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Abstract Although using convolutional neural networks (CNNs) for computer-aided diagnosis (CAD) has made tremen-

dous progress in the last few years, the small medical datasets remain to be the major bottleneck in this area. To address this

problem, researchers start looking for information out of the medical datasets. Previous efforts mainly leverage information

from natural images via transfer learning. More recent research work focuses on integrating knowledge from medical practi-

tioners, either letting networks resemble how practitioners are trained, how they view images, or using extra annotations. In

this paper, we propose a scheme named Domain Guided-CNN (DG-CNN) to incorporate the margin information, a feature

described in the consensus for radiologists to diagnose cancer in breast ultrasound (BUS) images. In DG-CNN, attention

maps that highlight margin areas of tumors are first generated, and then incorporated via different approaches into the

networks. We have tested the performance of DG-CNN on our own dataset (including 1485 ultrasound images) and on a

public dataset. The results show that DG-CNN can be applied to different network structures like VGG and ResNet to

improve their performance. For example, experimental results on our dataset show that with a certain integrating mode, the

improvement of using DG-CNN over a baseline network structure ResNet18 is 2.17% in accuracy, 1.69% in sensitivity, 2.64%

in specificity and 2.57% in AUC (Area Under Curve). To the best of our knowledge, this is the first time that the margin

information is utilized to improve the performance of deep neural networks in diagnosing breast cancer in BUS images.

Keywords medical consensus, domain knowledge, breast cancer diagnosis, margin map, deep neural network

1 Introduction

Last few years have witnessed tremendous progress

in computer-aided diagnosis (CAD) in medical imag-

ing and diagnostic radiology, primarily thanks to the

advancement of deep convolutional neural networks

(CNNs). Deep CNNs (such as VGG [1] and ResNet [2])

have demonstrated their great potential to be applied

to the detection and diagnosis of different kinds of dis-

eases ranging from breast cancer, lung cancer to skin

cancer [3–6].

However, the medical datasets remain to be one

of the major bottlenecks for these CNN-based CAD

systems. In contrast to natural image applications
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where many large-scale and well-annotated datasets are

available (e.g., ImageNet), the medical domain has no

comparably large datasets.

To address the problem, researchers start looking for

extra information besides the currently available medi-

cal datasets. For example, it has been a common prac-

tice that the model fine-tuned on medical datasets is

first trained on some natural image datasets [7, 8]. The

above transfer learning process implicitly leverages the

information from natural images to improve the perfor-

mance of deep models [9]. More recent research work

leverages the information from the medical domain it-

self. For example, the network structures designed in

[10] and [11] simulate the patterns of radiologists when

they read medical images. In [12–14], the attention in-

formation when radiologists read each medical image is

explicitly incorporated into the training process of the

deep neural networks. The experimental results of the

above work show the benefit of introducing the medical

domain knowledge into deep neural networks.

In this paper, we focus on the cancer diagnosis

in breast ultrasound (BUS) images. We attempt to

incorporate the domain knowledge of breast radiolo-

gists into the deep neural networks. The experiences

of radiologists are formally described as the consen-

sus of BI-RADS (Breast Imaging Reporting and Data

System) [15], which provides standardized terminology

to depict features of the tumors for radiologists. Doc-

tors use the BI-RADS system to place abnormal find-

ings into different categories. Parts of the features men-

tioned in BI-RADS are shown in Table 1.

Table 1. Features in the BI-RADS Guidelines to Classify Be-
nign and Malignant Tumors in Breast Ultrasound Images [15]

Feature Benign Malignant

Margin Smooth, thin, regular Irregular, thick

Shape Round or oval Irregular

Microcalcification No Yes

Echo pattern Clear Unclear

In Table 1, we can see that the margin attribute is

particularly important: the smoothness, the thickness

and the regularity of margins are directly related to the

tumor categories.

To incorporate margin information, we design a

scheme named as DG-CNN (Domain Guided CNN). In

DG-CNN, various attention maps that highlight margin

areas of tumors are first generated, and then incorpo-

rated into the networks. With these attention maps,

the network will pay more attention to the margin ar-

eas of tumors.

We test DG-CNN on two BUS datasets, one of them

is collected from our cooperative hospital which in-

cludes 1 485 BUS images, and the other is a public BUS

dataset. Experimental results manifest that DG-CNN

boosts the diagnostic performance when compared with

the baseline model without integrating domain know-

ledge. Our contributions are three-fold as follows.

Firstly, we find that the margin feature information

of BI-RADS can boost the performance of the network.

To the best of our knowledge, this is the first time that

the margin information is utilized to improve the diag-

nostic performance of breast cancer in ultrasound im-

ages.

Secondly, we design a scheme DG-CNN to integrate

the above information into the network. In this scheme,

four different simple but effective ways are designed to

integrate this information into the network.

Thirdly, DG-CNN can be applied to different net-

work structures like VGG and ResNet to improve the

performance of the baseline networks. For example,

experimental results on 1 485 ultrasound images show

that for a certain integrating mode, the improvement

of using DG-CNN over ResNet18 [2], a popular network

structure, is 2.17% in accuracy, 1.69% in sensitivity,

2.64% in specificity and 2.57% in AUC (Area Under

Curve).

2 Related Work

Many researchers start looking for extra informa-

tion to improve the performance of CNNs with limited

datasets. Generally speaking, the extra information

comes either from natural images or from the medical

domain itself.

To incorporate the information from natural images,

many CNN models are pre-trained on natural image

datasets like ImageNet and then are fine-tuned on given

medical datasets [9, 16].

More recent research work leverages the information

from the medical domain itself. According to the types

of the medical information, the work can be divided

into four categories: 1) the training process of radiolo-

gists, 2) patterns of radiologists when they read images,

3) the attention information of radiologists for medical

images, and 4) additional diagnostic labels. The work

in this paper belongs to the third category.

2.1 Training Process of Radiologists

In the training process of radiologists, the trainees

are generally required to solve tasks with increasing
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difficulty. This process is simulated in [17], in which

meta-training is utilized to model a classifier based on

a series of tasks with increasing difficulty. This train-

ing method shows better performance (AUC = 0.90)

when compared with its baselines on the weakly labeled

DCE-MRI dataset.

2.2 Patterns of Radiologists When Reading
Images

Besides the training process, experienced practition-

ers generally follow some patterns when they read med-

ical images. For example, when radiologists read chest

X-ray images for thorax diseases, they generally first

browse the whole image, then concentrate on the lo-

cal lesion areas, and finally combine the global and the

local information to make decisions. This pattern is

simulated as an attention-guided CNN (AG-CNN) for

thorax disease classification [10]. AG-CNN has three

branches to mimic the above three-staged diagnostic

process, which achieves the state-of-the-art accuracy on

the ChestX-ray14 dataset, and improves the average

AUC to 0.868.

