
Zhang JM, Cui ZQ, Chen X et al. DeltaFuzz: Historical version information guided fuzz testing. JOURNAL OF COM-

PUTER SCIENCE AND TECHNOLOGY 37(1): 29–49 Jan. 2022. DOI 10.1007/s11390-021-1663-7

DeltaFuzz: Historical Version Information Guided Fuzz Testing

Jia-Ming Zhang1 (Ü[µ), Zhan-Qi Cui1,∗ (wÐà), Senior Member, CCF, Member, IEEE
Xiang Chen2 (� �), Senior Member, CCF, Member, IEEE, Huan-Huan Wu1 (Ç��)
Li-Wei Zheng1 (xw�), Member, CCF, and Jian-Bin Liu1 (4ïU)

1Computer School, Beijing Information Science and Technology University, Beijing 100101, China
2School of Information Science and Technology, Nantong University, Nantong 226019, China

E-mail: {radon, czq}@bistu.edu.cn; xchencs@ntu.edu.cn; {wuhuanhuan, zlw, ljb}@bistu.edu.cn

Received June 1, 2021; accepted December 16, 2021.

Abstract With the widespread use of agile software development methods, such as agile and scrum, software is iteratively

updated more frequently. To ensure the quality of the software, regression testing is conducted before new versions are

released. Moreover, to improve the efficiency of regression testing, testing efforts should be concentrated on the modified

and impacted parts of a program. However, the costs of manually constructing new test cases for the modified and impacted

parts are relatively expensive. Fuzz testing is an effective method for generating test data automatically, but it is usually

devoted to achieving higher code coverage, which makes fuzz testing unsuitable for direct regression testing scenarios. For

this reason, we propose a fuzz testing method based on the guidance of historical version information. First, the differences

between the program being tested and the last version are analyzed, and the results of the analysis are used to locate change

points. Second, change impact analysis is performed to find the corresponding impacted basic blocks. Finally, the fitness

values of test cases are calculated according to the execution traces, and new test cases are generated iteratively by the

genetic algorithm. Based on the proposed method, we implement a prototype tool DeltaFuzz and conduct experiments on

six open-source projects. Compared with the fuzzing tool AFLGo, AFLFast and AFL, DeltaFuzz can reach the target faster,

and the time taken by DeltaFuzz was reduced by 20.59%, 30.05% and 32.61%, respectively.

Keywords fuzz testing, regression testing, change impact analysis, fitness function

1 Introduction

Software maintenance is a particularly important

stage in the software life cycle, and its purpose is to

fix software vulnerabilities and ensure that the software

can run stably [1, 2]. Currently, with the widespread use

of agile software development methods and mobile In-

ternet, software is updated more frequently. For exam-

ple, the first version of mobile app Facebook for iOS

was released in 2008 1○. Since 2015, the app is updated

nearly every week. By April 17, 2021, it had been

updated more than 300 times, and the latest version

was 314.1 2○. In the software maintenance and update

process, vulnerabilities will be detected and repaired,

new functions will be introduced, and a new version

of the software program will be produced. Comparing

the new version with the last version of software, many

parts of the software are impacted by the updates, and

these updates are likely to cause unknown vulnerabili-

ties. The locations where the software source code up-

dates during software evolution are called change points

in this paper. Regression testing will be performed be-

fore the new version of software is released to prevent

vulnerabilities from impacting the use of the software.

However, due to the high update frequency of software,

Regular Paper

Special Section on Software Systems 2021—Theme: Dependable Software Engineering

This work was partially supported by the Leading-Edge Technology Program of Jiangsu Natural Science Foundation of China under
Grant No. BK20202001, the National Natural Science Foundation of China under Grant No. 61702041, and the Beijing Information
Science and Technology University “Qin-Xin Talent” Cultivation Project under Grant No. QXTCP C201906.

∗Corresponding Author
1○https://www.adweek.com/performance-marketing/facebook-for-iphone-application-launches/, Apr. 2021.
2○https://apps.apple.com/us/app/facebook/id284882215, Apr. 2021.

©Institute of Computing Technology, Chinese Academy of Sciences 2022

http://dx.doi.org/10.1007/s11390-021-1663-7

30 J. Comput. Sci. & Technol., Jan. 2022, Vol.37, No.1

frequent regression tests are required, which require

considerable manpower and computing resources. If re-

gression testing is blindly performed on the new version

of a program, the test of the change points will be insuf-

ficient, and many resources will be spent unnecessary,

even delaying the release of the new version [3]. There-

fore, appropriate test cases need to be filtered out from

the existing test case repository for reuse and adapta-

tion, and new test cases also need to be constructed be-

fore regression testing. If test cases covering the change

points can be automatically generated, the efficiency of

regression testing will be improved.

Fuzz testing, which was first proposed by Miller et

al. in 1989 [4], can automatically generate a large num-

ber of new test cases and send them to the program

being tested [5–7]. For example, AFL 3○ is a commonly-

used mutation-based fuzzing tool that exposes hun-

dreds of high-risk vulnerabilities, and many studies at-

tempt to improve the efficiency of fuzzing based on

AFL [8–11]. According to different extents of internal

logic analysis, fuzz testing can be divided into black-box

fuzz testing [12], white-box fuzz testing [13, 14] and grey-

box fuzz testing [15–19]. Among them, grey-box fuzz

testing has been one of the most effective techniques

for detecting vulnerabilities in recent years. Grey-box

fuzzing can use lightweight program analysis with a

small overhead [16, 19] to achieve excellent test results.

Although fuzz testing has many advantages, its short-

comings cannot be ignored. For example, coverage-

guided fuzz testing tools such as AFL aim at a higher

code coverage, which makes these tools difficult to use

for regression testing. Target-guided fuzz testing tools

such as AFLGo [20] aim to cover one or more code blocks

without considering the paths impacted by the change

points.

To solve the above problems, we propose a method

that uses historical version information guided fuzz

testing. First, the program being tested and its last

version are compared to acquire basic blocks where the

change points are located. Second, change impact ana-

lysis is performed to generate a set of impacted basic

blocks and the program being tested is instrumented

according to the impacted basic block set. Finally, fuzz

testing is performed for the program being tested and

outputs a testing report when it is aborted. During the

testing process, the fitness value of a test case is calcu-

lated according to the path it covers, and corresponding

test resources are allocated to the test case. We imple-

ment a prototype tool DeltaFuzz based on the above

method and conduct experiments on six open-source

projects. The experimental result shows that Delta-

Fuzz outperforms AFLGo in terms of the number of

triggered crashes, detected vulnerabilities, and covered

paths.

The main contributions of this paper can be sum-

marized as follows.

• A fuzz testing method guided by historical version

information is proposed. This method uses the diffe-

rences between the program being tested and its last

version to generate the set of basic blocks impacted by

change points. The impacted basic blocks set provides

guidance for the fuzzing tool to improve the testing ef-

ficiency.

• A path-sensitive fitness function is proposed. This

function calculates the fitness value based on the im-

pacted basic block set and the path covered by the test

case. The fitness function can help fuzz testing allocate

resources effectively.

• Based on the above method, the prototype tool

DeltaFuzz is implemented, and experiments are con-

ducted on six open-source projects to validate the ef-

fectiveness of the proposed method.

2 Historical Version Information Guided Fuzz

Testing

The framework of the historical version informa-

tion guided fuzz testing method proposed in this pa-

per is shown in Fig. 1. First, the source files of the

program being tested and the corresponding historical

version program are acquired, and the change points in

the program being tested are located by comparing the

differences. Then, change impact analysis is performed

according to the locations of the change points, and

the source files of the program being tested are instru-

mented according to the analysis result. Finally, fuzz

testing is performed on the program being tested af-

ter instrumentation, and test resources are allocated to

test seeds according to the fitness. The testing process

is aborted when the abort condition is satisfied.

2.1 Change Points

In the software evolution process, developers update

the old version of software by adding branches, modi-

fying parameter types, and introducing new functions

and other actions. These change points are error-prone

and will change the behaviors of the software.

3○https://github.com/google/AFL, Jan. 2021.

Jia-Ming Zhang et al.: DeltaFuzz: Historical Version Information Guided Fuzz Testing 31

Program

Analysis

Historical Version of

the Program Being
Tested

HHHHHHH

Target Version of the
Program Being Tested

TT

Difference

Comparison

Change
Points

Control Flow
Graph/Call Grap

Generation

Cl l

Call Graph

Control Flow Graph

Change Impact
I

Analysis

S

Analysis Result

SS

Target Version of the
Program Being Tested

T

Program
Instrumentation

Execution

Fitness
Calculation

Fitness Test Case
Selection

Cases

New Test

Feedback Analysis Test ReportSeed Test Case
d

Fuzz

Testing

Test Case

Test Case Queue

T

Fig.1. Framework of historical version information guided fuzz testing.

For example, Fig.2(a) is a code snippet from the

listfdb.c file in version 0.4.8 of the libming project 4○,

and Fig.2(b) is a code snippet from the listfdb.c file

in version 0.4.7 of the libming project 5○. In these two

code snippets, we can see that there is a code change in

the readBits function (in red). In line 74 of version 0.4.7

of the libming project, the code is “++fileOffset”. In

version 0.4.8 of the libming project, the code is changed

to “if(feof(f))”. Therefore, compared with version 0.4.7

of the libming project, line 74 of the listfdb.c file in

version 0.4.8 of the libming project is a change point.

2.2 Path-Sensitive Suspicious Analysis for
Basic Blocks

Modifications, improvements, or additions of fea-

tures in the new version of software will introduce

change points. In the version difference analysis pro-

cess, we need to locate the change points to perform

change impact path analysis. However, even a sim-

ple program may have numerous paths. Large over-

head will be introduced if change impact analysis is

performed on all paths of a program. Therefore, we

propose performing path-sensitive suspicious analysis

for basic blocks, which are sequences of statements ex-

ecuted sequentially to replace the change impact ana-

lysis on paths. In this way, we can obtain a set of basic

blocks that are impacted by the change points.

To determine whether a basic block is impacted by

any change points, reachability analysis can be per-

formed between it and the change points. Specifically,

there are two reachability analysis methods to deter-

mine whether a basic block is impacted by the change

points. One method is forward analysis, which starts

from the basic block being analyzed and takes a ba-

sic block that contains change points as the target to

traverse the control flow graph. If the target can be

reached by the basic block being analyzed, it indicates

that the basic block being analyzed is impacted. For-

4○https://github.com/libming/libming/tree/ming-0 4 8, Feb. 2021.
5○https://github.com/libming/libming/tree/ming-0 4 7, Feb. 2021.

32 J. Comput. Sci. & Technol., Jan. 2022, Vol.37, No.1

Code Snippet 2

55

56

57

66

67

68

69

70

71

72

73

74

int readBits(FILE *f, int number)

{

 int ret = buffer;

 if(number > bufbits)

 {

 number -= bufbits;

 while(number > 8)

 {

 ret <<= 8;

 ret += fgetc(f);

 ++fileOffset;

(b)

Code Snippet 1

55

56

57

66

67

68

69

70

71

72

73

74

int readBits(FILE *f, int number)

{

 int ret = buffer;

 if(number > bufbits)

 {

 number -= bufbits;

 while(number > 8)

 {

 ret <<= 8;

 ret += fgetc(f);

 if (feof(f))

(a)

... ...

