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Abstract Self-adaptive systems are able to adjust their behaviour in response to environmental condition changes and

are widely deployed as Internetwares. Considered as a promising way to handle the ever-growing complexity of software

systems, they have seen an increasing level of interest and are covering a variety of applications, e.g., autonomous car

systems and adaptive network systems. Many approaches for the construction of self-adaptive systems have been developed,

and probabilistic models, such as Markov decision processes (MDPs), are one of the favoured. However, the majority of

them do not deal with the problems of the underlying MDP being obsolete under new environments or unsatisfactory to

the given properties. This results in the generated policies from such MDP failing to guide the self-adaptive system to run

correctly and meet goals. In this article, we propose a systematic approach to updating an obsolete MDP by exploring new

states and transitions and removing obsolete ones, and repairing an unsatisfactory MDP by adjusting its structure in a more

meaningful way rather than arbitrarily changing the transition probabilities to values not in line with reality. Experimental

results show that the MDPs updated and repaired by our approach are more competent in guiding the self-adaptive systems’

correct running compared with the original ones.
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1 Introduction

Modern software systems are growing at an as-

tonishing rate in terms of scale, and many of them

have close and prevalent interactions with the envi-

ronment through the abundant equipped sensors and

actuators [1]. Typical examples include autonomous ve-

hicles, robotics, smart rooms, and Internet of Things,

etc. The development of such complex software systems

while considering the interactions can be laborious, not

to mention the need to guarantee system qualities. One

promising way to reduce effort is self-adaptation. Self-

adaptive systems are generally considered to be efficient

approaches for engineering resilient software systems in

a cost-effective manner [2]. They are able to automati-

cally adapt to the environmental condition changes in

pursuit of user requirements. In general, a self-adaptive

system is composed of the adaptation logic and the

managed elements [3]. As the crux of a self-adaptive sys-

tem, the adaptation logic is responsible for determining

how to perform adaptation in complex environments.

To implement a concrete adaptation logic, many ap-

proaches have been proposed [4], e.g., rule-based [5, 6],

control theory based [7–9] and model-based approac-

hes [10–13]. These approaches rely on certain explicit

models, such as specified rules or probabilistic mod-
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els of system behaviours, to construct the adaptation

logic. Among them, the probabilistic model, including

discrete-time Markov chains (DTMCs) and Markov de-

cision processes (MDPs), is one of the most widely-used

approaches for building adaptation logics. DTMCs can

model the probabilistic behaviours of self-adaptive sys-

tems, and MDPs extend DTMCs by allowing nonde-

terministic choices, which often exist in real-world self-

adaptive systems.

Based on the MDP of a self-adaptive system, it is

possible to generate a policy to control the system’s be-

haviour. There is a large body of work focusing on gen-

erating optimal policies for self-adaptive systems mod-

elled by MDPs [2, 13–15], and much progress has been

made in this area. A common assumption of existing

work that employs MDPs to build adaptation logics

for self-adaptive systems is that once the MDPs are

given, they are unlikely to change in the future. How-

ever, in reality, there are scenarios where the MDPs are

subject to change. On the one hand, every MDP of

a self-adaptive system is designed to deal with certain

specific environmental conditions. When the system’s

operating environment becomes different from the ones

assumed by the developers at the design time, the MDP

will be obsolete, incapable of producing the possible

policies that can be executed in the new environment,

or containing policies that cannot happen in the new en-

vironment. On the other hand, when the self-adaptive

system’s MDP fails to satisfy properties, the model will

become unsatisfactory and thus cannot provide policies

that meet the goals. When such problems are encoun-

tered, it is better to update and repair the model if pos-

sible, rather than to redesign a new model from scratch.

In contrast to the policy generation, existing litera-

tures have not thoroughly studied how to update and

repair the underlying MDP models when necessary. An

undeniable fact is that if relying on the obsolete and un-

satisfactory MDP to generate policies, the policies obvi-

ously cannot guide the systems to run correctly. Hence,

to address the above two problems, in this paper we

propose a novel approach to updating and repairing ob-

solete and unsatisfactory MDPs. Specifically, when the

environment changes, our approach identifies and re-

moves the obsolete states and transitions, and finds new

states and transitions that are feasible under the new

environments. The repair of an unsatisfactory MDP is

challenging since there can be numerous ways to change

the MDP in terms of parameter and structure. Existing

studies [16, 17] have identified the model repair problem

and proposed to parametrically repair the MDPs, which

is to change the transition probabilities. The repaired

MDPs obtained from such approaches are compliant in

the sense that they can satisfy the given properties.

However, we recognise a problem with the parametric

repair, i.e., the repaired models are not valid in the con-

text of self-adaptive systems: the transition probabi-

lities in MDPs for self-adaptive systems have practical

meanings. They come from probabilistic system char-

acteristics (e.g., a flawed actuator has a probability of

executing undesired actions), and therefore, cannot be

changed arbitrarily to values not in line with reality.

Otherwise, the policy generated based on the repaired

model is meaningless and cannot guide the system to

run correctly. To address this problem, we propose a

structural repair approach which finds alternative paths

that can make the properties satisfied while keeping the

transition probabilities consistent with reality. To ef-

ficiently construct the necessary structural repair, we

novelly propose to leverage the parametric repair as an

intermediate step and use its repair results to guide the

structural repair of models so that the obtained models

can satisfy the properties without violation.

In summary, this article makes the following contri-

butions.

• Our approach addresses a novel problem of updat-

ing obsolete MDPs and repairing unsatisfactory MDPs

for self-adaptive systems.

• Our approach structurally updates and repairs

MDPs to cope with environment changes and obtain

compliant and valid repair results.

• For two representative self-adaptive systems, a to-

tal of 12 MDPs are experimented for evaluation. The

results show that our approach is effective and outper-

forms existing approaches.

The rest of the article is organised as follows. Sec-

tion 2 provides some background for self-adaptive sys-

tems and a motivating example for approach demon-

stration purposes. Section 3 presents the details of our

approach. The evaluation is presented in Section 4.

Section 5 discusses the threats to validity. Related work

is discussed in Section 6, and finally Section 7 concludes

the article.

2 Background and Motivating Example

In this section, we first introduce the basic concepts

for self-adaptive systems, particularly their modelling

with MDPs, and then we motivate our work using an

autonomous car system example.
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2.1 Self-Adaptive System Modelling

A self-adaptive system is capable of adjusting its be-

haviour in response to the changes of the environmental

condition. Typically, such a system’s operation can be

described as the following process. It monitors the state

of the environment and the system by sensors, and anal-

yses whether an adaptation is required or not to achieve

the desired goals. When necessary, it devises a plan and

executes the action specified in the plan through its ac-

tuators. Communication between different adaptation

phases is conducted through a shared knowledge-base.

This process forms the well-known MAPE-K loop [18],

a concept model for self-adaptive systems.

When it comes to implementing the adaptation

logic for self-adaptive systems, existing approaches

vary from simple rule-based algorithms [5, 6] to com-

plex approaches based on, e.g., learning techniques [19],

goal models [20], control theory [7–9] and probabilistic

models [12, 13,21,22]. Among them, probabilistic models,

especially DTMCs and MDPs, have been widely ap-

plied because of their rich expressiveness and available

formal guarantees. DTMCs are well suited for mod-

elling probabilities, and MDPs extend DTMCs by al-

lowing nondeterministic choices that are common in

self-adaptive systems. Since self-adaptive systems need

to make adaptation decisions based on the sensed envi-

ronment and system states, it is necessary to support

predicates, instead of atomic propositions in the classic

model, to specify whether certain decision criteria are

satisfied. In this article, we adopt an extended version

of the classic MDP, supported by PRISM [23], which al-

lows predicates in the states and guards associated with

the actions.

Definition 1. An MDP is a tuple M =

(S, s0, A, τ,L,R), where

• S is a finite non-empty set of states, and s0 ∈ S
is the initial state;

• A is a finite non-empty set of actions, where each

a ∈ A is associated with a guard ψ which is a set of

predicates (taken from a set P), and the set of actions

enabled from state s is denoted by As;

• τ : S × A × S → [0, 1] is a transition

probability function such that for s ∈ S, a ∈
A, either

∑
s′∈S τ(s, a, s′) = 1 (a is enabled) or∑

s′∈S τ(s, a, s′) = 0 (a is disabled), for each s ∈ S

there exists at least one action enabled from s;

• L : S → 2P is a labelling function assigning to

each state to a subset of predicates (taken from a set

P) that are true in that state;

• R : S × A → R>0 is a reward structure. If an

action a is chosen in state s, a reward of r(s, a) is ob-

tained.

An MDP describes how the state of a system can

evolve in discrete time steps. In each state s, the choice

of which action to take from As is nondeterministic. We

can use a policy to resolve the nondeterministic choices.

