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Abstract Ethereum blockchain is a new internetware with tens of millions of smart contracts running on it. Different

from general programs, smart contracts are decentralized, tamper-resistant and permanently running. Moreover, to avoid

resource abuse, Ethereum charges users for deploying and invoking smart contracts according to the size of contract and

the operations executed by contracts. It is necessary to optimize smart contracts to save money. However, since developers

are not familiar with the operating environment of smart contracts (i.e., Ethereum virtual machine) or do not pay attention

to resource consumption during development, there are many optimization opportunities for smart contracts. To fill this

gap, this paper defines six gas-inefficient patterns from more than 25 000 posts and proposes an optimization approach at

the source code level to let users know clearly where the contract is optimized. To evaluate the prevalence and economic

benefits of gas-inefficient patterns, this paper conducts an empirical study on more than 160 000 real smart contracts. The

promising experimental results demonstrate that 52.75% of contracts contain at least one gas-inefficient pattern proposed

in this paper. If these patterns are removed from the contract, at least $0.30 can be saved per contract.
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1 Introduction

Blockchain is a new internetware and a smart con-

tract is a program running on it. Due to the decen-

tralization and tamper-proof of smart contracts, smart

contracts are flexibly embedded into a variety of digi-

tal assets to help achieve secure and efficient informa-

tion exchange and value transfer. It provides a tremen-

dous opportunity for different industries and fields such

as supply chain, smart homes, e-commerce, and asset

management [1]. As the first blockchain system to sup-

port smart contracts, Ethereum 1○ attracts many deve-

lopers. Within five years of Ethereum’s launch, more

than 16 million smart contracts have been deployed

on Ethereum [2]. Moreover, the market capitalization

of Ethereum has exceeded $40 billion, second only to

Bitcoin 2○.

Smart contracts are usually written in a high-level
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language (e.g., Solidity 3○) and then compiled into byte-

code which can be executed in the Ethereum Virtual

Machine (EVM). As an assembly language, the byte-

code is made up of multiple opcodes. Each opcode per-

forms a certain action on the blockchain. In order to

avoid excessive consumption of resources and to ensure

termination, Ethereum adopts the gas mechanism that

every opcode is performed costing a certain amount of

gas. The term gas is a special unit to measure the

consumption of storage and computing resources. The

Ethereum Yellow Paper 4○ stipulates the gas consumed

by each opcode. It is noting that the transaction fee is

equal to the gas used multiplied by the gas price and the

gas price is constant generally 5○. In other words, the

more the gas used by the smart contract, the higher the

transaction fee paid by the contract user to the miner.

In the past three years, the average gas consumption

per day is 72.4 billion units, which is about 9.77 mil-

lion US dollars 6○. In addition, due to that contract

developers insufficiently understand the gas mechanism

or do not realize that individual coding patterns will

bring unnecessary gas consumption, there is a lot of

room for optimization in smart contracts. Therefore, it

makes sense to perform equivalent transformations on

the smart contract so that more gas-saving smart con-

tracts can be generated on the premise of not changing

the running effect of the contract. For Ethereum, op-

timizing the gas consumption of smart contracts can

improve the efficiency of contract execution, which is

conducive to the sustainable development; for the users

of smart contracts, gas optimization can reduce the cost

of deploying and calling contracts, which can increase

the activity of decentralized application (DApp).

Existing gas optimization approaches [3–6] which are

based on satisfiability modulo theories detect and re-

move gas-inefficient patterns at the bytecode level.

They attempt to find the opcode sequences which re-

quire fewer resources and are semantically equivalent

to the original ones by trying all possible opcode se-

quences. Optimization approaches [3–5] do not con-

sider inefficient programming patterns brought by deve-

lopers. Although the optimization approaches [6] take

into account some of the inefficient programming pat-

terns brought by developers, it can only detect and not

optimize. There are some gas-inefficient smart contract

snippets which cannot be optimized by existing gas op-

timization approaches. Fig.1(a) shows a smart contract

which cannot be optimized by existing approaches and

Fig.1(b) gives its efficient version. In the gas-inefficiency

version, the contract declares a state variable num and

explicitly assigns 0 to the variable, which is in line with

general good programming principles 7○. The contract

also contains a constructor function that assigns the

value of the input parameter x to variable num. The

gas-efficient version and the gas-inefficient version are

the same except that there is no explicit assignment

to variable num in the gas-efficient version. Accord-

ing to the Ethereum Yellow Paper [4], the constructor

will be executed immediately after the state variables

are created during the deployment of the contract to

the blockchain. In other words, no matter what value

is assigned to variable num at the time of declaration,

the value will have no effect. Explicit assignment de-

clared in the gas-inefficient version is unnecessary and

wastes gas. Moreover, they are conversion methods

from bytecode-to-bytecode, which makes the optimiza-

tion approaches opaque, because the user cannot intu-

itively know what changes have been made on the con-

tract. And the opaqueness makes users anxious when

using the optimized smart contracts because smart con-

contract GasInefficiency{
uint num = 0;

constructor (uint x){
num = x;

}
}

(a)

contract GasEfficiency{
uint num; //change

constructor (uint x){
num = x;

}
}

(b)

Fig.1. (a) Gas-inefficient contract and (b) its efficient version.

3○https://solidity.readthedocs.io, Dec. 2021.
4○https://ethereum.github.io/yellowpaper/paper.pdf, Dec. 2021.
5○https://ethgasstation.info/, Dec. 2021.
6○https://etherscan.io/chart/gasused, Dec. 2021.
7○https://google.github.io/styleguide/cppguide.html#Line Length, Dec. 2021.
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tracts control their assets. Last but not least, these

approaches are based on time-consuming satisfiability

modulo theories, which will lead to the inability to ex-

haust the search space and make optimization methods

neither sound nor complete.

In this paper, to address the above problem, we

firstly collect gas-inefficient patterns of smart contracts

by manually going through more than 25 000 posts from

Ethereum StackExchange 8○ which is the most popular

questions and answers (Q&A) website of Ethereum and

is recommended by Solidity official 9○. Secondly, in or-

der to make the optimization process transparent, we

propose a gas optimization approach utilizing the ab-

stract syntax tree (AST) to optimize the smart con-

tract from the source code level and construct a source

code to source code conversion. Finally, we apply our

approach in more than 160 000 open-source smart con-

tracts deployed on the Ethereum to demonstrate the

universality of the gas-inefficient patterns and economic

benefits if the gas-inefficient patterns are removed from

the smart contracts. The contributions of this paper

are the followings.