..
.

..
.

Fig.2. Code snippets in listfdb.c of the libming project. (a) Code snippet in version 0.4.8. (b) Code snippet in version 0.4.7.

ward analysis is iterated until the entry point of the

program is reached. The other method is backward

analysis, which takes the basic block being analyzed

as the end point and takes a basic block that contains

change points as the start point to traverse the control

flow graph in a backward manner. If the end point can

be reached by the start point, it indicates that the basic

block being analyzed is impacted. Due to the existence

of loops in a program, too much backward analysis may

cause all the basic blocks in the program to be impacted

by the change points. Therefore, the backward analysis

only proceeds to the end of the current function. If the

basic block being analyzed and the basic blocks that

contain change points cannot be reached in the above

two ways, it means that the basic block being analyzed

is not impacted. Through this method, we can deter-

mine whether a basic block in the path segment is im-

pacted before fuzz testing. After fuzz testing starts, the

fitness of a test case is calculated based on whether the

basic blocks covered by the test case are impacted.

The code snippet in Fig.2(a) is adapted from version

0.4.8 of the libming project to illustrate the reachabil-

ity analysis process of the basic block. To facilitate

the subsequent description, we use [bbName] to rep-

resent the basic block bbName and <FuncName> to

represent the function FuncName. As shown in Fig.2,

the historical version of libming (version 0.4.7) is com-

pared with the target version (0.4.8), and one change

point is identified in line 74 of the listfdb.c file. The

control flow graph of the code snippet in Fig.2(a) is

shown in Fig.3 and is generated by the graph extractor

of AFLGo. In Fig.3, the pink basic block represents the

basic block where the change point is located, namely,

[listfdb.c:72]. Taking the pink basic block as the start or

end, we search for basic blocks that can reach the pink

basic block using forward or backward analysis. Once a

basic block can be reached in the forward or backward

direction, it means that the basic block is impacted

by [listfdb.c:72]. Fig.3 shows that except for the basic

blocks [listfdb.c:104] and [listfdb.c:61], all the other ba-

sic blocks are impacted by [listfdb.c:72]. Since the basic

block [listfdb.c:72] is in the function <readBits>, the

basic block that calls the function <readBits> needs

to be analyzed next after finishing the analysis of the

control flow graph of the <readBits> function.

listfdb.c:55

listfdb.c:66

listfdb.c:72

listfdb.c:109

listfdb.c:104

listfdb.c:61

...

...

Fig.3. Part of the control flow graph of the <readBits> function.

Jia-Ming Zhang et al.: DeltaFuzz: Historical Version Information Guided Fuzz Testing 33

Traversing the function call information, we

find that the basic block [parser.c:101], which is

in the <parseSWF MATRIX> function, calls the

<readBits> function. The control flow graph of the

<parseSWF MATRIX> function is shown in Fig.4(a).

In Fig.4, the orange basic block means that it can reach

the change point through function calls. For exam-

ple, the basic block [parser.c:101] calls the <readBits>

function, which contains the change point, marked in

orange. The reachability analysis method mentioned

above can be used iteratively to analyze whether the

basic blocks in <parseSWF MATRIX> are impacted.

Therefore, Fig.4(a) shows that the basic blocks are all

impacted by the change point.

After analyzing the control flow graph of the

<parseSWF MATRIX> function, the basic blocks

that call the function need to be located. The

<parseSWF MATRIX> function is called by the

basic block [parser.c:591], which is contained in

the <parseSWF FILLSTYLE> function. The

<parseSWF FILLSTYLE> function is called by the

basic block [parser.c:655], which is contained in the

<parseSWF LINESTYLE2> function. The part of the

control flow graph of the <parseSWF FILLSTYLE>

function and the complete control flow graph of the

<parseSWF LINESTYLE2> function are shown in

Fig.4(b) and Fig.4(c), respectively.

Algorithm 1 introduces the path-sensitive suspi-

cious analysis method for basic blocks. The input is

a set of change points acquired through the difference

comparison and stored in the queue bbQueue. The

output is bbSusp, which stores the basic blocks that

are impacted by the change points. In the analysis

process, first, when bbQueue is not empty, the ana-

lysis will be performed continuously (line 1). Then,

the first element of bbQueue will be obtained (line 2),

and it will be set as the basic block being analyzed

bbT (line 3). Variable bbChecked is introduced to pre-

vent the path set analysis from falling into an infinite

loop. For example, let us suppose there is a case where

<FuncC>→<FuncA>→<FuncB>→<FuncC>→ the

function of the change point. If we do not add the

checked basic blocks to bbChecked, the program will

infinitely fall into the loop of analyzing <FuncC>→
analyzing <FuncB>→ analyzing <FuncA>→ analyz-

ing <FuncC>→ This will cause the analysis to fail

to end. bbChecked is set to prevent this case. If bbT
has been analyzed, that is, it has been already in the

bbChecked queue, it will be skipped, and the next basic

block in the queue will be analyzed. The control flow

graph where bbT is located and the function where bbT
is located will be stored in CFG and Func (lines 6 and

7). Next, we analyze whether the other basic blocks

in CFG are impacted (lines 8–14). The impacted ba-

sic block will be added to the set bbSusp (lines 9–12).

Finally, other basic blocks that call the function Func

will be added to be analyzed queue bbQueue (line 15),

and bbT is added to the analyzed basic block queue

bbChecked to prevent an infinite loop (line 16).

parser.c:87

parser.c:94

parser.c:98

parser.c:101

parser.c:107

...

parser.c:578

parser.c:591 parser.c:595

parser.c:606

parser.c:652

parser.c:655 arser.c:653

parser.c:656

parser.c:651

parser.c:638

(b)(a) (c)

Fig.4. Control flow graphs of the three functions. (a) <parseSWF MATRIX> function. (b) Part of the <parseSWF FILLSTYLE>
function. (c) <parseSWF LINESTYLE2> function.

34 J. Comput. Sci. & Technol., Jan. 2022, Vol.37, No.1

Algorithm 1. Path-Sensitive Suspicious Analysis for Basic
Blocks

Input: queue bbQueue: a queue of change points
Output: set bbSusp: a set of impacted basic blocks

1: while bbQueue is not empty do

//bbT is the basic block under analysis

2: bbT := bbQueue.pop()

3: if bbT in bbChecked then

4: Continue

5: end if

6: CFG := the control flow graph of the function which con-

tains bbT
7: Func := the function where bbT is located

8: for bb in CFG do

9: if bb and bbT are the same basic block then

10: Add bb to bbSusp

11: else if bb can reach bbT or bbT can reach bb then

12: Add bb to bbSusp

13: end if

14: end for

15: bbQueue.push(basic blocks which called Func)

16: bbChecked.push(bbT) //Add bbT to bbChecked

17: end while

18: return bbSusp

2.3 Test Case Fitness Analysis

The execution path of ti is defined as a sequence

of basic blocks Pi = <bb0, bb1, ..., bbn>, which is cov-

ered by test case ti. Among them, bb0 is an entry point

of the program, and bbn is one of the exit points of

the program. <bbj , bbj+1> (0 6 j < n) is the basic

segment that constitutes the execution path Pi. Se-

quence PSi
p,q = <bbp, bbp+1, ..., bbq> (0 6 p < n and

p < q 6 n) is a path segment of Pi.

Fig.5 is used to illustrate the above definition. In

Fig.5, Pi = <bb0, bb1, ..., bbn> is a path of the program,

which is executed by test case ti. bb0 is the entry point

of the program, and bbn is one of the exit points of the

program. PSi
0,3 = <bb0, bb1, bb2, bb3> is a path segment

of Pi and bsi2,3 = <bb2, bb3> is a basic segment of Pi.

Entry

Point

Exit

Point

Pi

bb bb bb bbn

PS↪

bb

i

bs↪
i

Fig.5. Example of program path, path segment and basic seg-
ment.

We introduce (1) to calculate whether a basic seg-

ment is suspicious, and bsix,x+1 represents a basic seg-

ment in the path. During the execution of the test

case, the first basic block bbx and the second basic block

bbx+1 are examined to determine whether they are in-

cluded in the suspicious basic block set bbSusp, that is,

whether they are impacted by change points. If both

bbx and bbx+1 are in bbSusp, which means that they are

impacted by change points, then bsix,x+1 is a suspicious

basic segment. If one or both of bbx and bbx+1 are not

in bbSusp, which means that one or both of them are

not impacted by the change points, then bsix,x+1 is not

a suspicious basic segment.

Because the fitness values of test cases are evaluated

in a path-sensitive manner, the proportion of paths that

are impacted by the change points in the test case exe-

cution trace must be considered. The definition of the

basic segment shows that the basic segment is combined

with two consequent basic blocks, which are connected

by a path.

In forward analysis, if the starting basic block and

the ending basic block of a basic segment are both im-

pacted by a change point, it means that the test case

may reach the change point after covering the basic seg-

ment. Therefore, it can be considered that this basic

segment is impacted by the change point. Conversely,

if only 1 or 0 basic block in the basic segment is im-

pacted by a change point, it means that the test case

cannot reach the change point along with the basic seg-

ment, thereby the basic segment is not impacted by the

change point.

In backward analysis, if the starting basic block and

the ending basic block of a basic segment are impacted

by a change point, it means that the basic segment can

be covered by paths that can cover the change point.

In this case, the basic segment has a strong correla-

tion with the change point, thereby it can be considered

that the basic segment is impacted by the change point.

Conversely, if only 1 or 0 basic block in the basic seg-

ment is impacted by a change point, it means that the

basic segment cannot be covered by any test case that

can cover the change point, thereby the basic segment

is not impacted by the change point.

Susp(bsix,x+1)

=

{
1, if bbx ∈ bbSusp and bbx+1 ∈ bbSusp,

0, if bbx /∈ bbSusp or bbx+1 /∈ bbSusp.
(1)

In order to allocate resources for test cases effec-

tively, the fitness of test cases is calculated based on

the coverage of path segments. If the path-sensitive

suspicious analysis for basic blocks is performed during

Jia-Ming Zhang et al.: DeltaFuzz: Historical Version Information Guided Fuzz Testing 35

the testing process, unnecessary overhead will be intro-

duced. To improve the efficiency of fuzz testing, suspi-

cious analysis should be completed before fuzz testing

starts. Then, the program being tested is instrumented

according to the suspicious analysis results. Instrumen-

tation can help to check whether a covered basic block

is impacted by change points during test case execution.

If one basic block is not in the set bbSusp, it means that

the basic block is not impacted by the change points.

If one basic block is in the set bbSusp, it means that

the basic block is impacted by the change points. Ac-

cording to whether the basic blocks are included in the

set bbSusp and (1), the number of suspicious basic seg-

ments covered by the test case can be obtained to cal-

culate the fitness of the test case.