A policy of an MDP is a function π that specifies the

action π(s) to be chosen in state s. The guard of an

action a is denoted as a.ψ, and once a is selected in

state s and its guard a.ψ is satisfied, then a transition

to a successor state s′ occurs randomly according to

the transition probability function τ(s, a, s′), and the

predicate L(s′) in s′ holds. Depending on the types

of predicates, e.g., propositions or predicates in arith-

metic, the MDP can model many properties that need

to be satisfied by the system. A policy controls the

execution of the MDP, and each execution is a path

which is a (finite or infinite) sequence of transitions

σ = s0
a0−→ s1

a1−→ · · · through the MDP such that

when si transits to si+1 by performing ai, the guard

ai.ψi is satisfied, and the predicate L(si+1) evaluates

to true. How to obtain a suitable policy is an impor-

tant problem, and existing studies [2, 15,21,22] have pro-

posed many methods to check for the existence of poli-

cies or optimise policies regarding some given quality

goals. However, few researchers have studied how to

update MDPs for self-adaptive systems when the envi-

ronment has changed or repair MDPs when they cannot

meet the quality goals. Therefore, this article focuses

on updating and repairing MDPs rather than generat-

ing policies, which is a practical need as illustrated by

the following motivating example.

2.2 Motivating Example

Autonomous car systems perceive their surround-

ings through sensors and make movements based on

the sensed environment. When designing such a sys-

tem, developers would consider possible environmental

conditions that the car may encounter or summarise the

environmental conditions that the car has encountered

from its running and testing history. Then, they design

corresponding adaptation logics about how to react to

those environmental conditions. Generally, developers

are incapable of designing an adaptation logic that can

cope with all environmental conditions. Instead, deve-

lopers would design different logics for pre-defined sub-

set of environmental conditions.

Fig.1 shows a running scenario of an autonomous

car system and an MDP M designed for this system.
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The car is equipped with distance measuring sensors to

sense the distances to its surrounding obstacles. The

system controls the car to explore the area as extensive

as possible while not bumping into any obstacles. The

design of M adopts a common paradigm from exist-

ing studies [14, 15], i.e., the abstraction of states is con-

ducted by discretizing the space into equidistant and

non-overlapping regions. M has five states, each of

which represents a grid cell of the terrain divided into

3× 2 grid cells (except for the one occupied by the ob-

stacle). In every state, one or more actions from the set

A = {east, west, south, north} are available, and make

the car move between grid cells. Due to the uncer-

tainty, e.g., flawed actuators, the car could probabilis-

tically move to an alternative state when executing a

certain action. Taking state s0 in Fig.1(b) for example,

by executing action south the car could transit to s1 or

s3 at a probability of 0.2 and 0.8, respectively.

Based on M, we can generate policies (depending

on the context, also known as strategies, adversaries or

schedulers) in many ways to act as the autonomous car

system’s adaptation logic. Compared with the much

attention gained by the policy generation, the update

of MDP is less mentioned. Yet it is a very practi-

cal but over-neglected need. The motive for updat-

ing a self-adaptive system’s MDP comes from multi-

ple facets. First, the system’s operating environment

becomes different from the ones assumed by the deve-

lopers at the design time. For example, the obstacle

in the second row in Fig.1(a) could be moved to its

western grid cell. In that case, the original MDP M is

obviously not suitable for the system, since the grid cell

of state s4 is occupied by a new obstacle and state s3

should not execute action east to transit to s4. Mean-

while, the grid cell previously occupied by the obstacle

is now empty and can be reached from adjacent grid

cells. We need to update M, including the states and

transitions, to specify these possibilities. Furthermore,

the predicates in the model also need to be updated.

The predicate, taken from P and assigned to a state by

L, reflects the system’s runtime conditions and should

be true in its corresponding state. The predicates as-

sociated with the actions are used to form guards that

test whether the action can be executed. Let us suppose

that s3’s predicate P3 is eastern > 1 that requires the

distance to the eastern obstacle larger than 1 and s4’s

predicate P4 is eastern > 0 that requires the distance

to the eastern obstacle larger than 0. These predicates

of different states indicate the system’s distances to the

obstacles. Then, the guard of action east (moving for 1

unit) should be P3∧(eastern−1→ P4), to ensure that

when east is taken, the system can transit from s3 to s4.

Most of the predicates are related to the environmental

conditions, and some states’ predicates need updating

as the environment changes, especially for new states.

For example, if the obstacle moves to its northern grid

cell, the predicate of s3 should be updated. Second,

the designed M does not satisfy a given property φ.

Self-adaptive systems are often used in safety-critical

scenarios, and if the property cannot be satisfied, it is

desirable to find M′ that satisfies φ at a low cost.

3 Updating and Repairing Approach

In this section, we will detail our approach for up-

dating and repairing MDPs for self-adaptive systems,
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Fig.1. A simplified autonomous car system and its MDP. (a) Running scenario. (b) MDP designed for the system.
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starting with an approach overview.

3.1 Approach Overview

Our approach deals with the model obsolete and

model unsatisfactory problems, as shown in Fig.2. The

environment of a self-adaptive system can constantly be

changing, and it is possible that under the new environ-

ment, the MDP is incapable of specifying the possible

policies that can be executed, or contains policies that

cannot happen, which is considered as obsolete. To

update such an obsolete model, our approach first per-

forms a structural adjustment. Infeasible states and re-

lated transitions are removed according to the environ-

ment changes, and new states and related transitions

are added when necessary. Meanwhile, predicates and

transition probabilities of affected states and transitions

are updated to keep up with the changed environment,

as explained in Subsection 3.2.

An MDP is unsatisfactory if it cannot generate any

feasible policies with respect to the given goals. Re-

pairing an unsatisfactory model can be challenging if

the result needs to be both compliant (having feasi-

ble policies) and valid (reflecting real system charac-

teristics). Existing studies [16, 17] have proposed several

techniques to repair MDPs. However, their goal is to

find an M′ that satisfies φ and differs from M only in

the transition probability, which is compliant but not

necessarily valid to our problem. Since the transition

probabilities of M reflect self-adaptive system’s char-

acteristics (e.g., flawed actuators), we cannot change

them to the values that are not in line with reality; oth-

erwise, the generated policies fromM′ are meaningless

and cannot guide the system’s correct operation. Sub-

section 3.3 will present a well-designed algorithm that

identifies the compliant and valid changes by leveraging

the results of existing model repair techniques (i.e., the

parametric repair, cf. Subsection 3.3.1), to achieve our

meaningful repair purpose.

3.2 Obsolete Model Update

When the environment changes more than expected,

in the new environment there could emerge some new

environmental conditions that cannot be handled by the

MDP. The direct impact of environment changes on an

MDP goes on the state abstraction and transitions. It

will make the abstract states unsuitable to represent the

actual new environment and the transitions unable to

execute. By removing infeasible states and transitions

and exploring new states and transitions, we adjust the

structure of an MDP to make it accordant with the new

environment. As the states and transitions are removed

and added, the predicates and probabilities also need

updates.

Generally, to model a self-adaptive system, we need

to be aware of the system logic, the system status, the

environment, and the state abstraction approach. The

environment and system status can be very complex.

Fortunately, a self-adaptive system only uses its sensed

results to make decisions, and therefore we only need to

consider part of the environment and the system sta-

tus. The process of modelling can be summarised as

follows. The part of environment and the system sta-

tus, which need to be taken into the modelling process,

can be specified as mapping relations E : VE → UE and

C : VC → UC , respectively, where VE and VC are sets

representing all the attributes of the environment and

the system of interest, respectively, and UE and UC are

sets of concrete values. E and C are not part of the

MDP model; however, as the self-adaptive systems de-

termine their states by sensing, the states of the model

MDP
New MDP

Environment

Change

Property

Violation

Obsolete MDP

Repair

Cause

Unsatisfactory

MDP

                                     Update

Remove States and Transitions

Add States and Transitions

Update Probabilities and Predicates

Parametric

Repair
Repair

Results

Structural

Repair

Fig.2. Overview of our updating and repairing approach.
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are encoded from E and C. Let {E} and {C} be the

sets of all the variable-value mappings defined by E and

C, respectively. Then the abstraction of state, denoted

as Abs, is a function 2{E}× 2{C} → S ∪µ that encodes

the part of the environment and the system of interest,

represented by subsets of {E} and {C}, to a state in

S or a null state µ that does not appear in the model,

and there is L(s) for each s 6= µ, s ∈ S. The encod-

ing of states from the environment and system status

is different application by application. However, for all

applications, once a model is obtained, Abs maintains

the relation among the environment and the system sta-

tus, and the states. Taking the autonomous car system

as an example, environment E can specify the area for

exploration (e.g., length × width for a rectangle area)

and the positions of obstacles (e.g., specified by coordi-

nates). Then the set of states S can be encoded from E

as the grid cells, splitting the area, that the car can go

in. Reversely, we can also know from each state s ∈ S
its position in the area and that it is not occupied by

an obstacle. Moreover, we can know from L(s) the dis-

tance of the grid cell to the obstacles.

The system logic is modelled by probabilistic transi-

tions between states such that si
a−→ sj , τ(si, a, sj) = p,

where si and sj are states in S, a is an action, and p is

a probability. The logic specifies that when the system

is in state si, it is allowed to perform action a if guard

a.ψ is satisfied, and transfer to state sj at a probability

of p (in the following, we will omit the probabilities

unless they are required for computation). The guard

of action a needs to ensure that when a is taken, the

predicates in sj need to be satisfied. In the autonomous

car system example, action a can be action east, west,

south or north. These actions’ guards, for example, can

be, when moving towards a direction, the distance to

the obstacles are still larger than a certain value.

The modelling of self-adaptive systems has been stu-

died by many researchers and is not the subject under

study in this article. Nevertheless, we can learn from

the above introduction that when the environment E

changes, the states in the model should be updated ac-

cordingly. However, the problem of how to update the

MDP model has not been well-studied, and in the fol-

lowing three subsections, we will present our solution.

