
Gu JY, Li H, Xia YB et al. Unified enclave abstraction and secure enclave migration on heterogeneous security architectures.

JOURNAL OF COMPUTER SCIENCE AND TECHNOLOGY 37(2): 468–486 Mar. 2022. DOI 10.1007/s11390-021-1083-

8

Unified Enclave Abstraction and Secure Enclave Migration on
Heterogeneous Security Architectures

Jin-Yu Gu1,2 (�7�), Hao Li1,2 (o Ó)
Yu-Bin Xia1,2,∗ (gxR), Senior Member, CCF, Member, ACM, IEEE
Hai-Bo Chen1,2 (�°Å), Distinguished Member, CCF, ACM, Cheng-Gang Qin3 (�«f), and
Zheng-Yu He3 (Û��)

1Engineering Research Center for Domain-Specific Operating Systems, Ministry of Education, Shanghai 200240, China
2Institute of Parallel and Distributed Systems, Shanghai Jiao Tong University, Shanghai 200240, China
3Ant Group, Hangzhou 310099, China

E-mail: {gujinyu, lihao, xiayubin, haibochen}@sjtu.edu.cn; {chenggang.qcg, zhengyu.he}@antgroup.com

Received October 18, 2020; accepted February 21, 2021.

Abstract Nowadays, application migration becomes more and more attractive. For example, it can make computation

closer to data sources or make service closer to end-users, which may significantly decrease latency in edge computing. Yet,

migrating applications among servers that are controlled by different platform owners raises security issues. We leverage

hardware-secured trusted execution environment (TEE, aka., enclave) technologies, such as Intel SGX, AMD SEV, and ARM

TrustZone, for protecting critical computations on untrusted servers. However, these hardware TEEs propose non-uniform

programming abstractions and are based on heterogeneous architectures, which not only forces programmers to develop

secure applications targeting some specific abstraction but also hinders the migration of protected applications. Therefore,

we propose UniTEE which gives a unified enclave programming abstraction across the above three hardware TEEs by using

a microkernel-based design and enables the secure enclave migration by integrating heterogeneous migration techniques. We

have implemented the prototype on real machines. The evaluation results show the migration support incurs nearly-zero

runtime overhead and the migration procedure is also efficient.

Keywords heterogeneous trusted execution environment (TEE), enclave abstraction, enclave migration

1 Introduction

As an emerging computing paradigm, edge

computing [1–4] has gained more attention in recent

years because it allows services to become closer to

clients or data production sources. Owing to the

promising feature of “close-to-data/client”, edge com-

puting can significantly reduce network communication

cost and thus bring better quality of service, e.g., ex-

tremely low latency for requests. Nowadays, it has been

used in plentiful application domains, such as compu-

tation offloading from cloud to smart home or city [5, 6],

real-time analytics [7, 8], and so on, to address the con-

cerns of response time requirement and bandwidth cost

limitation.

The mobility of clients (e.g., mobile users) and data

sources (e.g., intelligent vehicles) makes runtime ser-

vice migration become an indispensable requirement in

edge computing [9–12]. With migration, a service can

keep running on the edge server nearest to the client,

which may change from time to time, in order to keep

latency low. Otherwise, dramatic performance degra-

dation may occur, and qualified service continuity is

difficult to ensure. In addition, migration is also im-

portant for meeting other demands of edge computing,

like relieving congested edge servers and leaving servers

Regular Paper

This work is supported in part by the National Key Research and Development Program of China under Grant No. 2020AAA-
0108502, the National Natural Science Foundation of China under Grant Nos. 61972244, U19A2060, and 61925206, and the HighTech
Support Program from Shanghai Committee of Science and Technology under Grant No. 19511121100.

∗Corresponding Author

©Institute of Computing Technology, Chinese Academy of Sciences 2022

http://dx.doi.org/10.1007/s11390-021-1083-8
http://dx.doi.org/10.1007/s11390-021-1083-8

Jin-Yu Gu et al.: Unified Enclave Abstraction and Secure Enclave Migration 469

that may fail (e.g., before running out of battery).

However, research on security issues of service

migration in edge paradigms is still nascent and

limited [9, 13,14]. Compared with traditional cloud com-

puting, there are two main security-related differences

when edge servers involve. First, the owners of the edge

servers may be different from the cloud providers and

could be curious or even malicious. Thus, the providers

of the service applications (e.g., the application deve-

lopers) have concern about their intellectual property

which may be easily stolen by the edge server owner

who controls the physical machine as well as the whole

system software stack. The end users also cannot en-

sure the service application is correctly running on the

edge servers. Second, the edge servers are easier to

be attacked compared with cloud servers because cloud

servers usually face remote attacks only while attack-

ers are easier to physically access edge servers and thus

have more attack means (e.g., conducting physical at-

tacks). Such differences are obstacles for migrating ser-

vices among edge servers as well as from cloud to edge.

In this paper, we propose to utilize the hardware-

assisted trusted execution environment (TEE) to mit-

igate the above security threats and enable secure ser-

vice migration. TEE is suitable for protecting pri-

vate code and data on untrusted platforms. For ex-

ample, Intel SGX has been adopted by some major

cloud providers and ARM TrustZone has been well-used

on smartphones. Generally speaking, when accommo-

dated in a hardware TEE, a benign service applica-

tion can protect itself and users’ input from malicious

software, including OS and compromised peripherals.

Nevertheless, edge servers can deploy CPUs from diffe-

rent vendors, such as Intel, AMD and Huawei, which,

inherently, means that their equipped TEEs are hete-

rogeneous, like Intel SGX [15], AMD SEV [16], and ARM

TrustZone [17].

