
Zhao JZ, Wang XW, Mao KM et al. Correlated differential privacy of multiparty data release in machine learning. JOUR-

NAL OF COMPUTER SCIENCE AND TECHNOLOGY 37(1): 231–251 Jan. 2022. DOI 10.1007/s11390-021-1754-5

Correlated Differential Privacy of Multiparty Data Release in
Machine Learning

Jian-Zhe Zhao1 (ëï)), Xing-Wei Wang2,3,∗ (�,�), Senior Member, CCF, Ke-Ming Mao1 (f�²)
Chen-Xi Huang1 (��F), Yu-Kai Su1 (�rº), and Yu-Chen Li1 (o�®)

1Software College, Northeastern University, Shenyang 110169, China
2State Key Laboratory of Synthetical Automation for Process Industries, Northeastern University, Shenyang 110819, China
3School of Computer Science and Engineering, Northeastern University, Shenyang 110819, China

E-mail: zhaojz@swc.neu.edu.cn; wangxw@mail.neu.edu.cn; maokm@swc.neu.edu.cn; 20184901@stu.neu.edu.cn
E-mail: suyukai2@huawei.com; 20185242@stu.neu.edu.cn

Received July 1, 2021; accepted November 12, 2021.

Abstract Differential privacy (DP) is widely employed for the private data release in the single-party scenario. Data

utility could be degraded with noise generated by ubiquitous data correlation, and it is often addressed by sensitivity

reduction with correlation analysis. However, increasing multiparty data release applications present new challenges for

existing methods. In this paper, we propose a novel correlated differential privacy of the multiparty data release (MP-

CRDP). It effectively reduces the merged dataset’s dimensionality and correlated sensitivity in two steps to optimize the

utility. We also propose a multiparty correlation analysis technique. Based on the prior knowledge of multiparty data, a

more reasonable and rigorous standard is designed to measure the correlated degree, reducing correlated sensitivity, and

thus improve the data utility. Moreover, by adding noise to the weights of machine learning algorithms and query noise to

the release data, MP-CRDP provides the release technology for both low-noise private data and private machine learning

algorithms. Comprehensive experiments demonstrate the effectiveness and practicability of the proposed method on the

utilized Adult and Breast Cancer datasets.
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1 Introduction

With the development of information technology

and its penetration into daily life, sensing devices con-

nected to the Internet, such as smartphones and wear-

able devices, are widely utilized, which results in the

collection and storage of a vast amount of personal

data. When released, these collected data are valua-

ble sources for machine learning applications that have

created immense social benefits in fields such as health-

care, financial analysis, and law enforcement [1]. Mean-

while, the emergence of new computing paradigms has

increased the possibility of collecting data from multi-

ple sources on a large scale. In these collected data,

different features of the same set of individuals are of-

ten possessed by different parties as if the data were

vertically partitioned among multiple parties. In prac-

tice, these vertically partitioned data can often be in-

tegrated to enable data analysis tasks that lead to bet-

ter decision-making or high-quality services. As a real-

world example, loan company A and bank B observe

different sets of features about the same set of individ-

uals who are identified by a common identifier (ID) [2].

Let the local dataset of A and the local dataset of B

be TA(ID, Job, Salary) and TB(ID,Age,Balance), re-

spectively. Integrating their data can better profile cus-
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tomers and support better decision-making about loan

or credit limit approval. We further investigate the

training accuracy of parts of the Breast Censer dataset

with disjoint features and the merged Breast Censer

dataset with all features. The comparison results in

Table 1 show that the merged dataset improves the ac-

curacy of the training model, such as logistic regression

(LR) and the support vector machine (SVM). The re-

sults in Table 1 also demonstrate that, as the number

of parties increases, the number of features increases.

Therefore, the merged multiparty data often have high

dimensionality.

Table 1. Training Accuracy on Vertically Partitioned Dataset

Vertically Partitioned Dataset SVM LR

Merged dataset with all features 0.978 9 0.985 4

Party 1 with features (f1–f10) 0.964 9 0.973 6

Party 2 with features (f11–f20) 0.940 4 0.954 3

Party 3 with features (f21–f30) 0.926 3 0.929 1

It benefits from multiparty high-dimensional data.

The merging of multiparty datasets improves the train-

ing accuracy. However, the merged multiparty dataset

also contains more sensitive information, and ill-formed

releases may cause privacy leakage. Recently, pri-

vate data release has aroused widespread concern in

academia and industry. Performing specific processing

on data or algorithms via privacy mechanisms prevents

personal sensitive information leakage successfully [3].

In the multiparty data release scenario, when a trusted

server exists, it can merge multiparty data and per-

form privacy operations. Compared with distributed

model training such as federated learning, centralized

data release can achieve better data utility while pro-

viding privacy guarantee and support users’ customized

requirements for data release services [4–7]. Providing

a rigorous and quantifiable privacy protection method

that is independent of attack background knowledge,

differential privacy (DP) [8, 9] has been the most widely

accepted private data release method. In recent years,

differentially private data release has been widely ap-

plied in many areas. Differentially private single-party

data (i.e., overall data belongs to the same data holder)

release and application have achieved satisfactory re-

sults, in which much existing work focuses on differ-

ential privacy technologies in machine learning, such

as private data release for machine learning [10, 11] and

private machine learning algorithms (private ML al-

gorithms) release [12–21]. However, in the context of

big data, due to the driving of shared data, there is

ubiquitous data correlation in the collected data, es-

pecially in the multiparty scenario. Correlated data

makes additional privacy leakage caused by data asso-

ciation abound, and data correlation has become a new

hotspot in single-party private data release [22, 23].

An example of hospital records shows how corre-

lated data can degrade the level of privacy in medical

applications. As shown in Table 2, there are a group

of users’ medical records of different features. It is ob-

served that user1 and user2 take the same values of f1

to f4 (they may have social relationships). In this case,

if one user were to change the values of user1, the val-

ues of user2 would also change. In this way, the records

for user1 and the records for user2 are correlated. The

last row in Table 2 shows the counts of different features

(Counts). In terms of the Laplace mechanism, adding

the amount of Lap(1/ε) noise to perturb each count can

achieve ε-DP. However, the expected privacy guarantee

may breach by correlated records in the dataset. With

the background information about the social relation-

ships of people, such as family members, an attack can

infer the health information of user1 and user2 by the

feature flu. Consequently, after releasing the private

count of a user’s feature values, the health information

of user1 and user2 may not be ε-differentially private

as expected. Instead, their health information is 2ε-

differentially private since changing one user’s feature

values will change the counts. Studies show that al-

though differential privacy provides a strong guarantee

for private data release, the correlation between records

produces an increment of sensitivity, which introduces

additional noise at the same level of protection and

reduces the data utility [24–26]. Many state-of-the-art

correlated privacy technologies address the correlation

measurement between two records by correlation ana-

lysis and reduce the sensitivity to improve the data

utility, such as Group DP [27], Correlated DP [28], and

Bayesian DP [29].

Table 2. Example of Correlated Users’ Medical Records

f1: fever f2: cough f3: headache f4: flu

user1 0 1 1 1

user2 0 1 1 1

user3 0 1 1 0

user4 1 1 0 0

Counts 1 4 3 2

Correlated differential privacy technologies in

single-party data release have accumulated a diversity

of research results. However, the growing multiparty
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data release presents new challenges for these technolo-

gies, especially for vertically partitioned data. Since

different features of the same user increase, redun-

dant features may exist, degrading the machine learn-

ing model’s performance. Dimensionality reduction and

important feature selection are dominant means to im-

prove the accuracy. However, dimensionality reduc-

tion causes a further increment of the sensitivity due

to data correlation, which reduces the utility of the re-

leased data. As shown in Table 2, if feature f4 is the

redundant feature, user1, user2 and user3 are corre-

lated after feature selection. The sensitivity will in-

crease from 2 to 3. The current study seems to present

a lack of correlation analysis in a dimensional way in

the multiparty scenarios. In this work, we analyze the

correlation variation caused by dimensionality changes

and propose a multiparty correlation analysis method.