3.2.1 Removing States and Transitions

For an MDPM, when the environment changes, we

need to find the states and transitions that are affected

by the change of the environment. There are two kinds

of effects on states. First, an existing state s ∈ S can

become unreachable in the new environment, which re-

quires to eliminate s from S. Second, there may be a

new system state snew that has not been modelled but

exists under the new environment, which requires to

add snew to S.

The environment change manifests in the mapping

relation E : VE → UE such that the values for the envi-

ronment attributes can be different in the new environ-

ment. Let the old environment be E and the new envi-

ronment be E′, where E = V → U and E′ = V → U ′.

For any (vi → ui) ∈ {E}, if vi is not changed in

the environment, then (vi → ui) ∈ {E′}; otherwise,

(vi → ui
′) ∈ {E′}, where ui

′ is the new value represent-

ing the environment change. Given an MDPM and the

new environment E′, to identify the unreachable states

we perform a reachability check for the states inM un-

der E′. Specifically, for each s′ ∈ S, we first find all

s ∈ S and a ∈ A such that τ(s, a, s′) 6= 0. Then we

check if τ(s, a, s′) is still feasible by checking the satis-

faction of the following two conditions under E′: 1) s

and s′ are valid under E′, i.e., there are e, e′ ∈ 2E
′

and

c ∈ 2C such that Abs(e, c) = s and Abs(e′, c) = s′; and

2) when L(s) is satisfied and a.ψ = true, then if a is

taken, L(s′) is satisfied. If τ(s, a, s′) is infeasible, i.e.,

the above conditions are not both satisfied, we elimi-

nate this transition by setting τ(s, a, s′) to 0. For state

s′, if all τs∈S,a∈A(s, a, s′) are 0, then we remove state

s′ and τs∈S,a∈A(s, a, s′). In this way, the unreachable

states and infeasible transitions will be removed.

3.2.2 Adding States and Transitions

Changes in the environment may also result in new

feasible system states. In this article, we explore the

new states and associated transitions based on the ex-

isting MDP. After the environment is changed to a new

one E′, for each s ∈ S, we try every action a ∈ A

on s to check whether any new state will emerge un-

der the new environment E′, i.e., ∃snew /∈ S, s a−→ snew.

The identification of a new state depends on the state

abstraction approach: using the current environment

condition e ∈ 2{E} and the system condition c ∈ 2{C}

obtained by executing a in state s, we can get the

current state cs through the abstraction function, i.e.,

Abs(e, c) = cs. However, the design of the abstraction

function, varying from application to application, is be-

yond the scope of this article. When a new state snew
that has not been modelled is identified, we add it to

S. Meanwhile, τ(s, a, snew) will be added to the model.

We also need to check whether there are transitions

from snew to other states (or itself). To find feasible
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τs′∈S,a∈A(snew, a, s
′), we conduct each possible a ∈ A

in snew to check which state s′ it can transit to. If we

find M can transit from snew to s′ by executing a, we

add transition τ(snew, a, s
′) to M.

Our approach of exploring new states and transi-

tions starts from the existing MDP, which may leave

out the states that are not reachable from the existing

ones in the MDP. We propose this approach based on

the following reasons. On the one hand, we believe that

the existing MDP contains the main logic of the system

and should be reused as much as possible, and thus we

focus on updating and repairing it. On the other hand,

exploring the states that are reachable from existing

ones is more efficient and practical than systematically

exploring states in the entire state space.

3.2.3 Updating Probabilities and Predicates

The above structural change of an MDP M will

remove/add states and transitions. Accordingly, the

probabilities of the affected transitions and the pred-

icates over the affected states and actions also need

to be updated. Generally, for any state s ∈ S, if a

transition τ(s, a, s′), s′ ∈ S is added or removed during

the model structural change, the probabilities of any

transition starting from s with action a need to be up-

dated adhering to the rules as follows: 1) the sum of the

probabilities on all the transitions starting from s with

action a should equal 1, i.e.,
∑

s′∈S τ(s, a, s′) = 1; 2)

the probability of each transition τ(s, a, s′) should re-

alistically reflect the causes for nondeterminism. Such

causes, which manifest in the transition probabilities,

may be the imperfection of actuators and sensors, or

the choice of system logic design, etc. These manifes-

tations are application-specific and should be treated

differently. Nevertheless, as our approach is based on

an existing model M, it is possible to leverage the

probabilities in M to update the affected transitions.

Still suppose that a state s ∈ S has a transition with

action a added or removed. It is often the case that

for all the current transitions starting from s with ac-

tion a, we can find another state s∗ such that each

τ(s, a, s′), s′ ∈ S can be mapped to τ(s∗, a, s′∗), s′∗ ∈ S.

Then the probabilities of the transitions starting from

s can be updated proportionally to the probabilities of

their mapped transitions starting from s∗. This update

process is exemplified in Subsection 3.2.4. There is a

chance that the affected transitions cannot be mapped

to others, and in this case, it means the types of these

transitions are new to the model and their probabilities

need to be given by the designer. Considering that, in

practice, most environmental changes are modest, the

update of transition probabilities can often be done au-

tomatically.

The main function of predicates is to decide whether

an action can be taken at the current state s. Ac-

tion a can be taken when the predicate L(s) of s

is satisfied, and predicate a.ψ can be satisfied, i.e.,

L(s) ∧ a.ψ. Therefore, we update the predicates from

the point of view of actions. For every removed tran-

sition τ(s, a, s′), we check whether there is any s′ ∈ S
such that τ(s, a, s′) 6= 0. If not, the guard a.ψ will also

be removed from the predicate of s. For example, in

the autonomous car system, the execution of the ac-

tion east needs to satisfy a precondition eastern > 1

requiring that there should be no obstacle in the east-

ern of the car within 1 unit of distance. When all the

transitions with such an action are removed, the state

which is the source of these transitions no longer needs

the predicate eastern > 1. Similarly, for every added

τ(s, a, s′), the predicate over s and s′ can be updated

by adding the guard condition concerning action a.

3.2.4 Updating Example

Using the autonomous car system, we will give sim-

plified examples of removing/adding states, transitions,

and updating probabilities and predicates, respectively,

to illustrate the approach of updating obsolete mod-

els. Fig.3 shows how the MDP is updated when the

environment changes, i.e., the obstacle moving from

the left-bottom to the right-bottom. The state ab-

straction Abs is defined by discretising the space into

equidistant and non-overlapping regions. Since in the

new environment, the obstacle moves to the grid cell

of s2, making s2 no longer valid, and s2 is removed.

Meanwhile, the transition τ(s1, south, s2) becomes in-

feasible and thus is removed. When exploring new

states and transitions, a new state s3 is added by try-

ing feasible action south in s0. From state s1 in the

existing MDP, we know that when taking the action

south on a state, it can transit to the source state

again (τ(s1, south, s1)) or to the state representing its

southern grid cell (τ(s1, south, s2)). These two tran-

sitions can be mapped to the newly-added transitions

τ(s0, south, s0) and τ(s0, south, s3) of the new MDP,

which enables us to set the probabilities of the new tran-

sitions to 0.2 and 0.8, respectively. The predicate over

state s1 should also be updated since τ(s1, south, s2) is

removed. For example, it does not need to require the

distance to the southern obstacle larger than 10 units

to safely conduct action south.
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Fig.3. Simplified example for updating an MDP. (a) Model be-
fore the update. (b) Model after the update.

3.3 Structural Model Repair

Given an MDP M and a property φ specified in

PCTL (probabilistic computation tree logic) [24] to be

satisfied, we employ PRISM [23], a widely-used proba-

bilistic model checker, to encode and verify the MDP

M. PCTL is an extension of computation tree logic

that allows for probabilistic quantification of described

properties, and is commonly used to express probabilis-

tic properties of Markov models. It includes a proba-

bilistic operator P to express probabilistic properties.

Consider a PCTL formula of the form Ponp[ϕ], where

ϕ is the path formula occurring inside the probabilis-

tic operator P , on∈ {<,6, >,>}, and p ∈ [0, 1] is a

probability threshold. A PCTL formula Ponp[ϕ] can be

used to specify whether the probability that ϕ is satis-

fied over paths meets the threshold requirement (on p).

PRISM is a probabilistic model checker, a tool for for-

mal modelling and analysis of systems that exhibit ran-

dom or probabilistic behaviour. PRISM has been suc-

cessfully used to analyse systems from many different

application domains. It provides an easy-to-use lan-

guage to encode the models to be verified and supports

a wide range of quantitative properties. PRISM incor-

porates state-of-the-art symbolic data structures and

algorithms and also includes a discrete-event simulation

engine, providing support for approximate/statistical

model checking, and implementations of various diffe-

rent analysis techniques, such as quantitative abstrac-

tion refinement and symmetry reduction. There are

many existing studies [21, 22] that have used PRISM to

verify MDP-based self-adaptive systems and the de-

tailed tutorials and examples on how to encode and

verify MDP against PCTL properties by PRISM 1○.

When the verification results show that M can-

not satisfy φ, it means that the policy generation ap-

proaches cannot find any policy satisfying φ in M. In-

stead of designing a new MDP from scratch, it is more

cost-effective to repair the existing modelM to make φ

satisfied. Researchers have identified this model repair

problem for probabilistic systems (e.g., Markov chains

and MDPs) [16, 17]. However, they treated the repair

just as a change in the transition probabilities in their

work, and therefore, intended to find an M′ satisfying

φ that just differs fromM in the transition probability.