• This is the first study that focuses on optimizing

the gas consumption of smart contracts at the source

code level rather than at the bytecode level. In this way,

we can grasp information from source code, optimize

from a high level, and thus make up for the shortcom-

ings of existing optimization approaches which have un-

intuitive optimization results and cannot optimize the

smart contract snippets with long opcode sequences.

• We have defined six gas-inefficient patterns from

more than 25 000 posts, and conducted a large-scale em-

pirical study on more than 160 000 real smart contracts

to evaluate the universality and economic benefits of

the patterns.

• To support independent verification or replication

of our study, we have provided a replication package 10○

in this paper. This package, which contains the gas

optimization approach based on AST from source code

and the verified smart contracts with gas-inefficient pat-

terns deployed in Ethereum, can be useful for other

researchers who are interested in studying the gas op-

timization of smart contract.

Paper Organization. The rest of the paper is orga-

nized as follows. Section 2 introduces the background

knowledge of this paper. Section 3 describes the pro-

cess of defining the gas-inefficient patterns in the smart

contract. Section 4 introduces the gas-inefficient pat-

terns and their detection and optimization approach.

Section 5 conducts a large-scale empirical study to eva-

luate the effectiveness and usefulness of the patterns.

Section 6 presents the threats to validity. Section 7 dis-

cusses related work and Section 8 concludes this paper.

2 Background

Blockchain. Blockchain is a chain data structure

that combines a number of blocks in chronological or-

der. It is maintained by all nodes in a decentralized

system. Specifically, each node is connected and in-

teracted by P2P networking, and executes, verifies and

disseminates the effective transaction data generated

within a period of time. At the same time, the node

uses the Merkle tree, hash algorithm, timestamp and

other technologies to organize transactions into blocks,

and compete for the right to append the self-generated

block to the chain according to the consensus algorithm.

Finally, the node who obtains the right can append the

self-generated block at the end of the blockchain and

gets corresponding rewards. The remaining nodes up-

date the blockchain. Since the transactions have been

validated by all the nodes in this way, the blockchain

has the characteristics of decentralization, trustlessness,

and tamper-proof.

Ethereum. As a blockchain system with a built-

in Turing complete programming language and the

first introduction of the concept of smart contracts,

Ethereum is currently the most popular smart contract

development platform [2]. The core of Ethereum is the

Ethereum virtual machine (EVM) which can run smart

contracts compiled into the EVM bytecode by the com-

piler (e.g., solc). It is surprising that roughly 16 000 000

smart contracts have been deployed in Ethereum and

these contracts are called more than 1.1 billion times

from June 30, 2015 (the launch of Ethereum) to June

30, 2019, suggesting that the smart contract is being

used frequently by everyone.

Smart Contract. A smart contract is a program

running on a blockchain which needs to be deployed

in the blockchain before being called. Specifically, the

smart contract creator writes the contract with Solid-

ity, compiles the contract into the EVM bytecode, and

sends the transaction containing the bytecode and the

parameters of the contract constructor to the near-

est Ethereum node. Through the network consensus

8○https://ethereum.stackexchange.com/, Dec. 2021.
9○https://docs.soliditylang.org/en/v0.8.9/index.html?highlight=Ethereum%20StackExchange#getting-started, Dec. 2021.
10○https://github.com/ICSE-Detecting-Gas-Inefficient-Patterns/replication-package, Dec. 2021.



70 J. Comput. Sci. & Technol., Jan. 2022, Vol.37, No.1

process, the contract is deployed on each blockchain

node and the contract address is returned to the user.

Anyone can call the smart contract deployed in the

blockchain. Specifically, the contract caller sends the

transaction containing the contract address, the signa-

ture and the input parameters of the called function

to the nearest Ethereum node. Since the bytecode is

made up of multiple opcodes, running smart contracts

is equivalent to performing each opcode in the bytecode

(opcode sequence) of contracts.

Gas. In order to avoid the excessive consumption of

resources and to ensure termination, Ethereum adopts

the gas mechanism charging execution fee from trans-

action senders. The transaction fee is computed by

GasPrice × GasUsed, where the term gas is a special

unit to measure the consumption of storage and com-

puting resources. GasPrice is constant generally and

GasUsed by the transaction is stipulated by Ethereum’s

core protocol. Table 1 shows the amount of gas due to

various opcodes. It is noting that the operations re-

quire more storage and computing resources cost more

gas. For example, the opcode SSTORE requires 5 000

or 20 000 gas which is used to access the storage. When

the storage value is set from non-zero to zero, it costs

20 000 gas. Otherwise, it costs 5 000 gas. The opcode

ADD requires 3 gas which is used by arithmetic ope-

ration.

Table 1. Partial Gas Costs in Ethereum

Operation Opcode Gas

Arithmetic operation ADD/SUB 3
ADD/SUB 5
ADDMOD/MULMOD 8

Stack operation POP 2
PUSH/DUP/SWAP 3

Unconditional jump JUMP 8
Get input data of CALLDATALOAD 3
current environment
Memory operation MLOAD/MSTORE 3
Storage operation SLOAD 200

SSTORE 5 000/
20 000

Get balance of an account BALANCE 400
Compute Keccak-256 hash SHA3 30

Note: The complete list can be found in [4].

3 Our Process of Defining Gas-Inefficient

Patterns

Smart contracts are programs that run on the

blockchain. In order to avoid the infinite loop of con-

tracts, a gas mechanism is introduced. The mechanism

stipulates that every time when the smart contract exe-

cutes an instruction, it consumes a certain amount of

gas. Gas optimization of the smart contract can de-

crease the cost of deploying and calling the contract,

which is of great significance. It is noted that infor-

mal documentation contained in resources such as Q&A

websites (e.g., Ethereum Stack Exchange 11○) is a pre-

cious resource for smart contract developers, where the

examples of gas-inefficient smart contracts, as well as

opinions on how to optimize can be found. There-

fore, in this section, we aim at defining a set of new

smart contract gas-inefficient patterns from the posts

of Ethereum Stack Exchange which is the official dis-

cussion site recommended by the Solidity development

team. Specifically, we first crawl the posts containing

questions, answers and comments in Ethereum Stack

Exchange made before July 9, 2020. Second, we uti-

lize keywords to filter out irrelevant posts to improve

efficiency. Third, we manually filter irrelevant posts

further. Then, we create cards for each post and di-

vide the cards into several themes. The card records

the information about the gas-inefficient patterns in the

posts. Finally, we subdivide the cards into several cat-

egories for each theme. The remainder of this section

will introduce the key steps in the process of defining

gas-inefficient patterns.