According to the prior knowledge of multiparty data,

we provide a more reasonable and rigorous standard

to measure the correlated degree between two records,

reducing the correlated sensitivity and improving data

utility. The proposed method addresses the current de-

ficiencies of correlated differential privacy and provides

a multiparty data release method for machine learning.

The main contributions of this paper are summa-

rized as follows.

• We propose a multiparty data release method

(MP-CRDP). It effectively reduces the merged

dataset’s dimensionality and correlated sensitivity in

two steps to optimize the utility. By adding noise to

machine learning algorithms’ weights and query noise to

the release data, our method provides a release techno-

logy of low-noise private data and private ML algo-

rithms.

• We also propose a multiparty correlation analysis

technique. It reduces the correlated sensitivity by consi-

dering the correlated degree and defining a more rea-

sonable and rigorous standard based on the prior know-

ledge of multiparty data, thereby reducing the DP noise

injecting.

•We execute comprehensive experiments to present

the data correlation variation caused by dimensionality

changing. The experimental results also demonstrate

the high practicability of our method in private ML

algorithms and querying data release.

The paper is organized as follows. Section 2 in-

troduces the related work specifically on differential

private multiparty release, correlated differential pri-

vacy, and private data release in machine learning. Sec-

tion 3 introduces the preliminary of this work, including

the notation, the concepts of differential privacy and

correlated sensitivity, the vertically partitioned multi-

party scenario, and the problem statement. Section 4

describes the proposed multiparty correlation analysis

by presenting the existing problems and our improve-

ments. Section 5 shows the proposed method in de-

tail. The key steps of MP-CRDP, as well as the privacy

analysis in each step, are demonstrated. In Section 6,

MP-CRDP is evaluated and compared with other meth-

ods based on the performance. The result analysis is

conducted to conclude the advantages of our method.

Lastly, Section 7 summarizes the paper.

2 Related Work

2.1 Differentially Private Multiparty Data

Release

Differentially private multiparty data release mainly

solves the problems of releasing data or statistical infor-

mation of data as a whole based on differential privacy

when the original data belong to multiparty data hold-

ers. In related literature, Alhadidi et al. designed a

two-party protocol that is suitable for an exponential

mechanism by using mathematical tools, such as the

Taylor formula [30], to solve the problem of two-party,

horizontally partitioned data release. However, the lim-

itation of technology scalability makes the method only

suitable for two-party scenarios. Aimed at the issue

of horizontally partitioned multiparty search log re-

lease, Hong et al. proposed a joint search logs’ release

method that satisfies differential privacy based on sam-

pling technology [31]. Limited by the sampling method,

this method can only ensure that the released data meet

the slack (ε, δ)-differential privacy.

Mohammed et al. solved the problem of releasing

vertically partitioned relational datasets [32]. They de-

signed a two-party protocol that is suitable for the ex-

ponential mechanism. This method has a higher data

utility and ensures differential privacy. However, the

method is designed only for two-party scenarios. Cheng

et al. proposed a vertically partitioned multiparty data

generation method that is based on naive Bayes [33].

The method extends the two-party scenario to the mul-

tiparty scenario and generates hidden features by mod-

eling multiparty features to generate private data based

on the same distribution to satisfy differential privacy.

However, this method frequently measures the correla-

tion strength between two features during the model-

ing process. Therefore, the communication cost and
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the amount of introduced noise are relatively high.

Goryczka and Xiong [34] investigated the problem of se-

cure data aggregation in the multiparty setting while

ensuring differential privacy of the result. Dangi and

Santhi [35] introduced a privacy-preserving method in

multiparty data release on the cloud for big data using

fusion learning.

Many researchers have accumulated a diverse of

results on the privacy protection of multiparty data.

However, the existing studies do not consider the data

correlation issues in the multiparty scenario.

2.2 Correlated Differential Privacy

Differential privacy provides a rigorous mathemati-

cal method for defining indistinguishability to preserve

privacy and ensures that adding or removing any sin-

gle record does not affect the analysis results. How-

ever, previous studies have shown that when multi-

ple datasets are correlated, privacy leaks are increased.

At the same level of privacy protection, the correlated

data produces an increment of sensitivity, which in-

creases the extra cost of noise and reduces the data

utility [24, 25]. Balancing privacy and utility in corre-

lated datasets has become a new research hotspot of

correlated differential privacy technology. Some of the

research focuses on correlation measurement to reduce

sensitivity. When some users of different datasets have

the same records, the datasets are considered directly

correlated. The correlation is rigorously defined as two

identical records. Unlike direct correlation, the indirect

correlation is more complex and defined as two diffe-

rent records about a user or his/her correlated users.

For example, the information flow of some user acti-

vities, such as GPS records and social network records,

may be correlated. It is not easy to define and measure

the correlation with different degrees. Zhu et al. [28, 36]

applied a correlation matrix to express the correlation

between correlated datasets. By converting the global

sensitivity into the correlated sensitivity and setting it

as the upper limit of sensitivity, the influence of cor-

relation was limited. For data correlation measure-

ment, some uncertain correlation models, such as the

Gaussian correlation model in [29] and [37] and Markov

chain model in [38], have been proposed. Song et al. [39]

proposed two mechanisms based on Pufferfish privacy

mechanisms using a Markov chain to measure the data

correlation between adjacent states, which reduces the

global sensitivity. Zhang et al. [40] reduced the global

sensitivity by feature selection for datasets with corre-

lated records based on correlated sensitivity. Recently,

some research achievements have been made on differ-

ential privacy protection of correlated data with special

formats, such as sequential data, tuple data, and tra-

jectory data [41–44].

To balance the privacy and utility of an algorithm,

the correlated differential privacy technology, which

focuses on selecting privacy parameters of correlated

datasets, was also proposed. For instance, Wu et al. [45]

proposed a definition of correlated differential privacy,

provided a vague correlation measurement method, dy-

namically adjusted the privacy protection level of corre-

lated datasets by Nash equilibrium theory, and verified

the impact of multiple datasets’ privacy parameters on

global data utility via experiments.

The technologies of correlated differential privacy

have achieved good results. However, these methods

seem to lack the consideration of correlated degree. An

objective correlated threshold also needs to be defined

in multiparty scenarios.

2.3 Private Data Release in Machine Learning

For sensitive information preserving, much work has

addressed the privacy issue in machine learning with

differential privacy. To preserve personal privacy, noise

is added to the target dataset so that the statistical

information of the released dataset and the original

dataset satisfies the upper bound of the indistinguish-

able threshold, and the released private data can be

employed for machine learning [10, 11]. Another way of

privacy-preserving is to release private algorithms. The

classification models with differential privacy have been

proposed, such as DiffP-C4.5 [12] and DiffGen [13]. Dif-

ferentially private naive Bayes models [14] and regres-

sion models [15–17] have been proposed. Some of the al-

gorithms combine differential privacy and SVM, such as

private SVM [18] and objective SVM [19]. Song et al. [20]

deduced the stochastic gradient descent mechanism of

differential privacy and conducted an empirical test in

logistic regression. Abadi et al. [21] proposed a deep

learning algorithm with differential privacy, which pro-

vides a differential privacy version based on stochastic

gradient descent.

These methods combine differential privacy with

specific machine learning algorithms by disturbing the

weights of the algorithms. However, they do not con-

sider the correlated data, which may cause additional

noise injection.
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3 Preliminary

3.1 Notation

Let D be the merged dataset with n records and

d features, and let variable r represent a record sam-

pled from a universe X . Two datasets D and D′ are

neighboring if they have the same cardinality but dif-

fer in only one record. Let ri be that record, then Di

represents the dataset with ri and D−i represents the

dataset with ri deleted from D. A query Q is a function

that maps the dataset D to a real number: Q : D → R.