Therefore, we propose UniTEE which gives a unified

TEE abstraction for hiding the hardware heterogene-

ity from applications. UniTEE adopts the program-

ming model of SGX applications for its flexibility and

popularity. Specifically, an application can partition it-

self into secure-(in)sensitive parts and build one or more

hardware-secured TEEs (named enclaves) to run the

secure-sensitive ones. An enclave can offer strong guar-

antees of both confidentiality and integrity for the se-

cure code/data inside despite being executed in an un-

trusted environment, which can be extremely suitable

for outsourced computation [18–21]. No matter what the

underlying hardware TEEs are, UniTEE provides uni-

fied programming APIs including creating, attesting,

invoking, and destroying enclaves. As AMD SEV and

ARM TrustZone do not provide enclaves like Intel SGX,

we leverage hardware-software co-designs for building

SGX-like enclaves on those platforms. AMD SEV uses

virtual machine (VM) as the granularity of its TEE and

supports concurrently running at most 15 secure VMs,

which does not fit the programming model of UniTEE.

Therefore, we deploy a trusted microkernel in the super-

visor mode of a secure VM and then let the microkernel

to build user-level isolated enclaves. An application can

construct its enclaves in the secure VM by sending re-

quests to the trusted microkernel. ARM TrustZone en-

ables the CPU to have two modes named normal world

and secure world, respectively. UniTEE achieves the

same enclave abstraction by deploying the trusted mi-

crokernel in the secure world to be the enclave manager.

Thus, by combining the tiny software layer (the trusted

microkernel) and the hardware TEE (either a secure

VM of SEV or the secure world of TrustZone), UniTEE

provides SGX-like enclave abstractions and thus uni-

fies the TEE programming model on Intel SGX, AMD

SEV, and ARM Trustzone. Besides, for easing pro-

gramming, it provides an enclave-management library

for an application to control its enclaves’ life cycle, in-

cluding creation, attestation, interaction and deletion.

It also provides a C library (based on musl-libc) to ease

the development and deployment of in-enclave code, as

well as to be compatible with legacy code.

A unified enclave abstraction enables programmers

to develop secure applications without considering the

differences of the underlying TEEs. Nevertheless, it

is not enough for migrating applications between edge

nodes because heterogeneous TEEs use different in-

struction set architectures (ISAs). Therefore, Uni-

TEE further integrates heterogeneous-ISA migration

techniques [11, 22,23] to hide the heterogeneity of enclave

ISAs and support enclave migration [24] at runtime. The

enclave code will be compiled into different binaries for

different ISAs, but every symbol (a variable and a func-

tion) has the same offset in different binaries. No mat-

ter on which architecture, these symbols will always be

loaded at the same virtual addresses at runtime, which

significantly simplifies the (cross-architecture) migra-

tion procedure because the pointers to them will still

be valid after migration. For migrating an enclave run-

ning on the source machine, the target machine will first

launch a virgin enclave with the binary for its architec-

ture and then receive and restore the enclave check-

point (memory data and execution context) from the

470 J. Comput. Sci. & Technol., Mar. 2022, Vol.37, No.2

source machine. For ensuring security, the checkpoint

generation should not rely on the untrusted software in-

cluding the OS. Thus, an enclave on the source machine

will generate a consistent checkpoint by itself. Specifi-

cally, UniTEE adds a control thread in each enclave as

a part of the framework. After receiving a migration

request, this thread will wait for all the enclave threads

to enter a quiescent state and then make a checkpoint

by encrypting and dumping the enclave states. The

encryption key is negotiated by the source enclave and

the target enclave and it will protect both the confi-

dentiality and the integrity of the checkpoint during

the transfer process.

UniTEE provides a software development kit (SDK)

for programmers, and they can develop secure edge ap-

plications without awareness of the underlying TEE

hardware or the migration mechanisms. We present

a prototype implementation and evaluation on an Intel

(Skylake i7-7700) machine, an AMD (EPYC 7281) ma-

chine, and an ARM (HiKey970) machine, respectively.

The evaluation results show: 1) our SDK can support

many real-world applications and the migration mech-

anism incurs negligible overhead; and 2) the latency

of heterogeneous enclave migration is acceptable and

mainly decided by the network latency.

In summary, this paper makes the following contri-

butions:

• a unified enclave abstraction on Intel SGX, AMD

SEV, and ARM TrustZone exposed by UniTEE;

• a design of secure enclave migration between hete-

rogeneous TEEs enabled in UniTEE;

• a real implementation and evaluation of UniTEE.

2 Motivation and Background

2.1 Motivation

Application (Service) Migration Is One of the Most

Critical Features in Edge Computing [8–11,25–27]. First,

migration can relieve congested edge servers and thus

achieve better load balance. Second, migration can

bring better fault tolerance (e.g., migrating applica-

tions that run on a low-battery edge machine) and ease

the edge server upgrading (e.g., migrating running ap-

plications to other servers first and then updating an

idle machine). Third, migration is important to ensure

Quality-of-Service (QoS) in edge computing because of

the high mobility of client devices such as smartphones

or intelligent cars. Specifically, the latency between

a client and an edge service may vary because of the

client’s mobility, which can impact the overall perfor-

mance, i.e., the service quality. Fig. 1 presents such

an example which shows the latency impact on Vedis,

a popular key-value store on edge. If latency-sensitive

services can be migrated to follow clients, they can show

much better performance.

 0

 50

 100

 150

 200

 250

 300

 350

 400

0 1 2 3 4 5 6 7 8 9 10

Network Latency Delay (ms)

T
h
ro

u
g
h
p
u
t

(o
p
s/

m
s)

Fig.1. Throughput of the Vedis service that runs on an Intel
Skylake machine. The client device is an ARM HiKey board.
The network latency varies from 1 ms to 10 ms (typical latencies
in edge computing [11,28]).

Security Concerns on Migration for Both Service

Providers and Clients. Although service providers have

the above motivations to migrate their services between

different servers, security concerns may force them to

abandon migration. Different from cloud servers, which

are aggregated together in data centers and managed

by the same cloud provider, edge servers are more dis-

aggregated and can be managed by different owners. If

one service application is allowed to migrate from cloud

to edge and between different edge nodes, the service

provider faces the risk of leaking digital property be-

cause the owner of some edge server may be curious or

even malicious. The owner has the full control of the

edge server and can deploy malicious system software

(e.g., OS and hypervisor) or compromise them. If a ser-

vice runs on such a server, the server owner can easily

retrieve all the code, data, and runtime states of the

service, which means the loss of the digital property to

the service provider. Moreover, when the service is con-

trolled by an untrusted server owner, the clients of the

service also worry about the security: the client data

sent to the service may be stolen, or the service may

not faithfully handle the requests.

