

[34] Rajbahadur G K, Wang S, Ansaldi G, Kamei Y, Hassan A

E. The impact of feature importance methods on the in-

terpretation of defect classifiers. IEEE Trans. Softw. Eng..

DOI: 10.1109/TSE.2021.3056941.

[35] Lundberg S M, Erion G, Chen H, DeGrave A, Prutkin J M,

Nair B, Katz R, Himmelfarb J, Bansal N, Lee S I. From lo-

cal explanations to global understanding with explainable

ai for trees. Nat. Mach. Intell., 2020, 2(1): 56-67. DOI:

10.1038/s42256-019-0138-9.

[36] Graziotin D, Fagerholm F, Wang X, Abrahamsson P. What

happens when software developers are (un)happy. J. Syst.

Softw., 2018, 140: 32-47. DOI: 10.1016/j.jss.2018.02.041.

[37] Graziotin D, Wang X, Abrahamsson P. Software developers,

moods, emotions, and performance. IEEE Softw., 2014,

31(4): 24-27. DOI: 10.1109/MS.2014.94.

[38] Thelwall M, Buckley K, Paltoglou G. Sentiment strength

detection for the social web. J. Am. Soc. Inf. Sci. Tec.,

2012, 63(1): 163-173. DOI: 10.1002/asi.21662.

[39] Danescu-Niculescu-Mizil C, Sudhof M, Jurafsky D,

Leskovec J, Potts C. A computational approach to polite-

ness with application to social factors. In Proc. the 51st

Annual Meeting of the Association for Computational Lin-

guistics, August 2013, pp.250-259.

[40] De Smedt T, Daelemans W. Pattern for Python. J. Mach.

Learn. Res., 2012, 13: 2063-2067.

[41] Islam M R, Zibran M F. Towards understanding and ex-

ploiting developers’ emotional variations in software engi-

neering. In Proc. the 14th IEEE Int. Conference on Soft-

ware Engineering Research, Management and Applications,

June 2016, pp.185-192. DOI: 10.1109/SERA.2016.7516145.

[42] Tantithamthavorn C, McIntosh S, Hassan A E, Matsumoto

K. An empirical comparison of model validation techniques

for defect prediction models. IEEE Trans. Softw. Eng.,

2017, 43(1): 1-18. DOI: 10.1109/TSE.2016.2584050.

[43] Scott A J, Knott M. A cluster analysis method for grouping

means in the analysis of variance. Biometrics, 1974, 30(3):

507-512. DOI: 10.2307/2529204.

[44] Pedregosa F, Varoquaux G, Gramfort A et al. Scikit-learn:

Machine learning in Python. J. Mach. Learn. Res., 2011,

12: 2825-2830.

[45] Palomba F, Zanoni M, Fontana F A, De Lucia A,

Oliveto R. Toward a smell-aware bug prediction model.

IEEE Trans. Softw. Eng., 2019, 45(2): 194-218. DOI:

10.1109/TSE.2017.2770122.

[46] Esteves G, Figueiredo E, Veloso A, Viggiato M, Ziviani

N. Understanding machine learning software defect pre-

dictions. Autom. Softw. Eng., 2020, 27(3): 369-392. DOI:

10.1007/s10515-020-00277-4.

[47] Shapley L S. A value for n-person games. In Contributions

to the Theory of Games II, Annals of Mathematics Studies,

Kuhn H W, Tucker A W (eds.), Princeton University Press,

1953, pp.307-317.

[48] Palomba F, Panichella A, Zaidman A, Oliveto R, Lucia A

D. The scent of a smell: An extensive comparison between

textual and structural smells. IEEE Trans. Softw. Eng.,

2018, 44(10): 977-1000. DOI: 10.1109/TSE.2017.2752171.

[49] Kirbas S, Caglayan B, Hall T, Counsell S, Bowes D,

Sen A, Bener A. The relationship between evolution-

ary coupling and defects in large industrial software. J.

Softw.: Evol. Process, 2017, 29(4): Article No. e1842. DOI:

10.1002/smr.1842.

[50] Chicco D, Warrens M J, Jurman G. The coefficient of de-

termination R-squared is more informative than SMAPE,

MAE, MAPE, MSE and RMSE in regression analysis

evaluation. PeerJ Comput. Sci., 2021, 7: Article No. e263.

DOI: 10.7717/peerj-cs.623.

[51] Yu X, Bennin K E, Liu J, Keung J W, Yin X, Xu Z. An em-

pirical study of learning to rank techniques for effort-aware

defect prediction. In Proc. the 26th IEEE Int. Conference

on Software Analysis, Evolution and Reengineering, Febru-

ary 2019, pp.298-309. DOI: 10.1109/SANER.2019.8668033.

[52] Saini M, Kaur K. Fuzzy analysis and prediction of commit

activity in open source software projects. IET Softw., 2016,

10(5): 136-146. DOI: 10.1049/iet-sen.2015.0087.
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