In addition, the DermaKNet simulates how der-

matologists diagnose skin lesions [11]: first locating le-

sion areas, then identifying some dermoscopic features,

and finally making a conclusion. In DermaKNet, a le-

sion segmentation network firstly segments the image

into areas corresponding to the lesion and surrounding

skin. Then a dermoscopic structure segmentation net-

work segments each lesion view into a set of pre-defined

dermoscopic features of special interest for dermatolo-

gists. The final diagnosis is given based on the features

and the available non-visual meta-data about the le-

sion. DermaKNet ranks first in the Seborrheic Kerato-

sis category and average AUCs, and achieves competi-

tive results when compared with existing methods.

2.3 Attention Information of Radiologists for
Medical Images

Besides using patterns of radiologists, some studies

incorporate the attention information when radiologists

read each image. For example, an attention-based CNN

(AG-CNN) was proposed for glaucoma detection based

on fundus images [12]. AG-CNN explicitly incorporates

the attention areas of ophthalmologists on each image,

which are labeled by them when reading the images.

Another example in this category is the lesion-aware

CNN (LACNN) [13]. As ophthalmologists always fo-

cus on local lesion-related regions when analyzing the

OCT image, LACNN designs a lesion detection net-

work, trained on the segmentation labels of the train-

ing images, to detect these lesion-related regions and

guide the following classification task. Experimental

results on two clinical OCT datasets demonstrate the

LACNN method has 8.3% performance gain when com-

pared with the baseline model.

Similarly, an attention branch network (ABN) pro-

posed in [14] allows the attention maps that highlight

attention regions of the network to be manually mod-

ified on the basis of human knowledge. It achieves

93.73% classification accuracy on the disease grade

recognition of retina images.

2.4 Additional Diagnostic Labels

Another type of information comes from additional

diagnostic labels. Note that these labels are not the

direct labels for the tasks at hand (e.g., classification),

but extra labels indicating some properties of images.

For example, in the ultrasonic diagnosis of breast

cancer, the BI-RADS category classifies the tumors into

0–6 for the grained explanation. These labels are gene-

rally used in an auxiliary task to help the network to

distinguish among normal images, benign and malig-

nant tumors in multi-task learning structures [18]. Rea-

sonable results are obtained in differentiating malignant

tumors and benign lumps.

Furthermore, the clinical free-text radiological re-

ports can also be incorporated as they reflect the find-

ings of radiologists from the images. As an example of

using this information, a Text-Image embedding net-

work (TieNet) was designed to classify the common

thorax disease in chest X-rays [19]. By using the im-

age and text attention modules, TieNet achieves a high

accuracy (over 0.9 on average in AUCs) in assigning

disease labels.

3 Proposed Scheme

3.1 Basic Idea

As one of the most important indicators in BI-

RADS, the margin attribute has already been widely

used by radiologists to distinguish between benign and

malignant tumors [20, 21]. In this paper, we propose a

scheme named as DG-CNN to integrate this informa-

tion into the networks. DG-CNN allows the networks

to pay more attention to the margin areas of tumors

by using a variety of different patterns, and hence good

diagnostic results can be achieved.
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In DG-CNN, the way of integrating margin infor-

mation can be divided into two steps: we first build the

margin-wise attention map for each image, and then

integrate this map into the network. The margin-wise

attention map highlights the margin areas of tumors in

each image, and is used to help the network to pay more

attention to these areas. For convenience, the margin-

wise attention map is abbreviated to the “margin map”

hereinafter. The way of generating margin maps will be

elaborated in Subsection 3.2.

After obtaining the margin maps, we present sev-

eral approaches to integrate them into DG-CNN. The

first approach is to insert them as part of the input

to some convolution layers, which enables DG-CNN to

learn this feature directly. The second approach is using

a multi-task learning structure, in which predicting the

margin map and predicting the category label (benign

or malignant) for each image are taken as the auxiliary

task and the main task, respectively.

3.2 Generating Margin Maps

There are three different margin maps utilized in

DG-CNN. According to the generating methods, these

maps can be divided into the label-based margin maps

and the model-based ones, and the latter one can be fur-

ther divided into two subcategories. The former ones

are generated from the segmentation annotations of tu-

mors, while the latter ones are the prediction results of

some edge detection models.

To generate the label-based margin maps, we first

extract the tumor edge from the segmentation annota-

tion of each image, and then expand some pixels inside

and outside the edge to incorporate the margin area.

Thus, these maps are also named as the edge-expanded

maps, and the number of pixels expanded inside and

outside the tumor edge is both set to 10 according to

the experience of radiologists.

On the other hand, the margin areas of different

tumors may have different widths, which may not be

well described by a fixed value. Thus we also adopt

the model-based margin maps, in which we think these

maps can better fit the specificity of tumor margins.

To generate the model-based margin maps, the popu-

lar Richer Convolutional Features (RCF) model [22] is

adopted. More specifically, the tumor edge is first ex-

tracted from the segmentation annotation of each image

and taken as the edge label. Then the RCF model pre-

trained on the BSDS500 dataset [23] is fine-tuned on our

dataset. At last, the trained model is used to predict

the possible margin areas for each unseen image.

According to the dependence on the segmentation

labels of our dataset, the margin maps generated by

the RCF model can be divided into two categories:

the semi-RCF maps and the full-RCF ones. The for-

mer ones are the prediction results of the RCF model

obtained by the semi-supervised method (in which

only part of the images with segmentation labels are

needed). In contrast, the full-RCF maps are obtained

by the fully-supervised training methods (in which all

of the images with segmentation labels are required).

More details of the training process will be introduced

in Subsection 4.2.

Fig.1 shows an example of our dataset and its mar-

gin maps. Specifically, Fig.1(a) is the original image

with a benign tumor, and Figs.1(b)–1(d) are the edge-

expanded margin map, the semi-RCF margin map and

the full-RCF margin map, respectively.

(b)(a) (c) (d)

Fig.1. An example and its margin maps of our dataset. (a)
Original image with a benign tumor. (b) Edge-expanded margin
map. (c) Semi-RCF margin map. (d) Full-RCF margin map.