Hardware TEEs Bring a Potential to Solve the Se-

curity Problems. Nowadays, hardware support for se-

cure computing, i.e., Intel SGX, ARM TrustZone, and

AMD SEV, gains more and more attention in both the

academic and the industry area. These hardware se-

curity extensions can protect security-sensitive appli-

cations from attackers through providing a hardware-

Jin-Yu Gu et al.: Unified Enclave Abstraction and Secure Enclave Migration 471

secured trusted execution environment (TEE). A TEE

can shield an application’s code and data from external

accesses by other software, including higher-privileged

software like OS and hypervisor. Besides memory pro-

tection, it can also provide tamper-resistant execution

for the protected application. Therefore, the hardware-

supported TEE technology is a promising candidate for

protecting applications in untrusted cloud/edge servers

where the entire software stack and the infrastructure

owner are not trustworthy.

However, the Heterogeneity of Servers in Edge

Computing Leads to Two-Fold Challenges. In terms

of application programming, different servers are

equipped with different kinds of TEEs which give

heterogeneous programming abstractions (Challenge-

1). Writing code for every abstraction not only makes

the application development inefficient but also brings

difficulties to runtime migration. In addition, hete-

rogeneous hardware TEEs make the migration proce-

dure of protected applications challenging (Challenge-

2) for two reasons. First, they use architecture-specific

instructions, registers, etc., which are different from

each other. Second, they cannot be accessed by privi-

leged system software such as OS and hypervisor which

play important roles in traditional migration (e.g., OS

will stop an application and then send its memory

data).

In this paper, we make an attempt to solve the above

two challenges on how to program security-sensitive

applications with different heterogeneous TEEs and

how to migrate them between the heterogeneous TEEs.

Besides in edge computing as mentioned above, our

work may also be used in cloud computing where

heterogeneous hardware TEEs and migration are also

required [22, 24,29–33], for example, secure cross-cloud mi-

gration is needed in joint cloud computing [34].

2.2 Background of Hardware-Secured TEEs

Intel SGX. Intel SGX [15] can protect user-level com-

putations through providing a hardware-secured exe-

cution environment called an enclave. An enclave’s

memory pages reside in the EPC (Enclave Page Cache)

which is a part of the memory region that will be au-

tomatically protected by the CPU. Although the hy-

pervisor and OS retain their ability to manage EPC

memory (e.g., swap EPC page), they cannot break the

memory data’s confidentiality and integrity. Moreover,

Intel SGX also provides tamper-resistant execution to

enclaves and enables remote attestation, which means

that an enclave can prove its identity to a remote party.

Thus, researchers have proposed to leverage SGX to

protect outsourced applications [19, 21,35–38] and cloud

vendors have started to explore the commercial usage

of SGX [39]. Specifically, an application can be sepa-

rated into trusted and untrusted parts, and the trust

parts can be executed in one or more enclaves. An SGX

enclave resides in the address space of its host applica-

tion while its memory can only be accessed by itself.

A thread has to enter an enclave through executing an

EENTER instruction and exit from the enclave with

an EEXIT instruction. Moreover, the CPU can help

an enclave to produce a verifiable proof that identifies

its memory contents. A remote party, e.g., the enclave

owner, can leverage official attestation services like Intel

Attestation Service (IAS) to assess the trustworthiness

of the proof. Such a procedure is called SGX remote

attestation.

AMD SEV. AMD proposed SEV [16] to protect out-

sourced computing on untrusted servers, whose sup-

port has been integrated into existing system software

stacks. Different from Intel SGX, which can build TEEs

inside applications, the granularity of a TEE in SEV is

a secure virtual machine (VM). Tenants can run their

applications inside a secure VM which is protected as

a whole by the SEV hardware. SEV supports at most

15 secure VMs, and each of them has a unique iden-

tifier (ASID). Inside the CPU, all the secure memory

of the VM is tagged with the VM’s ASID, which pre-

vents the memory content from being accessed by any-

one other than the owner VM. When the secure mem-

ory data leaves/enters the CPU, it is automatically en-

crypted/decrypted by the memory controller with a key

bound to its owner VM. These keys are managed by a

secure co-processor and will never be exposed. A se-

cure VM can decide whether a memory page is secure

by setting one bit (C-bit) in the corresponding guest

page table entry. Once the bit is set, the CPU will

treat the memory page as secure and then protect it

transparently. Otherwise, the access to the memory

page is not restricted, i.e., the page can be accessed by

the hypervisor. Besides memory protection, SEV also

protects a secure VM’s execution states during runtime.

Recently, AMD has proposed further extensions named

SEV-SNP 1○ which helps to mitigate the memory in-

tegrity problems of SEV [40, 41]. Therefore, even in the

face of compromised privileged software, SEV can also

1○SEV Secure Nested Paging. https://www.amd.com/system/files/TechDocs/56860.pdf, Feb. 2021.

https://www.amd.com/system/files/TechDocs/56860.pdf

472 J. Comput. Sci. & Technol., Mar. 2022, Vol.37, No.2

protect both the confidentiality and the integrity of its

TEEs.

ARM TrustZone. ARM proposes the TrustZone [42]

technology as its hardware security extension since

ARMv6 architecture. With TrustZone, the CPU has

two execution environments, named normal world and

secure world, separately. Both worlds have their own

user space and kernel space, while the latter is used

as the TEE on ARM. Usually, a commodity OS and

non-security-sensitive applications run in the normal

world while a secure OS (e.g., OPTEE 2○) and security-

sensitive applications run in the secure world. The two

worlds can switch to each other through the highest

privilege mode, monitor mode. One world can execute

an SMC (Secure Monitor Call) instruction to trap into

the monitor mode, and then a secure monitor in the

monitor mode helps to finish the world switch. Trust-

Zone can also partition all the physical memory re-

sources into the normal part and the secure part, and

ensure that the normal world cannot access the secure

memory part while the secure world can access the

entire memory. Thus, two worlds can exchange data

through the normal memory part. Moreover, the secure

world can adjust the memory resource partition accord-

ing to runtime requirements. As TrustZone is widely

deployed in ARM platforms such as smartphones and

tablets, it has already been used to protect security-

critical computation and data [1, 43–47].