3.1 Filtering out Irrelevant Posts by Keywords

It is time-consuming to find the required informa-

tion from more than 25 000 posts. Although each

post has some tags, it is not feasible to filter posts

by these tags, because some posts only contain gas-

optimization-unrelated labels but point out the gas-

inefficient patterns. For example, the tags of this

post 12○ are Solidity, contract-development, exceptions

and revert-opcode which seem to be irrelated to gas

optimization. The post intuitively discusses the use of

exception-related Solidity keywords, but one of the an-

swers analyzes the pros and cons of keywords in terms

of gas efficiency. Although the labels of the post are

not relevant to gas optimization, the post includes gas-

inefficient patterns and the analysis of patterns. To

solve this problem, we customize some keywords that

are closely related to gas optimization, and use these

keywords to filter out irrelevant posts instead of using

11○https://ethereum.stackexchange.com, Dec. 2021.
12○https://ethereum.stackexchange.com/questions/15166/difference-between-require-and-assert-and-the-difference-between-rever-

t-and-thro, Dec. 2021.
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tags given by the site 13○. Specifically, two authors of this

paper read Ethereum White Paper [2], Ethereum Yellow

Paper [4] and Solidity Developer Documents, and record

some keywords related to gas optimization. Then the

keywords selected by the two authors are merged and

are used to filter irrelevant posts. It is noting that we

exploit a two-person collaboration to make the possi-

bility of missing important posts as low as possible.

Finally, we utilize 32 keywords to filter out 22 583 ir-

relevant posts from 25 701 posts. Posts containing less

than five keywords will be filtered. In other words, there

are 3 118 posts that are likely to be related to gas opti-

mization in Ethereum Stack Exchange.

3.2 Filtering out Irrelevant Posts Manually

Although we use keywords to filter a large number of

unrelated posts, there are some posts which contained

keywords but are not related to gas optimization. For

example, the keyword gas appears many times in this

post 14○, but this post is just a Q&A about what is gas.

To solve this problem, we filter out the posts not related

to gas optimization manually. Specifically, for each post

filtered by keywords, two authors mentioned in Subsec-

tion 3.1 independently judge the relevance between the

post and the gas optimization. Then, the opinions of

the two authors are summarized. For the posts with

different opinions, we invite another author of this pa-

per to judge the relevance of them. Finally, we manu-

ally filter out 2 644 irrelevant posts and get 474 related

posts for mining gas-inefficient patterns.

3.3 Open and Closed Card Sorting

For the remaining posts by previous filtering steps,

two authors of this paper are arranged to create cards

for them. One of them creates one or more cards for

each post after reading the post carefully, and the other

is responsible for checking the cards to avoid missing

important information. The card contains the informa-

tion of gas-inefficient pattern title and description. If

the optimization methods are clearly described in the

post, the card will contain a solution to the pattern as

well.

It is noting that we will not create cards for all gas-

inefficient patterns mentioned in the post, because some

gas-inefficient patterns have been optimized by the lat-

est version of the compiler (currently the latest version

is 0.7.0) and Solidity official recommends that it is best

to use a recent version of the Solidity compiler to write

smart contracts (the outdated compilers contain some

known vulnerabilities 15○). One of the gas-inefficient pat-

terns that have been optimized is the use of the dep-

recated Solidity keyword throw to throw an exception

instead of using require(), assert() and revert(). The

compiler optimizes this pattern by removing deprecated

keywords in version 0.5.0.

We create a total of 532 cards for gas-optimization

related posts. After creating the cards, we randomly

choose 106 (about 20% of the total) cards and arrange

two authors of this paper to classify these cards to-

gether according to the reasons for the gas inefficiency.

The two authors first carefully read all the contents of

the card. Then, they discuss the reason for the inef-

ficiency, and determine a theme for the card. Finally,

these 106 cards are divided into the following themes:

inappropriate storage, misusing expensive operations,

inefficient opcode sequence, and large-scale data sto-

rage. The two authors sort together to ensure that

they have the same classification criteria for cards. Af-

ter determining the theme of the card, the two authors

independently classify the remaining cards. In the rest

of the card classification process, no new categories are

found.

3.4 Defining Gas-Inefficient Pattern from

Posts

After categorizing the card, we merge similar cards

in each theme, summarize the causes of gas-inefficiency

more finely and define the gas-inefficient patterns.

For inappropriate storage and misusing expensive ope-

rations, we define two and four gas-inefficient patterns

respectively. For inefficient opcode sequence, we do not

define the gas-inefficient pattern because the optimiza-

tion methods on this theme are not in the source code

but in the bytecode, which is not considered in this pa-

per. For the large-scale data storage, the optimization

methods of this theme are about reducing the scale of

stored data, such as only storing important data in the

blockchain. It cannot be solved by changing the source

code of a contract. Therefore, the optimization meth-

ods of this theme are not within the scope of this paper.

The six gas-inefficient patterns which are defined in this

subsection will be introduced in Section 4.

13○https://ethereum.stackexchange.com/tags, Dec. 2021.
14○https://ethereum.stackexchange.com/questions/3/what-is-meant-by-theterm-gas, Dec. 2021.
15○https://solidity.readthedocs.io/en/v0.7.0/bugs.html, Dec. 2021.
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4 Gas-Inefficient Pattern in Smart Contracts

In Section 3, we define six gas-inefficient patterns

from the inappropriate storage theme and the misusing

expensive operations theme. Table 2 shows the infor-

mation of gas-inefficient patterns. Next, we introduce

each pattern utilizing Table 2 and the following tem-

plate.

Description: A description of the gas-inefficient pattern.
Example: An example of the pattern.
Optimization: An optimization of the pattern.

4.1 Inappropriate Storage

4.1.1 Sparse Storage

Description. The storage of the Solidity smart con-

tract is contiguous 32-byte (256-bit) slots. State vari-

ables are arranged in slots in the order of definition.

For a state variable, if the remaining space of the cur-

rent slot can store this variable, the variable is stored

in this slot. Otherwise the variable is stored in a new

(unused) slot. Sparse storage means that variables in

the smart contract can be stored in fewer slots. If the

definition of state variables is rearranged reasonably,

we can use fewer slots to store variables and reduce

the cost of using smart contracts. As we all know, the

storage resource of the blockchain is set to be very ex-

pensive to prevent users from misusing resources. The

more the storage a smart contract uses, the more the

gas it consumes and the higher the cost is. Therefore, it

is meaningful and beneficial to reasonably arrange the

state variables (minimizing the wasted space).