We call this kind of repair as parametric repair. How-

ever, the probabilities’ values in MDPs of self-adaptive

systems cannot be changed arbitrarily. Without consi-

dering the causes or meanings of the probabilities, para-

metric repair does not guarantee to produce valid repair

for real-world self-adaptive systems. Therefore, their

repair approach cannot be directly adapted to our prob-

lem. Exploiting the repair results of parametric repair,

we propose an algorithm to repair an unsatisfactory

MDP in a more meaningful way by adjusting the struc-

ture without changing the transition probability arbi-

trarily, as explained in Subsections 3.3.1 and 3.3.2.

3.3.1 Parametric Repair

We start with a brief introduction to the para-

metric repair approach [16, 17]. The approach is based

on a parametric MDP, which is defined as a tuple

M̃ = (S, s0, A, τ + Z,L,Ra) where S, s0, A, τ,Ra are

defined as in Definition 1, and Z is S×A×S → span(K)

where K = {x1, · · · , xn} and span(K) = {ω1x1 + · · ·+

1○PRISM. https://www.prismmodelchecker.org/, May 2021.
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ωnxn|~ω ∈ Rn
>0} ⊂ FK (FK denotes the set of ratio-

nal functions from K to R). Given a parametric MDP

and an evaluation k : K → R, we can induce an MDP

Mk
def
= (S, s0, A, τk,L,Ra) where for s, s′ ∈ S, a ∈ A,

τ(s, a, s′)
def
= τ(s, a, s′) 〈k〉. The parametric repair is to

find an evaluation k which satisfies k ∈ Evals(M) and

Mk � φ. The set of effective evaluations Evals(M) is

defined as the set of all evaluations k such that Mk is

a well-defined MDP (cf. Definition 1) and for all s ∈ S,

a ∈ As and s′ ∈ S we have that either τ(s, a, s′) 〈k〉 6= 0

or τ(s, a, s′) 〈k′〉 = 0 for all evaluations k′. To our prob-

lem, supposing we are going to repair an MDPM using

parametric repair, we can first construct a parametric

MDP M̃ whose elements are the same as M except

adding Z and then find the effective evaluation k which

represents the changes on transition probabilities.

We adopt the sampling-based approach introduced

in [17] to solve the parametric repair problem. The

sampling-based approach involves a randomised search

through the parameter space, efficiently yielding some

good parameter values whose weighted distance from

the original one is sufficiently small (the weights can

be chosen to express the importance or priority of cer-

tain parameters over the others) rather than finding all

valid values or the closest value. Monte Carlo sam-

pling techniques are applied to the model repair prob-

lem. This kind of repair does not change the structure

of the MDP.

3.3.2 Structural Repair Algorithm

The parametric repair aims to make M satisfy φ

by changing the transition probabilities. The results of

the parametric repair can be represented as a series of

changes (si, am, sj) → prn, which means the original

transition probability τ(si, am, sj) should be changed

to prn. To avoid directly modifying these probabilities

values, we propose to explore new transitions and com-

bine them with the ones in the model, to achieve an

equivalent effect of changing probabilities. In a nut-

shell, instead of changing τ(si, am, sj), we try to build

an alternative path from si to sj such that the multi-

plication of the transitions’ probabilities in that path

equals (or approximately equals) τ(si, am, sj).

Algorithm 1 shows the process of the struc-

tural repair. The inputs are an MDP M, the re-

sults of parametric repair C = {(si1 , am1
, sj1) →

prn1
, · · · , (sit , amt

, sjt) → prnt
} for M, and a given

threshold ε to decide whether two probabilities are

close enough. For each (siq , amq
, sjq ) → prnq

in C,

we start from siq (line 2) and repeatedly extend the

path in a depth-first manner (line 4) until a path

that ends with sjq having the expected probability

(|probability(path) − prnq
| < ε) is found (lines 9–

11), or no such path exists (line 3). The function

extendPrefix extends the path by enumerating all

transitions that can be appended to the current path

stored in variable path and can make the new one a

prefix of the alternative path for τ(si, am, sj), i.e., it

can be extended to a path that starts from si and ends

with sj . If all transitions have been tried and no such

path is found (line 5), the algorithm performs a back-

ward operation by removing the last transition in path

(removeLastTransition, line 6). Then new transitions

are explored by applying feasible actions on the last

state in path (generateNewTransiton, line 7). Recall

that the states encode a self-adaptive system’s under-

standing to the environment. Therefore, action a is

feasible w.r.t. state s, if guard a.ψ is satisfied in state

s, and after a is taken and the model transits to s′,

L(s′) holds. These newly-obtained transitions are enu-

merated to extend path. When all the parametric repair

results in C have been processed, Algorithm 1 returns

the repaired MDP M′. Algorithm 1 may fail to return

a repaired MDP even if an effective evaluation is found

for the MDP during the parametric repair. However,

other evaluation results from the parametric repair may

yield successful structural repair. Therefore, we can re-

peat the above process to repair the MDP. A termina-

tion criterion can be set to stop the repeating process,

such as a successful repair obtained or the process being

repeated a given number of times.

Algorithm 1. Structural Repair Algorithm

Input: an MDP M, the parametric repair’s result C, and

a given threshold ε

Output: the repaired MDP M′

1 foreach (siq , amq , sjq )→ prnq do
2 path← siq ;

3 while path! = null do
4 path← extendPrefix(path);

5 if !isExtended then
6 path← removeLastTransition(path);

7 generateNewTransition(path.lastState);

8 if isPath(path) then
9 if

∣∣probability(path)− prnq

∣∣ < ε then
10 break;

11 else
12 path← removeLastTransition(path);

13 returnM′;
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3.3.3 Repairing Example

We present a simplified example in Fig.4 to illus-

trate how structural repair works. Fig. 4(a) shows a

part of an MDP for an autonomous car system. In

this model, states s3 and s4 are not directly connected

to s0, s1 or s2, but to some other states, as repre-

sented by the dashed lines. Suppose the property to

be satisfied by this MDP is that the probability of the

car not colliding with any obstacle is greater than 0.9

(P>0.9 [G ¬bump]), and for this MDP the result of para-

metric repair is C = {(s0, a1, s1) → 0.4, (s0, a1, s2) →
0.6} (i.e., red edges in Fig. 4(a)). To avoid directly

changing the values of τ(s0, a1, s1) and τ(s0, a1, s2),

the structural repair algorithm explores new transitions

and constructs two alternative paths σ1 = s0
a3−→ s4

a5−→
s1 and σ2 = s0

a2−→ s3
a4−→ s2 to replace the paramet-

ric repair’s result. The newly explored transitions are

the red directed edges in Fig.4(b). The probabilities

of σ1 and σ2 are 0.5 × 0.8 = 0.4 and 1.0 × 0.6 = 0.6,

which are just the values required for τ(s0, a1, s1) and

τ(s0, a1, s2), respectively.
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Fig.4. An illustrative example for MDP repair. (a) The model
before repairing. (b) The model after repairing.

4 Evaluation

In this section, we evaluate the effectiveness of our

approach, and investigate the following research ques-

tions.

• RQ1. Can our updating and repairing approach

effectively improve the adaptability of self-adaptive sys-

tems?

• RQ2. How does the structural repair perform

compared with the parametric repair for self-adaptive

systems?

• RQ3. How efficient is our approach in updating

and repairing MDPs?

• RQ4. Is our updating and repairing approach

more cost-effective while maintaining correctness as

compared with building the MDP from scratch?

4.1 Experimental Setup

We implemented our approach based on PRISM

(Version 4.4-osx64), and the experimental environment

was an Intel Core i7 3.2 GHz and 32 GB RAM ma-

chine. To select adequate experimental subjects, we

examined existing related work and a site containing

a set of exemplars for self-adaptive systems 2○. Two

typical self-adaptive systems — the autonomous car

system [15] and an exemplar for self-adaptive Internet

of things (DeltaIoT) [25] were selected as our subjects.

The autonomous car system’s operating scenario has

been introduced in Subsection 2.2, and here we briefly

explain the DeltaIoT system. It consists of a multi-

hop network comprising multiple motes distributed in

various buildings of the campus. Motes are placed to

provide access control to labs, monitor the occupancy

status and sense the temperature via various sensors.

The sensor data from all the buildings are relayed to the

IoT gateway, and there is a management tier connecting

to the gateway via the Internet. Each mote must have

a path towards the gateway along with other motes,

and meanwhile the IoT system is expected to consume

less energy while offering reliable communication. To

achieve the goal, the system needs to adapt the network

settings of the IoT motes (e.g., transmission power and

spreading factor).

For the autonomous car system, we collected seven

MDPs derived from [14, 15] and their references. Since

DeltaIoT is designed for evaluating adaptive solutions,

it does not provide any adaptation logic (e.g., MDP

models). We designed five MDPs to control DeltaIoT’s

adaptation for different scenarios. The states in

2○https://www.hpi.uni-potsdam.de/giese/public/selfadapt/exemplars/, Sept. 2021.