3 Unified TEE Programming Abstraction

In this section, we first give a brief analysis of the

three commercial TEE abstractions, which will explain

why UniTEE chooses the SGX-like abstraction as the

unified one. Then, we describe how to achieve the uni-

fied TEE abstraction on different security hardware.

Last, the main programming interfaces of such an ab-

straction will be introduced.

3.1 Abstraction Analysis

As shown in Fig.2, Intel SGX supports constructing

multiple enclaves (fine-grained TEEs) inside an appli-

cation, i.e., in the application’s address space, which

allows programmers to divide an application into one

untrusted part and one or more trusted parts. The

latter ones are used to protect security-sensitive code,

data, and execution. There are several typical usages

of SGX for application protection (different granulari-

ties). First, programmers can put an unmodified appli-

cation together with a library OS into a single enclave

(e.g., Graphene-SGX [21]) which may also be deployed

as a guest VM on untrusted servers (e.g., Haven [35]).

Second, programmers can run a container in an en-

clave to enhance security (e.g., SCONE [19]). Third,

programmers can partition an application into mutual-

distrusted parts manually [38] or automatically [48] and

then utilize enclaves for isolation. In brief, SGX en-

clave abstraction not only allows a relatively unlimited

number of TEEs, but also promises flexibility in the

isolation granularity.

Application

Enclave

Enclave

OS

APP

OS

Secure
VM

APP
APP APP

OS

Secure
VM

Hypervisor

Secure OS

Secure World

Secure Monitor

(b)(a) (c)

Fig.2. Three commercial TEE abstractions. (a) Intel SGX. (b)
AMD SEV. (c) ARM TrustZone.

In contrast, AMD SEV supports at most 15 se-

cure VMs as TEEs, which leads to two drawbacks:

1) the TEE number is too limited to accommodate

different applications; 2) the TEE granularity is too

coarse-grained to meet different requirements. Simi-

larly, ARM TrustZone provides only-one secure world

as TEE. Although prior studies proposed to multi-

plex the secure world by deploying a secure OS or us-

ing virtualization [31], they only considered protecting

a whole application instead of fine-grained protection

enabled by SGX.

Therefore, UniTEE embraces the flexible abstrac-

tion of SGX and allows to build SGX-like enclaves

with any of the three hardware-security technologies.

Programmers can develop secure applications against a

unified abstraction without concerning the underlying

hardware TEEs.

3.2 System Architecture

To provide SGX-like abstraction with AMD SEV or

ARM TrustZone, the first problem to solve is that they

cannot provide an unlimited number of hardware TEEs

as enclaves. To this end, UniTEE deploys a security-

oriented microkernel in one hardware TEE, i.e., the

secure world of ARM TrustZone or a secure VM of

2○https://github.com/OP-TEE/optee_os, Feb. 2021.

https://github.com/OP-TEE/optee_os

Jin-Yu Gu et al.: Unified Enclave Abstraction and Secure Enclave Migration 473

AMD SEV, and then leverages the microkernel to con-

struct an unlimited number of software TEEs as en-

claves. The microkernel runs in kernel mode while the

enclaves managed by it are running in user mode.

As shown in Fig.3, the microkernel creates a new ad-

dress space for building a new enclave, which is similar

to a traditional process on the microkernel. Neverthe-

less, an enclave logically belongs to some application

that runs in the normal VM on an SEV-capable ma-

chine or in the normal world on a TrustZone-capable

machine. The trustworthy microkernel guarantees both

the isolation between different enclaves and the isola-

tion between an enclave and all the untrusted software

in the normal VM or the normal world. Specifically,

it assigns different enclaves with different page tables

and thus achieves the memory isolation between them;

it leverages the hardware-security mechanism to ensure

the memory isolation between an enclave and the un-

trusted software, i.e., the enclave uses the secure mem-

ory (in the secure VM or the secure world) that cannot

be accessed by the untrusted ones, including the privi-

leged OS. Besides, the microkernel also manages the en-

claves’ runtime states (execution context) and ensures

the states’ confidentiality and integrity.

Hypervisor/Secure Monitor

Normal VM/
Normal World

Enclave-1

Enclave-2

APP

OS

Secure VM/
Secure World

Enc-1

Enc-2

Microkernel

Fig. 3. UniTEE gives SGX-like enclave abstraction based on
AMD SEV or ARM TrustZone. Enclave is abbreviated as Enc.

An application still runs on the untrusted OS while

its enclaves are created by and run on the microker-

nel. The microkernel is only responsible for the en-

clave life-cycle management, which mainly involves en-

clave construction/destruction, enclave memory mana-

gement, and enclave thread scheduling. The applica-

tion cannot access its enclaves’ memory while an en-

clave can access its host application’s memory only if

the microkernel maps the normal memory belonging to

the application into the enclave’s address space. By de-

fault, an enclave and its host application have shared

memory for communication.

In brief, UniTEE leverages the microkernel to mul-

tiplex a single hardware TEE and thus allows an ap-

plication to create an arbitrary number of fine-grained

enclaves on an AMD SEV machine or an ARM Trust-

Zone machine, just like on an Intel SGX machine. The

tradeoff is that our microkernel enlarges the trusted

computing base (TCB) of an enclave. Nevertheless,

our microkernel has a small code base (around 5 000

lines of code) and thus is relatively easier to be im-

plemented correctly. With more efforts in the future,

formal verification can be used to make our microkernel

more secure. Although prior work on ARM TrustZone

also proposed to deploy a secure OS in the secure world

(e.g., OPTEE), the secure OS is for running multiple

trusted applications instead of enclaves (belonging to

the host applications), which makes the secure OS and

the microkernel of UniTEE different.