The edge-expanded map describes the transition

area with a fixed width around the edge of the tumor

(10 pixels both inside and outside). On the contrary,

the semi-RCF and the full-RCF margin maps are gene-

rated from the RCF model, and hence can better fit the

boundary of tumors. In addition, we can see that when

compared with the semi-RCF map shown in Fig.1(c),

the full-RCF map in Fig.1(d) more accurately describes

the margin area of the tumor, as non-tumor regions are

not highlighted. The diagnostic performance when us-

ing these three margin maps will be described in detail

in Subsection 4.3.4.

3.3 Integrating Margin Maps into the

Networks

In this subsection, we first introduce our baseline,

and then describe two approaches used in DG-CNN,

namely the insert mode and the multi-task learning

mode, to integrate the margin maps into the networks.

The baseline model and different integrating modes are

shown in Fig.2, where the ResNet18 structure [2] is used

as the backbone. The details are described as follows.
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Fig.2. DG-CNN with three insert modes and the multi-task learning mode, where a popular network structure, ResNet18, is used as
the backbone.

3.3.1 Baseline

Our baseline model follows the classification struc-

ture of ResNet18 [2] without incorporating any external

information (illustrated as the rectangle in the middle

of Fig.2). The original image is fed into the network

as the input and the classification result for each image

(benign or malignant) is the output. More specifically,

this structure mainly contains one convolution layer

(conv 0 with a 7× 7 kernel), one max pooling layer

(stride = 2) and four convolutional groups (group 0 –

group 3, containing two convolutional layers with 3× 3

kernels), followed by a global average pooling (GAP)

layer [24] and a fully-connected layer. Besides the fea-

ture vectorization, the GAP layer is also used to calcu-

late the class activate map (CAM), which indicates the

saliency areas in each image that are important for the

final classification results [25]. The weighted sum of the

feature maps of the last convolutional layer is computed

to generate CAM for each image. The number of the

output of the fully-connected layer is set to 2 for the

two target categories. The loss function of our baseline

model is the softmax cross entropy of the two categories

defined as follows:

Lcls = −
K∑
i=1

yi log (pi), (1)

pi =
exi∑n
j=1 exj

, (2)

where yi, pi are the true label and the prediction proba-

bility for target class i, respectively. yi = 1 if the target

class is i and yi = 0 otherwise. K is set to 2 represent-

ing two target categories. In particular, pi is calculated

using the softmax function in (2), and n is set to 2 as

there are two outputs of the network.

3.3.2 Insert Mode

In this approach, margin maps are inserted as the

part of the input of some convolution layers. Specifi-

cally, margin maps are first combined with the feature

maps extracted from a certain convolution layer, and

then fed as the input to the next layer.

According to the insert positions and how margin

maps and feature maps are combined, the insert mode

can have many variants. We design three different in-

sert methods which are denoted as “insert mode # 1”,

“insert mode # 2” and “insert mode # 3” (shown in

the red fonts in Fig.2).
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Insert Mode #1. In this mode, the margin map is

inserted at conv 0, where two types of feature maps

are combined and fed into the next layer, one extracted

from the image masked by the corresponding margin

map, and the other from the original image. Specifi-

cally, the element-wise multiplication (denoted as ⊗) is

firstly implemented between the margin map (denoted

as “margin map”) and the original image (denoted as

“img”). Then, the product “img ⊗margin map” and

the original image “img” are fed into a pair of con-

volutional layers (conv 0′ and conv 0). At last, two

outputs, fconv0 (img) and fconv0′ (img ⊗margin map),
are added pixel by pixel (denoted as ⊕) to highlight the

features of the margin areas of tumors. And the sum,

denoted as I1 (shown in (3)), is fed into the next max

pooling layer,

I1 = fconv0 (img)⊕ fconv0′ (img ⊗margin map) . (3)

During the backpropagation process, the weights of the

conv 0′ layer are updated to learn the important fea-

tures from the margin map.

Insert Mode #2. In this mode, the margin map

is inserted between “group 2” and “group 3”, where

the margin map and the feature maps extracted from

“group 2” are concatenated together and then fed into

“group 3”. Specifically, the margin map is first resized

to the same size with the feature maps generated from

“group 2” (denoted as fgroup2). The resized margin

map, denoted as r(margin map), is then concatenated

with fgroup2. Finally, as the new output of “group 2”

(denoted as I2 shown in (4)), the concatenation result

is fed into the “group 3”,

I2 = concat (fgroup2, r(margin map)) . (4)

Based on this concatenation, “group 3” can learn the

distinguishing features from different channels auto-

matically and the margin information can also be inte-

grated into the higher layers of the network. Similarly,

the weights of these channels can also be modified to

measure the importance of the margin map during the

backpropagation process.

Insert Mode #3. This mode simply combines insert

mode #1 and insert mode #2 mentioned above, where

the feature maps generated from the conv 0 layer and

the group 2 convolution block are all modified by using

(3) and (4) respectively. With the integration of margin

maps in the lower and the higher layers of the network

via the above two modes, the margin information can

be enhanced directly and learned by the network auto-

matically.

It should be mentioned that in these three insert

modes, the margin maps are all integrated in the fea-

ture level, and the same loss functions as the baseline

model are adopted. Different from the baseline model,

the input of these three modes also includes the margin

maps of the original images. In addition, the weights

of the layers connected with the margin maps can also

be modified during the backpropagation process.

3.3.3 Multi-Task Learning Mode

Besides the insert modes, another approach to in-

tegrating margin maps is using the multi-task learning

structure. In this mode, the DG-CNN consists of two

tasks, with the main classification task for predicting

the category label, and the auxiliary task (called as the

margin-wise attention generation task) for generating

the margin map for each image. As mentioned in Sub-

section 3.1, these different margin maps (including the

edge-expanded map, the semi-RCF map and the full-

RCF map) are generated firstly, and then integrated

into networks as the labels in the auxiliary task. As

the auxiliary task highlights the margin areas of tu-

mors, the network will learn to pay more attention to

these areas during the training process.

Fig.2 also shows the example of the multi-task learn-

ing mode, where the classification task is used as the

main task, and the auxiliary task is shown in the up-

per part. In the auxiliary task branch, to obtain better

margin prediction results, we adopt the skip-layer con-

nection structure [26] to fuse the feature maps generated

from the shallow and deep layers.

In particular, the feature maps generated from

“group 3” are upsampled and added with those gene-

rated from “group 2” pixel by pixel. The added results

are then upsampled and added with the feature maps

generated from “group 1”. At last, the fused feature

maps are upsampled to form the predicted margin map

for each image. The size of each predicted margin map

is 2× 224× 224, with 2 and 224 being the number of

channels and the size of feature maps, respectively.