The fitness function Fit(ti) of the test case ti is

shown in (2), and the formula is used to determine the

amount of test resources allocated to ti. Pi is the path

executed by ti. PSi
u,v is a segment of path Pi that con-

sists of the continuous basic blocks acquired by change

impact analysis, and these basic blocks are closely re-

lated to the change point. According to the relation-

ship between the basic block in the path segment and

change points, the basic blocks in the path segment can

be divided into three types: the basic block is not im-

pacted by change points, but it is in the same function

that contains other impacted basic blocks; the basic

block is impacted by change points, but it does not con-

tain any change point; and the basic block is impacted

by change points, and it contains one or more change

points. PSi
u,v in the denominator represents the path

segment of test case ti. |PSi
u,v| represents the length of

the path segment in the execution path of test case ti
and, more specifically, is the number of basic segments

in the recorded path segment. Susp(bsix,x+1) is used

to analyze whether basic segment bsix,x+1 is suspicious,

that is, whether bsix,x+1 is impacted by change points.

Σbsi∈PSi
u,v

Susp(bsix,x+1) is the number of suspicious ba-

sic segments in PSi
u,v. By using (2), the fitness of the

test case ti can be calculated. The greater the propor-

tion of suspicious basic segments in PSi
u,v, the larger

the value of Fit(ti), and test cases with larger values

should be given more test resources because these test

cases are more likely to generate new test cases that

can cover the change points. The lower the propor-

tion of suspicious basic segments in PSi
u,v, the smaller

the value of Fit(ti), and test cases with smaller values

should be given fewer test resources because these test

cases are unlikely to generate new test cases that can

cover the change points.

Fit(ti) =
Σbsix,x+1∈PSi

u,v
Susp(bsix,x+1)

|PSi
u,v|

. (2)

For example, the paths covered by test cases tr,

tg and tb are marked in red, green, and blue, respec-

tively, in Fig.6. H, marked in pink, is a basic block

where the change point is located. Fig.6 shows that tr
covers three basic segments: bsrA,B , bs

r
B,E and bsrE,H .

These three basic segments are all suspicious basic

segments because A,B,E, and H are impacted basic

blocks. Therefore, the fitness value of the test case tr
is Fit(tr) = 3/3 = 1.0. Test case tb covers two ba-

sic segments: bsbA,B and bsbB,D. Among these two seg-

ments, bsbA,B is a suspicious basic segment because A

and B are impacted basic blocks, and bsbB,D is not a

suspicious basic segment because D is not an impacted

basic block. Therefore, the fitness value of test case tb
is Fit(tb) = 1/2 = 0.5. Test case tg covers two basic

segments: bsgA,C and bsgC,G. Neither of them is a suspi-

cious basic segment because C and G are not impacted

basic blocks. Therefore, the fitness value of the test

case tg is Fit(tg) = 0/2 = 0.

A

B C

D E F G

H

Path Covered by tr

bs
A↪B

Path Covered by tg

Path Covered by tb

b

bs
B↪D

b

bs
B↪E

r

bs
E↪H

r

bs
C↪G

g

bs
A↪C

g

bs
A↪B

r

Fig.6. Example of control flow graph with test case execution
path segments.

2.4 Path-Sensitive Grey-Box Fuzz Testing

Fuzzing is a testing technique that sends a large

number of randomly generated test cases to the pro-

gram being tested, and monitors the status of the

program [21–23]. According to different extents of source

code analysis, fuzz testing can be divided into black-box

fuzz testing, grey-box fuzz testing and white-box fuzz

testing.

36 J. Comput. Sci. & Technol., Jan. 2022, Vol.37, No.1

We use the path-sensitive grey-box fuzz testing

method, which aims to concentrate more testing re-

sources on the basic blocks impacted by the change

points. First, the code between different versions is ana-

lyzed, and the basic block that contains change points

is located. Second, change impact analysis is performed

to acquire the set of impacted basic blocks for instru-

mentation. Finally, fuzz testing is performed. During

fuzz testing, the fitness is calculated according to the

number of suspicious basic segments and the length of

the path segment, and resources are allocated to the

test cases.

Algorithm 2 describes the process of path-sensitive

grey-box fuzzing. We extend the directed grey-box

fuzzing approach AFLGo, and the lines with grey back-

grounds represent the part we have modified. The input

S is a set of initial test seeds. When the abort condition

is not satisfied (line 1), the fuzzing tool will select a seed

from the set and obtain its execution path information

(line 2). Then, the fitness of the seed is calculated based

on the length of the path segment covered by the seed

and the number of suspicious basic segments. There is

a scoring function in AFL, which will score the test case

based on the execution time of the test case, the foun-

dation time of the test case, the size of the test case, the

path depth, and other factors. The higher the score is,

the more the mutation opportunities there will be for

the test case. To allocate resources to each test case

more reasonably and make fuzzing more efficient, we

integrate the scoring function of AFL with the fitness

function as p = pAFL(s)× (Fit(s) + c) (line 3). Among

the variables, p is the final score of test case s; pAFL(s)

is the score calculated by AFL for test case s; Fit(s) is

the fitness of s, which is calculated by the fitness func-

tion; and c is a constant, which is used to prevent the

value of p from reaching 0 when the value of fitness is

0 and will cause the test case to have no opportunity

to be mutated. The larger the value p, the greater the

amount of resources that are allocated to the seed (line

4). Based on the allocated resources, seed s is mutated

to generate a new test case s′ (line 5). If the mutated

test case s′ triggers a program crash (line 6), s′ is saved

in Scrash, which is a set of test cases that can trigger

crashes (line 7). Then, whether s′ can increase the code

coverage is judged in line 8; and if the coverage is in-

creased, s′ is added to the seed set S (line 9). When the

abort condition is satisfied, the fuzz testing is aborted,

and the test report is outputted (line 13).

Algorithm 2. Path-Sensitive Grey-Box Fuzzing

Input: seed set S
Output: test report TestReport

//the abort condition can be the amount of testing time, the

number of crashes, and so on

1: while abort condition not satisfied do

//Choose a seed from the set

2: s = ChooseOneSeed(S)

//Calculate the fitness of the seed and integrate fitness

with scoring function of AFL

3: p = pAFL(s) × (Fit(s) + c)

//Allocate resources based on the value of p

4: for i from 1 to p do

5: s′ = Mutate(s)

6: if s′ triggers program crash then

7: Add s′ to Scrash

8: else if IsInteresting(s′) then

9: Add s′ to S //If the test case covers the new code,

save it

10: end if

11: end for

12: end while

13: return TestReport

3 Experimental Evaluation

Based on the above methods, we implement a histor-

ical version of the information-guided fuzz testing tool

DeltaFuzz on top of the target-guided grey-box fuzzing

tool AFLGo. AFLGo 6○ is a directed grey-box fuzzing

tool that is implemented based on the grey-box fuzzing

tool AFL. AFLGo adds the target guidance function

while maintaining the efficiency of grey-box fuzzing,

and a simulated annealing algorithm is used to guide

the test case generation. AFLFast 7○ is another grey-

box fuzzing tool that is implemented based on AFL.

AFLFast uses the Markov chain model to determine

the testing resources allocated to the seed test cases.

Since AFLGo, AFLFast and AFL have been widely

used [24–28], they are chosen as baseline tools for compa-

rison. Experiments are conducted on six open-source

projects to evaluate the effectiveness of DeltaFuzz. In

the experiments, we aim to answer the following re-

search questions.

RQ1. What are the performance differences among

DeltaFuzz, AFLGo and AFLFast in terms of executing

test cases, triggering crashes, and covering paths?

6○https://github.com/aflgo/aflgo, Jan. 2021.
7○https://github.com/mboehme/aflfast, Apr. 2021.

Jia-Ming Zhang et al.: DeltaFuzz: Historical Version Information Guided Fuzz Testing 37

RQ2. In comparison with AFLGo, AFLFast and

AFL, can DeltaFuzz concentrate more resources on

testing change points?

RQ3. In comparison with AFLGo and AFLFast,

can DeltaFuzz find more vulnerabilities?

The purpose of RQ1 is to examine the general test-

ing effect of DeltaFuzz, including the number of covered

paths, executed test cases, and triggered crashes. The

purpose of RQ2 is to examine the validity of DeltaFuzz,

that is, compared with AFLGo and AFLFast, whether

it can cover more basic blocks which contain change

points, and compared with AFLGo, AFLFast and AFL

whether it can reach the target basic blocks faster. The

purpose of RQ3 is to examine the vulnerabilities detec-

tion ability of DeltaFuzz, that is, the difference of vul-

nerabilities detected by AFLGo, AFLFast and Delta-

Fuzz.

3.1 Experimental Design

To answer these research questions, a set of experi-

ments are designed as follows.

The statistics of the experimental projects are

shown in Table 1. In Table 1, six open-source soft-

ware programs are selected out of the 11 experimental

projects. They are evaluated by AFLGo [20] and are

taken as the experimental projects. The target version

is the same as the version of the program being tested

that can be found in the fuzzing script provided by

AFLGo. AFLGo provides fuzz testing scripts, which

include the commit ID of the program being tested,

and the corresponding version of the program being

tested can be found according to the commit ID 8○.

The historical version is the last version published be-

fore the version of the program being tested. The six

open-source software programs are giflib 9○, jasper 10○,

libming 11○, libxml2 12○, lrzip 13○ and mjs 14○. The other

five projects are not selected since no historical ver-

sion can be found. Giflib is a software used to generate

and decode gif format images, and the development lan-

guage is C language. Jasper is an image processing soft-

ware that can process image data in various formats.

Libming is an output library that can be used in C,

C++, and Java; and it contains many Flash functions.

Libxml2 is the XML C parser and toolkit that was deve-

loped by Gnome and possesses high portability. It can

be built and run on various systems. Lrzip is a com-

pression program that can achieve a higher compression

rate and a faster compression speed when compressing

larger files. Mjs is an embedded JavaScript engine for C

or C++ specifically designed for microcontrollers with

limited resources. The column target version in Table 1

is the version of the program being tested, the column

historical version is the last version of the program be-

ing tested, and the column lines of code is the size of

the program being tested.

In the experiment, call graphs and control flow

graphs are generated by LLVM 15○, which is the same

as the graph extractor of AFLGo. The change points

are set as targets for AFLGo and DeltaFuzz. The

relevant information of the change points is shown in

Table 1. In the giflib project, there are 2 642 basic

blocks. Among them, 59 basic blocks contain change

Table 1. Statistics of Experimental Objects

ID Project Target
Version

Historical
Version

Lines of
Code

Number of Basic Blocks
Containing Change Points

Number of
Impacted Basic Blocks

Number of
Basic Blocks

1 giflib 5.1.1 5.1.0 44 528 59 698 2 642

2 jasper 1.900.3 1.900.2 60 045 808 7 112 9 467

3 libming 0.4.8 0.4.7 128 979 239 1 520 11 409

4 libxml2 2.9.3 2.9.2-rc2 529 541 130 36 546 75 719

5 lrzip 0.640 0.631 54 481 245 2 136 6 269

6 mjs 2.2 2.1 36 468 128 1 818 3 173

8○https://github.com/aflgo/aflgo/tree/master/scripts, Jan. 2021.
9○http://giflib.sourceforge.net/, Feb. 2021.
10○https://jasper-software.github.io/jasper/, Feb. 2021.
11○http://www.libming.org/, Feb. 2021.
12○http://www.xmlsoft.org/, Feb. 2021.
13○https://github.com/ckolivas/lrzip, Feb. 2021.
14○https://github.com/cesanta/mjs, Feb. 2021.
15○https://releases.llvm.org/, Feb. 2021.