3.3 Programming Interfaces

As the SGX programming model is easy to use and

adopted by the public, UniTEE preserves similar (or

even can be the same) interfaces as listed in Table 1.

By providing such interfaces, existing secure applica-

tions targeting SGX can be more easily ported to Uni-

TEE, which can make our work more practical.

3.3.1 Enclave Creation

Fig.4 shows how a host application creates an en-

clave on SEV and TrustZone platforms (the enclave

creation procedure on SGX platforms is just like be-

fore, i.e., using official Intel SGX Driver). First, the

host application prepares the enclave image and the

corresponding configuration. Second, it invokes cre-

ate enclave, which traps into a kernel module (Drv-1)

deployed by UniTEE. Third, the kernel module trans-

fers the control flow to the microkernel. For trans-

ferring the control flow, the SMC instruction is used

on TrustZone-enabled platforms while VMMCALL and

VMRUN instructions are used on SEV-enabled plat-

forms. In the former case, the SMC instruction makes

the CPU trap into the monitor mode, and another tiny

module (Drv-2) deployed by UniTEE helps to finish the

switch between the normal world and the secure world.

In the latter case, the VMMCALL instruction triggers

a VMExit and makes the CPU trap into the hypervisor

mode and, thus, a similar tiny module (Drv-2) in the

hypervisor executes the VMRUN instruction to notify

474 J. Comput. Sci. & Technol., Mar. 2022, Vol.37, No.2

Table 1. Main Interfaces in Enclave-Management Library (for Host Applications) and Modified C Library (for Enclaves)

Declaration Description

int create enclave(Buf enclave img, Buf
enclave config)

Used by the host application to create an enclave. The two arguments give the
locations of the enclave image and the configuration, respectively.

int attest enclave(int enclave id, Buf
input, Buf output)

Used by the host application to generate an attestation for an enclave. The last two
arguments give the locations of the input message and the final attestation data,
respectively.

int call enclave(int enclave id, Buf buffer)
[ecall]

Used by the host application to invoke an enclave function. The first argument spec-
ifies which enclave to call. The second one is the shared buffer between the host
application and the enclave, which is used for storing both input arguments and
output results.

int call host(Buf buffer) [ocall] Used by an enclave to invoke its host application’s function.

int get seal key(Buf output key) Used by an enclave to get a sealing key which can be used to encrypt some persistent
data outside the enclave.

Most interfaces in musl-libc An enclave can also invoke common POSIX interfaces in musl-libc just like a normal
application.

the microkernel. Fourth, a system service of the micro-

kernel, named Enclave Construction Service (ECS), re-

ceives the enclave creation request and then constructs

the enclave according to the image and configuration

passed through the shared memory. On SGX plat-

forms, UniTEE provides the same interface but con-

structs enclaves just like how official Intel-SGX SDK

does. Specifically, a kernel module like Drv-1 in the OS

builds enclaves using SGX instructions (ENCLS).

Normal VM/
Normal World

Secure VM/
Secure World

APP

OS Drv-1

Drv-2

Hypervisor/Secure Monitor

Microkernel

ECS

Shm Enc-1

Fig.4. Procedure of enclave construction on SEV and TrustZone
platforms. ECS represents enclave construction service. Enclave
is abbreviated as Enc. Drv-1 and Drv-2 are two software compo-
nents deployed by UniTEE.

Components of UniTEE. For SEV, the components

include a kernel module in the normal VM’s guest OS,

a tiny module in the hypervisor, and a microkernel OS

in the secure VM. For TrustZone, the components in-

clude a kernel module in the normal world OS, a tiny

module in the monitor mode, and a microkernel OS in

the secure world. For SGX, the components include a

kernel module, i.e., the SGX driver. Besides, the com-

ponents also include a library in each enclave for all the

three platforms.

3.3.2 Enclave Attestation

Remote attestation enables a remote user to attest

whether an enclave is correctly launched and further al-

lows the remote user and the enclave to build a secure

communication channel (i.e., exchanging a session key).

UniTEE provides the corresponding interface named

attest enclave. On SGX-enabled platforms, UniTEE

simply uses the hardware-provided remote attestation

mechanism. On the other two platforms, UniTEE lever-

ages the reliable microkernel to implement a two-phase

attestation. Briefly speaking, in the first phase, it boots

the microkernel by using the secure boot mechanism

provided by the hardware and allows remote users to

negotiate secure keys with the microkernel; in the sec-

ond phase, the ECS of the microkernel is responsible

for launching enclaves, computing the enclave measure-

ment, and signing the measurement by secure keys. As

the results of attest enclave, the signed measurement

will be returned to the host application and it can be

further sent back to remote users for attestation.

3.3.3 Enclave Interaction

An enclave and its host application can expose func-

tion routines for each other, called ecall and ocall in

the official Intel SGX SDK. UniTEE also supports the

interaction between enclaves and the host application,

and the programming interfaces are call enclave and

call host. When the host application thread invokes an

enclave function, it needs to transfer the control flow

to an enclave thread. As shown in Fig.5(a), UniTEE

can implement the cross-boundary invocation (passive

Jin-Yu Gu et al.: Unified Enclave Abstraction and Secure Enclave Migration 475

interaction mode) by using a similar method for creat-

ing an enclave. However, in such mode, the invocation

cost is high because both the SMC-based world switch-

ing of TrustZone and the VMMCALL/VMRUN-based

VM switching of SEV bring both expensive direct cost

(thousands of CPU cycles) and indirect cost (pollution

to CPU internal structures like cache and TLB). For

the sake of performance, UniTEE also provides an al-

ternative interaction mode (proactive interaction mode)

which integrates the FlexSC-like mechanism [49]. There

is a shared buffer between a host application thread and

an enclave thread. The buffer is not only for transfer-

ring the data but also for transferring the control flow.