The final loss of DG-CNN consists of the margin

attention loss and the classification loss, which are cal-

culated as follows respectively:

Lmulti = Lm att + Lcls, (5)

Lm att = −
K∑
i=1

ȳpix i log (ypix i), (6)

where Lm att and Lcls are the loss functions of margin-

wise attention generation branch and classification

branch, respectively. Concretely, Lm att depicts the
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cross entropy loss between the ground truth label ȳpix i
and the prediction label ypix i for each pixel. K is set

to 2 as there are two possible categories for each pixel,

namely, the margin areas and the non-margin areas.

Lcls is the classification loss and is calculated in (1).

The margin attention generation task is integrated

as the auxiliary task and is trained first. Then the

trained model is used to fine-tune the whole training

process of the two tasks. More details about the train-

ing process will be described in Subsection 4.2.

3.4 Summary

We summarize all types of DG-CNN described in

Subsections 3.3.2 and 3.3.3. DG-CNN can be classi-

fied according to the following two dimensions: 1) the

types of margin maps and (2) the approaches to in-

tegrating the margin maps. Firstly, we design three

types of margin maps, namely the edge-expanded map,

the semi-RCF map and the full-RCF map. The details

are described in Subsection 3.2. Secondly, the two ap-

proaches to integrating margin maps, namely the insert

mode and the multi-task learning mode, are introduced

in Subsection 3.3.

4 Experiments and Results

4.1 Dataset and Evaluation Metrics

The dataset used in this paper is collected from 953

patients from the Cancer Hospital of Chinese Academy

of Medical Sciences during 2018. This dataset contains

1 485 BUS images sampled from different systems in-

cluding PHILIPS, SIEMENS and HITACHI.

Within this dataset, 303 images from 60 patients

are with benign tumors, while 1 182 images from 893

patients are with malignant ones. All the 1 485 images

contain at least one tumor. In addition, all images are

color ones with 3-channel (RGB) and their sizes vary

from 321× 335 to 676× 437 pixels. Each image has a

category label indicating whether it is benign or ma-

lignant, and a segmentation label indicating the loca-

tion and shape of tumor in the image. All segmenta-

tion labels are normalized to 0 and 1, corresponding to

the background and the tumor areas, respectively. The

category labels are proved histopathologically by biopsy

and segmentation labels are marked collaboratively by

at least three experienced radiologists to reduce the in-

ter observer variance. The dataset will be made public

for academic research in the future.

Some BUS images and their segmentation labels

in the dataset are illustrated in Fig. 3. In particu-

lar, Fig.3(a) and Fig.3(b) are the image with a ma-

lignant tumor and its segmentation label, respectively,

and Fig.3(c) and Fig.3(d) are the benign ones.

(b)(a) (c) (d)

Fig.3. (a) Image containing a malignant tumor. (b) Segmenta-
tion label of (a). (c) Image with a benign tumor. (d) Segmenta-
tion label of (c).

We adopt the accuracy, sensitivity, specificity, and

Fβ score to quantify the diagnostic performance, and

some of them are defined as:

sensitivity =
TP

TP + FN
, (7)

specificity =
TN

TN + FP
, (8)

Fβ =

(
1 + β2

)
× TP

(1 + β2)× TP + β2 × FN + FP
, (9)

where TP , FP , TN and FN are the numbers of true

positives (correctly identified malignant tumors), false

positives (benign tumors reported as malignant), true

negatives (correctly identified benign tumors) and false

negatives (malignant tumors reported as benign) re-

spectively. In addition, β in Fβ score is set to 2, which

places more emphasis on the sensitivity, as the capabi-

lity to identify malignant tumors is more important in

radiology. Furthermore, ROC curve and area under

ROC (AUC) are also adopted to compare the perfor-

mance of different methods.

4.2 Implementation Details

To generate semi-RCF and full-RCF maps, the pre-

trained BSDS500 model is first fine-tuned based on our

dataset, and then the obtained models are used to pre-

dict the margin maps on all images. Specifically, when

fine-tuning on our dataset, the numbers of training im-

ages used in the generation of semi-RCF and full-RCF

maps are 800 and 1 485, respectively. The models in

both of the two conditions are trained for 30 epochs

with the learning rate of 1.0× 10−6.

As our dataset has more malignant cases than be-

nign ones, we horizontally mirror and rotate 15 degrees
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clockwise for all images with benign tumors. In addi-

tion, 5-fold cross validation is utilized to validate the

performance of different methods. Since multiple im-

ages are obtained from the same patient, the images

from the same patient are divided into the same fold,

and the distribution of two classes in each fold is main-

tained as same as possible. In addition, all images are

resized to 224× 224 and fed into the network without

any pre-processing.

In our baseline model and the models of using DG-

CNN with insert modes, the learning rate is initialized

to 0.1, and then decreased by 10 at the 30th, 60th,

90th and 100th iterations respectively. However for

the DG-CNN with the multi-task learning mode, the

margin-wise attention generation task is firstly trained

for 300 epochs with the learning rate of 0.1. Then in

the following joint training process of multi-task learn-

ing, the trained model in the last step is used to ini-

tialize the parameters of the two tasks. It should be

mentioned that the ImageNet pre-activation model is

used to fine-tune the baseline model, the models of us-

ing DG-CNN with insert modes, and the model of the

multi-task learning mode in the first stage. The batch

size is set to 256 for 105 epochs, and the scale gradient

optimization with scale factor 0.1 is used in all convo-

lution layers. All experiments are trained on 2 GPUs

of NVIDIA Tesla V100-PCIE-16GB.

4.3 Effectiveness of DG-CNN

In this subsection, we test the diagnostic perfor-

mance of DG-CNN. As we design three different mar-

gin maps and four integrating methods, we first fix the

types of the margin map as the full-RCF margin map,

and test the performance of DG-CNN using different

integrating methods. The detailed results are shown in

Subsection 4.3.1. Besides, the diagnostic performance

of DG-CNN is also compared with that of other meth-

ods, and the results are analyzed in Subsection 4.3.2.

Then we evaluate the generalization of DG-CNN

in other three different network structures (ResNet34,

VGG16 and VGG19). Note that the full-RCF mar-

gin map is used here. Specifically, we first choose the

VGG16 structure, to manifest the diagnostic perfor-

mance after integrating margin information. The per-

formance of DG-CNN on some deeper network struc-

tures including ResNet34 and VGG19 is also evaluated.

The detailed results are shown in Subsection 4.3.3.