38 J. Comput. Sci. & Technol., Jan. 2022, Vol.37, No.1

points, and 698 basic blocks are impacted. In the jasper

project, there are 9 467 basic blocks. Among them,

808 basic blocks contain change points, and 7 112 ba-

sic blocks are impacted. In the libming project, there

are 11 409 basic blocks. Among them, 239 basic blocks

contain change points, and 1 520 basic blocks are im-

pacted. In the libxml2 project, there are 75 719 basic

blocks. Among them, 130 basic blocks contain change

points, and 36 546 basic blocks are impacted. In the

lrzip project, there are 6 269 basic blocks. Among them,

245 basic blocks contain change points, and 2 136 basic

blocks are impacted. In the mjs project, there are 3 173

basic blocks. Among them, 128 basic blocks contain

change points, and 1 818 basic blocks are impacted.

The reason why the basic blocks that contain change

points are set as the target is that there are fewer of

those blocks than the basic blocks that are impacted. If

all impacted basic blocks are set as targets, then many

basic blocks will become the targets of fuzzing. For ex-

ample, in the jasper project, there are a total of 9 467

basic blocks. Of these, 7 112 basic blocks are impacted

by change points. If these 7 112 basic blocks are set as

targets, the target-guided fuzz testing will degenerate

into coverage-guided fuzz testing. Therefore, we choose

the basic blocks that contain change points as the tar-

get.

The effectiveness of mutation-based fuzz testing

highly depends on random mutations. To evaluate the

performance of DeltaFuzz, we set the test time to one

hour, repeat the experiment three times, and take the

average value as the result. The development and the

experimental environment are as follows: the operating

system is Ubuntu 16.04.7, the CPU is an Intelr Xeonr

CPU E5-2678 v3 @ 2.50 GHz, and the amount of RAM

is 8 GB.

3.2 Overview of Test Results

Table 2 shows the experimental results of Delta-

Fuzz and AFLGo, and Table 3 shows the experimental

results of DeltaFuzzF and DeltaFuzzB . They contain

three evaluation metrics: the number of test cases exe-

cuted, the number of crashes triggered, and the number

of paths covered. The results are the averages of the

three experiments.

In the giflib, jasper and mjs projects, the average

number of test cases executed by DeltaFuzz is less than

that of AFLGo. In the other three projects, the average

number of test cases executed by DeltaFuzz is slightly

Table 2. Comparison of DeltaFuzz, AFLGo and AFLFast in Executed Test Cases, Triggered Crashes and Covered Paths

Project Name Tool Number of Excuted Test Cases Number of Triggered Crashes Number of Covered Paths

giflib DeltaFuzz 3 137 569 9 211

AFLGo 4 674 988 7 217

AFLFast 5 917 288 13 265

jasper DeltaFuzz 4 387 472 19 143

AFLGo 5 261 385 20 152

AFLFast 107 705 0 6

libming DeltaFuzz 5 950 227 106 1 515

AFLGo 5 853 418 88 1 375

AFLFast 5 620 815 97 1 577

libxml2 DeltaFuzz 5 034 868 116 2 045

AFLGo 5 012 059 117 1 988

AFLFast 4 319 284 97 2 020

lrzip DeltaFuzz 5 942 571 0 2

AFLGo 5 928 352 0 2

AFLFast 12 884 0 2

mjs DeltaFuzz 6 080 262 0 1 180

AFLGo 7 534 011 0 1 178

AFLFast 7 181 757 0 1 333

Total DeltaFuzz 30 532 969 250 5 096

AFLGo 34 264 213 232 4 912

AFLFast 23 159 733 207 5 203

Jia-Ming Zhang et al.: DeltaFuzz: Historical Version Information Guided Fuzz Testing 39

Table 3. Comparison of DeltaFuzzF and DeltaFuzzB in Executed Test Cases, Triggered Crashes and Covered Paths

Project Name Tool Number of Excuted Test Cases Number of Triggered Crashes Number of Covered Paths

giflib DeltaFuzzF 3 185 741 7 199

DeltaFuzzB 3 342 462 7 215

jasper DeltaFuzzF 3 777 966 19 140

DeltaFuzzB 4 166 842 19 131

libming DeltaFuzzF 5 764 409 94 1 537

DeltaFuzzB 5 689 859 92 1 449

libxml2 DeltaFuzzF 4 852 108 109 1 993

DeltaFuzzB 4 615 106 113 1 999

lrzip DeltaFuzzF 5 657 311 0 2

DeltaFuzzB 5 741 300 0 2

mjs DeltaFuzzF 4 263 204 0 1 116

DeltaFuzzB 6 935 908 0 1 239

Total DeltaFuzzF 27 500 739 229 4 987

DeltaFuzzB 30 491 477 231 5 035

more than that of AFLGo. Overall, the total num-

ber of test cases executed by DeltaFuzz is 3 731 244 less

than that of AFLGo, which is 0.89 times as much as

that of AFLGo. This occurs because when DeltaFuzz

calculates the fitness values of the test cases during

testing, its complexity is slightly higher than that of

AFLGo, thus causing additional overhead and result-

ing in the number of test cases executed by DeltaFuzz

being slightly less than that by AFLGo.

The numbers of crashes detected by DeltaFuzz for

the jasper and libxml2 projects are both 1 less than

those by AFLGo; and both DeltaFuzz and AFLGo trig-

ger the same number of crashes in the lrzip and mjs

projects. In the giflib and libming project, the number

of crashes triggered by DeltaFuzz is 2 and 18 more than

that by AFLGo respectively. In total, DeltaFuzz trig-

gers 18 more crashes than AFLGo, that is, 1.08 times

as much as AFLGo. This occurs because the reachabil-

ity analysis of DeltaFuzz effectively guides fuzz testing,

which allows DeltaFuzz to trigger more crashes.

The number of paths covered by DeltaFuzz in the

lrzip project is the same as that by AFLGo. In the

giflib and jasper projects, the number of paths covered

by DeltaFuzz are 1 and 6 less than those by AFLGo,

respectively. In the libming, libxml2 and mjs projects,

the number of paths detected by DeltaFuzz are 140,

57 and 2 more than those by AFLGo, respectively. In

total, DeltaFuzz covers 184 more paths than AFLGo,

that is, 1.04 times as much as AFLGo. This occurs be-

cause the reachability analysis of DeltaFuzz effectively

guides fuzz testing, which allows DeltaFuzz to cover

more paths related to change points.

In the giflib and mjs projects, the number of test

cases executed by AFLFast is more than that by Delta-

Fuzz. In the libming, libxml2, jasper and lrzip projects,

the number of test cases executed by DeltaFuzz is

329 412, 715 584, 4 279 767 and 5 929 687 more than that

by AFLFast, that is, 1.06, 1.17, 40.74 and 461.24 times

as much as that by AFLFast, respectively. This occurs

because AFLFast has modified score calculating rules

for the seed test cases of AFL. If no high-quality test

case is generated, AFLFast would give all seed test cases

0 point after a period of time. This means that test-

ing resources would not be allocated to any of the seed

test cases, resulting in no new test cases being gene-

rated. Therefore, the number of test cases executed in

the jasper and lrzip projects for AFLFast is much lower

than that for DeltaFuzz and AFLGo.

In the giflib project, the number of crashes triggered

by AFLFast is more than that by DeltaFuzz. In the

lrzip and mjs projects, neither AFLFast nor DeltaFuzz

triggers crashes. In the jasper, libming and libxml2

projects, the number of crashes triggered by AFLFast

is less than that by DeltaFuzz. Overall, DeltaFuzz trig-

gers 43 more crashes than AFLFast, up to 1.21 times as

much as AFLFast. This occurs because the reachabil-

ity analysis of DeltaFuzz effectively guides fuzz testing,

which allows DeltaFuzz to trigger more crashes.

In the jasper project, the number of paths covered

by AFLFast is less than that by DeltaFuzz. In the lrzip

project, the number of paths covered by AFLFast is the

same as that by DeltaFuzz. In the other four projects,

40 J. Comput. Sci. & Technol., Jan. 2022, Vol.37, No.1

the number of paths covered by AFLFast is more than

that by DeltaFuzz. This occurs because AFLFast con-

centrates more resources on covering rare branches,

and AFLFast covers rarer branches but DeltaFuzz does

not; thus, there are more paths covered by AFLFast

than DeltaFuzz. However, test cases which cover rare

branches may not be able to trigger crashes.

To evaluate the effectiveness of forward, backward,

and two-way impact analysis in DeltaFuzz, two strate-

gies, DeltaFuzzF and DeltaFuzzB , are implemented. In

these two strategies, only forward analysis is executed

to perform path-sensitive analysis for suspicious basic

blocks in DeltaFuzzF , and only backward analysis is ex-

ecuted to perform path-sensitive analysis for suspicious

basic blocks in DeltaFuzzB .

For DeltaFuzzF , the total number of test cases exe-

cuted is less than that of DeltaFuzz, the total number of

crashes detected is 21 less than that of DeltaFuzz, and

the total number of paths covered is 109 less than that

of DeltaFuzz. For DeltaFuzzB , the total number of test

cases executed is similar to that of DeltaFuzz, the total

number of crashes detected is 19 less than that of Delta-

Fuzz, and the total number of paths covered is 61 less

than that of DeltaFuzz. This occurs because only half of

the reachability analysis is executed in DeltaFuzzF and

DeltaFuzzB . During fuzz testing, the target reachabil-

ity information obtained by DeltaFuzzF or DeltaFuzzB
is not so complete as the information obtained by Delta-

Fuzz. Thereby more testing effort is spent on paths that

are unrelated to change points.

Answer for RQ1. In comparison with AFLGo,

DeltaFuzz generates less test cases, but triggers more

crashes and covers more paths, 1.08 and 1.04 times

as much as AFLGo, respectively. In comparison with

AFLFast, DeltaFuzz covers less paths, but triggers

more crashes and generates more test cases, 1.21 and

1.32 times as much as AFLFast, respectively.