The enclave thread will poll on a request ready flag in

the buffer. When the flag is set, which means the appli-

cation thread makes an invocation request, the enclave

thread starts to handle the request and sets a replay

ready flag after finishing the request. Therefore, when

invoking call enclave, the host application thread writes

the arguments of the request to the shared buffer, sets

the corresponding request ready flag, and waits for the

reply ready flag. After the enclave thread sets the re-

ply ready flag, it retrieves the results of the request and

continues the execution. During the request handling

procedure, the enclave thread may also invoke functions

provided by the host application through call host. If

so, it sets the reply ready flag to a specific value, which

means it makes an invocation request to the host ap-

plication thread. Since the latter thread polls on the

reply ready flag, it can detect and finish such a request.

With this proactive interaction mode, the invocation

can be much faster while it requires more CPU cores.

The application programmers can select either mode

according to the requirements.

APP Enclave APP Enclave

Shm Shm

Hypervisor/
Secure MonitorSMC; VMEXIT/VMRUN

FlexSC-LikeFlexSC-Like

EENTER/EEXITOS uK

(a) (b)

Fig.5. UniTEE supports two modes of communication between
an enclave and its host application. The shared communication
buffer is abbreviated as Shm.

Fig.5(b) shows that UniTEE also enables the two

modes of interaction on SGX platforms. In the passive

interaction mode, expensive EENTER and EEXIT in-

structions are used. In the proactive interaction mode,

the FlexSC-like mechanism described above is used in-

stead.

3.3.4 Enclave Library

UniTEE provides an in-enclave C library based on

musl-libc for easing programming and supporting run-

ning legacy code inside an enclave. The vanilla musl-

libc will finally invoke system calls by executing syscall

(x86-64) or svc (AArch64) instruction. Unlike that, the

modified library changes the system calls into invoca-

tions to the host application and then the host applica-

tion will invoke the requested system calls on the OS for

the enclave. In other words, the system calls issued by

an enclave are redirected to the OS on which the host

application runs. Note that an enclave belongs to its

host application, and the OS will serve it for most sys-

tem calls. Although the microkernel of UniTEE does

implement various system calls like an OS, it provides

the ones related to enclave memory management. The

enclave library will transparently dispatch the system

calls without the involvement of programmers. An ex-

isting application can be linked against the modified C

library and then directly run in an enclave as a whole.

In this case, UniTEE will start a simple host application

which just creates the enclave and handles the system

calls at runtime for the enclave.

Besides, the library supports another interface

named get seal key which can be invoked by an enclave

to get a sealing key. If an enclave needs to store some

data for use in the next boot, it can seal the data with

this key and store the encrypted data on some untrusted

storage. Enclave Key Service, another system service of

the microkernel, manages the relationship between the

sealing key and the enclave measurement. Therefore,

the same enclave (i.e., the same measurement) can re-

trieve the same sealing key after every boot. For SGX

platforms that directly support this functionality, the

enclave library uses the EGETKEY instruction to get

the sealing key.

4 Heterogeneous TEE Migration

The unified programming abstraction of UniTEE

benefits secure applications development by hiding the

heterogeneity from programmers. Furthermore, based

on the unified abstraction, UniTEE transparently en-

ables the enclave migration between different platforms.

476 J. Comput. Sci. & Technol., Mar. 2022, Vol.37, No.2

We focus on the enclave migration in this paper be-

cause: the migration of an application’s non-enclave

part has no significant difference from traditional mi-

grations, which has been detailedly presented in prior

studies [22, 23]. In this section, we first give an overview

of the whole enclave migration process and then explain

the detailed techniques used during the migration.

4.1 Overview of Migration

Briefly speaking, as shown in Fig. 6, a migration

process includes the following three steps: first, an en-

clave checkpoint is generated on the source machine;

second, the checkpoint is transferred to the target ma-

chine through the network; third, the checkpoint is used

to restore the running states and resume the execution

of the enclave on the target machine.

Compared with the traditional checkpoint gene-

ration of application migration, there are three diffe-

rences that make the enclave checkpoint generation

challenging. 1) The enclave states cannot be accessed

by any system software (e.g., OS), which means they

cannot help to generate the enclave checkpoint; 2) the

system software may be compromised and launch con-

sistency attacks during the generation procedure; 3) the

instructions and calling convention used by enclaves are

different on heterogeneous TEEs.

To overcome the first challenge, UniTEE enables

each enclave to generate its own checkpoint, i.e., an

enclave encrypts and then dumps out its states as a

checkpoint without the involvement of others like the

OS. Considering state consistency, an enclave needs to

stop the enclave threads before generating the check-

point. Otherwise, the checkpoint may be inconsis-

tent, i.e., it consists of both old and new data. Also,

a malicious OS may schedule enclave threads during

checkpoint generation to break the state consistency.

To overcome this second challenge, UniTEE enables

an enclave to make all its threads enter into a qui-

escent point (make no further updates) before check-

point generation. Besides, the underlying hardware

TEEs on the source and the target machines can be

heterogeneous. UniTEE integrates the heterogeneous

migration techniques proposed in Popcorn [23] to solve

the heterogeneity challenge (the third one). During

the generation process, UniTEE will transform the

architecture-dependent states according to the target

machine’s architecture.

Before receiving the enclave checkpoint, the target

machine will first launch a virgin enclave with the en-

clave binary for its architecture. The virgin enclave will

receive the checkpoint from the source enclave and use

the checkpoint to resume the execution. For securely

transferring the checkpoint from the source enclave to

the target enclave, the two enclaves will negotiate a

migration key with each other by using the widely-used

Diffie-Hellman key exchange protocol whose crux is the

mutual authentication between the two participants.

As UniTEE enables remote attestation (introduced in

Subsection 3.3), the source enclave and the target en-

clave can attest each other to finish the key exchange

protocol and then generate the migration key (stored

inside the enclaves). Before writing the checkpoint out,

the source enclave will first calculate the checksum of

the checkpoint and then encrypt it together with the

checksum by using the migration key. Since the check-

point is encrypted when it is outside the enclave or

in the network, the untrusted software like OS cannot

break confidentiality and integrity.