At last, we test the performance of DG-CNN using

different margin maps including the full-RCF map, the

semi-RCF map and the edge-extended map. They are

tested at some certain integrating methods (insert mode

#1 and multi-task learning mode) when DG-CNN is

applied to ResNet18. The details are shown in Subsec-

tion 4.3.4.

4.3.1 Performance of DG-CNN Using Different
Integrating Methods

The quantitative results of baseline and different in-

tegrating methods are listed in Table 2, where the best

diagnostic performance for each metric is highlighted.

In Table 2, we can see that generally speaking, DG-

CNN with different integrating methods outperforms

the baseline on different extents. This demonstrates

the effectiveness of introducing margin information.

In addition, in terms of different integrating meth-

ods, DG-CNN with the three insert modes achieves

better performance when compared with the multi-

task learning mode, and outperforms the corresponding

baseline in most metrics. For example, DG-CNN (in-

sert mode #3) has the highest accuracy, specificity and

AUC, which outperforms the baseline by 2.17%, 2.64%

and 2.57%, respectively. On the other hand, DG-CNN

(insert mode #2) achieves the highest sensitivity and

Table 2. Comparing the Diagnostic Performance of DG-CNN with Different Integrating Methods and the Baseline in Different Metrics

Method Metrics (%)

Accuracy Sensitivity Specificity AUC F2

Baseline (ResNet18) 77.53 81.81 73.35 84.91 80.34

DG-CNN (insert mode #1) 79.45 84.60 74.42 86.78 82.81

DG-CNN (insert mode #2) 79.24 90.78 67.99 87.27 86.69

DG-CNN (insert mode #3) 79.70 83.50 75.99 87.48 82.17

DG-CNN (multi-task) 79.07 90.19 68.23 86.82 86.25

Mask R-CNN [27] 77.78 87.73 68.07 85.12 84.28

LACNN [13] 79.24 88.41 70.30 88.28 85.47

Han et al. [28] 78.40 89.68 67.41 84.60 88.58
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F2 score, and the improvements over the baseline are

8.97% and 6.35%, respectively. Furthermore, although

being not so good as the insert modes on average, DG-

CNN (multi-task) also performs better when compared

with the baseline on most metrics.

We can see in Table 2 that after incorporating mar-

gin maps, not all the models achieve higher performance

in all metrics compared with the baseline. In particular,

the insert mode #2 and the multi-task learning mode

have lower specificity values than the baseline. Note

that low specificity is associated with the high sensi-

tivity, which can be confirmed by very high sensitivity

rates of these two methods. This is not surprising as

a model with high sensitivity rarely misses malignant

tumors, but the price to pay is that it may classify a

benign tumor as malignant easily, generating low speci-

ficity.

In addition, although the margin information has

been widely utilized by radiologists, we find that the

margin information is more effective in identifying ma-

lignant tumors rather than the benign ones. This is

confirmed in our dataset, as we find that while most

malignant tumors have irregular margins, some benign

tumors (about 8%) also have irregular margins. This

means that if a model overly relies on this information

to classify tumors, the model is likely to obtain high sen-

sitivity but low specificity, which matches the results of

DG-CNN (insert mode #2) and DG-CNN (multi-task).

In addition, the ROC curves of DG-CNN with diffe-

rent integrating methods and the baseline are shown in

Fig.4. It can be seen that the ROC curve of DG-CNN

(insert mode #3) is closer to the upper-left corner and

has the highest AUC value. Moreover, from the ROC

curves, we can also see that using DG-CNN with all

these integrating methods can achieve higher sensitiv-

ity when compared with the baseline at the same speci-

ficity value.

Furthermore, the CAMs of these different methods

are shown in Fig.5, where these images are wrongly pre-

dicted in baseline and correctly predicted in our DG-

CNN with four different integrating methods. It should

be mentioned that the highlighted areas are where the

networks pay more attention to when making predic-

tions. The first two rows are the images with malignant

tumors, while the bottom two rows are benign ones.

Fig.5(a) shows the original images, and Figs.5(b)–5(f)

are the CAMs of the baseline and the DG-CNN using

insert mode #1–insert mode#3 and multi-task learning

mode, respectively.

Baseline (AUC=0.849 1)

DG-CNN (Insert Mode #1) (AUC=0.867 8)
DG-CNN (Insert Mode #2) (AUC=0.872 7)
DG-CNN (Insert Mode #3) (AUC=0.874 8)

DG-CNN (Multi-Task) (AUC=0.868 2)
LACNN[13] (AUC=0.882 8)
Mask R-CNN[27] (AUC=0.851 2)

Han et al.[] (AUC=0.846 0)
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Fig.4. ROC curves of baseline and DG-CNN with different inte-
grating methods.

We can see from the CAMs of the baseline, the net-

work does not pay attention to the tumor margins or

even the tumor itself in most cases. In contrast, the

DG-CNNs using four integrating methods respectively

focus more on the tumor margins and therefore give

correct predictions.

4.3.2 Performance Comparison of DG-CNN with
Other Deep Learning Methods

In this subsection, we compare the performance

of DG-CNN and three popular methods, LACNN [13],

Mask R-CNN [27] and the method proposed by Han et

al. [28]. Note that all these methods are evaluated on

our dataset for a fair comparison.

More specifically, LACNN [13] is originally designed

for the classification of retinal optical coherence tomog-

raphy (OCT) images. It designs an attention module

to incorporate the information of the whole lesion area.

Here, we apply LACNN to our BUS images but for

a better comparison, we modify the attention module

such that the information of the margin area instead

of the whole lesion area is incorporated. As LACNN

first generates the attention maps and then integrates

them into the network, it is similar to the three insert

modes of DG-CNN. Therefore, the hyper-parameters of

LACNN are set as the same with DG-CNN with insert

modes.

The structure of Mask R-CNN [27] is intrinsically a

multi-task learning architecture. When applied to our

dataset, the Mask R-CNN model has two tasks: the
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Fig.5. (a) Original images in which the tumors are annotated by the red curves. The upper two rows are the images with malignant
tumors, while the bottom two rows are the benign ones. (b) CAMs of the baseline. (c) CAMs of DG-CNN (insert mode #1). (d)
CAMs of DG-CNN (insert mode #2). (e) CAMs of DG-CNN (insert mode #3). (f) CAMs of DG-CNN (multi-task).

classification task (as the main task) and the margin

segmentation task (as the auxiliary task). The hyper-

parameters of Mask R-CNN are set to the same with

the multi-task learning mode of DG-CNN.

The method proposed by Han et al. [28] highlights

the margin information by augmenting the cropped im-

ages with some fixed numbers of margin pixels. We

adopt the original settings in [28].