3.3 Change Point Coverage

In this subsection, we evaluate the change point

coverage of DeltaFuzz and AFLGo. Table 4 shows

the number of basic blocks that contain change points

(BBCCPs) and the number and percentage of BBCCPs

that DeltaFuzz, AFLGo and AFLFast cover. Table 4

Table 4. Comparison of DeltaFuzz, AFLGo and AFLFast in Change Point Coverage

Project Number of BBCCPs Tool Covered Percentage (%)

giflib 46 DeltaFuzz 9 15.25

AFLGo 9 15.25

AFLFast 9 15.25

jasper 808 DeltaFuzz 24 2.97

AFLGo 25 3.09

AFLFast 14 1.73

lbiming 239 DeltaFuzz 114 47.70

AFLGo 108 45.19

AFLFast 108 45.19

libxml2 130 DeltaFuzz 26 20.00

AFLGo 24 18.46

AFLFast 24 18.46

lrzip 245 DeltaFuzz 9 3.67

AFLGo 9 3.67

AFLFast 9 3.67

mjs 128 DeltaFuzz 50 39.06

AFLGo 50 39.06

AFLFast 49 38.28

Total 1 596 DeltaFuzz 232 14.42

AFLGo 225 13.98

AFLFast 213 13.24

Jia-Ming Zhang et al.: DeltaFuzz: Historical Version Information Guided Fuzz Testing 41

shows that in the giflib, lrzip and mjs projects, the num-

ber of BBCCPs covered by DeltaFuzz is equal to that by

AFLGo. In the jasper project, the number of BBCCPs

covered by DeltaFuzz is 1 less than that by AFLGo. In

the libming and libxml2 projects, the number of BBC-

CPs covered by DeltaFuzz is 6 and 2 more than that

by AFLGo, respectively. In total, DeltaFuzz covers 232

BBCCPs, 1.03 times as much as AFLGo; and the num-

ber of BBCCPs covered by DeltaFuzz is 14.42% of the

total, 0.44% higher than that by AFLGo. Compared

with AFLFast, in the giflib and lrzip projects, the num-

ber of BBCCPs covered by DeltaFuzz is the same as

that by AFLFast. In the other four projects, the num-

ber of BBCCPs covered by DeltaFuzz is greater than

that by AFLFast. In total, the number of BBCCPs cov-

ered by DeltaFuzz is 19 more than that by AFLFast,

1.09 times as much as that by AFLFast.

To further evaluate the effectiveness of DeltaFuzz in

guiding fuzz testing to focus on the change points, two

basic blocks that contain change points are randomly

selected from each project as the target. Then, the time

required by DeltaFuzz, AFLGo, AFLFast and AFL to

reach the target basic block is recorded. The timeout

is set to one hour, and the experiment is repeated three

times to determine the average time. The experimen-

tal results are shown in Table 5. T/O means that the

target has not been covered after one hour.

As Table 5 shows, when setting the basic block

stream.c:1649 or lrzip.c:880 in the lrzip project as the

target, none of the three tools can cover the target in

one hour. There are two basic blocks that AFLGo can

cover faster than DeltaFuzz, AFLFast and AFL, in-

cluding parser.c:7350 and parser.c:8287 in the libxml2

project. There is one basic block that AFL can cover

faster than DeltaFuzz, AFLGo and AFLFast, which is

mif cod.c:493 in the jasper project. There is one basic

block that AFLFast can cover faster than DeltaFuzz,

AFLGo and AFL, which is gifsponge.c:75 in the giflib

project. There are six basic blocks that DeltaFuzz can

cover faster than AFLGo, AFLFast and AFL; and they

are gifsponge.c:77 in the giflib project, mif cod.c:487 in

the jasper project, parser.c:267 and outputscript.c:551

in the libming project, and mjs.c:7883 and mjs.c:9322 in

the mjs project. As Table 5 shows, the time taken by

DeltaFuzz to cover the basic block outputscript.c:551

is reduced to 55.16%, 23.66% and 47.90% of that by

AFLGo, AFLFast and AFL, respectively. Besides,

AFLFast covers none of the target basic blocks in the

jasper project.

In general, the time taken for DeltaFuzz, AFLGo,

AFLFast and AFL to cover these targets is 19’40”,

24’46”, 21’48” and 29’11”, respectively (T/O excluded).

DeltaFuzz is 5’6” and 9’31” faster than AFLGo and

AFL, respectively, which is reduced to 20.59% and

32.61% of AFLGo and AFL, respectively. Compared

with AFLFast, DeltaFuzz reduces 6’33” to cover target

basic blocks (the jasper project is not included because

AFLFast runs out of time to cover target basic blocks),

and DeltaFuzz takes 30.05% less time than AFLFast.

This occurs because DeltaFuzz can reasonably allocate

test resources to test cases according to the reachabil-

ity analysis and fitness function so that the test re-

sources can concentrate more on change points. Thus,

DeltaFuzz can cover the target basic block faster than

Table 5. Comparison of the Time Required to Cover Specific Target Basic Blocks

Project BB’s Name DeltaFuzz AFLGo AFLFast AFL

giflib gifsponge.c:75 1′ 38′′ 1′ 25′′ 0′ 59′′ 3′ 31′′

gifsponge.c:77 0′ 18′′ 0′ 39′′ 0′ 33′′ 0′ 22′′

jasper mif cod.c:487 1′ 16′′ 1′ 51′′ T/O 2′ 31′′

mif cod.c:493 3′ 9′′ 3′ 16′′ T/O 2′ 3′′

libming parser.c:267 2′ 38′′ 2′ 48′′ 3′ 25′′ 2′ 50′′

outputscript.c:551 2′ 51′′ 5′ 10′′ 3′ 44′′ 5′ 57′′

libxml2 parser.c:7350 1′ 30′′ 1′ 13′′ 2′ 4′′ 1′ 26′′

parser.c:8287 1′ 31′′ 1′ 23′′ 1′ 59′′ 1′ 24′′

lrzip stream.c:1649 T/O T/O T/O T/O

lrzip.c:880 T/O T/O T/O T/O

mjs mjs.c:7883 0′ 53′′ 0′ 56′′ 0′ 56′′ 1′ 4′′

mjs.c:9322 3′ 56′′ 6′ 5′′ 8′ 8′′ 8′ 3′′

Total — 19′ 40′′ 24′ 46′′ 21′ 48′′ 29′ 11′′

42 J. Comput. Sci. & Technol., Jan. 2022, Vol.37, No.1

AFLGo, AFLFast and AFL.

DeltaFuzz can allocate test resources to test cases

according to the reachability analysis and fitness func-

tion. Thereby the test resources can concentrate more

on the change points. As a result, DeltaFuzz can

cover more basic blocks that contain change points

than AFLGo and cover target basic blocks faster than

AFLGo and AFL.

To validate whether DeltaFuzz can concentrate test-

ing resources on BBCCPs, the number of covered BBC-

CPs during fuzz testing is compared in Fig.7. Fig.7

shows the number of BBCCPs covered by DeltaFuzz,

AFLGo and AFLFast with different fuzz testing time

for the six projects. The horizontal axis is the time

of the fuzzing (in seconds), and the vertical axis is

the number of BBCCPs covered by the fuzzing tool.

Figs.7(a)–7(f) show the number of covered BBCCPs

during fuzzing for the six projects, respectively. The ta-

ble shows that in the lrzip project, DeltaFuzz, AFLGo

and AFLFast have similar performance. In the gi-

flib project, DeltaFuzz and AFLFast cover the same

number of BBCCPs faster than AFLGo with the same

9

8

7

6

5

4

3

2

24

22

20

18

16

14

27

24

21

18

15

12

9

6

3

0

11

10

9

8

7

6

50

48

46

44

42

40

220

200

180

160

140

120

100

110

100

90

80

70

60

50

40

30

N
u
m

b
e
r

o
f
B

B
C

C
P
s

C
o
v
e
re

d

Fuzzing Time (s)

(a)

DeltaFuzz
AFLGo
AFLFast

DeltaFuzz
AFLGo
AFLFast

DeltaFuzz
AFLGo
AFLFast

DeltaFuzz
AFLGo
AFLFast

DeltaFuzz
AFLGo
AFLFast

DeltaFuzz
AFLGo
AFLFast

DeltaFuzz
AFLGo
AFLFast

0 1 000 2 000 3 000
N

u
m

b
e
r

o
f
B

B
C

C
P
s

C
o
v
e
re

d
Fuzzing Time (s)

(c)

0 1 000 2 000 3 000

N
u
m

b
e
r

o
f
B

B
C

C
P
s

C
o
v
e
re

d

Fuzzing Time (s)

(b)

0 1 000 2 000 3 000

N
u
m

b
e
r

o
f
B

B
C

C
P
s

C
o
v
e
re

d

Fuzzing Time (s)

(d)

0 1 000 2 000 3 000 N
u
m

b
e
r

o
f
B

B
C

C
P
s

C
o
v
e
re

d

Fuzzing Time (s)

(f)

0 1 000 2 000 3 000N
u
m

b
e
r

o
f
B

B
C

C
P
s

C
o
v
e
re

d

Fuzzing Time (s)

(e)

0 1 000 2 000 3 000

N
u
m

b
e
r

o
f
B

B
C

C
P
s

C
o
v
e
re

d

Fuzzing Time (s)

(g)

0 1 000 2 000 3 000

Fig.7. Number of BBCCPs covered by DeltaFuzz, AFLGo and AFLFast with different time. (a) The giflib project. (b) The jasper
project. (c) The libming project. (d) The libxml2 project. (e) The lrzip project. (f) The mjs project. (g) All projects.

Jia-Ming Zhang et al.: DeltaFuzz: Historical Version Information Guided Fuzz Testing 43

fuzzing time. In the jasper project, AFLGo covers

more BBCCPs than DeltaFuzz and AFLFast with the

same fuzzing time. In the libming project, Delta-

Fuzz covers more BBCCPs than AFLGo and AFLFast

with the same fuzzing time. In the libxml2 and mjs

projects, DeltaFuzz and AFLGo cover more BBCCPs

than AFLFast, and DeltaFuzz covers the same number

of BBCCPs faster than AFLGo.

Fig.7(g) shows the total number of BBCCPs cov-

ered during fuzz testing for six projects. It can be seen

in Fig.7(g) that when fuzzing for 0–200 seconds, Delta-

Fuzz, AFLGo and AFLFast cover almost the same num-

ber of BBCCPs. After 200 seconds, DeltaFuzz covers

more BBCCPs faster than AFLGo and AFLFast at the

same fuzzing time.

Answer for RQ2. DeltaFuzz outperforms AFLGo

and AFLFast in terms of covered BBCCPs. The num-

ber of BBCCPs covered by DeltaFuzz is 1.03 and 1.09

times as much as that of AFLGo and AFLFast, respec-

tively. In comparison with the time cost to cover the

target basic block, DeltaFuzz reaches the target faster

than AFLGo, AFLFast and AFL. Therefore, when a

specific change point is set as the target, DeltaFuzz can

concentrate more testing resources on the change point.

3.4 Vulnerability Detection

In this subsection, we compare the vulnerabilities

detected by DeltaFuzz, AFLGo and AFLFast during

the testing process and compare the differences between

them. Table 6 shows the number of all vulnerabilities

detected by DeltaFuzz, AFLGo and AFLFast during

the testing process. In Table 6, subtotal is the number

of vulnerabilities detected by different fuzzing tools in

each project, while only detected by DeltaFuzz, AFLGo

and AFLFast is the number of vulnerabilities that can

only be detected by the fuzzing tool, respectively. It

also shows that neither DeltaFuzz nor AFLGo detects

any vulnerability in the lrzip and mjs projects. Both

DeltaFuzz and AFLGo detect 1, 1 and 5 vulnerabilities

in the giflib, jasper and libming projects, respectively.