Table 2. Gas-Saving Overview of Three Frontier Gas Optimization Studies and Ours

ID Pattern Example (Gas-Inefficient) Example (Gas-Efficient) Address

1 Sparse storage uint8 public decimals;

uint256 public totalSupply;

address public owner;

uint8 public decimals;

address public owner;

uint256 public totalSupply;

0x6e56d4e9de4e

9d64ccfadce52c

bf10c78f096af6

2 Using smaller values for

storage without packing

uint32 public contractVersion

= 20191203;

string public contractClass

= "xpetoTimestampLogger";

string public xpectoMandator

= "xpecto";

uint256 public contractVersion

= 20191203;

string public contractClass

= "xpetoTimestampLogger";

string public xpectoMandator

= "xpecto";

0x0a4d60ba4ba5

3ab7f358ab0697

6e6b6c4ea132ba

3 Repeat assignment contract ProofOfWeakFOMO {
address owner = msg.sender;

constructor () {
owner = msg.sender; }}

contract ProofOfWeakFOMO {
address owner;

constructor () {
owner = msg.sender; }}

0xbfd77110f806

95f1a97fed29b0

6abc25dfd447a7

4 Frequent use of

state variables

contract ShareTokenSale {
uint256 public endTime;

function startSale() {
for(...){

endTime=endTime.add(x); }}}

contract ShareTokenSale {
uint256 public endTime;

function startSale() {
uint256 temp0 = endTime;

for(...){
temp0=temp0.add(x); }

endTime = temp0}}

0x13955f1867a0

bfbac3146b58ab

33b982d72f06e7

5 Without considering the

short-circuiting rules

if((msg.value>=this.balance)

&& (frozen == false)) {
msg.sender.

transfer(this.balance); }

if((frozen == false) &&

(msg.value>=this.balance)){
msg.sender.

transfer(this.balance); }

0xa96e6dbf0f21

cfcc9934ad52de

c8229e3321254e

6 Inaccurate function

visibility

contract ImmAirDropA {
function signupUserWhitelist

(address[] userlist)

public{...}}

contract ImmAirDropA {
function signupUserWhitelist

(address[] userlist)

external{...}}

0x015ccd5ad83e

95b5cb91b920f6

89ea329d096190

Note: The Pattern column represents the pattern name; the Example (Gas-Inefficient) column and the Example (Gas-Efficient) col-
umn represent the corresponding real examples of gas-inefficient patterns and its efficient versions respectively; the Address column
represents the address of the contract where the examples come from.
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Example. The contract snippet in the first row and

the third column of Table 2 has a gas-inefficient pat-

tern with sparse storage. The snippet has three state

variables, called decimals, totalSupply and owner. The

variable types of state variables are uint8, uint256 and

address, which are occupying 8 bits, 256 bits and 160

bits respectively. According to the variable definition

order in contract, the storage of contract is shown in

Fig. 2(a). The contract uses three slots to store the

variables. We can find that neither variable decimals

nor variable owner occupies the full slot, only a part of

the slot. If variable decimals and variable owner can fit

in a single slot, the contract can use two slots only to

store state variables instead of three slots, which can

optimize the gas usage of the contract and save money.

Optimization. For pattern 1, the optimization is to

find the definition order of state variables so that the

smart contract uses the least number of slots. Specifi-

cally, we first construct a mapping table about the size

of variable types. There are two types of smart contract

state variables: the reference data type (e.g., struct, ar-

ray) and the basic variable type (e.g., uint, address).

For reference data types, we set their size to 256 bits,

because the reference data types always begin in a new

storage slot according to the Ethereum Yellow Book [4].

For the basic variable type, we keep their size consistent

with the size described in the Solidity developer docu-

mentation. Then, we count the number of slots used

in the original variable definition order. Finally, we use

heuristic rules to adjust the order of variables until we

find the order that uses fewer slots than the original. If

we can find such an order, then we apply this order to

the smart contract to achieve optimization. Otherwise,

we judge that there is no sparse storage pattern in the

smart contract. To describe our optimization method

more specifically, the optimization method is applied to

the gas-inefficient example of pattern 1. The method

adjusts the original variable order to {decimals, owner,

totalSupply}, which is shown in the first row and the

fourth column of Table 2. The storage diagram of the

optimized contract is shown in Fig.2(b). The method

adjusts the definition order of variable decimals and

variable owner to be continuous so that variable dec-

imals and variable owner can be stored in the same slot

and use one less slot. This uses less storage space and

consumes less gas, thus saving money.

4.1.2 Using Smaller Values for Storage Without
Packing

Description. As mentioned in the previous pattern,

the EVM works with 256-bit words. If a variable can-

not be packed and stored in the same slot with the

surrounding variables, the variable will be stored sepa-

rately in a 256 bits slot. For smaller values which are

less than 256 bits, they will be converted into 256 bits

by EVM firstly, and then they are stored in the slot.

Compared with storing 256-bit variables in the slot sep-

arately, storing variables less than 256 bits in the slot

separately will cost extra gas because of conversion.

Example. The contract snippet in the fifth row and

the third column of Table 2 is an example of using

smaller values for storage without packing. The varia-

ble type of the first variable contractVersion is uint32

whose size is 32 bits. Since the variable type of the

second variables is a string with 256 bits in size and

cannot share the slot with other variables, the variable

contractVersion can only be stored in one slot. Before

variable contractVersion is stored in the slot, variable

contractVersion will be expanded to 256 bits by EVM

filled with 0. This operation causes additional gas con-

sumption.

Optimization. The optimization method of this pat-

tern is to set the type of the variable that is not packed

and less than 256 bits to the 256 bits variable type cor-

responding to the original variable type (i.e., changing

uint8 to uint256, and changing int8 to int256). In addi-

tion, for the variables which interact with the variables

with changed types, we also need to change their varia-
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Fig.2. Storage layout. (a) Sparse. (b) Compact.
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ble types accordingly. The snippet in the fifth row and

the fourth column of Table 2 is an efficient version of the

gas-inefficient example of pattern 5. The variable type

of variable contractVersion is changed to uint256. Since

no other variables are assigned by variable contractVer-

sion, no more changes to the contract are required.