The quantitative results of our DG-CNN and the

comparative methods are also listed in Table 2. We

give the detailed analysis below.

For Mask R-CNN, we can firstly see that compared

with the baseline method which does not incorporate

any margin information, Mask R-CNN has much higher

improvement in sensitivity (about 6%), a slight im-

provement in accuracy (about 0.2%) and a decrease

in specificity (about 5%). The high improvement in

sensitivity, as well as the decrease in specificity shows

that by incorporating the margin information, the sen-

sitivity of the model for classifying malignant tumors

increases significantly. This matches well with our dis-

cussion in Subsection 4.3.1 that although the margin

information is helpful, it should not be overly empha-

sized.

As the parameters settings of Mask R-CNN are the

same with the multi-task learning mode of DG-CNN,

we compare these two methods. From the result, we

can see that DG-CNN (multi-task) outperforms Mask

R-CNN in all evaluation metrics, with 1.29% improve-

ment in accuracy, 2.46% in sensitivity, 0.16% in speci-

ficity, and 1.70% in AUC.

For LACNN, we can see that DG-CNN achieves

comparable diagnostic performance. In terms of the

accuracy, DG-CNN (insert mode #1) and DG-CNN

(insert mode #3) have a slightly higher accuracy

(with 0.21% and 0.46% improvement respectively) than

LACNN, while DG-CNN (insert mode #2) has the

same accuracy with LACNN. However, compared with

LACNN, the three insert modes of DG-CNN have much

simpler architectures and therefore are more light-

weighted.

For the method proposed by Han et al. [28], we can

see that although not significantly, the proposed DG-

CNN for all four integration methods outperforms the
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Han et al.’s method [28] in terms of the accuracy, speci-

ficity and AUC. The results show that using the margin

maps to incorporate the margin information can obtain

better results than using a simple data augmentation.

The ROC curves of these different methods are

also shown in Fig.4, where the DG-CNNs with diffe-

rent integrating methods show higher AUC values

when compared with Mask R-CNN [27] and Han et al.’s

method [28]. In addition, from the ROC curves, we can

see that DG-CNN achieves comparable performance

when compared with LACNN [13], but with the simple

integrating methods.

4.3.3 Performance of DG-CNN Using Different
Network Structures

In addition to ResNet18, we also evaluate DG-

CNN with other network structures including VGG16,

ResNet34 and VGG19. It should be mentioned that

when DG-CNN is applied to VGG structures, the first

two fully-connected layers are replaced by the GAP

layer. Note that here the “baseline” refers to the net-

work model without integrating margin maps. The

experimental results are shown in Table 3. The best

performance for each metric in different backbones is

highlighted in bold.

When the VGG structure is adopted, the baseline

model and the models of using DG-CNN with insert

modes have the initial learning rate 0.002 5 during the

training process. Then the learning rate decreases by

10 at the 30th, 60th and 80th iterations, respectively.

In the multi-task learning mode, the learning rate and

epochs of margin-wise attention generation task are

0.05 and 300, respectively. The batch size is set to 32 for

100 epochs. ImageNet pre-trained VGG model is used

to initialize the network parameters, and the Stochastic

Gradient Descent (SGD) optimization method is used

with the momentum of 0.9. The other settings are kept

the same with the condition when DG-CNN is applied

to the ResNet structure. As for ResNet34, the same

settings with that in ResNet18 are adopted.

As shown in Table 3, when DG-CNN is applied to

these structures, almost all networks can achieve distin-

guishable improvements over the corresponding base-

lines, which proves the generalization of DG-CNN. For

example, in terms of accuracy, the highest improve-

ments are 2.00%, 0.46% and 1.30% when DG-CNN

is applied to ResNet34, VGG16 and VGG19, respec-

tively. In particular, DG-CNN (insert mode #3) is

prone to improve the accuracy on the shallower net-

work structures (VGG16), while DG-CNN (insert mode

#1) performs better on deeper network structures like

ResNet34 and VGG19.

As the same with that in ResNet18, DG-CNN (in-

sert mode #2) also seems to be able to achieve good sen-

sitivity and F2 score on VGG structures, with the im-

provements of 3.05% and 1.67% on VGG16, and 2.71%

and 1.62% on VGG19, respectively. In terms of AUC,

DG-CNN with all insert modes also has the better per-

formance when compared with DG-CNN (multi-task).

The improvements are 1.43%, 2.08% and 1.71%, respec-

tively.

We can see in Table 3 that some integrating meth-

ods perform better in shallow networks (i.e., VGG16)

than in deeper ones (i.e., VGG19 and ResNet34). For

Table 3. Diagnostic Performance of DG-CNN with Different Integrating Methods When Using Other Network Structures

Backbone Method Metrics (%)

Accuracy Sensitivity Specificity AUC F2

ResNet34 Baseline 78.49 82.15 74.92 86.73 80.88

DG-CNN (insert mode #1) 80.49 83.08 77.97 88.16 82.15

DG-CNN (insert mode #2) 77.69 82.49 73.02 85.96 80.85

DG-CNN (insert mode #3) 79.04 81.39 76.73 87.42 80.54

DG-CNN (multi-task) 75.98 93.15 59.24 85.55 87.06

VGG16 Baseline 78.49 89.76 67.49 86.75 85.80

DG-CNN (insert mode #1) 78.82 89.59 68.32 88.83 85.80

DG-CNN (insert mode #2) 78.61 92.81 64.77 88.70 87.47

DG-CNN (insert mode #3) 78.95 88.24 69.88 88.49 84.99

DG-CNN (multi-task) 78.40 80.80 76.07 86.15 79.94

VGG19 Baseline 78.78 90.27 67.57 87.31 86.22

DG-CNN (insert mode #1) 80.08 91.12 69.31 88.71 87.18

DG-CNN (insert mode #2) 78.61 92.98 64.60 88.46 87.84

DG-CNN (insert mode #3) 79.45 92.47 66.75 89.02 87.81

DG-CNN (multi-task) 77.57 81.90 73.35 85.58 80.41



288 J. Comput. Sci. & Technol., Mar. 2022, Vol.37, No.2

example, when ResNet34 is used as the backbone, only

DG-CNN (insert mode #1) and DG-CNN (insert mode

#3) achieve better results when compared with the

baseline model. While with VGG19, only DG-CNN

(insert mode #1) has the better performance than the

baseline in all metrics. Another observation is that the

improvement of DG-CNN over the baselines on VGG

structures is not so significant as on ResNet. For exam-

ple, when DG-CNN (multi-task) is applied to VGG16

and VGG19, the obtained networks only outperform

the corresponding baseline in specificity, and have com-

parable or even a lower accuracy, sensitivity, AUC and

F2 score. The reason may come from the imbalanced

dataset and the training process of multi-task learning.