In the libxml2 projects, the number of vulnerabilities

detected by DeltaFuzz is greater than that by AFLGo,

and the vulnerabilities detected by AFLGo can also be

detected by DeltaFuzz. In total, DeltaFuzz detects one

more vulnerability than AFLGo. Both DeltaFuzz and

AFLFast detect 11 vulnerabilities. In the libming and

libxml2 projects, DeltaFuzz and AFLFast detect the

same number of vulnerabilities. In the giflib project,

DeltaFuzz detects one less vulnerability than AFLFast.

In the jasper project, AFLFast does not detect any

vulnerability while DeltaFuzz detects one vulnerabil-

ity. Although DeltaFuzz and AFLFast detect the same

number of vulnerabilities, DeltaFuzz detects vulnera-

bilities in four out of the six projects while AFLFast

detects vulnerabilities in three out of the six projects.

The Venn graph of the vulnerabilities detected is shown

in Fig.8.

DeltaFuzz can detect more vulnerabilities than

AFLGo. The fitness function and reachability analysis

can effectively guide DeltaFuzz to trigger more crashes

and reveal more vulnerabilities. Therefore, DeltaFuzz

detects more vulnerabilities than AFLGo. Besides,

DeltaFuzz detects vulnerabilities in more projects than

AFLFast.

Answer for RQ3. DeltaFuzz detects 11 vulnerabili-

ties, which is 1 more than AFLGo. In addition, Delta-

Fuzz can detect all the vulnerabilities that AFLGo de-

tects. Both DeltaFuzz and AFLFast detect 11 vulnera-

bilities. While DeltaFuzz detects vulnerabilities in four

out of the six projects, AFLFast detects vulnerabilities

in three out of the six projects. Therefore, DeltaFuzz

is more effective than AFLGo and AFLFast in terms of

vulnerability detection.

Table 6. Number of Vulnerabilities Detected by DeltaFuzz, AFLGo and AFLFast

Project DeltaFuzz AFLGo AFLFast All Tools

Subtotal Only Detected Subtotal Only Detected Subtotal Only Detected

by DeltaFuzz by AFLGo by AFLFast

giflib 1 0 1 0 2 1 1

jasper 1 0 1 0 0 0 0

libming 5 0 5 0 5 0 5

libxml2 4 0 3 0 4 0 3

lrzip 0 0 0 0 0 0 0

mjs 0 0 0 0 0 0 0

Total 11 0 10 0 11 1 9

44 J. Comput. Sci. & Technol., Jan. 2022, Vol.37, No.1

AFLGo

DeltaFuzz AFLFast

9
1

1

0

0

0 1

Fig. 8. Venn graph of vulnerability detected by DeltaFuzz,
AFLGo and AFLFast.

3.5 Threats to Validity

Internal Validity. First, a common threat to the in-

ternal validity of fuzzing methods is the initial seed test

cases. In our experiment, both DeltaFuzz and AFLGo

are tested by using the same initial seed test case. Re-

garding the generation of the control flow graph, the

graph generation tool used by DeltaFuzz is the same

as AFLGo. The subsequent basic block suspicious ana-

lysis is also completed based on the basic block call

information generated by AFLGo, and the entire pro-

cess is automated. In addition, because the mutation

of the fuzz testing is random, randomly generating test

cases may have some impact on the effectiveness of the

test. In this paper, the experiments are repeated three

times, and every project is tested for one hour in each

run of the experiment. Then, the average values are

taken to reduce the impact of randomness. To validate

whether DeltaFuzz can concentrate testing resources on

change points, two basic blocks that contain change

points are selected randomly as targets. However, the

random selection of basic blocks may introduce uncer-

tainties. Therefore, another experiment is conducted on

the coverage of basic blocks that contain change points

to reduce the impact of random selection.

External Validity. The giflib, jasper, libming,

libxml2, lrzip and mjs projects are removed from the 11

experimental objects used by AFLGo because the his-

torical versions of the six projects are available for us to

analyze the impact of changes. These projects are well-

known open-source projects and are widely adopted in

the community [20, 29–33]. Based on the versatility and

diversity of these projects, we believe that the research

results and conclusions in the paper can be transferred

to similar tools.

Construction Validity. In the experiment, five as-

pects of DeltaFuzz are evaluated: test cases executed,

crashes triggered, paths covered, vulnerabilities de-

tected, and change points covered. Among these as-

pects, the first four metrics are commonly used in fuzz

testing. In addition, we use the change point coverage

to validate the effectiveness of DeltaFuzz. This met-

ric is especially important for regression testing [33, 34]

because it can be used to check whether fuzz testing

concentrates testing resources on the impacted code.

4 Related Work

According to the analytical depth of the internal

logic of the source code, fuzz testing can be divided into

black-box fuzz testing, white-box fuzz testing and grey-

box fuzz testing. Historical version information guided

fuzz testing belongs to grey-box fuzz testing. Grey-box

fuzz testing can be divided into coverage-guided fuzz

testing and target-guided fuzz testing according to the

guidance method. In this section, we introduce related

work for these two categories.

4.1 Coverage-Guided Fuzz Testing

The purpose of coverage-guided fuzz testing is to

generate test cases that can cover new code segments

as many as possible during testing to achieve high code

coverage.

In 2013, Zalewski released the fuzz testing tool AFL.

AFL is a commonly used coverage-guided fuzz testing

tool. It uses slight instrumentation and genetic algo-

rithms to effectively improve code coverage and the

quality of test cases. To date, AFL has exposed many

important security vulnerabilities in dozens of software

projects, including PHP and Firefox. AFL has gained

popularity among testing researchers due to its excel-

lent versatility, scalability and rapid deployment. Cur-

rently, many fuzz testing tools have been developed on

the foundation of AFL.

In 2019, Nagy and Hicks [35] proposed UnTracer, a

tracker for coverage guidance. To save the cost of track-

ing test cases during fuzz testing, UnTracer improves

the instrumentation algorithm. UnTracer is evaluated

on eight real software programs that are commonly used

in the fuzzing community. The experiments show that

compared with other similar tools such as AFL-Clang

and AFL-QEMU, UnTracer has the lowest cost in trac-

ing test cases.

Jia-Ming Zhang et al.: DeltaFuzz: Historical Version Information Guided Fuzz Testing 45

In 2019, Liang et al. developed DeepFuzzer [36],

which is an enhanced grey-box fuzz testing tool that

generates high-quality initial seed test cases through

symbolic execution. DeepFuzzer adopts a hybrid muta-

tion strategy when mutating seed test cases, which can

balance the mutation frequency between different seeds

to improve the efficiency of fuzz testing. The experi-

mental results show that DeepFuzzer can cover more

paths and find more vulnerabilities during the same

time period than AFL, AFLFast, QSYM and other

methods.

In summary, coverage-guided fuzz testing ap-

proaches usually focus on making some improvements

to cover more paths at the same time or to reduce the

time costs of achieving the same coverage [37–40]. For

example, fuzz testing can be combined with symbolic

execution to obtain high-quality initial seed test cases

generated by symbolic execution to improve the path

coverage of fuzz testing [41] or to improve the instrumen-

tation algorithm of fuzz testing to reduce instrumen-

tation overhead during the testing process [42]. When

there is no clear target, coverage-guided fuzz testing is

effective because it can fully test an entire program.

When using static analysis, defect prediction or other

methods to acquire the location of possible vulnerabil-

ities in the program, we usually hope that the testing

resource is concentrated on the location of possible vul-

nerabilities. Therefore, some research has sought to

introduce targets as guidance to further improve the

efficiency of fuzz testing [43].

4.2 Target-Guided Fuzz Testing

The purpose of target-guided fuzz testing is to gene-

rate test cases that can cover the target code block or

target function as many as possible during the testing

so that resources can be concentrated on testing the

target code.

In 2017, Böhme et al. [20] developed a directed grey-

box fuzzing tool AFLGo. AFLGo calculates the dis-

tance between each basic block and the target basic

block in advance before starting fuzz testing, generates

the corresponding instrumentation file to insert the dis-

tance during instrumentation, and integrates the simu-

lated annealing energy plan to generate new test cases.

AFLGo allocates more energy to test cases that are

close to the target basic block, and reduces the energy

of test cases that are far away from the target basic

block. The experimental results show that AFLGo can

cover the target basic blocks faster than directed white-

box fuzzing tools and nondirected grey-box fuzzing.

In 2018, Lemieux and Sen [44] implemented FairFuzz

based on AFL to cover the rare branches of the program

being tested as many as possible. FairFuzz automati-

cally identifies the rare branches covered by the inputs

of AFL and uses a novel mutation mask creation algo-

rithm to make the test cases generated by the muta-

tion more likely to cover the rare branches. The muta-

tion mask is dynamically calculated during fuzz testing,

thereby it can be adapted to different test targets. The

experimental results show that FairFuzz has a higher

branch coverage rate than AFL and covers more rare

branches during the same time period.

In 2018, Chen et al. [24] implemented Hawkeye,

which is a target-guided grey-box fuzzing tool. Before

fuzz testing starts, Hawkeye uses static analysis on the

program being tested and calculates the distance based

on the call graph and the control flow graph. During

fuzz testing, Hawkeye generates dynamic metrics based

on both static information and seed execution traces

and uses it for seed prioritization, power scheduling,

and adaptive mutating to help Hawkeye reach the tar-

get faster. Fifteen CVE (Common Vulnerabilities and

Exposures) were detected by Hawkeye in the experi-

ments.

In 2019, Situ et al. [45] implemented TAFL to im-

prove the variation and energy distribution of AFL.

Based on the static semantic metrics of the program

being tested, TAFL instructs the fuzz testing tool to

move toward areas with higher probabilities of con-

taining vulnerabilities. In addition, granularity-aware

scheduling of mutators, which dynamically allocates ra-

tios of different mutation operators, was proposed. The

experimental results showed that TAFL discovered new

security vulnerabilities and exposed three CVE.

In 2019, Böhme and Pham [46] implemented

AFLFast based on the coverage-guided grey-box fuzzing

tool AFL. AFLFast uses the Markov chain model to

determine the testing resources allocated to the seed

test case, which makes fuzz testing more inclined to

cover low-frequency paths. Experiments showed that

AFLFast exposes CVE much faster than AFL, and it

triggers more unique crashes than AFL.

In 2020, Wüstholz and Christakis [8] proposed a

novel target-guided grey-box fuzzing technique, which

uses online static analysis to guide the fuzz testing tool

to cover a set of target positions. The effectiveness of

this technique was evaluated on 27 real-world projects

by extending the most advanced Ethereum smart con-

tract fuzz testing tool, Harvey [47]. The experimental

results showed that the performance of the proposed

46 J. Comput. Sci. & Technol., Jan. 2022, Vol.37, No.1

target-guided grey-box fuzz testing technique is signifi-

cantly better than that of Harvey.

In target-guided fuzz testing tools, one or more tar-

gets are specified, and the target is usually a basic block

or a function [20]. These targets are generally deter-

mined by static analysis or other techniques. Unlike

coverage-guided fuzz testing, target-guided fuzz testing

can achieve better performance during the same time

period, even if high-quality initial seed test cases are

not provided [32]. Although target-guided fuzzing tests

are more effective than coverage-guided fuzzing tests,

they usually focus on one or more basic blocks rather

than paths [20]. If the path coverage is used as the cri-

terion for calculating fitness, the effectiveness of fuzz

testing can be further improved.