116 J. Comput. Sci. & Technol., Jan. 2022, Vol.37, No.1

DeltaIoT represent the states of all the motes and the

actions include adapting the transmission power, mod-

ifying the path to the gateway and the spreading factor

settings, and adding or removing links, etc.. Environ-

ment changes could be mote lost or mote addition. The

probability comes from the success/failure rates of the

execution of actions and network transmission.

The autonomous car system can run in a real en-

vironment Turtlebot 3○ or in a simulator, where MDPs

can be used as adaptation logics. DeltaIoT provides

an open-source and customisable simulator for experi-

ments, and we customised the simulator for experi-

ments. These systems need to satisfy predefined prop-

erties during the operation. Table 1 presents the prob-

abilistic properties that need to be satisfied for each of

the 12 different self-adaptive systems. The first seven

rows are the properties for the autonomous car systems,

and the last five rows are the properties for DeltaIoT.

These properties are all probabilistic ones. For exam-

ple, the first property P<0.1[ϕ] requires that the proba-

bility of the car bumping into any obstacle and failing

to traverse to the area’s four corners is at most 0.1.

4.2 RQ1: Overall Effectiveness

The adaptability of a self-adaptive system can be

considered as the ability to adjust its behaviour in re-

sponse to environmental condition changes. The more

adaptable a self-adaptive system is, the more likely

it runs correctly. The adaptation logic is responsible

for determining how to perform adaptation. For self-

adaptive systems modelled with MDPs, their adapta-

tion logics are specified in the model. The 12 MDPs of

the autonomous car system and DeltaIoT are designed

to handle some specific environments. If we change the

environment of an MDP to a different one that is not

assumed by the designers, the old MDP will be obsolete

and is unlikely to be able to deal with the new environ-

ment. If an MDP does not satisfy a given property,

we consider this MDP unsatisfactory to the property.

To assess the effectiveness and practicality of our up-

date and repair approach, we compared the running

of self-adaptive systems guided by the original MDPs,

which are obsolete and unsatisfactory, and by the new

MDPs obtained by applying the update and/or repair

approaches on the original ones.

Specifically, we devised environment changes in the

autonomous car system and DeltaIoT (e.g., moving ob-

stacles and adding and losing motes). These environ-

ment changes would lead to obsolete models. For ex-

ample, an obstacle would restrict the car’s movement

around the obstacle, making the original state corre-

sponding to the grid cell occupied by the obstacle inac-

cessible. However, removing an obstacle can lead to

new transitions between states corresponding to the

grid cells occupied by and adjacent to the obstacle. It

is similar for the DeltaIoT system that its model would

become obsolete when motes are added or lost. As the

model becomes obsolete, some properties would be vio-

lated, and we collected those properties for each of the

Table 1. Properties That Need to Be Satisfied for Each of the 12 Experimental Subjects

Subject Property Description

Car-1 P<0.1[ϕ] The probability of the car hitting any obstacle and failing to traverse to the area’s four corners is at
most 0.1

Car-2 P>0.9[ϕ] The probability that the car does not collide with any obstacle is greater than 0.9

Car-3 P>0.8[ϕ] The probability of the car not hitting any obstacle and traversing to the area’s four corners is greater
than 0.8

Car-4 P<0.05[ϕ] The maximum probability of the car failing to traverse to the area’s four corners is at most 0.05

Car-5 P>0.9[ϕ] The probability that the car does not collide with any obstacle is greater than 0.9

Car-6 P>0.8[ϕ] The probability of the car not hitting any obstacle and traversing to the area’s four corners is greater
than 0.8

Car-7 P<0.1[ϕ] The probability of the car hitting any obstacle and failing to traverse to the area’s four corners is at
most 0.1

DeltaIoT-1 P<0.05[ϕ] The maximum probability of losing any message is at most 0.05

DeltaIoT-2 P>0.85[ϕ] The probability of successful transmission of any message with low energy consumption is greater
than 0.85

DeltaIoT-3 P<0.2[ϕ] The maximum probability of losing any message with low energy consumption is at most 0.2

DeltaIoT-4 P>0.95[ϕ] The probability of successful transmission of any message is greater than 0.95

DeltaIoT-5 P>0.7[ϕ] The probability of successful transmission of any message with high energy consumption is greater
than 0.7

3○https://www.turtlebot.com, Sept. 2021.
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12 MDPs. Then we applied our approach to update

and/or repair these MDPs (during repair, the paramet-

ric repair was set to be run just once). The update and

the repair were both conducted automatically. For the

two examples, the state abstraction function Abs can

be specified by a set of rules. For example, the state

abstraction of the autonomous car system is specified

by rules concerning the splitting of the area to be grid

cells, the positions of the obstacles and the distances

to the obstacles of each grid cell. Additionally, the

affected transitions were all mapped to other transi-

tions in the existing model, from which their probabi-

lities were updated proportionally using the approach

in Subsection 3.2.3. Depending on the decision about

whether we update or repair the models, we will have

48 MDPs falling into four categories (each category has

12 MDPs), as shown in Table 2. The four categories

of models are closely related: models in category 1 are

the original ones and models in the other categories are

obtained by updating or repairing models in category 1.

Table 2. Four Categories of MDPs

Category Updated Repaired

1 No No

2 Yes No

3 No Yes

4 Yes Yes

We generated the policies using classical

approaches [26] for the 48 MDPs and then employed

them to guide the running of the autonomous car sys-

tems and DeltaIoT under the new changed environ-

ments. For the autonomous car system, we conducted

the experiments both by real cars (Turtlebot) and in

the simulator, and for DeltaIoT we carried out the

experiments in the open-source simulator. During the

systems’ running, we recorded whether the systems

were running correctly and whether they satisfied the

given properties.

On the other hand, in addition to using MDPs to

construct the adaptation logic for self-adaptive systems,

other approaches such as rule-based or model-based ap-

proaches can also be employed. However, it is uncer-

tain whether using these approaches to construct self-

adaptive systems can cope with environmental changes,

especially when the system’s operating environment be-

comes different from what the developers expected dur-

ing the design phase. Therefore, to further validate the

necessity and effectiveness of our approach, we com-

pared it with existing rule-based and model-based ap-

proaches. We chose two commonly-used approaches

for constructing self-adaptive systems for comparisons.

The first approach is based on a model of adaptive

behaviour called adaptation finite-state machine (A-

FSM) [6, 27], and the second approach [28, 29] proposes

an interactive state machine (ISM) to construct self-

adaptive systems. Similar to the above experiments,

we first designed the corresponding adaptation logic for

the above 12 systems in their original environments us-

ing these two approaches, and then deployed and tested

the adaptation logics. Afterwards, we observed whether

these adaptation logics could still guide the correct ope-

ration of the systems in the newly changed environ-

ments and whether their properties could be satisfied.

Results. If an error occurs in the system, we con-

sider that the system is not running correctly. For our

subjects, the error could be the car bumping into ob-

stacles or the data of motes not being relayed to the

IoT gateway. Each of the 48 MDPs, the 12 A-FSMs

and the 12 ISMs was run in the simulator for 20 times

to check if it was running correctly. Besides, each of

the seven autonomous car systems was also executed in

the field for 20 times. Fig.5 shows the occurrence num-

bers of errors in the simulator for the four categories of

MDPs, A-FSMs, and ISMs. As we can see from Fig.5,

both A-FSMs and ISMs performed poorly in the new

environments, because, similar to MDPs, they can only

be designed to take into account some environmental

conditions that the system may encounter. Therefore,

when the environment changes, A-FSMs and ISMs also

face the problem of model obsolescence, making the cor-

responding adaptation logic unable to guide the system

to operate correctly and thus produce errors. This fur-

ther demonstrates the necessity for our updating and

repairing approach, i.e., it is difficult to avoid the prob-

lem addressed in this article even if other rule-based

or model-based approaches are employed to construct

adaptive logic for self-adaptive systems.

Under the new environment, the MDPs in category

1 and category 3 encountered much more errors than

the MDPs in the other two categories, since they were

not updated for the environment changes. Particularly,

MDPs in category 3 did not show a reduced number of

errors even they had been repaired. Without the model

update, the repair was conducted on the premise of an

inaccurate environment. Therefore, the fewer errors of

MDPs in category 2 and category 4 show that our model

update approach is effective in dealing with environ-

mental changes and thus can reduce errors. Note that

it is possible that even if the model precisely reflects
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Fig.5. Occurrence number of errors in the simulator for experimental subjects.

the system and the environment, the actual behaviours

of the system are probabilistic and some of them may

manifest in errors. The result is also consistent with

the data from the field study of the autonomous car

systems, which is shown in Table 3. This further con-

firms that obsolete models cannot guide the system’

correct running, and the model update is necessary for

self-adaptive systems.

For the properties, the judgement of whether they

are satisfied during the systems’ running is relatively

complex since the properties are often related to

probabilities. For example, in DeltaIoT, there is a

property requiring that the successful transmission of

a message is eventually witnessed with a probability

greater than or equal to 0.9 (P>0.9 [F “trans msg”]).

For these probabilistic properties, we cannot draw the

conclusion based on a single run of the system, but

rather on the probability estimated from multiple runs.

Therefore, to obtain an accurate estimation of probabi-

lities, we ran each of the 48 MDPs, 12 A-FSMs, and 12

ISMs in the simulator for 1 000 times to provide more

sampling data. We assigned the same set of probabilis-

tic properties to each of the A-FSMs, ISMs and the four

categories, in which each of the models has a probabilis-

tic property. The property is in the form of requiring

the probability of a specific event to occur to be larger

or less than a specified value. We recorded the occur-

rence numbers of the required event for each model in

its running of 1 000 times to estimate the probability of

the occurrence of the event.