4.3.4 Performance of DG-CNN Using Different
Margin Maps

In this subsection, we analyze the effect of different

margin maps on the performance of DG-CNN using two

integrating methods. The margin maps include the full-

RCF map, the semi-RCF map and the edge-expanded

map. The two modes are DG-CNN (insert mode #1)

and DG-CNN (multi-task).

The detailed results are shown in Table 4 where the

best performance for each metric in different methods

is shown in bold. We can see that using all these three

margin maps (semi-RCF, full-RCF and edge-expanded

maps) can achieve higher performance in most of the

metrics, especially in the accuracy, sensitivity and F2

score. Among the three margin maps, using semi-RCF

and full-RCF margin maps seems to be able to achieve

better performance than using the edge-expanded map.

This may be attributed to the fact that the semi-RCF

and the full-RCF margin maps are generated from the

RCF model, and therefore can better fit the margin of

each tumor than the edge-expanded map with the fixed

width. For example, when using the full-RCF margin

map, DG-CNN (insert mode #1) achieves the highest

accuracy (79.45%), sensitivity (84.60%) and F2 score

(82.81%), improved by 1.92%, 2.79% and 2.47% over

the baseline, respectively. In contrast, when the semi-

RCF map is integrated, the specificity and AUC are

improved by 3.22% and 1.95%, respectively.

It should be noted that when considering the over-

all performance of these two integrating methods, using

the semi-RCF margin map achieves comparable or even

better performance when compared with that using

full-RCF one. For example, DG-CNN (insert mode #1)

using semi-RCF and full-RFC maps achieves 79.07%

and 79.45% in diagnostic accuracy respectively, and

86.86% and 84.10% in AUC respectively.

For DG-CNN (multi-task), the accuracy and AUC

values using semi-RCF and full-RCF maps are 79.16%

vs 79.07% and 86.40% vs 86.82%, respectively. In addi-

tion, the specificity of using the semi-RCF map is even

higher than that in the full-RCF map in both the insert

mode #1 and the multi-task mode.

The good performance of using the semi-RCF mar-

gin map is highly preferable, as it is generated from the

model trained that only requires a part of segmentation

annotations of tumors on the dataset.

The ROC curves of different margin maps when us-

ing DG-CNN (insert mode #1) and DG-CNN (multi-

task) are shown in Figs.6(a) and 6(b), respectively. We

can see in Fig.6(a) that using DG-CNN (insert mode

#1), the best performance is achieved when the semi-

RCF margin map is utilized. When DG-CNN (multi-

task) is adopted, using the full-RCF margin map can

obtain the best performance. The AUC values of them

are 0.868 6 and 0.868 2, respectively, and are 1.95% and

1.91% higher than those in the baseline.

4.4 Comparison of Effect of Tumor Margin and
Tumor Itself

In this paper, we design DG-CNN to incorporate

the margin information of tumors. The experimental

results in Subsection 4.3 demonstrate the effect of in-

troducing this information.

Table 4. Diagnostic Performance of DG-CNN (Insert Mode #1) and DG-CNN (Multi-Task) When Integrating Different Margin Maps

Method Margin Map Metrics (%)

Accuracy Sensitivity Specificity AUC F2

Baseline — 77.53 81.81 73.35 84.91 80.34

DG-CNN (insert mode #1) Semi-RCF 79.07 81.64 76.57 86.86 80.73

Full-RCF 79.45 84.60 74.42 84.10 82.81

Edge-expanded 75.56 82.40 68.89 80.02 80.11

DG-CNN (multi-task) Semi-RCF 79.16 86.89 71.62 86.40 84.19

Full-RCF 79.07 90.19 68.23 86.82 86.26

Edge-expanded 78.11 90.95 65.59 85.31 86.41
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Baseline (AUC=0.849 1)
Semi-RCF (AUC=0.868 6)
Full-RCF (AUC=0.841 0)
Margin-Expanded (AUC=0.800 2)

Baseline (AUC=0.849 1)
Semi-RCF (AUC=0.864 0)
Full-RCF (AUC=0.868 2)
Margin-Expanded (AUC=0.853 1)
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Fig.6. (a) ROC curves when different margin maps are integrated using DG-CNN (insert mode #1). (b) ROC curves when different
margin maps are integrated using DG-CNN (multi-task).

It should be noted that, the importance of margin

of tumors in diagnosing breast cancer comes from the

medical consensus and guidelines.

However, it is widely recognized that in object clas-

sification tasks, if the network focuses on the object it-

self, the performance can generally be improved [10, 29].

The knowledge comes from the community of computer

vision.

Therefore, it is interesting to compare the effect of

introducing these two types of knowledge. More specifi-

cally, can simply letting the network focus on the tumor

itself achieve comparable or even better results than us-

ing the margin information?

To answer this question, we integrate the informa-

tion of segmentation annotations of tumors into the net-

work. Specifically, the mask map, which indicates the

whole area of tumors, is utilized to replace the original

margin map in DG-CNN. In addition, the performance

of introducing the mask-expanded map, which contains

both tumor and the corresponding margin area, is also

tested. The mask-expanded map is generated by ex-

panding the edge of the mask map to a certain number

of pixels. The number of expanded pixels is also set to

10, the same with that in the edge-expended map.

Having obtained the mask map and the mask-

expanded map, we simply utilize them to replace the

margin map in DG-CNN. The margin map to be com-

pared in DG-CNN is the semi-RCF margin map, as it

has demonstrated its effectiveness in Subsection 4.3.4.

In addition, we test the three types of maps under two

integrating methods mentioned before, 1) DG-CNN (in-

sert mode #1) and 2) DG-CNN (multi-task).

The experimental results are shown in Table 5 where

the best performance in each metric of different meth-

Table 5. Diagnostic Performance When Using Mask and Mask-Expanded Margin Map in DG-CNN

Method Margin Map Metric (%)

Accuracy Sensitivity Specificity AUC F2

Baseline — 77.53 81.81 73.35 84.91 80.34

DG-CNN (insert mode #1) Semi-RCF 79.07 81.64 76.57 86.86 80.73

Mask 76.52 77.83 75.25 79.47 77.34

Mask-expanded 77.40 80.96 73.93 81.75 79.74

DG-CNN (multi-task) Semi-RCF 79.16 86.89 71.62 86.40 84.19

Mask 74.27 90.78 58.17 85.17 85.05

Mask-expanded 74.52 92.56 56.93 85.02 86.22
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ods is shown in bold. We can see that generally speak-

ing, introducing the mask map and the mask-expanded

map cannot achieve comparable results as the semi-

RCF margin map. It is surprising that the performance

in some metrics is even inferior to the baseline.