On the basis of target-guided fuzz testing, some

studies have proposed path-sensitive fuzz testing. In

2018, Gan et al. [48] proposed a path-sensitive fuzz test-

ing scheme CollAFL. CollAFL reduces path collisions

by providing more accurate coverage information while

maintaining low instrumentation overhead. It also uses

coverage information to implement three fuzz testing

strategies to improve the speed of finding vulnerabili-

ties and paths. The experimental results show that Col-

lAFL can reduce the ratio of edge collisions to nearly

zero in projects with common path collision. It can also

cover more paths and find more vulnerabilities than

AFL during the same time period.

Although CollAFL also conducts path-sensitive

fuzz testing, unlike DeltaFuzz, CollAFL still conducts

coverage-guided fuzz testing. More accurate coverage

information enables CollAFL to distinguish different

paths more accurately [48]. To the best of our know-

ledge, DeltaFuzz is the first path-sensitive fuzz test-

ing tool that calculates fitness through suspicious basic

blocks, and it is also the first fuzz testing tool guided

by historical version information.

Target-guided fuzz testing tools, such as AFLGo,

usually set locations of potential or known vulnerabil-

ities as targets of fuzz testing to guide test case gene-

ration. Although AFLGo also achieves good results,

it is usually difficult to get priori knowledge about the

location of vulnerabilities before testing. By contrast,

updates in the process of software evolution are iden-

tified as change points and set as targets for Delta-

Fuzz. Change points can be automatically obtained

by difference comparison, which makes DeltaFuzz more

scalable and applicable in regression testing. Besides,

AFLFast sets rare branches as targets of fuzz testing,

but rare branches probably exist in the last version and

are unrelated to version updates. As a result, AFLFast

is not suitable to be applied in the scenario of regres-

sion testing. In addition, DeltaFuzz is a path-sensitive

fuzz testing approach, and the fitness of the test case

is calculated based on its executing trace to guide test

case generation.

5 Conclusions

In this paper, we proposed a path-sensitive fuzz test-

ing method guided by historical version information

and implemented a prototype tool DeltaFuzz. Delta-

Fuzz acquires the change points by comparing the diffe-

rences between the program being tested and its last

version and then performs change impact analysis to

obtain a set of suspicious basic blocks. During the test-

ing process, DeltaFuzz analyzes the execution path of

the test case, calculates its fitness based on the suspi-

cious basic block set, and allocates resources to the test

case according to the fitness value. As the experimental

result shows, DeltaFuzz improves the number of crashes

triggered and the number of BBCCPs covered, which

are 1.07 and 1.03 times as many as those of AFLGo,

1.20 and 1.09 times as many as those of AFLFast, re-

spectively. Regarding covering specific targets, Delta-

Fuzz covers them faster than AFLGo, AFLFast and

AFL, and the time taken by DeltaFuzz is reduced by

20.59%, 30.05% and 32.61%, respectively.

In future work, symbolic execution can be inte-

grated into DeltaFuzz to improve the quality of ini-

tial seed test cases so that DeltaFuzz can cover change

points in a shorter time and find deeper vulnerabilities.

In addition, the fitness function can also be adapted to

other algorithms, such as the simulated annealing algo-

rithm or particle swarm optimization algorithm based

on Monte Carlo simulation, to allocate test resources

for test cases more accurately.

References

[1] Masso J, Pino F J, Pardo C et al. Risk management in the

software life cycle: A systematic literature review. Com-

puter Standards & Interfaces, 2020, 71: Article No. 103431.

DOI: 10.1016/j.csi.2020.103431.

[2] Gu T, Ma X, Xu C et al. Synthesizing object trans-

formation for dynamic software updating. In Proc. the

39th IEEE/ACM International Conference on Software

Engineering Companion, May 2017, pp.336-338. DOI:

10.1109/ICSE-C.2017.96.

[3] Khatibsyarbini M, Isa M A, Jawawi D N A et al. Test case

prioritization approaches in regression testing: A system-

atic literature review. Information and Software Techno-

logy, 2018, 93: 74-93. DOI: 10.1016/j.infsof.2017.08.014.

https://doi.org/10.1016/j.csi.2020.103431
https://doi.org/10.1109/ICSE-C.2017.96
https://doi.org/10.1016/j.infsof.2017.08.014

Jia-Ming Zhang et al.: DeltaFuzz: Historical Version Information Guided Fuzz Testing 47

[4] Han J C, Zhou Z Q. Metamorphic fuzz testing of au-

tonomous vehicles. In Proc. the 42nd IEEE/ACM Interna-

tional Conference on Software Engineering, June 27–July

19, 2020, pp.380-385. DOI: 10.1145/3387940.3392252.

[5] Dong Z, Böhme M, Cojocaru L et al. Time-travel testing

of Android apps. In Proc. the 42nd IEEE/ACM Interna-

tional Conference on Software Engineering, June 27–July

19, 2020, pp.481-492. DOI: 10.1145/3377811.3380402.

[6] Qian J, Zhou D. Prioritizing test cases for memory leaks

in Android applications. Journal of Computer Science and

Technology, 2016, 31(5): 869-882. DOI: 10.1007/s11390-

016-1670-2.

[7] Chen Y, Su T, Su Z. Deep differential testing of JVM im-

plementations. In Proc. the 41st IEEE/ACM International

Conference on Software Engineering, May 2019, pp.1257-

1268. DOI: 10.1109/ICSE.2019.00127.

[8] Wüstholz V, Christakis M. Targeted greybox fuzzing with

static lookahead analysis. In Proc. the 42nd IEEE/ACM In-

ternational Conference on Software Engineering, June 27–

July 19, 2020, pp.789-800. DOI: 10.1145/3377811.3380388.

[9] Böhme M, Manès V J M, Cha S K. Boosting fuzzer ef-

ficiency: An information theoretic perspective. In Proc.

the 28th ACM Joint Meeting on European Software En-

gineering Conference and Symposium on the Foundations

of Software Engineering, November 2020, pp.678-689. DOI:

10.1145/3368089.3409748.

[10] Song S, Song C, Jang Y et al. CrFuzz: Fuzzing multi-

purpose programs through input validation. In Proc. the

28th ACM Joint Meeting on European Software Engineer-

ing Conference and Symposium on the Foundations of

Software Engineering, November 2020, pp.690-700. DOI:

10.1145/3368089.3409769.

[11] Havrikov N. Efficient fuzz testing leveraging input, code,

and execution. In Proc. the 39th IEEE/ACM Interna-

tional Conference on Software Engineering Companion,

May 2017, pp.417-420. DOI: 10.1109/ICSE-C.2017.26.

[12] Klees G, Ruef A, Cooper B et al. Evaluating fuzz testing.

In Proc. the 2018 ACM SIGSAC Conference on Computer

and Communications Security, October 2018, pp.2123-

2138. DOI: 10.1145/3243734.3243804.

[13] Zhang M Z, Gong Y Z, Wang Y W et al. Unit test data gene-

ration for C using rule-directed symbolic execution. Journal

of Computer Science and Technology, 2019, 34(3): 670-689.

DOI: 10.1007/s11390-019-1935-7.

[14] He J, Balunović M, Ambroladze N et al. Learning to fuzz

from symbolic execution with application to smart con-

tracts. In Proc. the 2019 ACM SIGSAC Conference on

Computer and Communications Security, November 2019,

pp.531-548. DOI: 10.1145/3319535.3363230.

[15] Zhang Q, Wang J, Gulzar M A et al. BigFuzz: Efficient

fuzz testing for data analytics using framework abstraction.

In Proc. the 35th IEEE/ACM International Conference on

Automated Software Engineering, September 2020, pp.722-

733. DOI: 10.1145/3324884.3416641.

[16] Nguyen H L, Nassar N, Kehrer T et al. MoFuzz: A

fuzzer suite for testing model-driven software engineer-

ing tools. In Proc. the 35th IEEE/ACM International

Conference on Automated Software Engineering, Septem-

ber 2020, pp.1103-1115. DOI: 10.1145/3324884.3416668.

[17] Olsthoorn M, Van Deursen A, Panichella A. Generating

highly-structured input data by combining search-based

testing and grammar-based fuzzing. In Proc. the 35th

IEEE/ACM International Conference on Automated Soft-

ware Engineering, September 2020, pp.1224-1228. DOI:

10.1145/3324884.3418930.

[18] Nguyen T D, Pham L H, Sun J et al. sfuzz: An effi-

cient adaptive fuzzer for solidity smart contracts. In Proc.

the 42nd ACM/IEEE International Conference on Soft-

ware Engineering, June 27–July 19, 2020, pp.778-788. DOI:

10.1145/3377811.3380334.

[19] Manès V J M, Kim S, Cha S K. Ankou: Guiding grey-

box fuzzing towards combinatorial difference. In Proc. the

42nd ACM/IEEE International Conference on Software

Engineering, June 27–July 19, 2020, pp.1024-1036. DOI:

10.1145/3377811.3380421.

[20] Böhme M, Pham V T, Nguyen M D et al. Di-

rected greybox fuzzing. In Proc. the 2017 ACM SIGSAC

Conference on Computer and Communications Secu-

rity, October 30–November 3, 2017, pp.2329-2344. DOI:

10.1145/3133956.3134020.

[21] Gao X, Saha R K, Prasad M R et al. Fuzz testing based data

augmentation to improve robustness of deep neural net-

works. In Proc. the 42nd IEEE/ACM International Confe-

rence on Software Engineering, June 27–July 19, 2020,

pp.1147-1158. DOI: 10.1145/3377811.3380415.

[22] Wen C, Wang H, Li Y et al. MemLock: Memory usage

guided fuzzing. In Proc. the 42nd ACM/IEEE Interna-

tional Conference on Software Engineering, June 27–July

19, 2020, pp.765-777. DOI: 10.1145/3377811.3380396.

[23] Babić D, Bucur S, Chen Y et al. FUDGE: Fuzz driver gene-

ration at scale. In Proc. the 27th ACM Joint Meeting on Eu-

ropean Software Engineering Conference and Symposium

on the Foundations of Software Engineering, August 2019,

pp.975-985. DOI: 10.1145/3338906.3340456.

[24] Chen H, Xue Y, Li Y et al. Hawkeye: Towards a

desired directed grey-box fuzzer. In Proc. the 2018

ACM SIGSAC Conference on Computer and Commun-

ications Security, October 2018, pp.2095-2108. DOI:

10.1145/3243734.3243849.

[25] Medicherla R K, Komondoor R, Roychoudhury A. Fit-

ness guided vulnerability detection with greybox fuzzing.

In Proc. the 42nd IEEE/ACM International Conference on

Software Engineering, June 27–July 19, 2020, pp.513-520.

DOI: 10.1145/3387940.3391457.

[26] Österlund S, Razavi K, Bos H et al. ParmeSan: Sanitizer-

guided greybox fuzzing. In Proc. the 29th USENIX Security

Symposium, August 2020, pp.2289-2306.

[27] Gao X, Mechtaev S, Roychoudhury A. Crash-avoiding pro-

gram repair. In Proc. the 28th ACM SIGSOFT Interna-

tional Symposium on Software Testing and Analysis, July

2019, pp.8-18. DOI: 10.1145/3293882.3330558.