Since the properties are related to the probability,

to further mitigate the randomness effect on the judge-

ment of probabilistic properties, we ran the Wilcoxon

signed-rank test [30] with Bonferroni correction [31] to

check whether the differences between our approach

(category 4) and other alternatives in satisfying the

probabilistic properties are statistically significant. We

consider that one approach performs significantly bet-

ter in satisfying properties than the other one at the

confidence level of 95% if the corresponding Wilcoxon

signed-rank test result (i.e., p-value) is less than 0.05.

Table 4 and Table 5 show the results for the au-

tonomous car systems and the DeltaIoT systems, re-

spectively. In the two tables, for properties that are re-

quired to be less than a value, the smaller probabilities

obtained from experiments are more inclined to pro-

Table 3. Occurrence Number of Errors in Reality for the Seven Car Systems Controlled by Different Models

Model Car-1 Car-2 Car-3 Car-4 Car-5 Car-6 Car-7

A-FSM 15 16 19 16 14 12 11

ISM 13 9 16 14 12 9 6

Category 1 18 12 20 15 15 13 10

Category 2 1 1 0 0 0 0 0

Category 3 15 17 18 18 8 9 13

Category 4 0 0 0 0 0 0 0
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Table 4. Property Violations for the Four Categories of MDPs, A-FSMs, and ISMs of the Car

Model Car-1

(p < 0.1)

Car-2

(p > 0.9)

Car-3

(p > 0.8)

Car-4

(p < 0.05)

Car-5

(p > 0.9)

Car-6

(p > 0.8)

Car-7

(p < 0.1)

Testing

(p-Value)

A-FSM 0.232 0.353 0.196 0.292 0.435 0.310 0.206 < 10−3

ISM 0.206 0.368 0.219 0.304 0.458 0.385 0.212 < 10−3

Category 1 0.221 0.339 0.201 0.312 0.408 0.210 0.287 < 10−3

Category 2 0.164 0.654 0.446 0.244 0.660 0.430 0.272 < 10−3

Category 3 0.190 0.403 0.398 0.259 0.529 0.302 0.191 < 10−3

Category 4 0.045 0.910 0.783 0.037 0.967 0.902 0.068 –

Table 5. Property Violations for the Four Categories of MDPs, A-FSMs, and ISMs of DeltaIoT

Model DeltaIoT-1

(p < 0.05)

DeltaIoT-2

(p > 0.85)

DeltaIoT-3

(p < 0.2)

DeltaIoT-4

(p > 0.95)

DeltaIoT-5

(p > 0.7)

Testing

(p-Value)

A-FSM 0.182 0.659 0.414 0.370 0.468 < 10−3

ISM 0.195 0.675 0.402 0.392 0.471 < 10−3

Category 1 0.204 0.628 0.469 0.383 0.435 < 10−3

Category 2 0.194 0.647 0.309 0.403 0.794 < 10−3

Category 3 0.140 0.668 0.336 0.414 0.543 < 10−3

Category 4 0.061 0.924 0.126 0.991 0.894 –

perty satisfaction, while for those greater than a value,

the larger probabilities are more favourable. From Ta-

ble 4 and Table 5, we can see that neither A-FSM nor

ISM performed well, much the same as category 1. For

all the 12 systems, those A-FSMs and ISMs are un-

able to make the systems satisfy their respective prop-

erties after the change of the environment. This is be-

cause the adaptive logics originally constructed using

A-FSMs and ISMs are also incapable of coping with

the new environment. For the MDPs, we can see that

model update alone can also be effective for probabilis-

tic properties (category 2 outperforms category 1 for

all the 12 MDPs), since errors caused by environment

changes can result in the unsatisfaction of the proper-

ties. Meanwhile, the data in category 3 are all better

than the data in category 1 too, showing the effective-

ness of model repair. It is worth mentioning that the

effect of applying model update alone (category 2) is

better than that of just using model repair (category 3)

for probabilistic properties in eight out of the 12 MDPs.

The reason is that while model repair can resolve some

problems of properties not meeting the probabilistic re-

quirements, it cannot avoid the errors caused by envi-

ronment changes. Therefore, the combination of both

model update and repair is necessary, as confirmed by

the good performance of category 4. To further confirm

this, we conducted hypothesis tests (Wilcoxon signed-

rank tests) on the results of all the other approaches

against the results of category 4 to determine whether

category 4 outperforms the other approaches in terms

of satisfying properties. The last column in Table 4 and

Table 5 are the results of the testing, and it can be seen

that all p-values are much less than 0.05, which means

that category 4 is significantly better than the other

approaches in satisfying the properties.

4.3 RQ2: Comparison of Repair Approaches

In the repair of an unsatisfactory MDP, the para-

metric repair approach will try to revise the transition

probabilities to make the model satisfy the given prop-

erties. In Subsection 3.3, we proposed a structural re-

pair approach to repair the MDPs for self-adaptive sys-

tems, and in this experiment we compared the results

of MDPs, repaired by parametric repair and structural

repair approaches, guiding the running of self-adaptive

systems. Specifically, we implemented the parametric

repair approach and our approach, and applied them to

repair the MDPs of the autonomous car systems and the

DeltaIoT (without changing their environments) that

do not satisfy the given properties, respectively. Then,

based on the repaired MDPs of the two approaches,

we generated policies and used them to guide the sys-

tems’ operation in the simulators for 1 000 times. The

running results were recorded to check whether the

properties were satisfied by the repaired MDPs dur-

ing the systems’ running. Besides, we also ran the

Wilcoxon signed-rank test with Bonferroni correction

to check whether our structural repair performs signifi-

cantly better than other approaches.

Results. Table 6 and Table 7 show the experimen-

tal results, which are values representing the actual
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Table 6. Property Violations of MDPs Repaired by Different Approaches for the Car

Approach Car-1

(p < 0.1)

Car-2

(p > 0.9)

Car-3

(p > 0.8)

Car-4

(p < 0.05)

Car-5

(p > 0.9)

Car-6

(p > 0.8)

Car-7

(p < 0.1)

Testing

(p-Value)

Original 0.290 0.362 0.440 0.238 0.492 0.354 0.196 < 10−3

Parametric 0.472 0.109 0.211 0.764 0.090 0.243 0.475 < 10−3

Structural 0.037 0.922 0.812 0.042 0.945 0.884 0.073 –

Table 7. Property Violations of MDPs Repaired by Different Approaches for DeltaIoT

Approach DeltaIoT-1

(p < 0.05)

DeltaIoT-2

(p > 0.85)

DeltaIoT-3

(p < 0.2)

DeltaIoT-4

(p > 0.95)

DeltaIoT-5

(p > 0.7)

Testing

(p-Value)

Original 0.185 0.557 0.259 0.506 0.545 < 10−3

Parametric 0.389 0.372 0.682 0.288 0.086 < 10−3

Structural 0.048 0.936 0.109 0.922 0.896 –

probabilities of property satisfaction. The probabilities

were calculated by dividing the number of the system

runs that satisfies the properties by the number of total

runs (1 000 times). Row Original shows the results of

using unrepaired MDPs, and row Parametric and row

Structural show the results of using MDPs repaired

by the parametric repair approach and our structural

repair, respectively. As we can see from the two tables,

the probabilities in row Parametric have larger gaps

to the expected ones (row Property) than the probabi-

lities in row Original, suggesting that using paramet-

rically repaired MDPs are even worse than not using

any repair techniques. The reason, as we investigated,

is that almost all the transition probabilities generated

by the parametric repair are inconsistent with the ac-

tual probabilities of the systems. As a result, the poli-

cies generated from the parametrically repaired MDPs

often lead the system to violate them rather than to

guide the system to meet the properties. Our structural

repair, on the contrary, does not change the transition

probabilities but looks for alternative paths with the ex-

pected probabilities. As Table 6 and Table 7 show, us-

ing structural repair can make the originally unsatisfied

properties become satisfied for 11 out of 12 MDPs (ex-

cept for DeltaIoT-4 in which the structural repair also

makes improvement). Considering the hypothesis test-

ing, the last columns of Table 6 and Table 7 show the

testing results for MDPs repaired by our structural re-

pair approach versus the original MDPs and MDPs re-

paired by the parametric repair approach, respectively,

and the p-values are also much less than 0.05, indicating

that our structural repair performs significantly better

than the others. In summary, the results of using struc-

tural repair are consistently better than those of using

the parametric repair or not using any repair techniques

for all the 12 MDPs.

4.4 RQ3: Approach Efficiency

Efficiency is an important evaluation aspect of an

approach. Our approach can update and repair MDPs

for self-adaptive systems. Therefore, we also investi-

gated how efficient our approach is in terms of updat-

ing and repairing MDPs. To answer RQ3, we applied

our updating and repairing approach to the 12 MDPs

of the autonomous car systems and DeltaIoT. Since the

updating and repairing can be applied separately or to-

gether as needed, it is necessary to know how much

time and memory they consume, respectively. We first

applied the updating approach and the repairing ap-

proach to the 12 MDPs, respectively. Then we used

them together and recorded the time and memory cost

for these three scenarios.