More detailed analyses show that compared with the

mask-expanded map and the semi-RCF margin map,

introducing the mask map generally achieves the low-

est performance in both integrating methods. Using the

mask-expanded map achieves a higher accuracy than

using the mask map, but the accuracy is inferior to

the baseline. In particular, the diagnostic accuracy of

DG-CNN (insert mode #1) and DG-CNN (multi-task)

when using the mask map is declined by about 1.01%

and 3.26% when compared with the baseline.

When using the mask and the mask-expanded map

in DG-CNN (insert mode #1), the sensitivity and speci-

ficity values are similar to those in the baseline. On

the other hand, when using these two maps in DG-

CNN (multi-task), although they have higher sensitiv-

ity, their specificity values are the lowest among all the

methods. For example, when the mask map is inte-

grated in DG-CNN (multi-task), the sensitivity is im-

proved by 8.97% compared with the baseline, while the

specificity is decreased by 15.18%. When using the

mask-expanded map, the increase of sensitivity and the

decrease of specificity are 10.75% and 16.42%, respec-

tively.

The ROC curves of DG-CNN with integrating the

mask and the mask-expanded map along with the semi-

RCF map and the baseline are shown in Fig.7. We can

see that the ROC curves of the mask and the mask-

expanded map are at the bottom-right corner which

indicates the low AUC values.

Furthermore, CAMs when integrating these diffe-

rent maps using DG-CNN (insert mode #1) are shown

in Fig.8. In particular, two images in the first column

are the images containing the malignant tumor (upper

figure) and the benign one (lower figure), respectively.

The locations of these two tumors are also annotated

by the red curves. Figures in the second column to the

last one are the CAMs of the baseline, and the DG-CNN

(insert mode #1) using the semi-RCF margin map, the

mask map and the mask-expanded map respectively.

Note that except using the semi-RCF margin map, all

the other three conditions fail to correctly identify the

category of the two tumors.

4.5 Evaluation on a Public Dataset

In this subsection, we test DG-CNN on a public

BUS dataset named “dataset B” [8]. This dataset is ab-

breviated to BUS-B for convenience. BUS-B consists

of 163 images in total, in which 110 images are with

benign tumors while 53 are with malignant ones. All

the images are annotated with the segmentation labels

at the pixel level.

Due to the imbalanced classes, before training on
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Fig.7. (a) ROC curves when mask and mask-expanded maps are integrated using DG-CNN (insert mode #1). (b) ROC curves when
mask and mask-expanded maps are integrated using DG-CNN (multi-task).
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Fig.8. (a) Original images (upper: malignant; lower: benign). (b) CAMs of the baseline. (c)–(e) CAMs of DG-CNN when integrating
the semi-RCF map, the mask map and the mask-expanded margin map, respectively, by using DG-CNN (insert mode #1).

the BUS-B dataset, we first augment all images with

malignant tumors by horizontally flipping. Then, the

10-fold cross validation method is used to test the di-

agnostic performance. The performance of the baseline

model with the ResNet18 backbone is compared with

that of using DG-CNN with insert mode #1 and DG-

CNN with multi-task learning mode. In particular, the

margin maps of the BUS-B dataset are the prediction

results by using the semi-RCF model trained on our

dataset.

During the training process, in our baseline model

and the model of using DG-CNN with insert mode #1,

the batch size is set to 32 for 65 epochs. The learning

rate is initialized to 0.062 5, and then decreased by 10

at the 20th, 40th and 60th iterations. On the other

hand, for the multi-task learning mode, the auxiliary

task (i.e., the margin-wise attention generation task)

is trained firstly for 100 epochs with the learning rate

of 0.01. Other settings are the same with those when

training on our dataset.

The quantitative results of the baseline model and

using DG-CNN with these two integrating methods

based on the BUS-B dataset are listed in Table 6,

where the best diagnostic performance for each metric

is highlighted. We can see that for almost all evaluation

metrics, the diagnostic performance of DG-CNN with

these two integrating methods outperforms the baseline

model. For example, when compared with the base-

line model, the improvements of diagnostic accuracy

are 1.38% and 2.76% for DG-CNN (insert mode #1)

and DG-CNN (multi-task), respectively. In addition,

DG-CNN (insert mode #1) achieves the highest sensi-

tivity, while DG-CNN (multi-task) achieves the highest

specificity.

Furthermore, the ROC curves of the baseline model

and the DG-CNN with two integrating methods are

shown in Fig.9. We can see in Fig.9 that using the

DG-CNN with insert mode #1 can achieve better per-

formance than the baseline model.

5 Conclusions

In this paper, we showed that the information of

medical consensus and guidelines can be integrated into

deep neural networks to improve their performance. In

particular, we utilized the margin information high-

lighted in BI-RADS for radiologists when they diag-

nosed breast cancer in BUS images. We proposed

Table 6. Evaluating the Diagnostic Performance of DG-CNN on BUS-B Dataset

Method Metric (%)

Accuracy Sensitivity Specificity AUC F2

Baseline 80.65 72.22 88.99 84.67 74.71

DG-CNN (insert mode #1) 82.03 78.70 85.32 87.22 81.63

DG-CNN (multi-task) 83.41 76.85 89.91 85.27 78.90
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a scheme named DG-CNN to incorporate this mar-

gin information. Within DG-CNN, different methods

have been designed to integrate the margin informa-

tion. We tested the effectiveness of DG-CNN on diffe-

rent datasets and with different network structures, and

the results demonstrated the effectiveness of the mar-

gin information as well as DG-CNN. To the best of

our knowledge, this is the first time that the margin

information is utilized to improve the performance of

deep neural networks in diagnosing breast cancer in

BUS images, and we believe introducing medical do-

main knowledge into the networks bears great promise

for the CAD in medical images.
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Fig.9. ROC curves of baseline and DG-CNN with two different
integrating methods based on the BUS-B dataset.

It should be noted that the proposed DG-CNN has

not been tested in a real CAD system. More experi-

mental results on larger datasets are required to con-

firm its effectiveness, and practical problems like the

runtime speed, the requirements for computation and

storage resources need to be considered before it can be

applied to real CAD systems.
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