A group of queries is denoted as Q. The set of records

q that are related to a query Q is referred to as the

query’s responding records. Differential privacy pro-

vides a randomization mechanism M to mask the diffe-

rence of query Q on the neighboring datasets [4]. Nor-

mally, we use a “hat” on the notation to represent the

randomized answer. For example, Q̂(D) denotes the

randomized answer of querying Q on D.

3.2 Differential Privacy

Differential privacy is a concept of privacy that was

proposed by Dwork et al. in 2006 to address the pri-

vacy leakage of statistical datasets [8, 9]. The technolo-

gies based on DP design the mechanisms to add noise

to the target dataset so that the statistical information

loss of the released dataset and the original dataset is

in a small range as shown in (1). It ensures that the

modification of an individual record in the dataset does

not significantly impact the statistical results.

Definition 1 (Differential Privacy). For any

datasets D and D′ differing on at most one record, and

for any possible sanitized dataset r ∈ Range (M), a

random mechanism M satisfies ε-differential privacy if

DP (M) = sup
D,D′,S

log
Pr
(
r ∈ S

∣∣D)
Pr
(
r ∈ S

∣∣D′) 6 ε, (1)

where ε refers to the privacy budget that controls the

privacy level of mechanism M . The lower ε represents

the higher privacy level.

Definition 2 (Global Sensitivity). For any func-

tion Q : D → R, for all D and D′ differing on at most

one record, the global sensitivity of Q is

∆GS = max
D,D′

∥∥QD −QD′∥∥
1
. (2)

Mechanism M is associated with the global sensitiv-

ity as shown in (2). It measures the maximal change on

the result of query Q when removing one record from

the dataset D. Two mechanisms are usually utilized to

satisfy the differential privacy definition: the Laplace

mechanism and the Exponential mechanism. Studies

have shown that the sequential combination is satisfied

in DP mechanisms [4, 5].

The Laplace mechanism adds Laplace noise to the

output of a function to achieve differential privacy as

shown in (3). This mechanism takes the dataset D,

function Q, and privacy budget ε as inputs; it is de-

signed for functions whose outputs are real.

Definition 3 (Laplace Mechanism). For any func-

tion Q : D → R, the following mechanism provides

ε-differential privacy

Q̂(D) = Q(D) + Lap

(
∆GS

ε

)
, (3)

in which ε = 1/λ. Specifically, the Laplace noise is

sampled from Laplace distribution Lap(λ).

McSherry and Talwar [46] proposed an exponential

mechanism to choose an output t ∈ T that is close to

the optimum with respect to a utility function while

achieving differential privacy. The exponential mech-

anism takes the dataset D, privacy parameter ε, and

utility function u : (D × T ) → R as inputs. The uti-

lity function assigns a real valued score to every output

t ∈ T , where a higher score means a better utility. The

mechanism mainly addresses the algorithms whose out-

put is non-numerical.

Definition 4 (Exponential Mechanism). For any

function u : (D × T ) → R, an algorithm Ag that

chooses an output t with the probability proportional to

exp
(
εuD,t
2∆u

)
satisfies ε-differential privacy.

Lemma 1 (Sequential Composition). Supposing a

set of privacy steps {M1, . . . ,Mm} are sequentially per-

formed on a dataset, and each Mi provides εi privacy

guarantee, M provides mεi-differential privacy.

3.3 Correlated Sensitivity

In the single-party scenario, the correlated sensitiv-

ity has been demonstrated to effectively solve the query

data release issue based on differential privacy [28, 36,40].

In the mechanism, since records are only partially cor-

related, deleting one record may have different effects

on other records. The influence of different strengths is

defined as the correlated degree of records in the frame-

work of correlated sensitivity. From the perspective of

correlation analysis, several methods can be employed
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to calculate the correlated degree of records. There

are many ways to measure the correlated degree be-

tween records, such as attribute analysis, time inter-

val analysis, and Pearson’s correlation coefficient [28, 40].

|wij | ∈ [0, 1] indicates the correlated degree between

record i and record j. When |wij | > 0, there is a certain

correlation between record i and record j; |wij | = 1 in-

dicates that record i and record j are completely corre-

lated; and |wij | = 0 indicates that record i and record j

are completely uncorrelated. The higher the correlated

degree is, the stronger the correlation between record

values is. As shown in (4), a correlated degree matrix

Φ can describe a set of records’ correlation as

Φ =



w11 w12 . . . w1n

w21 w22 . . . w2n

...
...

. . .
...

wn1 wn2 . . . wnn

 . (4)

To satisfy the requirements of correlation analysis,

a correlation threshold w0 is used to screen the corre-

lation to a certain degree as

wij =

wij , if wij > w0,

0, otherwise.
(5)

The filtered correlated degree matrix describes the

correlation among all records of a dataset that satisfy

the correlation threshold w0, by which the correlated

sensitivity of the dataset is calculated as shown in (5).

Definition 5 (Record Sensitivity). The record sen-

sitivity measures the effect on all records in D when

deleting a record i. The sensitivity of record i denoted

as ∆CSi can be calculated by the following formula:

∆CSi =

l∑
j=0

|wij |
(∥∥Q(Dj)−Q(D−j)

∥∥
1

)
, (6)

in which Dj represents the dataset with rj and D−j

represents the dataset with rj deleted from D.

Correlated sensitivity is related to query Q. It lists

all the records q responding to Q and selects the max-

imal record sensitivity as the correlated sensitivity as

shown in (6) and (7).

Definition 6 (Correlated Sensitivity). The corre-

lated sensitivity of the single-party dataset, which con-

tains q data records, is denoted as:

∆CSq = max
i∈q

(∆CSi) . (7)

Compared with the correlated sensitivity, the global

sensitivity ∆GS only measures the maximum number

of correlated records without considering the correlated

degree of the records. Thus, by measuring the cor-

related degree, ∆CS reduces the global sensitivity to

achieve noise reduction.

3.4 Vertically Partitioned Multiparty Dataset

The vertically partitioned relational dataset is de-

fined as follows [33]: N parties of P1, P2, . . . , PN collab-

oratively release the merged dataset, and each party Pi
(1 6 i 6 N) holds the local dataset Di(ID, Fi). N local

datasets have the same group of identification feature

ID, i.e., corresponding to the same group of individu-

als, and any two local datasets do not contain the same

feature.

Differentially private data release of a vertically

partitioned relational dataset is that for given N lo-

cal datasets and privacy budget ε, N parties release

the merged dataset that contains features
⋃N
i=1 Fi and

collaboratively satisfies ε-differential privacy to ensure

that the released merged dataset does not disclose any

individual information about each party’s local dataset.

3.5 Problem Statement

In multiparty scenarios, to solve the problem of dif-

ferentially private data release, one rough solution is

to directly merge the datasets and conduct differen-

tially private operations. However, this solution pro-

duces immense computational costs due to the high-

dimensional issue and hinders the accuracy of training

models caused by redundant features [47]. In addition

to redundant features and high dimensionality, adding

noise to satisfy differential privacy degrades the per-

formance of the model. In particular, data correlation

introduces additional noise and reduces the likelihood

that the correlation has a positive effect on improving

the training accuracy. Previous studies indicate that

the increment of the features’ number eliminates the

correlation of data to some extent and achieves the ef-

fect of noise reduction [40]. Therefore, how to merge the

feature sets of different local datasets and how to make

an appropriate feature selection have significance to our

research.

The problem explored in this paper is defined as

follows. Assume that N local datasets Di(ID, Fi) for

1 6 i 6 N belong to different parties of data holders

and the records with the same feature ID correspond
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to the same individual. For any two local datasets Dm

and Dn, where 1 6 m < n 6 N , the feature sets satisfy

Fm∩Fn = ∅. We consider the possible data correlation

in multiparty datasets. Different data records might be

partially correlated. There is a certain degree of corre-

lation between two individuals with different id, such

as i, j ∈ id, which is reflected in the partially equivalent

feature values of record i and record j.