Results. The time and the memory cost for updat-

ing and/or repairing the MDPs are shown in Table 8

for the car systems and in Table 9 for the DeltaIoT sys-

tems. For the autonomous car systems, the update of

an MDP took 15 seconds on average, the repair took 95

seconds on average, and the two combined took 123.6

seconds on average. The repair needs more time than

the update since it has to conduct a parametric repair

first and may need to enumerate many paths, while the

update operations are just in proportion to the number

of states in the MDP. Besides, we can see that the time

cost for combining update and repair was slightly more

than the sum of the time to apply the update and the

repair separately. The reason is that when combining

the update and the repair, the update was applied first

and can result in more states and transitions than the

original MDP, causing the repair to take more time.
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Table 8. Time and Memory Cost of Our Approach for the Car

System Update Repair Combined

Time (s) Memory (MB) Time (s) Memory (MB) Time (s) Memory (MB)

Car-1 17.0 33.0 86.0 147.0 134.0 152.0

Car-2 8.0 55.0 26.0 170.0 30.0 182.0

Car-3 33.0 97.0 90.0 211.0 115.0 271.0

Car-4 9.0 56.0 143.0 337.0 155.0 410.0

Car-5 5.0 46.0 212.0 290.0 239.0 321.0

Car-6 12.0 48.0 31.0 195.0 50.0 180.0

Car-7 21.0 104.0 77.0 168.0 142.0 199.0

Average 15.0 62.7 95.0 219.9 123.6 245.0

Table 9. Time and Memory Cost of Our Approach for DeltaIoT

System Update Repair Combined

Time (s) Memory (MB) Time (s) Memory (MB) Time (s) Memory (MB)

DeltaIoT-1 34.0 201.0 432.0 453.0 665.0 776.0

DeltaIoT-2 78.0 189.0 963.0 1 012.0 1205.0 1 448.0

DeltaIoT-3 44.0 355.0 743.0 707.0 906.0 951.0

DeltaIoT-4 90.0 409.0 942.0 1 206.0 1 139.0 1 519.0

DeltaIoT-5 37.0 220.0 325.0 509.0 389.0 871.0

Average 56.6 274.8 681.0 777.4 860.8 1 113.0

For the memory cost, the repair also took more mem-

ory than the update. However, when combining the two

together, the memory cost can be less than the sum of

that of applying update and repair separately (in nine

out of 12 MDPs). The reason is that even in the com-

bined approach, the update and the repair are applied

in different stages, and thus the repair, which is ap-

plied after the update, may reuse some of the memory

consumed in the first stage.

For the DeltaIoT systems, when comparing the costs

of update, repair and their combined approach, the

same results are witnessed. Furthermore, compared

with the autonomous car systems, the time and mem-

ory costs of DeltaIoT are relatively higher. This is rea-

sonable because the MDPs of DeltaIoT contain more

states and transitions and are thus more complex, as

shown in Table 10. On average, the time cost is 860.8

seconds and the memory cost is 1 113 MB when the up-

date and the repair are applied together. Such a cost is

acceptable, considering that the update and the repair

are mostly conducted offline. It is known that a pre-

defined MDP of a self-adaptive system can cope with

certain dynamic changes in runtime. However, not all

changes are manageable: drastic changes in the sys-

tem’s operating environment can make the MDP fail to

satisfy the property. An offline operation would be in-

duced to address this situation, which can be a redesign

of the model, or alternatively, a more cost-effective up-

date and repair.

4.5 RQ4: Cost-Effectiveness

When the self-adaptive system’s MDP model be-

comes obsolete or does not satisfy the properties, be-

sides updating and repairing the system’s MDP using

our approach, another option is to design a new MDP

model from scratch. To assess which approach is more

cost-effective while ensuring that the property is satis-

fied, we designed a controlled experiment with in total

14 graduate students (as experiment subjects) major-

ing in computer science for evaluation. The controlled

Table 10. Size of the MDPs Used for Experiments

Element Car-1 Car-2 Car-3 Car-4 Car-5 Car-6 Car-7 DeltaIoT-1 DeltaIoT-2 DeltaIoT-3 DeltaIoT-4 DeltaIoT-5

States 20 12 32 12 18 24 19 58 40 66 52 73

Trans. 41 37 76 38 40 55 30 104 88 109 93 115
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experiment aims to evaluate the cost-effectiveness via

comparing the MDP updated and repaired by our ap-

proach and the MDP redesigned by the subjects. We

assessed the cost-effectiveness in two aspects: 1) the

time required to update and repair, or redesign the

MDP; and 2) whether the new MDP satisfies the given

property.

All the participants were enrolled in either the M.S.

or Ph.D. programs and had taken at least one software

modelling course. Furthermore, all the participants

were asked about their background on MDP before the

experiment session. The results were used as a measure

of the randomised process design to divide the subjects

into groups to ensure that the background of MDP of

each group is closely equivalent. Before the experiment

was conducted, a one-hour lecture was given by the first

author of the article to all the subjects about MDP. Af-

ter the lecture, we also conducted a quiz to confirm that

the subjects understood the fundamentals of MDP and

its modelling.

The controlled experiment employed the seven au-

tonomous car systems for evaluation, by considering

that the case study is relatively simpler than DeltaIOT

since we need to ensure that the subjects were able

to understand the context of the case study within a

limited period of time. For these seven systems, we de-

vised environment changes and then used our approach

to update and repair their original MDPs, while asking

subjects to redesign the MDPs for these systems in the

new environment. The subjects were divided into two

groups, one with prior knowledge of the MDPs of the

autonomous car systems from the training lecture and

the other without. These two groups simulated realis-

tic situations where the developers redesign the systems

designed by themselves (group 1), and where the deve-

lopers redesign systems designed by others (group 2),

respectively.

Results. Table 11 shows the results for the con-

trolled experiment. Both group 1 and group 2 have

seven subjects. We randomly assigned seven au-

tonomous car systems to the subjects in each group;

therefore, each subject needed to redesign an MDP for

one system. Then, we recorded and calculated the ave-

rage time they took. Before the experiment, we told

the subjects that we had a generous time limit, i.e., we

requested them to understand the system and complete

the redesign process within two hours. If they did not

complete the redesign, they were counted as having ex-

ceeded the time limit, but in fact they all completed

it within the time limit. We then ran each of these

systems 1 000 times in the simulator based on their re-

designed MDPs to determine if the systems’ properties

were satisfied. At the same time, we also used our ap-

proach to update and repair the MDPs of these systems,

and then check in the simulator whether the processed

MDPs satisfy the properties.

Table 11. Results of the Controlled Experiment

Group Time Number of Satisfied MDPs

1 1.1 (h) 4

2 1.5 (h) 2

Our approach 2.0 (min) 7

Note: The “time” in the table refers to the average time spent on
redesigning or updating and repairing the MDPs, and “number
of satisfied MDPs” indicates the number of MDPs that satisfy
the given properties.

The average time used by the subjects and our ap-

proach, and the number of MDPs in the seven systems

that do not satisfy the given properties for each group

and our approach are given in Table 11. As we can see

from Table 11, the time consumed by our approach is

much less than the time used to redesign the MDPs by

the subjects in group 1 and group 2. It is worth men-

tioning that our approach also outperforms the other

two groups in terms of satisfying properties. It can

be seen that among the seven systems, the MDPs up-

dated and repaired by our approach satisfy all the given

properties, while group 1 and group 2 satisfy only four

and two properties out of seven properties, respectively.

Since the subjects in group 1 know the MDPs of the au-

tonomous car systems in advance, its result is slightly

better than that of group 2, but still inferior to our ap-

proach. These results demonstrate that it is more cost-

effective to use our approach to update and repair an

existing MDP than to design a new MDP from scratch.

5 Threats to Validity

The main threat to construct validity concerns the

simulators used to evaluate the approaches. Since

the experiments for counting whether the probabilis-

tic properties are violated need to run for lots of times,

it is impractical and very time-consuming to conduct

the experiments in the real world. However, the sim-

ulators may not fully reflect the actual running of the

systems. To reduce this threat, we improved the sim-

ulator by repeatedly comparing the simulator with the

actual execution of the system. Moreover, we also em-

ployed another open-source and well-known simulator

to reduce implementation bias. In our experiments, we
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also resorted to hypothesis testing to help us further

confirm the differences of satisfying probabilistic prop-

erties in the simulator between those approaches. Un-

der this premise, we think this threat is reduced.

Threats to internal validity concern factors internal

to our study that could have influenced the results. One

possible threat is that not any property can be made

satisfied through our MDP repair. Properties can be

used to specify users’ requirements and goals for the

system, and they have different degrees of strength,

e.g., the property “the probability of a failure occur-

ring is at most 10−5” is stronger than the property “the

probability of a failure occurring is at most 10−2”. It

is possible that a property is so strong that no policy

exists to make it satisfied. Besides, properties specified

incorrectly can also be impossible to satisfy. For such

properties, the repair of MDPs will surely fail.

Threats to external validity concern the generali-

zation of our conclusions, which may not generalize to

other self-adaptive systems. To reduce this threat, we

selected 12 different self-adaptive systems from the au-

tonomous car and Internet of Things domain. Mean-

while, we made our best efforts in collecting diverse

MDPs or having MDPs independently developed by

different developers. The results consistently support

our approach, and we try to make them applicable to

other self-adaptive systems. Still, there is a need for

evaluating our approach with more other systems.