4.2 Preparation for Checkpointing

UniTEE introduces control thread, an extra enclave

thread, to assist migration. Since the control thread

runs within an enclave, it can traverse and dump the

entire memory data within the enclave boundary as the

SGX Machine TrustZone Machine

Checkpoint

SEV Machine

Checkpoint Checkpoint
Migrate Migrate

Migrate

UniTEE

Enclave

UniTEE

Enclave

UniTEE

Enclave

Fig.6. Secure enclave migration between different platforms.

Jin-Yu Gu et al.: Unified Enclave Abstraction and Secure Enclave Migration 477

checkpoint. To ensure state consistency of the gene-

rated checkpoint, it has to make all the other enclave

threads (worker threads) suspend running before start-

ing the generation. Otherwise, it may get a checkpoint

with inconsistent data because a worker thread may up-

date some memory during the generation process. As

a user-level thread, the control thread cannot directly

suspend all worker threads. However, if it asks the OS

for help, a malicious OS can deceive the control thread

that all enclave threads are suspended but actually not,

which will violate the consistency of checkpoint.

Fig. 7 presents a simple example of such a data

consistency attack. When a migration begins, a

worker thread in an enclave is transferring money from

account A to account B. The control thread calls

stop other thread() to ask the OS to stop all other en-

clave threads. However, the malicious OS returns OK

but actually does not stop the worker threads. Thus,

the control thread may get an old version of account A

(5 000) and a new version of account B (5 000), which

violates the invariant that the sum of accounts should

be 5 000.

// Depend on OS to stop

dump_mem(){

 stop_other_thread();

 dump(A); // A/

 dump(B); // B/

}

Happen Before

Work Thread Control Thread

// A/ ↪ B/

transfer(){

lock();

A = A - 5000;

B = B + 5000;

unlock();

}

Fig.7. Example of data consistency attack.

Instead of relying on the untrusted OS, the con-

trol thread makes the worker threads reach a quiescent

point as follows. When receiving a migration notifica-

tion (e.g., through a user-defined signal like SIGUSR1),

the control thread is wakened up and then sets a global

flag in the enclave to indicate the start of the suspend-

ing process. There is a global flag for each enclave and

a local flag for each worker thread. Initially, the global

flag is unset, and the local flags are “free”. Each worker

thread sets its local flag to “busy” and “free” at the en-

clave entry point and the exit point, respectively. Each

worker thread normally runs until meeting a migration

stub (see Fig.8), in which it first checks whether the

global flag is set. If not, it continues to execute nor-

mally. If so, it performs stack transformation, sets its

corresponding local flag to “spin”, and then enters the

spin region. The stack transformation is for transform-

ing the execution stack according to the target architec-

ture, which will be explained in Subsection 4.3. When

running in the spin region, a worker thread will not

change any memory and will keep in the region, until it

finds that the global flag is unset. The control thread

will wait for the point when all the local flags of worker

threads are either “free” or “spin” (i.e., not running or

in the spin region) before generating the enclave check-

point. Therefore, it can ensure the consistency of the

checkpoint without the help of the untrusted OS.

void migration_stub(void)

{

if (global_flag == set) {

transform_stack ();

local_flag = spin;

while (global_flag == set);

}

}

Fig.8. Pseudo-code of the migration stub.

UniTEE inserts migration stubs before the ocalls.

Therefore, a running enclave thread will respond to the

migration when it invokes an ocall. Nevertheless, some

worker threads may execute in the enclave for a long

time without performing an ocall. It is very likely that

such a thread has already set its local flag to “busy”

when the control thread sets the global flag. If so, the

control thread needs to wait for a long time, which will

block the process of migration. To this end, UniTEE

also allows programmers to insert migration stubs in

their code as they want.

4.3 Hiding Heterogeneity for Migration

Since the three popular hardware TEEs, namely,

Intel SGX, AMD SEV, and ARM TrustZone, are pro-

vided on different architectures, UniTEE also has to

transparently hide the heterogeneity during the enclave

migration. We explain the detailed techniques from the

following four main aspects.

1) How to Migrate Code. Different hardware TEEs

must use the corresponding CPU instructions. There-

fore, UniTEE compiles different enclave binary codes

for different hardware TEEs, and an enclave will use

the corresponding binary code according to the under-

lying hardware TEEs. The key point of the compilation

is that each function in the different binary is located

at the same start address. Therefore, function point-

478 J. Comput. Sci. & Technol., Mar. 2022, Vol.37, No.2

ers are always valid after migration, which eases the

migration, i.e., no need to update the pointers.

2) How to Migrate Data. UniTEE targets 64-bit and

little-endian because the first two types of TEEs sup-

port 64-bit only and all three types use little-endian.

Thus, the data format needs no transformation across

the three architectures, e.g., the data format of a struct

written in C is always the same for the three TEEs.

Like the function start address, each global variable

address is also located at the same address. Therefore,

the global data section and the heap area (using the

same heap start address) can be directly copied from

the source enclave to the target enclave. The validity

of data pointers is inherently preserved after migration,

which significantly eases the migration process.

As shown in Fig.9, UniTEE generates multiple en-

clave binaries for each architecture. An enclave binary

can be distributed to the target machine before migra-

tion or when migration is triggered. When a migra-

tion begins, the target machine boots the virgin en-

clave that will receive the checkpoint from its source

enclave. Thus, the code section does not need to be

transferred during migration. As described above, the

enclave binaries for different TEEs share a uniform ad-

dress space layout, i.e., every symbol address is kept

the same, and every data structure uses the same mem-

ory format. Therefore, simply copying the data section

and heap area will not make any pointer invalid. In

other words, these two areas are transferred without

any transformation.

Source Enclave Target Enclave

.text 0 Τ 6 000 main

 0 Τ 6 100 malloc

 0 Τ 6 400 printf

 ⋯

.text 0 Τ 6 000 main

 0 Τ 6 100 malloc

 0 Τ 6 400 printf

 ⋯
.data 0 Τ 8 000 var1

 0 Τ 8 008 var2

 0 Τ 8 020 var3

 ⋯

.data 0 Τ 8 000 var1

 0 Τ 8 008 var2

 0 Τ 8 020 var3

 ⋯

Heap Area

Stack Area

Heap Area

Stack Area

 Pre-Loaded

Copy

Copy

Transform

& Copy

Fig.9. Memory layout of the source enclave and the target en-
clave. Colored parts are architecture-dependent.