We attempt to design a method for multiparty

datasets release in machine learning. According to the

given privacy budget ε, the method should release the

merged dataset D1{f1, . . . , fn} ∪D2{fn+1, . . . , fn+l} ∪
. . . ∪ DN{fn+l+1, . . . , fn+l+...+m} = D′{f ′1, . . . , f ′n}
with the best features, which effectively achieves the

optimal training accuracy and reduces the correlated

sensitivity, or release private ML algorithms based on

the best features. As shown in Fig.1, two vertically seg-

mented multiparty datasets Dm and Dn have disjoint

feature sets. We intend to perform features selection

and differentially private operation on merged dataset

D = Dm{fm = f1, f2, f3} ∪ Dn{fn = f4, f5, f6}, and

then output perturbed D′ with fbest. Here, fbest =

{f1, f3, f5, f6} is the best feature set after selection to

reduce correlation between records and feature redun-

dancy.

4 Multiparty Correlation Analysis

The correlated sensitivity methods achieve satisfac-

tory results in single-party scenarios but still present

some weaknesses in multiparty scenarios as follows.

• The existing methods of correlated degree calcula-

tion seem to reveal poor interpretability for correlation

analysis in multiparty scenarios. In addition, in the

process of feature selection, Pearson’s correlation coef-

ficient cannot provide an accurate metric, that is, how

much correlation is reduced by increasing features. [40]

selects features by training the model repeatedly and

comparing the precision, thereby involving excessively

high computational complexity, especially in the con-

text of high-dimensional data, where it would bring a

greater burden.

• Correlation threshold plays an important role in

generating correlated degree matrix and calculating

correlated sensitivity, but the setting of the correlation

threshold in existing studies is subjective to a certain

extent.

To solve these problems, we propose the concept of

multiparty correlated sensitivity via multiparty corre-

lation analysis.

• We propose a feature-oriented correlated degree

f f f
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r

r

Dm Dn

D D'

FS+DP 

Operation

r

r
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f f f
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r
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f f f f ff f f f f

Fig.1. Example of the problem statement.
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(FCD) calculation method as shown in (8) and (9),

which extends the correlation analysis from single-party

scenarios to multiparty scenarios.

• For choosing a more reasonable threshold in the

multiparty case, we define the mean of multiparty cor-

related degree (MCD) as the correlated degree measure-

ment standard. The standard not only reflects the cor-

relation trend of overall multiparty data but also effec-

tively reduces the correlated sensitivity of the merged

dataset by defining more rigorous standards.

According to the requirements of multiparty

datasets and the process of features selection, we cal-

culate the correlated degree of records by measuring

the matching degree of all feature values among data

records. Obviously, when the merged multiparty data

feature set shrinks, the correlated degree may increase,

and vice versa. This change can be measured. But tra-

ditional methods such as Pearson’s correlation coeffi-

cient cannot provide an objective measurement. Mean-

while, such methods as Pearson’s correlation coefficient

and other methods based on the distance can only mea-

sure the relationship of linear correlation. It cannot be

measured if there is no linear correlation.

Definition 7 (Feature-Oriented Correlated Degree,

FCD). According to the matching degree of all feature

values of record i and record j, the correlated degree wij
of record i and record j is as follows:

wij =
match (i, j)

l
, (8)

match(i, j) =

{
1, if vmi = vmj for ∀m ∈ l,
0, otherwise.

(9)

Definition 8 (Mean of Multiparty Correlated De-

gree, MCD). For an n-party dataset, the correlated sen-

sitivity of one local dataset is denoted as ∆CSn, and

it is the sum of the correlated degree of K correlated

records in the local dataset. Therefore, the mean corre-

lated degree of the local dataset is denoted as ∆CSn =
∆CSn
K , and then the mean of n-party correlated degree

is

MCD =
1

N

N∑
k=1

∆CSk. (10)

MCD measures the mean level of the correlated de-

gree of multiple-feature datasets vertically partitioned

in multiparty data scenarios. As wij ∈ [0, 1], and

∆CSn ∈ [0, 1], the value of MCD is also between 0 and

1, which reflects the trend of correlation of the merged

dataset. Since the correlation threshold provided by

traditional methods is subjective [40], it is reasonable to

consider MCD as the correlation threshold. When the

correlated degree of the records is higher than MCD,

there is a correlation between two records in the merged

dataset, and then the correlated degree wij between the

records is marked according to (5); otherwise, the cor-

related degree is set to 0.

We then summarize the correlated sensitivity cal-

culation by multiparty correlation analysis. For an n-

party dataset, the correlated sensitivity ∆CSn of all lo-

cal datasets is calculated, and then MCD is calculated

according to (10). Considering MCD as the correla-

tion threshold and refreshing the correlated degree ma-

trix, the multiparty correlated sensitivity of the merged

dataset ∆CSp can be calculated as follows:

∆CSp = max
i∈p

l∑
j=0

|wij |
(∥∥Q(Dj)−Q(D−j)

∥∥
1

)
, (11)

where Dp represents the merged n-party dataset, wij
represents the correlated degree between record i and

record j, Dj represents the dataset with rj , and D−j

represents the dataset with rj deleted from Dp.

When a dataset differs from its neighbor by only

one record, ∆CSp measures the maximum impact on

all records in the merged dataset. For any query Q, the

perturbed output of differential privacy based on the

Laplace mechanism can be calculated as follows:

Q̂(Dp) = Q(Dp) + Lap

(
∆CSp
ε

)
. (12)

MCD is a reasonable standard for measuring the

correlated degree between two data records and a more

rigorous threshold for calculating the correlated sensi-

tivity. Therefore, MCD effectively reduces the corre-

lated sensitivity, which reduces the noise introduced.

According to existing research, such as [40], the corre-

lation threshold in the Adult dataset is set to 0.9. By

matching the values of the two records, if FCD is 0.9,

90% of the feature values are equivalent. MCD calcu-

lated by our method is approximately 0.92. Therefore,

MCD provides a more rigorous threshold that reduces

the correlated sensitivity for the same condition. The-

orem 1 shows that the calculated multiparty correlated

sensitivity proposed in this paper is not greater than the

correlated sensitivity calculated by the existing method.

Theorem 1. For any query Q, the calculated mul-

tiparty correlated sensitivity ∆CSp is equal to or less

than the correlated sensitivity ∆CS.

Proof. Assume that ∆CS and ∆CSp are the correla-

tion analysis results of the same dataset, which are cal-

culated by the same correlated degree matrix Φ. Since
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MCD > w0, the number of correlated records k > kp,

and then ∆CSp 6 ∆CS. �

5 Multiparty Correlated Differential Privacy

5.1 Overview

In this paper, we propose a novel correlated differ-

ential privacy of the multiparty data release method.

This method provides a solution of private data or pri-

vate ML algorithms release for vertically partitioned

multiparty datasets. As shown in Fig.2(a), our method

consists of three roles: n-party data owners, each of

which is derived from different data sources and owns a

local dataset of a group of same individuals with non-

overlapping features; a trusted service, which provides

private ML algorithms or private data to obtain a bet-

ter accuracy of data mining; and the users who have
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Fig.2. (a) Overview of the proposed method MP-CRDP. (b) Key steps of MP-CRDP.
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the special data requirements for use and enjoy pri-

vate algorithms or data service. MP-CRDP performs

best features selection and optimization with multi-

party datasets and releases private data or private ML

algorithms. In particular, MP-CRDP provides two dis-

tinct ways of noised data or noised algorithms according

to the users’ needs.