4.2 Misusing Expensive Operations

4.2.1 Repeated Assignment

Description. According to the Solidity developer

document, the compiler will generate some instruc-

tions for smart contract deployment. These instruc-

tions achieve three tasks: 1) storing the bytecode of

the smart contract into the blockchain; 2) storing state

variables in the storage of the corresponding contract;

if the state variable is not initialized when it is declared,

the compiler will automatically initialize the variable to

0; 3) executing the constructor of the smart contract.

However, many contract developers intuitively assign

values to the contract immediately when the variable

is declared due to the programming habits of tradi-

tional programming languages (e.g., Java). Therefore,

the phenomenon of assigning values to variables in both

state variable declarations and constructors frequently

occurs in smart contracts. It is noting that this phe-

nomenon belongs to the gas-inefficient pattern because

some meaningless code (the code that implements as-

signing values at state variable declaration) wastes gas.

After assigning a value to the state variable during dec-

laration, the state variable is not read or written, and

the value is immediately modified in the constructor.

Example. The contract snippet in the second row

and the third column of Table 2 is an example of re-

peated assignment. Smart contract ProofOfWeakFOM

has a state variable owner, and assigns msg.sender (rep-

resenting the sender of the transaction) to the varia-

ble when declared. In the constructor, the variable

owner is modified to msg.sender. Obviously, the assign-

ment statement “= msg.sender” in variable declaration

statement “address owner = msg.sender” is meaning-

less contract snippet, which leads to a waste of gas.

Optimization. The optimization method of this

pattern is to remove meaningless contract snippets.

Specifically, we scan the contract and record the state

variables assigned at the time of declaration and the

state variables assigned in the constructor firstly. Then,

we find the state variables that are assigned in both

the declaration and the constructor by comparing the

two variable lists obtained in step 1. Finally, we delete

the assignment in the declaration of variables found in

step 2. For the gas-inefficient example of pattern 2,

the assignment statement “= msg.sender” in variable

declaration statement “address owner = msg.sender”

is deleted, which is shown in the second row and the

fourth column of Table 2.

4.2.2 Frequent Use of State Variables

Description. According to the Ethereum Yellow

Paper, we can know that reading and writing state

variables is very expensive compared with reading and

writing local variables, because it involves the opcodes

SLOAD and SSTORE which consume more gas com-

pared with other opcodes. In particular, if the ope-

ration of reading and writing state variables is per-

formed in a loop, the gas consumed by the contract

increases with the number of loops.

Example. The contract snippet in the third row and

the third column of Table 2 is an example of frequent

use of state variables. Smart contract ShareTokenSale

in example frequently uses state variable endTimes in

the loop of the startSale function. The state variable

endTimes is read and written once in each loop, which

causes EVM to perform a lot of SLOAD and SSTORE

opcodes, and the execution of the contract will consume

a lot of gas.

Optimization. We notice that although reading and

writing state variable is very expensive (it consumes

200 units gas to perform each SLOAD and 20 000/5 000

units gas to perform each SSTORE), reading and writ-

ing local variables only involve MLOAD and MSTORE

opcodes which consume three units gas when they are

performed. Therefore, the optimization method is using

local variables to temporarily replace the state variables

in loop. Specifically, we find out the state variables used

in the loop firstly. Then we declare new local variables

to save the value of the state variables and use the local

variables to replace the state variables in loop. Finally,

we assign the value of the local variables back to state

variables. For smart contract ShareTokenSale in Ta-

ble 2, we create a new local variable temp0 and assign

the value of the state variable endTimes to it before

the loop is executed. Then, we use variable temp0 to

replace variable endTimes in the loop and assign the

value of variable temp0 to variable endTimes after the

loop is executed. So far, the smart contract ShareTo-

kenSale has been optimized by reducing the reading

and writing of the state variable. The efficient version

is shown in the third row and the fourth column of Ta-

ble 2. Although this optimization will increase the gas
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consumption of the deployment contract because the

amount of code has increased, the optimization effect

will become more and more obvious as the number of

contract calls increases. It is noting that the contract

is deployed only once and it will be called many times.

Therefore such optimization is still meaningful.

4.2.3 Without Considering the Short-Circuiting Rules

Description. According to the Solidity developer

documentation, the common short-circuiting rules are

applicable to the operators ‖ and &&, which means that

in the expression f(x)‖g(y), if f(x) evaluates to true,

g(y) will not be evaluated even if it may have side-

effects. In other words, the left operand (e.g., f(x)) of

the logical operators ‖ and && must be evaluated, while

the right operand (e.g., g(y)) of the logical operators ‖
and && has a chance not to be evaluated. Therefore, if

a more expensive operation is set as the right operand

to try to reduce the number of expensive operations

executed, it will save a lot of gas. However, many deve-

lopers do not consider the short-circuiting rules when

developing smart contracts, which leads to implemen-

tations with a higher gas consumption.

Example. The contract snippet in the fourth row

and the third column of Table 2 is an example of not

considering the short-circuiting rules. The snippet has

a conditional statement, in which there is a logic ope-

rator &&. The logic operator conducts a logic judg-

ment on the balance comparison result (msg.value >
this.balance) and the variable comparison result (frozen

> false). Since the operator && applies the short-

circuiting rules, if the balance comparison result evalu-

ates to false, the variable comparison result will not be

evaluated in the conditional statement. Moreover, bal-

ance comparison involves the opcode BALANCE which

is a relatively expensive opcode. The balance compa-

rison is more expensive than the variable comparison.

Setting the balance comparison operation to the left

operand is a waste of gas.

Optimization. The optimization method of this pat-

tern is to place the more expensive operation as the

right operand of logical operation. Specifically, for each

logical operation in the smart contract, we calculate

the gas consumption of the left operand and the right

operand of the logical operation firstly. If the gas con-

sumption of the left operand is greater than the gas

consumption of the right operand, we exchange the po-

sitions of the two operands. Otherwise, it remains un-

changed. The snippet in the fourth row and the fourth

column of Table 2 is an efficient version of the gas-

inefficient example of pattern 4. In the efficient ver-

sion, the operands on both sides of the logical operation

swap positions, and the balance comparison operation

becomes the right operand.