6 Related Work

Self-adaptive systems have been a focus of research

study due to their ability to adapt to changes, as intro-

duced in the survey article about the landscape of re-

search, taxonomies, gaps, and future challenges in self-

adaptive systems [32]. In general, a self-adaptive system

is composed of the adaptation logic and the managed

elements [3]. As the crux of a self-adaptive system, the

adaptation logic is responsible for determining how to

perform adaptation in complex environments.

Different approaches are proposed for implementing

a concrete adaptation logic. We can roughly categorise

these approaches into rule-based, control theory based,

and model-based approaches. Rule-based approaches

use rules to model a system’s reactions to monitored

events [5, 6]. One obvious drawback of the rule-based

approach is that the rules are hard to specify and may

need to be updated frequently, which makes the sys-

tem not flexible enough. Zhao [33] identified this prob-

lem and proposed a rule generation and evolution ap-

proach for requirements-driven self-adaptive systems.

However, the generated rules are all in the form of

“if-then” whose expression ability is limited and can-

not avoid the possible conflict between rules, and the

evolution process merely deals with the change of user

goals. Some researchers have constructed self-adaptive

systems that carry out the decision-making process by

using control theory [7–9]. These studies mainly em-

ploy control theory to construct adaptation logic for

functional or non-functional objectives, but they re-

quire the developers to fully understand the system

and control theory to identify knobs, actuators, or pro-

vide abstraction specification, etc. Model-based ap-

proaches aim to provide correctness assurance for self-

adaptive systems since they are often used in safety-

critical scenarios, e.g., self-driving cars. In this category

of work, probabilistic models (e.g., DTMCs and MDPs)

have a dominating position. The implementation of

the model-based approaches could be achieved under

the Rainbow framework [34], which is one of the most

well-known architectural frameworks for self-adaptive

systems. Also based on architectural models, Chen

et al. [35] proposed to use the models to support be-

havioural adaptation for self-adaptive systems. The

architecture model is specified by the architecture de-

scription language Wright#, and a genetic algorithm

based technique was proposed to search for behavioural

alternatives. Business value is employed to evaluate

the behavioural alternatives while capturing the trade-

offs among relaxed functional and quality constraints.

These model-based approaches [5, 6, 33–35] provide effec-

tive ways to construct the adaptation logic, while they

pay less attention to updating and repairing the exist-

ing logic when it becomes obsolete and unsatisfactory.

Note that MDP is also used in reinforcement learning,

but the distinction needs to be drawn that reinforce-

ment learning is different from our work. As a mathe-

matical framework for modelling decision making, MDP

was known at least as early as the 1950s [36]. Reinforce-

ment learning is an area of machine learning concerned

with how intelligent agents ought to take actions in an

environment in order to maximise the notion of cumula-

tive reward [37]. The environment is typically stated in

the form of an MDP. Thus, reinforcement learning uses

an MDP to describe the process of learning where the

probabilities or transitions are unknown. Differently,

our work and other related work [2, 13–15] in the software

engineering area are to use MDPs (as a model) to model

the self-adaptive systems, that is, to specify the states,

probabilities, and transitions for the self-adaptive sys-

tems. Meanwhile, the decision-making process of a self-
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adaptive system is also not a learning process.

Cámara and Lemons [10] proposed an approach that

uses a DTMC to model the adaptation behaviour of

the system to obtain levels of confidence regarding the

resilience of each adaptation. In [11], the authors de-

rived a DTMC from a formal architecture description

of the managed system with the changes imposed by

each strategy and used the model to optimise the self-

adaptation decisions to fulfill the desired quality goals.

Also based on DTMCs, Filieri and Tamburrelli [12] fo-

cused on probabilistic runtime model checking for self-

adaptive systems. It belongs to the runtime quan-

titative verification technique, which can be used to

support adaptation as discussed in [38]. Similar to

us, [13] also employs MDPs to calculate which is the

best path of execution regarding the system quality

goals. In [39], an iterative decision-making scheme has

been proposed for MDPs and applied to self-adaptive

systems. Considering that some probability parame-

ters in some MDPs may not be fixed, the scheme infers

both point and interval estimates for the undetermined

transition probabilities in an MDP based on sampled

data, and iteratively computes a confidently optimal

scheduler from a given finite subset of schedulers. Com-

pared with DTMCs, MDPs extend DTMCs by allow-

ing nondeterministic choices, which are closer to most

real-world self-adaptive systems. Besides these related

studies, [4] discusses more different approaches to engi-

neering self-adaptive systems.

Most above-mentioned solutions of designing adap-

tation logic for self-adaptive systems either rely on the

manually-defined specifications (e.g., rules) or generate

policies/plans from models (e.g., policies generation

from MDPs [13, 21,22]). When the underlying models fail

to support adaptation, instead of abandoning the mod-

els, an alternative is to update and repair the mod-

els. However, this update and repair issue has not

been thoroughly studied, especially for MDPs. Sykes

et al. [19] used a probabilistic rule learning technique

to generate new adaptation plans for rule-based self-

adaptive systems. Filieri et al. [40] proposed an ap-

proach to learning and updating DTMCs. Different

from our work, they focused on learning and updat-

ing the transition probabilities of DTMCs instead of

repairing the model, and they assumed the structure of

DTMCs does not change. Therefore, their approaches

cannot adapt to our problem for updating and repairing

MDPs. To support dynamic software update for sys-

tems that require continuous operation, studies [41, 42]

employ the controller synthesis to solve the dynamic

controller update problem which describes how the sys-

tem copes with specification changes in the require-

ments and/or the environment. In these studies, the

controller is specified by the labelled transition system

or finite state machine other than MDPs used in our

work. Hence, their goals are not the same as ours, and

their technology cannot be used to solve our problems.

Technically, our work is related to the model repair

of probabilistic models (e.g., DTMCs and MDPs). An

approach is introduced in [16] to repairing unsatisfac-

tory probabilistic models based on parametric model

checking. Afterwards, Chen et al. [17] proposed a solu-

tion for repairing MDPs. For these two studies, their

goals are both to find a change in transition probabi-

lities to make the model satisfy the given properties.

This solution is not valid for real-world self-adaptive

systems modelled with MDPs because the transition

probabilities cannot be changed arbitrarily. Our ap-

proach is to modify the structure to achieve the mean-

ingful repair. Not much work has been carried out to di-

rectly study MDPs’ repair, while some related work ex-

ists regarding the parametric synthesis of MDPs [43–45],

which is a complementary technique to model repair

of MDPs. The main research object of these studies

is parametric MDPs, in which some of the transition

probabilities depend on a set of parameters. Parame-

ter synthesis of MDPs is to find ranges of parameter

values such that a satisfaction probability of a formula

meets a given threshold, is maximised, or is minimised

respectively. Although their goal is different from MDP

repair, these techniques can be used in the future to fur-

ther improve the effectiveness of the repair of MDPs.

In addition to repairing MDPs, DTMCs’ repairing has

also been of interest to researchers. A greedy approach

for repairing DTMCs has been proposed in [46]. To re-

pair the DTMC, they iteratively consider single proba-

bility distributions in isolation, and modify the para-

meter values to decrease the probability to move to

more dangerous successor states. An effort for pre-

senting an approach for the repair of DTMCs is also

discussed in [47]. In that work, the authors proposed

a framework based on abstraction and refinement of

DTMCs, which reduces the state space of the proba-

bilistic system to repair at the price of obtaining an ap-

proximate solution. Still, these efforts focus on model

repair by probability modification, which means that

during model repair, the structure of the model is pre-

served, and only some of the transition probabilities

of the Markov model are modified. Differently, our

approach modifies the model’s structure to achieve a



Wen-Hua Yang et al.: Update and Repair MDPs for Self-Adaptive Systems 125

meaningful repair of MDPs.

7 Conclusions

In this article, we identified two critical problems

(i.e., model obsolete and model unsatisfactory) exist-

ing in self-adaptive systems modelled by MDPs. An

obsolete MDP could be the result of the environmen-

tal change, which makes the environment different from

the ones assumed by the developers. An MDP is consi-

dered unsatisfactory when it fails to satisfy the given

properties. These two problems can cause the policies

generated from such MDPs unable to guide systems to

run correctly. To address them, we first updated the ob-

solete MDPs by performing a structural adjustment to

remove and/or add states and the related transitions

when the environment changes. Then we proposed a

structural repair approach to repairing the unsatisfac-

tory MDPs in a more meaningful way: different from

existing model repair techniques that repair the MDP

by modifying the transition probabilities, we adjusted

the structure of the MDP to avoid arbitrarily changing

transition probabilities to values not in line with reality.

We evaluated our approach on two kinds of rep-

resentative self-adaptive systems, i.e., the autonomous

car systems and the self-adaptive Internet of things sys-

tems (DeltaIoT). Experimental results showed that our

updating and repairing approach can effectively update

the obsolete MDPs used to model self-adaptive systems

and repair those MDPs when they do not satisfy the

given properties. Compared with the original MDPs

that have not been updated and repaired, the MDPs

processed by our approach perform much better in guid-

ing the self-adaptive systems’ correct operation. This

further confirms the importance of meaningful updat-

ing and repairing. Currently our approach focuses on

updating and repairing MDPs for self-adaptive systems,

and in the future, we plan to explore its application in

a wider range of domains.
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