Our method focuses on the following two aspects:

private feature selection in multiparty datasets to im-

prove the machine learning accuracy and data utility

optimization by reducing the correlated sensitivity. In

response to the previously mentioned problems and to

improve the data training accuracy, MP-CRDP selects

the best features and narrows the dimensionality of

multiparty data feature sets. Based on the differen-

tial privacy technology, the multiparty data feature sets

are merged. To reduce the noise introduced by the pri-

vate operation, the multiparty data utility optimization

operation is carried out to reduce the sensitivity. The

critical steps of our method are shown in Fig.2(b). The

private multiparty feature selection (MP-FS) selects the

best features in the multiparty datasets. The private

multiparty utility optimization (MP-OP) groups the

adjusted features as candidates, analyzes the data cor-

relation, selects candidates to adjust the features via

the defined utility functions, and releases private ML

algorithms and private data.

5.2 Private Multiparty Feature Selection

In traditional machine learning algorithms, feature

selection is significant for reducing the data dimension-

alities and improving accuracy. Therefore, we merge

the vertically partitioned multiparty datasets by per-

forming a selection operation on the feature sets. We

choose the stability feature selection algorithm [40] in

our method for overcoming the over-fitting problem in

the process of feature selection. Stability selection is

a commonly employed feature selection method based

on a combination of sub-sampling and a selection algo-

rithm. Since there are naturally multiple sub-datasets,

the algorithm is the best choice in a multiparty environ-

ment. By repeatedly running a feature selection algo-

rithm on different datasets and counting the frequency

that a feature is considered to be an important feature,

feature selection scores are calculated. It is the ratio

of the times of the feature selected to be an important

feature to the times tested, as shown in (13).

In the n-party dataset, the important feature score

of a specific feature Si is the ratio of the important

features’ frequency denoted as Tfreq to the number of

sub-datasets denoted as Nn-party as follows:

Si =
Tfreq

Nn-party
. (13)

The score is between 0 and 1. The score of an impor-

tant feature is infinitely close to 1, and that of a useless

feature is close to 0.

The weakness of the method is that it retains simi-

lar and correlated important features. To overcome the

drawbacks of the method, we use Pearson’s correlation

coefficient calculation in MP-FS. It should be noticed

that in this work, we use two concepts of correlation.

One refers to the correlated degree between records,

which is widely used in correlated differential privacy.

The other is the term of Pearson’s correlation coeffi-

cient, which is mainly used to measure the linear corre-

lation between features. These two concepts are diffe-

rent. We do not use Pearson’s correlation coefficient

to measure the correlation between the records but use

the proposed feature-oriented correlated degree, which

is more applicable for the multiparty scenario. (14) cal-

culates the Pearson’s correlation coefficients of features

fm and fn as follows:

pm,n =
E [(fm − µm) (fn − µn)]

σmσn
, (14)

where µm and µn denote the mean values of fm and

fn respectively, and σm and σn denote the standard

deviations of fm and fn respectively.

The proposed MP-FS algorithm, shown as Algo-

rithm 1, is described as follows:

• sequentially cleaning up the features with a high

probability of missing data and the features with a sin-

gle data value;

• traversing each local dataset, calculating ∆CSn
and MCD, taking out the features in each local dataset

in turn, running the feature selection algorithm, and

calculating the stability scores;

• adding features with stability scores greater than

the important feature threshold to the best feature set;

otherwise adding it to the adjusted feature set;

• merging datasets according to the best feature set,

calculating the Pearson’s correlation between any two

features, adding noise according to the sensitivity of

correlation coefficient, picking one of the features ex-

ceeding the Pearson’s correlation threshold randomly,

and moving it to the adjusted feature set.

Algorithm 1 selects the best features to achieve the

best training accuracy, initially merges multiparty data,
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and returns the best feature set β and the adjusted fea-

ture set α. According to the multiparty data correla-

tion analysis in Section 4, the correlation of the merged

datasets introduces additional noise after the private

operation. Therefore, we need to reduce the correla-

tion and improve the data utility by properly adjusting

the operation of features. Based on the differential pri-

vacy technology, our algorithm MP-CRDP divides the

privacy budget ε into two parts: ε1 is used for differ-

entially private feature selection, while ε2 is used for

differentially private utility optimization.

Algorithm 1. Private Multiparty Feature Selection l

Input: n-party dataset Dn, ε1, important feature

threshold θim, Pearson’s correlation threshold

θper, initial w0

Output: best feature set β, adjusted feature set α, and

w0

1 for Dn, n = 1, 2, . . . , N do
2 Remove features with a high percentage of missing

values and single values

3 Calculate ∆CSn and MCD; // according to (10)

4 w0 = MCD

5 end

6 for Dn, n = 1, 2, . . . , N do
7 Create a temporary feature set τ ∈ ∅
8 for fm,m = 1, 2, . . . ,M do
9 Add fm and other features of Dn to temporary

feature set τ

10 Group data with temporary features and refresh

the datasets

11 Call feature selection algorithm on the refreshed

datasets and Dn

12 Calculate score of important Sm; // according

to (13)

13 if Sm > θim then
14 Add fm to best feature set β

15 else
16 Add fm to adjusted feature set α

17 end

18 end

19 end

20 for i ∈ β do
21 Group data with best feature set as Dp

22 Calculate pim,n ∈ P,∀m,n ∈ β, i = 1, · · · , l
23 Calculate sensitivity of Pearson’s correlation

coefficient ∆CSper; // according to (15) and (16)

24 Add Laplace noise to P according to

p̂m,n = pm,n + Lap(
∆CSper

ε1
)

25 if p̂m,n > θper then
26 Remove fm or fn from adjusted feature set α

randomly
27 end

28 end

29 Return best feature set β, adjusted feature set α, and w0

In the last step of MP-FS, for private feature selec-

tion, we separately calculate the linear correlation be-

tween the features of the merged dataset and its neigh-

boring dataset and obtain the groups of Pearson’s cor-

relation coefficients P and P ′, where pim,n ∈ P and

p′
i
m,n ∈ P ′, ∀m,n ∈ best feature, i = 1, · · · , l. We in-

troduce the concept of record sensitivity and sensitivity

of Pearson’s correlation coefficient as shown in (15) and

(16) respectively.

Definition 9 (Record Sensitivity of Pearson’s Cor-

relation Coefficient). For a query Q, the record sen-

sitivity of Pearson’s correlation coefficient of ri can be

defined as

∆CSperi = max
∀m,n∈p

∥∥pm,n − p′m,n∥∥1
, (15)

where pm,n and p′m,n denote the correlation coefficients

of features fm and fn in neighboring datasets, respec-

tively.

Definition 10 (Sensitivity of Pearson’s Correlation

Coefficient). For a query Q, the sensitivity of Pear-

son’s correlation coefficient is determined by the max-

imal record sensitivity of Pearson’s correlation coeffi-

cient

∆CSper = max
i∈Dβ

(
∆CSperi

)
, (16)

where Q denotes a query about a set of Pearson’s corre-

lation coefficients of records. It is easy to know that the

sensitivity of the correlation coefficient ∆CSper 6 1,

because the correlation coefficient value ranges from 0

to 1.

5.3 Private Multiparty Utility Optimization

After feature selection according to MP-FS, we re-

tain some features that are most relevant to the training

accuracy of the model. However, considering the data

correlation issue caused by multiparty data release, re-

moving more features generally leads to a higher corre-

lation. The differential privacy mechanism introduces

additional noise and consequently reduces the data uti-

lity with the same privacy level. Therefore, the goal

of the MP-OP algorithm is to add a certain number of

features in the best feature set β to reduce the impact

of data correlation. The adjustment coefficient b de-

termines the relaxation degree of the best feature set.

We can set the value of b according to the scales of the

adjusted feature set of the specific dataset. According

to the value of b, the adjusted feature set α is divided

into the subsets of the feature combination to generate
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several candidate schemes c. To explore the effects of

additional noise and redundant features on the training

accuracy of the model, we define two utility functions

based on information gain and correlated sensitivity.