4.2.4 Inaccurate Function Visibility

Description. In order to better introduce this pat-

tern, the data location and function visibility of Solidity

will be introduced first. There are three data locations

(where the data is stored) in Solidity, namely mem-

ory, storage and calldata. The calldata is a read-only

byte-addressable space where the data parameter of a

transaction or call is held. Memory is a volatile read-

write byte-addressable space. It is mainly used to store

data during execution, mostly for passing arguments to

internal functions. Storage is a persistent read-write

word-addressable space. This is where each contract

stores its persistent information. There are four kinds

of function visibility, namely public, external, internal

and private. This pattern mainly focuses on public and

external. Public function can access by all. External

function cannot be accessed internally, which means

that it can only be accessed by transaction. The visi-

bility of external is a subset of the visibility of public.

If the visibility of the function is not specified, it will be

defaulted to public according to the Solidity developer

documentation. We notice that because the developer

did not actively set the function visibility and did not

know the keyword external which is not a common key-

word in other programming languages, the visibility of

many contracts can be set to external but was set to

public, which causes extra gas consumption. However,

public functions consume more gas than external func-

tions because a public function needs to copy all of the

function input arguments to memory from calldata to

enable the public function to be called internally. Mem-

ory allocation (i.e., MSTORE) is expensive. Changing

the visibility of the function which is public and is not

invoked by other functions of the same contract to ex-

ternal will save gas.

Example. The contract snippet in the sixth row and

the third column of Table 2 is an example of inaccu-

rately setting the visibility of functions. The visibility

of function signupUserWhitelist in the snippet is public

and the function is not called by other functions in the

contract.

Optimization. The optimization method of this pat-

tern is to set the visibility of public functions that are

not called internally to external. The snippet in the

sixth row and the fourth column of Table 2 is an efficient
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version of the gas-inefficient example of pattern 6. The

visibility of function signupUserWhitelist is changed to

external.

5 Results of Empirical Study

Here we conduct a large-scale empirical study to

see how generalizable our characterized gas-inefficient

patterns are and how much will be saved if the gas-

inefficient patterns are removed from the smart con-

tracts.

5.1 Dataset

In order to evaluate the universality and usefulness

of the gas-inefficient patterns proposed in this paper,

we conduct experiments on more than 160 000 smart

contracts, which is the largest empirical study of open-

source smart contracts as far as we know. However, it

is non-trivial to collect such a large number of open-

source smart contracts and their related information.

Specifically, from Etherscan 16○, we crawl 160 301 open-

source smart contracts which have been deployed on

Ethereum and have been open sourced in Etherscan

before June 19, 2020. The reason why there are so

many open-source contracts in Etherscan is that Ether-

scan has gathered many contract users by providing an

easy-to-use Ethereum block explorer and contract deve-

lopers attract users to use their contracts by opening

the source code of contracts on Etherscan. It should

be noted that the difficulty in collecting open-source

smart contracts is that Etherscan only shows the last

500 open-source contracts 17○. To solve this problem,

we have recorded open-source contracts every once in

a while. Hence, we can get more than 160 000 open-

source contracts in Etherscan. Moreover, in the process

of crawling the source code of the smart contracts, we

not only collect the source code of the contracts, but

also collect information such as the creation time of the

contract and the address of the creator.

5.2 Experimental Environment and Tools

All our experiments are performed on a machine

with 16 GB memory and 1 TB disk space, equipped

with an Intelr CoreTM i5-4690K CPU @ 3.50 GHz

and running 64-bit Ubuntu 20.04.1 LTS operating sys-

tem. In the process of detecting and optimizing smart

contracts, we traverse the AST utilizing solidity-parser-

antlr tool 18○.

To closely simulate the actual contract deployment

and usage, we firstly prepare 74 compilers with their

versions ranging from 0.1.1 to 0.6.11, thereby we can

deploy the contract using the same compiler as that

used by the running instance on the Ethereum net-

work. After compiling the contract, we use Truffle

framework v4.1.13 19○ to automatically deploy the con-

tract in the test chain Ganache v1.1.0 20○ to obtain the

gas consumption of deploying contracts. The bytecodes

of function arguments are firstly decoded into a human-

readable form using an argument decoder based on the

canoe-solidity library v0.1.0 21○ according to the ABI

Specification 22○ before being passed into Truffle.

5.3 Prevalence Analysis

We use the approach proposed in this paper to de-

tect the gas-inefficient patterns on 160 301 open-source

smart contracts deployed on Ethereum. The detection

result is shown in Fig.3. The x-axis represents the serial

number of the pattern and the y-axis represents the to-

tal number of smart contracts with the corresponding

pattern. Pattern 2 is the most common pattern among

these six patterns. They account for 45.79% of all con-

tracts. It indicates that many contract developers do

not fully consider the use of variable types, only con-

sider the storage space required by the variable, and ig-

nore the gas consumption caused by the variable type.

Pattern 4 is the rarest pattern among these six pat-

terns. They only account for 2.72% of all contracts. It

indicates that developers will pay attention to avoiding

reading and writing state variables in the loop to save

gas. Moreover, 52.75% (84 566/160 301) of contracts

contain at least one gas-inefficient pattern, which illus-

trates that about half of the contracts can be optimized.

The number of contracts that only contain 1, 2, 3, 4,

5, and 6 gas-inefficient patterns is 38 263, 34 454, 8 964,

2 356, 426 and 103 respectively. It indicates that most

16○https://etherscan.io/, Dec. 2021.
17○https://etherscan.io/contractsVerified, Dec. 2021.
18○https://www.npmjs.com/package/solidity-parser-antlr, Dec. 2021.
19○https://www.trufflesuite.com/, Dec. 2021.
20○https://www.trufflesuite.com/ganache, Dec. 2021.
21○https://github.com/cryptofinlabs/canoe-solidity, Dec. 2021.
22○https://solidity.readthedocs.io/en/v0.7.0/abi-spec.html, Dec. 2021.
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optimizable contracts contain one or two gas-inefficient

pattern(s). There are 41 245 optimizable contracts that

contain both pattern 2 (P2) and pattern 5 (P5), which

means that pattern 2 and pattern 5 often appear to-

gether.

P1

20 421

73 408

4 416 4 367

32 742

10 881

P2 P3

7

6

5

4

3

2

1

0
P4

Pattern

N
u
m

b
e
r 

o
f 
C

o
n
tr

a
c
ts

P5 P6

(Τ104)

Fig.3. Prevalence of six gas-inefficient patterns.

5.4 Money Saved Analysis

To illustrate the economic benefit of removing the

gas-inefficient patterns proposed in this paper from the

smart contracts, we compare gas consumption for each

contract before and after optimization. We acquire

more real gas consumption by replaying the original

transactions of the contract to reproduce the contract

execution. Specifically, we develop a gas consumption

comparison program with a contract deployer module

and a transaction replayer module, which is shown in

Fig.4, where the notation of an arrow indicates data

flow.