[28] Fioraldi A, Maier D, Eißfeldt H et al. AFL++: Com-

bining incremental steps of fuzzing research. In Proc. the

14th USENIX Workshop on Offensive Technologies, Au-

gust 2020.

https://doi.org/10.1145/3387940.3392252
https://doi.org/10.1145/3377811.3380402
https://doi.org/10.1007/s11390-016-1670-2
https://doi.org/10.1007/s11390-016-1670-2
https://doi.org/10.1109/ICSE.2019.00127
https://doi.org/10.1145/3377811.3380388
https://doi.org/10.1145/3368089.3409748
https://doi.org/10.1145/3368089.3409769
https://doi.org/10.1109/ICSE-C.2017.26
https://doi.org/10.1145/3243734.3243804
https://doi.org/10.1007/s11390-019-1935-7
https://doi.org/10.1145/3319535.3363230
https://doi.org/10.1145/3324884.3416641
https://doi.org/10.1145/3324884.3416668
https://doi.org/10.1145/3324884.3418930
https://doi.org/10.1145/3377811.3380334
https://doi.org/10.1145/3377811.3380421
https://doi.org/10.1145/3133956.3134020
https://doi.org/10.1145/3377811.3380415
https://doi.org/10.1145/3377811.3380396
https://doi.org/10.1145/3338906.3340456
https://doi.org/10.1145/3243734.3243849
https://doi.org/10.1145/3387940.3391457
https://doi.org/10.1145/3293882.3330558

48 J. Comput. Sci. & Technol., Jan. 2022, Vol.37, No.1

[29] Grieco G, Ceresa M, Buiras P. QuickFuzz: An

automatic random fuzzer for common file formats.

ACM SIGPLAN Notices, 2016, 51(12): 13-20. DOI:

10.1145/2976002.2976017.

[30] Liang H, Zhang Y, Yu Y et al. Sequence coverage directed

greybox fuzzing. In Proc. the 27th IEEE/ACM Interna-

tional Conference on Program Comprehension, May 2019,

pp.249-259. DOI: 10.1109/ICPC.2019.00044.

[31] Zhang M, Liu J, Ma F et al. IntelliGen: Automatic

driver synthesis for fuzz testing. In Proc. the 43rd

IEEE/ACM International Conference on Software En-

gineering, May 2021, pp.318-327. DOI: 10.1109/ICSE-

SEIP52600.2021.00041.

[32] You W, Liu X, Ma S et al. SLF: Fuzzing without valid

seed inputs. In Proc. the 41st IEEE/ACM International

Conference on Software Engineering, May 2019, pp.712-

723. DOI: 10.1109/ICSE.2019.00080.

[33] Choi W, Sen K, Necul G et al. DetReduce: Minimizing

Android GUI test suites for regression testing. In Proc.

the 40th IEEE/ACM International Conference on Soft-

ware Engineering, May 27–June 3, 2018, pp.445-455. DOI:

10.1145/3180155.3180173.

[34] Zhang L. Hybrid regression test selection. In Proc. the

40th IEEE/ACM International Conference on Software

Engineering, May 27–June 3, 2018, pp.199-209. DOI:

10.1145/3180155.3180198.

[35] Nagy S, Hicks M. Full-speed fuzzing: Reducing fuzzing

overhead through coverage-guided tracing. In Proc. the

2019 IEEE Symposium on Security and Privacy, May 2019,

pp.787-802. DOI: 10.1109/SP.2019.00069.

[36] Liang J, Jiang Y, Wang M et al. DeepFuzzer: Acceler-

ated deep greybox fuzzing. IEEE Transactions on Depend-

able and Secure Computing, 2019, 18(6): 2675-2688. DOI:

10.1109/TDSC.2019.2961339.

[37] Fioraldi A, D’Elia D C, Coppa E. WEIZZ: Automatic

grey-box fuzzing for structured binary formats. In Proc.

the 29th ACM SIGSOFT International Symposium on

Software Testing and Analysis, July 2020, pp.1-13. DOI:

10.1145/3395363.3397372.

[38] Chen Y, Poskitt C M, Sun J et al. Learning-guided network

fuzzing for testing cyber-physical system defences. In Proc.

the 34th IEEE/ACM International Conference on Auto-

mated Software Engineering, November 2019, pp.962-973.

DOI: 10.1109/ASE.2019.00093.

[39] Peng H, Shoshitaishvili Y, Payer M. T-Fuzz: Fuzzing by

program transformation. In Proc. the 2018 IEEE Sympo-

sium on Security and Privacy, May 2018, pp.697-710. DOI:

10.1109/SP.2018.00056.

[40] Padhye R, Lemieux C, Sen K. JQF: Coverage-guided

property-based testing in Java. In Proc. the 28th

ACM SIGSOFT International Symposium on Software

Testing and Analysis, July 2019, pp.398-401. DOI:

10.1145/3293882.3339002.

[41] Noller Y, Kersten R, Păsăreanu C S. Badger: Complexity

analysis with fuzzing and symbolic execution. In Proc. the

27th ACM SIGSOFT International Symposium on Soft-

ware Testing and Analysis, July 2018, pp.322-332. DOI:

10.1145/3213846.3213868.

[42] Zhou C, Wang M, Liang J et al. Zeror: Speed up fuzzing

with coverage-sensitive tracing and scheduling. In Proc. the

35th IEEE/ACM International Conference on Automated

Software Engineering, September 2020, pp.858-870. DOI:

10.1145/3324884.3416572.

[43] Wang T, Wei T, Gu G et al. TaintScope: A checksum-

aware directed fuzzing tool for automatic software vul-

nerability detection. In Proc. the 2010 IEEE Symposium

on Security and Privacy, May 2010, pp.497-512. DOI:

10.1109/SP.2010.37.

[44] Lemieux C, Sen K. Fairfuzz: A targeted mutation strategy

for increasing greybox fuzz testing coverage. In Proc. the

33rd ACM/IEEE International Conference on Automated

Software Engineering, September 2018, pp.475-485. DOI:

10.1145/3238147.3238176.

[45] Situ L, Wang L, Li X, Guan L, Zhang W, Liu P. En-

ergy distribution matters in greybox fuzzing. In Proc. the

41st IEEE/ACM International Conference on Software

Engineering, May 2019, pp.270-271. DOI: 10.1109/ICSE-

Companion.2019.00109.

[46] Böhme M, Pham V T, Roychoudhury A. Coverage-based

greybox fuzzing as Markov chain. IEEE Transactions

on Software Engineering, 2017, 45(5): 489-506. DOI:

10.1109/TSE.2017.2785841.

[47] Wüstholz V, Christakis M. Harvey: A greybox fuzzer for

smart contracts. In Proc. the 28th ACM Joint Meeting

on European Software Engineering Conference and Sympo-

sium on the Foundations of Software Engineering, Novem-

ber 2020, pp.1398-1409. DOI: 10.1145/3368089.3417064.

[48] Gan S, Zhang C, Qin X et al. CollAFL: Path sensi-

tive fuzzing. In Proc. the 2018 IEEE Symposium on

Security and Privacy, May 2018, pp.679-696. DOI:

10.1109/SP.2018.00040.

Jia-Ming Zhang received his Bach-

elor’s degree in software engineering

from Beijing Information Science and

Technology University, Beijing, in 2020.

He is currently studying for his Master’s

degree at Beijing Information Science

and Technology University, Beijing.

His research interests include software

analysis and testing.

Zhan-Qi Cui received his B.E.

degree in software engineering and his

Ph.D. degree in computer software and

theory, in 2005 and 2011, respectively,

both from Nanjing University, Nanjing.

He was a visiting Ph.D. student in

University of Virginia, Virginia, from

Sept. 2009 to Sept. 2010. He is

currently an associate professor at Beijing Information

Science and Technology University, Beijing. His research

interests include software analysis and testing.

https://doi.org/10.1145/2976002.2976017
https://doi.org/10.1109/ICPC.2019.00044
https://doi.org/10.1109/ICSE-SEIP52600.2021.00041
https://doi.org/10.1109/ICSE-SEIP52600.2021.00041
https://doi.org/10.1109/ICSE.2019.00080
https://doi.org/10.1145/3180155.3180173
https://doi.org/10.1145/3180155.3180198
https://doi.org/10.1109/SP.2019.00069
https://doi.org/10.1109/TDSC.2019.2961339
https://doi.org/10.1145/3395363.3397372
https://doi.org/10.1109/ASE.2019.00093
https://doi.org/10.1109/SP.2018.00056
https://doi.org/10.1145/3293882.3339002
https://doi.org/10.1145/3213846.3213868
https://doi.org/10.1145/3324884.3416572
https://doi.org/10.1109/SP.2010.37
https://doi.org/10.1145/3238147.3238176
https://doi.org/10.1109/ICSE-Companion.2019.00109
https://doi.org/10.1109/ICSE-Companion.2019.00109
https://doi.org/10.1109/TSE.2017.2785841
https://doi.org/10.1145/3368089.3417064
https://doi.org/10.1109/SP.2018.00040

Jia-Ming Zhang et al.: DeltaFuzz: Historical Version Information Guided Fuzz Testing 49

Xiang Chen received his B.S.

degree in management from Xi’an

Jiaotong University, Xi’an, in 2002,

and his M.Sc. and Ph.D. degrees in

computer software and theory from

Nanjing University, Nanjing, in 2008

and 2011, respectively. He is currently

an associate professor with the School of

Information Science and Technology, Nantong University,

Nantong. His research interests mainly include soft-

ware maintenance and software testing, such as security

vulnerability prediction, software defect prediction, com-

binatorial testing, regression testing, and fault localization.

Huan-Huan Wu received her Bach-

elor’s degree in software engineering

from Bengbu University, Bengbu, in

2020. She is currently studying for her

Master’s degree at Beijing Information

Science and Technology University,

Beijing. Her research interests include

software analysis and testing.

Li-Wei Zheng received his Ph.D.

degree in computer software and theory

from Academy of Mathematics and

Systems Science, Chinese Academy

of Sciences, Beijing, in 2009. He

is currently an associate professor

at Beijing Information Science and

Technology University, Beijing. His

research interests include requirement engineering and

trusted computing.

Jian-Bin Liu received his Ph.D.

degree in computer software and theory

from Northwestern University, Xi’an,

in 2004. He is currently a professor

at Beijing Information Science and

Technology University, Beijing. His

research interests include program

modeling theory and methods, intelli-

gent software development technology, and model-driven

software engineering.

	1 Introduction
	2 Historical Version Information Guided Fuzz Testing
	2.1 Change Points
	2.2 Path-Sensitive Suspicious Analysis for Basic Blocks
	2.3 Test Case Fitness Analysis
	2.4 Path-Sensitive Grey-Box Fuzz Testing

	3 Experimental Evaluation
	3.1 Experimental Design
	3.2 Overview of Test Results
	3.3 Change Point Coverage
	3.4 Vulnerability Detection
	3.5 Threats to Validity

	4 Related Work
	4.1 Coverage-Guided Fuzz Testing
	4.2 Target-Guided Fuzz Testing

	5 Conclusions