Information gain is an effective means for investigat-

ing the importance of features to model classification.

The information gain utility function’s design idea is to

add features with high information gain while reducing

data correlation and improving the training accuracy.

We divide the feature set α according to the adjust-

ment coefficient b, determining the number of features

in ci. The information gain of the candidates is the sum

of b features’ information gains. We obtain the utility

function u1 as follows

InfoGain (Dp, ci) =
∑
b

(
H (Dp)−Hp|fi (Dp)

)
,(17)

in which H (Dp) is the initial information entropy of the

merged dataset Dp, H (Dp) = −
∑
cls
|Dclsp |
|Dp| log2

|Dclsp |
|Dp| ,

Hp|fi (Dp) is the conditional entropy of increasing fea-

tures fi in ci, v is the value of fi, and then Hp|fi (Dp) =

−
∑
v
|Dvp|
|Dp|H

(
Dv
p

)
.

Another way to define the utility function is based

on the multiparty correlated sensitivity introduced in

Section 4, which optimizes the data utility by max-

imally reducing the sensitivity and minimizing the

amount of noise intake. According to the correlation

matrix and (11), we can obtain the multiparty corre-

lated sensitivity ∆CScip of candidate scheme ci. There-

fore, the candidate set of the minimum multiparty cor-

related sensitivity defined by utility function u2 is se-

lected with a high probability. We obtain the utility

function u2 as follows:

u2 (Dp, ci) =
MCD

∆CScip
. (18)

On the basis of the best feature set β, both two uti-

lity functions aim to improve utility by adding several

features such as b features, where b is determined by

the scale of the adjusted feature set of the dataset. The

design idea of the information gain utility function, i.e.,

u1, is to add b features with high information gain while

reducing data correlation and improving the training

accuracy, while another utility function, i.e., u2, opti-

mizes the data utility by maximally reducing the sensi-

tivity and minimizing the amount of noise intake. We

plan to explore the influence of the two utility functions

on the training accuracy through experiments. Accord-

ing to the previous two utility functions, we select can-

didates with higher information gain and lower data

correlation levels using the exponential mechanism of

differential privacy as shown in (19). MP-OP simulta-

neously maintains excellent practicability for data re-

lease and analysis.

Given the utility scores of all candidate sets, the

probability of selecting candidate ci by the exponential

mechanism is expressed as follows:

exp
(
εu(Dp,ci)

2∆u

)
∑
ci∈c exp

(
εu(Dp,c)

2∆u

) . (19)

The proposed MP-OP algorithm, shown as Algo-

rithm 2, is described as follows:

• combining the features of the adjusted feature set

according to the adjusted feature coefficients to gene-

rate candidates;

• calculating the scores of candidates according to

the two utility functions;

• selecting high-scoring candidates using the expo-

nential mechanism, adding the features of the candi-

dates to the best feature set, and updating the dataset;

• performing differentially private operations, and

calculating correlated sensitivity, and then adding noise

to the queries value of released dataset or the weight of

the corresponding machine learning algorithm;

• training the model to get the prediction result.

Algorithm 2 takes the best feature set β, the ad-

justed feature set α, and w0 obtained from Algorithm 1,

b defined according to relevant research experience, and

divided privacy budget ε2 as input to achieve private

multiparty utility optimization. The algorithm outputs

the best feature set β, multiparty data D′p, which ob-

tains the best training precision or private ML algo-

rithms based on differential privacy technology. Since

MP-OP considers two schemes of maximum informa-

tion gain and minimum noise respectively, the output

term contains two schemes. On line 10 of Algorithm 2,

the interactive mechanism can be employed to add noise

to each query. The query Q here is a function that maps

the dataset D to a real number. We provide a Laplace

mechanism to add the noise to mask the difference on

query Q between the neighboring datasets. For the

private ML algorithms release, noise is added to the

weights of the algorithms to satisfy differential privacy

according to different algorithms.

5.4 Privacy Analysis

By analyzing the steps consuming the privacy bud-

get, we prove that the proposed MP-CRDP satisfies ε-
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differential privacy and analyze the sensitivity of each

differentially private operation.

Algorithm 2. Private Multiparty Utility Optimization

Input: n-party dataset Dn, best feature set β, adjusted

feature set α, w0, ε2, adjusting coefficient b

Output: best feature set β, optimal Dp, private ML

1 Divide α according to b to generate several candidate sets

ci ∈ c
2 for ci, i = 1, 2, . . . , k do
3 Calculate score of utility ui1 and ui2; // according to

(17) and (18) respectively

4 Select cβ1 ∈ c and cβ2 ∈ c with probability

∝ exp

(
ε2
2
u(D, ci)

2∆u

)
5 Add features of cβ1 and cβ2 to β respectively

6 Update Dp1 and Dp2
7 end

8 for Dn, n = 1, 2, . . . , N do
9 Calculate ∆CSp according to (11)

10 Add Laplace noise Lap(
2∆CSp
ε2

)

11 Train the datasets and get the predicted results

12 end

13 Return best feature set β1 and β2, optimal D′1 and D′2;

or private ML based on two kinds of schemes

In MP-FS, we perform a differentially private ope-

ration for private feature selection on the merged

dataset. Q1(.) is the query of Pearson’s correlation co-

efficient of any two features in both neighbors’ datasets

D and D′, where D differs from D′ by only one single

record.

According to the Laplace mechanism, we have

M1 (x,Q1 (.) , ε1) = Q1 (x) + Lap

(
∆CSper

ε1

)
. (20)

Let x, y be two neighboring datasets. We compare

two random points z ∈ R and the ratio of two proba-

bility density can be presented as

px (z)

py (z)

=
∏N
i=1

exp

−ε1|Q1 (x)i − zi|
∆CSper


exp

−ε1|Q1 (y)i − zi|
∆CSper

 6 exp (ε1) . (21)

Therefore, MP-FS satisfies ε1-differential privacy

and only introduces a small amount of noise because

the sensitivity ∆CSper ∈ [0, 1], as shown in (20) and

(21).

In MP-OP for utility optimization, the first step is

to select the candidate feature set by the exponential

mechanism, and the second step is to release private

data or ML algorithms, each of which consumes the

privacy budget ε2
2 .

For the first step of MP-OP, we allocate the ε2
2 pri-

vacy budget for candidate selection by the exponential

mechanism. We perform further analysis of the sensi-

tivity for the utility functions as follows.

For u1, according to the concept of information gain,

since H (Dp) ∈ [0, log2 (π (cls))], and Hp|f1 (Dp) ∈
[0, H (Dp)], the sensitivity ∆u1 = log2 (π (cls)), where

π (cls) is the range of the classified feature.

For u2, according to the concept of MCD, since

ui2 = 0, when MCD is 1, the value of ∆u2 takes the

maximum, and therefore, the sensitivity ∆u2 = 1
K ,

where K is the number of correlated records in the

merged dataset.

In the second step of MP-OP, when the private data

is released, we add noise to the count queries Q2(.).

When releasing a private ML algorithm, Q2(.) returns

the weights of the specific ML algorithm, such as the LR

and SVM model. We make the algorithm satisfy differ-

ential privacy by perturbing an objective function, such

as FM-regression and Objective SVM.

According to the Laplace mechanism, for both sit-

uations we have

M2

(
x,Q2 (.) ,

ε2
2

)
= Q2 (x) + Lap

(
2∆CSp
ε2

)
. (22)

The ratio of two probability density can be pre-

sented as

px (z)

py (z)

=
∏N
i=1

exp

(
−
ε2
2 |Q2 (x)i − zi|

∆CSp

)
exp

(
−
ε2
2 |Q2 (y)i − zi|

∆CSp

) 6 exp
(ε2

2

)
. (23)

Therefore, for releasing private data or ML algo-

rithms, the ε2
2 privacy budget is consumed in MP-OP,

as shown in (22) and (23). The sensitivity is the mul-

tiparty correlated sensitivity (i.e., ∆CSp) proposed in

this paper.