The deployer module firstly compiles and deploys

the contract using a compiler with exactly the same ver-

sion and configurations as that of the running instance

on the real Ethereum network to obtain the same byte-

code, thereby the gas consumptions we get are more

realistic. When the contract is deployed, the replayer
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module utilizes transaction information recorded on the

real Ethereum network and replays them accordingly.

It is noting that since it is unfeasible to have the same

sender addresses on our test chain as on the Ethereum

network, we make a mapping from the real addresses to

the addresses on our test chain, and replace the sender

addresses in each transaction with our mapped ad-

dresses before replaying it. Finally, the program gene-

rated a report describing the gas consumption of each

of the contracts covered by the six patterns, before and

after optimization.

Due to time constraints, during the experiment, we

simply ignore contracts with more than 1 000 transac-

tions and contracts containing transactions from more

than 100 different sender addresses. Also, we only try

to deploy at most 20 000 contracts of each pattern and

to replay their transactions. The contracts which fail to

compile, revert during the deployment process, or en-

counter EVM internal errors during the replaying pro-

cess are not included in the result. Eventually, 44.2%

of our tests were successful. In total, the experiments

take 364 hours on our machine.

The gas saving of each pattern is shown in Table 3.

From the perspective of contract development, pattern

6 is the best economic benefit pattern among these

six gas-inefficient patterns. Since the external function

lacks the operation of copying the input parameters to

the contract memory compared with the public func-

tion, the opcode sequence of the optimized contract is

much shorter than that of the original one and pattern

6 can significantly save gas during deployment. In the

same way, the worst economic benefit is pattern 4 when

deploying contracts, because the optimized contracts

have added a local variable declaration and two assign-

ment operations. The opcode sequence of the optimized

contract becomes longer. From the perspective of con-

tract invoking, pattern 4 is the best economic benefit

pattern. The optimized contract uses local variables to

reduce the reading and writing of state variables which

are relatively expensive operations in Ethereum, reduc-

ing the execution of expensive operations, thereby sav-

ing a lot of gas. In general, considering that gas price

is about 1.15 × 10−7 Ether and one Ether can be ex-

changed into around $380 in August 2020, at least $0.30

can be saved per contract. Since there are more than

16 million smart contracts deployed in Ethereum, if gas

optimization is performed before deploying contracts, it

will bring huge economic benefits.

Table 3. Gas Saving of Six Gas-Inefficient Patterns

Pattern #c #t #Saving Gas

Deploy Invoke

P1 11 657 286 696 80 494 110 12 174 283

P2 8 810 229 995 79 077 573 749 724

P3 2 149 59 146 12 262 199 8 860 627

P4 1 898 69 621 −22 030 761 23 219 821

P5 7 442 189 270 348 897 4 850 887

P6 3 216 109 215 29 664 663 23 636 855

Note: The #c column and the #t column represent the number
of contracts and invoking contract transactions corresponding to
the pattern involving the experiment respectively. The #Saving
Gas (deploy) column and the #Saving Gas (invoke) column rep-
resent the gas saved when deploying the contract and invoking
the contract after optimization respectively.

5.5 Comparison with Existing Approaches

Table 4 is an gas-saving overview of three recent

frontier gas optimization studies and our study. The

#contract row and the #transaction row represent the

number of contracts and invoking contract transactions

in the experiment respectively. The #saving gas (total)

row represents the amount of gas saved by deploying

and invoking contracts after optimizing. The #saving

gas (avg) row represents the average gas saved per inte-

raction with the contracts, that is, #savinggas(avg) =

#savinggas(total)/(#contract+#transaction). Since

these three tools are not all open source, we cannot

conduct an experiment applying their approaches and

our approaches to the same dataset. The data of these

three advanced gas optimization approaches come from

their papers. Since Albert et al. [3] did not describe the

number of transactions in the paper, rows 3 and 5 of the

fourth column are empty. Chen et al. [5] were the first to

study the problem of smart contract gas optimization.

They defined 24 gas-inefficient patterns and acquired

the saved gas by replaying all transactions in Ethereum

as of June 10, 2017. Their average gas saved is 1 524.73.

With the development of Ethereum, the number of con-

tracts and transactions in Ethereum is growing rapidly.

Replaying all transactions to acquire gas consumption

is very time-consuming and resource-intensive. There-

fore, the studies of [6] and [3] optimized the top 1 500

and 2 500 contracts that are most frequently invoked

in Ethereum respectively rather than all contracts in

Ethereum. GasChecker [6] optimizes contracts by re-

moving three gas-inefficient patterns and Albert et al. [3]

optimized contracts with logical reasoning. The average

gas saved of GasChecker [6] was 21.69. These three gas

optimization studies focus on optimizing the contracts

at the bytecode level while we focus on the source code
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Table 4. Gas-Saving Overview of Three Frontier Gas Optimization Studies and Ours

#Contract #Transaction #Saving Gas (Total) #Saving Gas (Avg.)

Chen et al. [5] 386 906 5 663 971 9 225 940 756 1 524.73

GasChecker [6] 1 500 7 000 000 151 899 834 21.69

Albert et al. [3] 2 500 — 1 309 875 —

Ours 25 278 679 830 172 495 693 244.64

level. Similarly, we only optimize partial contracts. We

define six gas-inefficient patterns and our average gas

saved is 244.64. It is noting that we only calculate saved

gas for contracts that contain less than 1 000 transac-

tions. These transactions may not invoke the optimized

snippets, thereby the actual average gas saved will be

larger.

6 Threats to Validity

Internal Validity. Some gas-inefficient patterns may

be missed because custom keywords are not comprehen-

sive enough and the authors responsible for extracting

the information of gas-inefficient patterns from posts

may not be careful enough. In order to deal with this

problem, we arrange two persons to customize keywords

and synthesize their keywords. We arrange two persons

to extract information from the posts, one is responsi-

ble for the extraction, and the other is responsible for

checking whether there are any omissions. In addition,

in order to evaluate the patterns proposed in this paper

more realistically, we acquire the gas consumption by

replaying all transactions of contracts. However, there

is a slight discrepancy between the reproduction situa-

tion and the real situation. One reason is that we can-

not obtain all versions used by the contract creators be-

cause some compilers are experimental compilers which

have only been open to the public for a short time. An-

other reason is that the operation of the smart contracts

utilizes some external environment elements (e.g., call-

ing other smart contracts). To reduce this threat, we

use a compiler whose version is as consistent as possible

with the version of the compiler used by the contract

creator. And we optimize smart contracts that do not

involve external elements.