It should be explained that the queries in feature

selection and machine learning are from different per-

sons. The DP in feature selection is to protect data

from other parties inside the system, and the DP in

machine learning is to protect data from adversaries

outside the system. However, we still need to split the

privacy budget because the allocation of the privacy

budget is only related to the operands of the algorithm.

The operand of the two algorithms in MP-CRDP is
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D. According to the privacy analysis and Sequential

Composition, MP-CRDP divides the privacy budget ε

into ε1, ε2
2 and ε2

2 . Therefore, MP-CRDP satisfies ε-

differential privacy. Explicitly, noise adding that im-

pacts the accuracy of privacy-preserving models and

data utility only happens in the second step. Thus, our

method only consumes a small amount of noise while

holding ε-differential privacy.

6 Experiments

We verify the effectiveness of MP-CRDP using two

sets of experiments. The first set is aimed at the re-

leased private ML algorithms to verify the machine

learning model’s effectiveness of our method and other

correlated differential privacy methods at the same pri-

vacy protection level, such as the training accuracy of

LR and SVM. The second set is aimed at the data uti-

lity of the released private data to verify the average

query accuracy of our method and the compared meth-

ods at the same privacy protection level.

6.1 Experimental Setup

Regarding the choice of compared methods, we fo-

cus on the efficiency of different correlated differen-

tial privacy methods in processing the correlation of

multiparty datasets and analyze the impact of correla-

tion processing mechanisms of different methods on the

training accuracy and the utility of the released data.

Different mechanisms and inappropriate feature selec-

tion operate higher sensitivity and introduce additional

noise, which reduces the accuracy of the training model

and the effectiveness of data release. Different corre-

lated differential privacy methods include Group DP [27]

and Correlated DP [28]. The former provides global sen-

sitivity by calculating the number of correlated records,

and the latter calculates the weighted correlated sensi-

tivity by analyzing the correlated degree. Our method

analyzes the multiparty data correlation, as shown in

Section 4, and provides a rigorous correlation thresh-

old, which reduces the multiparty correlated sensitivity

in the weighted calculation.

With respect to dataset selection, we use the com-

mon machine learning datasets to arrange the experi-

ment, such as the Adult dataset and the Breast Cancer

dataset.

• Adult. The Adult dataset from the UCI Machine

Learning Repository 1○ originally has 48 842 records and

14 attributes with the label about whether a person’s

annual salary exceeds 50k. During the data preprocess-

ing, we drop the duplicates and the records with miss-

ing or illegal values, and then perform dummy varia-

ble conversion and discretize continuous data. In the

experiments of verifying the effectiveness of our meth-

ods in the ML model and query accuracy, we select

10 000 records with 12 features that are more correlated

to other records to get closer to the real-life situation

where ubiquitous data correlation exists, especially in

multiparty data scenarios.

• Breast Cancer. The Breast Cancer dataset

from UCI Machine Learning Repository 1○ contains 569

records with 32 features. It is noted that the first col-

umn is the ID which provides the ID number and there-

fore is irrelevant to the diagnosis. Meanwhile, the sec-

ond column is a diagnosis that provides the diagnosis of

breast tissues (malignant or benign), and we take it as

the label. Thus, after dropping the above two columns,

we retain the 30 remaining features rather than 32 for

our experiment.

To simulate the multiparty scenario presented in

this paper, we expand and reconstruct the dataset to

some extent. We divide the Adult and Breast Cancer

datasets into three local datasets according to the num-

ber of features respectively. Each Adult local dataset

contains four features, and each Breast Cancer local

dataset contains 10 features. The Adult and Breast

Cancer datasets are both used to solve binary classi-

fication issues. SVM can be directly applied to our

datasets. In logistic regression, we map this continuous

value to interval (0, 1) through the sigmoid function.

Then we set a threshold, divide those mapped values

greater than the threshold into one class and the others

into the other class.

In terms of machine learning algorithm selection, we

choose LR and SVM as the experimental algorithms.

In particular, with regard to the utility verification of

the private ML algorithms, we compare the sensitiv-

ity calculated by different methods and then uniformly

perform the private operations for the machine learning

algorithms. We choose classical private ML algorithms,

such as FM-regression [17] and Objective SVM [19], by

adding the noise generated by different correlated dif-

ferential privacy methods to the weight of the objective

functions and compare the training accuracy of the re-

leased private LR and SVM.

In terms of parameter selection, we set the ini-

tial w0 = 0.9 to calculate the correlated sensitivity of

1○http://www.ics.uci.edu/mlearn/MLRepository.html, July 2020.
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the local dataset based on the experience of existing

research [40]. Then we use the calculated MCD as the

correlation threshold of the merged dataset. In Algo-

rithm 2, the adjustment coefficient b determines the

relaxation degree of the best feature set to reduce the

correlation. According to the scales of the adjusted fea-

ture sets of the Adult dataset and the Breast Cancer

dataset, we set the value of b to 2 and 4, respectively.

Since the number of local datasets is 3, the important

feature threshold θim is set to 0.6. The Pearson’s cor-

relation threshold θper is set to 0.9.

To present the details of the experiment, the pro-

cesses of best features selection and features adjust-

ment according to the utility function u1 and u2 are

illustrated in Table 3. After MP-FS, seven best fea-

tures are selected for the Adult dataset, and 21 best

features are selected for the Breast Cancer dataset.

MP-OP re-selects two different adjusted features for the

Adult dataset and four different adjusted features for

the Breast Cancer dataset by u1 and u2, respectively.

The final best feature set contains the best features se-

lected by MP-FS and the adjusted features selected by

MP-OP.

We also need to note that some of the features in the

Adult dataset are categorical. We could not use Pear-

son’s correlation coefficient to measure the correlation

between features. As a supplement, we use the informa-

tion gain method to calculate the degree of correlation

between features.

6.2 Experiments for ML Algorithm

To verify the effectiveness of MP-CRDP on private

ML algorithms, we compare our method with Group

DP and Correlated DP to conduct performance inspec-

tions. The classification accuracy in machine learning

is utilized in this subsection as an indicator to reflect

the algorithm’s performance to inspect the comparison

results and changing trends of the accuracy with diffe-

rent privacy budgets. The classification accuracy is the

ratio of the number of samples correctly classified by

the classifier to the total number of samples. Both the

datasets used in this work are binary classification tasks

with the explicit label. Therefore, the LR and SVM

model should return the classification results, and then

the accuracy is calculated sequentially.

Fig. 3 and Fig. 4 present the experimental results

based on the LR and SVM on the Adult and the Breast

Cancer datasets, respectively. The five curves in Fig.3

and Fig.4 correspond to the following five situations:

1) merged dataset with feature selection, non-private-

FS; 2) merged dataset without feature selection, non-

private; 3) merged dataset with feature selection based

on Group DP, Private GS; 4) merged dataset with fea-

ture selection based on Correlated DP, Private CS; 5)

our method, Private CSp.

As shown explicitly, the accuracy after feature se-

lection has been improved to varying degrees, and the

private operations have led to varying degrees of ac-

curacy decline. The feature selection can provide an

improvement in accuracy compared with simple data

merging. As shown in Fig.3 and Fig.4, the accuracy

of Non-private-FS is better than the accuracy of Non-

private which is the strategy without feature selection.

As the privacy budget ε increases, the protection level

reduces so that the accuracy tends to rise and then sta-

bilizes.

In privacy protection schemes 3, 4, and 5, based

on FM-regression and Objective SVM, under the same

privacy budget, the accuracy of Private GS is slightly

lower than that of Private CS, and they are lower than

that of our method Private CSp because the sensitivity

reduction of our method reduces the noise introduced.

In Fig.3 and Fig.4, the training results of different uti-

lity functions on different datasets show that the accu-

racy of Figs. 3(b) and 3(d) and Figs.4(b) and 4(d) is

Table 3. Process of Selecting and Adjusting Features by MP-CRDP

Dataset MP-FS MP-OP

Adult Best features={‘native-country’, ‘education’, ‘work-class’, ‘race’,
‘relationship’, ‘marital-status’, ‘occupation’}

Adjusted features by u1 = {‘education-num’,
‘age’}
Adjusted features by u2 = {‘fnlwgt’, ‘age’}

Breast
Cancer

Best features = {‘concave points-mean’, ‘area-se’,
‘concavity-worst’, ‘compactness-se’, ‘perimeter-worst’,
‘concavity-mean’, ‘texture-mean’, ‘compactness-mean’,
‘smoothness-worst’, ‘symmetry-worst’, ‘symmetry-se’,
‘concave points-worst’, ‘perimeter-mean’, ‘concavity-se’,
‘radius-worst’, ‘radius-mean’, ‘fractal-dimension-worst’,
‘smoothness-mean’, ‘radius-se’, ‘concave points-se’,
‘texture-worst’}

Adjusted Features by u1={‘area-worst’, ‘area-
mean’, ‘perimeter-se’, ‘compactness-worst’}
Adjusted features by u2 = {‘texture-se’, ‘fractal-
dimension-mean’, ‘area-mean’, ‘symmetry-
mean’}
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Fig.3. Privacy-accuracy trade-off in LR. (a) Accuracy of training LR model based on u1 on Adult. (b) Accuracy of training LR model
based on u2 on Adult. (c) Accuracy of training LR model based on u1 on Breast Cancer. (d) Accuracy of training LR model based on
u2 on Breast Cancer.

slightly better than the accuracy of Figs.3(a) and 3(c)

and Figs.4(a) and 4(c) respectively. The results show

that the performance of generating candidate sets and

merged data based on the utility function u2 is better

than that based on u1. It indicates that reducing noise

intake has a greater impact on improving the accuracy.

6.3 Experiments for Data Release

Since our method provides both private algorithms

and the private data release solution, the data utility

after release is evaluated for verifying the performance

of MP-CRDP. The mean absolute error (MAE) is ap-

plied to analyze the count results and the impact of

varying the privacy budget. The data utility of Dp is

measured by MAE, which is given as follows:

MAE =
1

|Q|
∑
Qi∈Q

∣∣∣Q̂i (x)−Qi (x)
∣∣∣ , (24)

where Qi (x) is the true aggregation result, and Q̂i (x) is

the perturbed aggregation result. A low MAE indicates

a low error, and thus, a better data utility. For each

dataset, we generate the query set Q with 10 000 ran-

dom linear queries, for which the value of each feature

is randomly searched.

Fig.5 presents the data utility comparison of schem-

es 3, 4, and 5 in Subsection 6.2. As shown, MAE shows

a downward trend as the privacy budget ε increases,

which indicates that the private data utility increases

as the level of privacy protection decreases. Similar

to the results of released machine learning algorithms,

MAE of our method Private CSp on different datasets

is better than that of Private GS and Private CS. The

experimental results also show that generating candi-

date sets and merged data based on the utility function

u2 is better than that based on u1. It can be concluded

that reducing noise intake also has a positive effect on

improving the released data utility.
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Fig.4. Privacy-accuracy trade-off in SVM. (a) Accuracy of training SVM model based on u1 on Adult. (b) Accuracy of training SVM
model based on u2 on Adult. (c) Accuracy of training SVM model based on u1 on Breast Cancer. (d) Accuracy of training SVM model
based on u2 on Breast Cancer.

6.4 Result Analysis

We analyze the experimental results and conclude

several advantages of our method for the multiparty

correlated data private operation.

• Our method performs feature selection on multi-

party datasets, which improves the accuracy of machine

learning algorithms. On the one hand, the selection

of important features in machine learning significantly

impacts the accuracy. On the other hand, redundant

features bring performance degradation, and effective

dimensionality reduction improves the accuracy in mul-

tiparty scenarios.

• In the multiparty scenario, the sensitivity of corre-

lated data increases, and additional noise is introduced,

which reduces data utility and model training accuracy.

MP-OP effectively reduces the correlation by relaxing

the number of features. We perform an experiment to

expose the trend of correlation and correlated records

on different datasets with the number of features. The

results are shown in Fig.6, where the correlation shows

a downward trend as the number of features increases.

• By correlation analysis of different correlated dif-

ferential privacy methods, our method reduces the data

correlation more effectively in the case of the same

number of features so that the released algorithms and

data maintain good utility. Fig.6(a) and Fig.6(c) show

the comparison of the correlation between ∆GS, ∆CS,

and our method ∆CSp with the same number of fea-

tures on different datasets. Fig.6(b) and Fig.6(d) show

the comparison of the number of correlated records K.

Since ∆GS does not consider the correlated degree, the

calculated correlation of ∆GS is higher than that of

∆CS, which is the addition of the weighted correlated

degree, but the number of related records K is the same

for the two methods. Our method not only considers

the correlated degree but also provides more rigorous

standards for the correlation threshold. In the multi-

party dataset, the correlation of the local dataset pro-
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vides prior knowledge for determining the correlation

threshold of the merged dataset, thereby the selection

of ∆CSp is more objective than that of ∆CS. While

reflecting the global correlation trend, the correlation

threshold of ∆CSp is more rigorous than that of ∆CS.

As shown in Fig.6(b) and Fig.6(d), the number of cor-

related records K of ∆CSp is less than that of ∆CS.

Therefore, our method more effectively reduces the cor-

relation.

7 Conclusions

In this work, we studied the inherent problem of pri-

vate machine learning algorithms, which is balancing

privacy and utility theoretically and empirically. Con-

cerning reduced data utility due to privacy protection

operations in the consolidated high-dimensional and

correlated data, MP-CRDP was proposed to optimize

data utility by private feature selection and correlated

sensitivity reduction operations. Compared with the

existing correlated differentially private method, MP-

CRDP provides the private querying data or the pri-

vate ML algorithm to meet the data analysis require-

ment of users by the design of releasing mechanism and

improved the ML model training accuracy effectively.

We also proposed a multiparty correlation ana-

lysis technique, which reduces the correlated sensitiv-

ity, thereby reducing the DP noise injecting. The ex-

isting methods lack considering the correlated degree

and defining an objective correlated threshold causes

high data correlation. Our method considers the corre-

lated degree and prior knowledge about the correlation

of local datasets and provides a more rigorous standard

for determining the correlation threshold. Therefore, it

effectively reduces the correlated sensitivity.

Comprehensive experiments on different datasets

demonstrated that the classification accuracy with

different privacy budgets of the proposed method in ma-

chine learning was superior to that of other compared

algorithms. Moreover, the proposed got low MAE val-



Jian-Zhe Zhao et al.: Correlated Differential Privacy of Multiparty Data Release in Machine Learning 249

6 12 18 24 30

N

(c)

6 12 18 24 30

N

(d)

4 6 8 10 12

N

(b)

4 6 8 10 12

N

(a)

DCSp
DCS
DGS

DCSp
DCS=DGS

DCSp
DCS=DGS

DCSp
DCS
DGS

250

200

150

100

50

0

250

200

150

100

50

0

80

60

40

20

90

80

70

60

50

40

30

20

C
o
rr
e
la
ti
o
n

K

C
o
rr
e
la
ti
o
n

K
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ues for better data utility.

It can be concluded that the proposed MP-CRDP

could improve data utility by optimal feature set and

reducing correlated sensitivity via proposed multiparty

correlation analysis. MP-CRDP is an effective and

practical method for multiparty data release with dif-

ferential privacy protection.

Our method assumes existing trusted servers and

centralizes data for training and private operation in a

multiparty data release scenario. Correlation analysis

in federated learning scenarios is an interesting direc-

tion for our future research.
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