External Validity. We conduct our study on more

than 160 000 real smart contracts. We find that our

uncovered patterns and the corresponding problematic

and justifiable cases are common among the studied

smart contracts. However, our finding may not be gen-

eralizable to other smart contract programming lan-

guages that are not based on EVM because the cost of

these programming languages for resource consumption

is very different from that of EVM-based languages.

7 Related Work

There are three areas of research related to this pa-

per: 1) empirical studies on smart contracts, 2) opti-

mizing the gas consumption of smart contracts, and 3)

anti-patterns.

7.1 Empirical Studies on Smart Contracts

Despite the fact that Ethereum and smart contracts

are relatively new, many empirical studies have been

performed on smart contracts. Oliva et al. [7] conducted

a study of smart contracts deployed in Ethereum from

the inception of Ethereum (July 30, 2015) until Septem-

ber 2018. They focused on three aspects: activity level,

category, and code complexity. Durieux et al. [8] pre-

sented an empirical evaluation of automated analysis

tools on 47 587 Ethereum smart contracts. Chen et

al. [9] conducted an empirical study to understand and

characterize smart contract defects. They defined 20

kinds of contract defects from the posts of Ethereum

Stack Exchange. Two of the defects are related to gas-

inefficiency. The first is to use variable type byte[].

They recommended using bytes instead. After verifica-

tion, there is no difference in gas consumption between

these two variable types in the latest version of the com-

piler. The second is pattern 6 introduced in this paper.

Our work is different from them because we are fully

concerned about the gas-inefficiency of smart contracts

and we conduct a qualitative and quantitative analysis

of the proposed gas-inefficient patterns on more than

160 000 real contracts. As far as we know, it is the

largest empirical study of open source smart contracts.

7.2 Optimizing the Gas Consumption of Smart

Contracts

Smart contracts have been explored for a va-

riety of different contexts, including vulnerability

detection [10–12], testing [13, 14] and decompilation [15].



80 J. Comput. Sci. & Technol., Jan. 2022, Vol.37, No.1

The most relevant work for this research is to optimize

the gas consumption of smart contracts.

The EVM bytecode superoptimizer ebso [4] opti-

mizes the bytecode of smart contracts by encoding the

operational semantics of EVM instructions as SMT for-

mulas and leveraging a constraint solver to automati-

cally find cheaper bytecode. Its experiments indicated

that it hit a time-out in nearly 82% of all test contracts.

Albert et al. [3] improved ebso by combining symbolic

execution with an effective Max-SMT encoding. Max-

SMT encoding improves the speed of optimization for

each smart contract to avoid the timeout problem of

ebso.

Gasper [16] defines seven gas-inefficient patterns.

GasChecker [6] adds four new patterns and removes one

pattern that never appeared on the basis of Gasper.

GasChecker can also detect these 10 patterns with

symbolic execution and optimizes three of the pat-

terns. Chen et al. [5] identified 24 gas-inefficient pat-

terns by manually scrutinizing the execution traces of

real under-optimized smart contracts. These patterns

are composed of 1–5 opcodes. They also built a tool

to detect and optimize the patterns. The above studies

detected and optimized the contract at the bytecode

level, while our study is at the source code level. The

gas-inefficient patterns defined in this paper have no in-

tersection with the above studies, except for pattern 4.

For pattern 4, GasChecker [6] can detect it and the ap-

proach proposed in this paper can detect and optimize

it.

In addition to the above related work focused on

bytecode, there are some related studies focused on

source code. SmartCheck [17] translates Solidity source

code into an XML-based intermediate representation

and checks gas-inefficient patterns against XPath pat-

terns. It could check gas-inefficient patterns about byte

arrays and costly loop. SolidityCheck [18] also detects

these two gas-inefficient patterns from the source code

level. But it uses regular expressions to define the char-

acteristics of patterns and uses regular matching the

patterns. Correas et al. [19] proposed a static profiling

technique for contracts with static resource analysis. It

could automatically detect and optimize gas-expensive

fragments where state variables were frequently used

where in loops.

7.3 Anti-Patterns

Anti-pattern detection and elimination are applied

in various aspects of software engineering involving

logging code [20], continuous integration (CI) [21], IOS

app [22] and database application [23]. Li et al. [20] man-

ually studied over 3k duplicate logging statements and

their surrounding code in four large-scale open-source

systems: Hadoop, CloudStack, ElasticSearch, and Cas-

sandra. They uncovered five patterns of duplicate log-

ging anti-patterns which may affect developers’ under-

standing of the dynamic view of the system and deve-

loped an automated static analysis tool to detect these

patterns. CI-Odor [21] is a tool for detecting four anti-

patterns that reduce the promised benefits of CI by

analyzing regular build logs and repository informa-

tion. Afjehei et al. [22] manually studied 225 perfor-

mance issues collected from four open source iOS apps

and uncovered four performance anti-patterns. They

also implemented a static analysis tool to help deve-

lopers avoid these performance anti-patterns in the

code. SQLCheck [23] is a holistic toolchain for automat-

ically finding and fixing anti-patterns in database ap-

plications. It can rank the anti-patterns based on their

impact on performance, maintainability, and accuracy

of applications, and changes to the database design to

fix these anti-patterns.

8 Conclusions

Snippets with gas-inefficiency will cause unneces-

sary costs to smart contract users. In this paper, we de-

fined six gas-inefficient patterns from more than 25 000

posts. Different from the existing studies, we proposed

a detection and optimization approach of gas-inefficient

patterns at the source code level, which is more trans-

parent and considers inefficient programming patterns

caused by developers. Further, we applied the detec-

tion and optimization approach to a dataset containing

more than 160 000 real smart contracts. Experimental

results demonstrated that there are 52.75% of contracts

with at least one gas-inefficient pattern proposed in this

paper, and each contract can reduce at least $0.30 in

fees if the gas-inefficient patterns are removed from the

contract. Considering that there are more than 16 mil-

lion smart contracts in Ethereum, if gas optimization is

performed before contract deployment, it will save a lot

of money. Considering the limitations of manual ana-

lysis, future studies will use the natural language pro-

cessing technology to assist manual analysis to reduce

artificially introduced deviations. In order to discover

more gas-inefficient patterns, future work will mine gas-

inefficient patterns from commit messages which con-

tain meaningful information about code changes.
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