3) How to Migrate Execution Context as Well as

Execution Stack. Different architectures provide diffe-

rent numbers of general-purpose registers (GPR) and

use different calling conventions. For example, there

are 16 GPRs for Intel SGX (x86-64) but 32 GPRs in

ARM TrustZone (AArch64). And the calling conven-

tions for them vary widely, which makes the execution

stack different. A simple approach to solving this chal-

lenge is to use the same number of registers and the

same calling convention. In such a way, it is easy to

give an explicit one-to-one mapping to connect regis-

ters in different ISAs and simply copying the stack area

can also work for migration. However, this approach

leaves many registers unused and abandons originally

applicable optimizations, which may hurt the perfor-

mance enormously.

Instead, UniTEE adopts and implements the stack-

/register transformation proposed by prior work [23].

The basic idea is recording each stack frame’s informa-

tion at compile time and then reconstructing the exe-

cution stack frame by frame for the target architecture

at migration time. The inserted migration stubs ensure

a migration always happens at the function boundaries,

which means the stack frame to transform is always in-

tact. Specifically, the compilation toolchain is based on

LLVM and the information (including live variables and

the calling site) of each stack frame is recorded accord-

ing to the intermediate representation (IR) of LLVM.

For each specific architecture, a live variable is either

mapped to a register or on the stack. Therefore, accord-

ing to such information, the transformation procedure

will reconstruct a new stack and set the registers for

the target architecture.

Implementation Details for the Transformation.

During the compilation process, all the stack frame in-

formation is recorded in a particular section of the bi-

nary, which mainly includes locations of live variables

(either on the stack or in a register). The transfor-

mation procedure first calculates the size for the new

stack according to the recorded information. Then it

rebuilds the new stack from the outermost frame to

the innermost frame (frame by frame). For rewriting

one stack frame, it gets all the live variables of that

frame in the source enclave binary, queries their loca-

tions in the target enclave binary, and then copies them

to the new locations. A special case is that a variable

is a pointer that points to some stack address. In this

case, the variable cannot be directly copied because its

value (some stack address) should be changed after the

stack is transformed. Instead, it will be recorded in a

fixup list for resolving later. Every time when the stack

transformation procedure copies a variable, it checks

whether the variable (V1) is pointed by some variable

(V2) in the fixup list. If so, it removes V2 from the list

and sets the new location of V1 (on the target enclave

Jin-Yu Gu et al.: Unified Enclave Abstraction and Secure Enclave Migration 479

stack) to V2 for the target enclave. Also, the return

address of each stack frame is also rewritten according

to the calling site information.

At the migrate point, some live variables may be

stored in registers. Therefore, besides transforming

each stack frame, it is also necessary to restore these in-

register variables for the target enclave. According to

the information recorded during compilation, the trans-

formation procedure knows the location of each live

variable on different architectures and thus can simply

set the corresponding registers for the target enclave.

4) How to Migrate OS-Related States. UniTEE also

allows an enclave to invoke system calls, as described

in Subsection 3.3. Therefore, it is also necessary to mi-

grate OS-related states from the source enclave to the

target enclave. Currently, UniTEE supports restoring

file descriptors and TCP connections. For file descrip-

tors, it records the states (e.g., file path, file descriptor,

and cursor) of each opened file in the modified enclave

library that redirects the system calls. These states

and related files are also transferred during migration.

During the restoring process, the target enclave reopens

each file and sets the cursor to the right position. For

migrating TCP connections, UniTEE refers to CRIU 3○.

The Linux kernel (since version 3.5) has supported the

TCP connection repair mechanism to help with sockets

transmission. UniTEE first uses TCP REPAIR option

to switch the socket into a special mode for the source

enclave. It then collects and transfers necessary TCP

states. Last, on the target side, the TCP states will be

restored, and the socket mode will be reset to normal

for the target enclave.

5 Evaluation

We conduct performance evaluations on the proto-

type of UniTEE and present the results in this section.

The experiments include the enclave migration between

Intel SGX and ARM TrustZone, between Intel SGX and

Intel SGX, and between Intel SGX and AMD SEV.

5.1 Between SGX and TrustZone

We conduct experiments on two machines that sup-

port Intel SGX and ARM TrustZone, respectively. One

is equipped with Intel Core i7-9700 CPU and 16 GB

memory, and the other is an HiKey970 board with 6 GB

memory. We run Ubuntu 16.04 on both machines while

the Linux kernel versions are 4.15.0 and 4.9.78. We run

each experiment over 30 times and report the average of

the results. The standard deviation is within 5% across

all the experiments.

We select several SPEC CPU 2006 benchmarks and

vedis (a popular key-value store) as applications. An

application is protected as a whole and runs in an en-

clave of UniTEE. We do not modify the source code

of the applications except for inserting some migration

stubs. For the SPEC CPU benchmarks, the workloads

are the built-in ref test suites. For vedis, we generate

10 million random keys and perform PUT and GET

operations (50% PUT and 50% GET) randomly.

Overhead of Migration Support. We first present an

experiment on the overhead introduced by supporting

migration. We compile the chosen benchmarks with

and without migration support, run them in enclaves,

and measure the execution time. To disable migration

support, we do not link the applications with migrated-

related libraries or insert any migration stubs. Fig.10

shows the results of some benchmarks (others are simi-

lar). We normalize the results to the no-migration-

support version for better readability.

0.6

0.7

0.8

0.9

1.0

1.1

1.2

vedis bzip2 milc lbm

N
o
rm

a
li
z
e
d
 T

im
e

w/o Migration Support

Migration Support

Fig.10. Execution time with and without (w/o) migration sup-
port. The results are normalized to the no-migration-support
version.

Migration Cost. Table 2 gives the breakdown time

of migrating applications from the Intel machine to

the ARM machine. To facilitate analysis, we divide

the whole migration procedure in both machines into

different phases: preparation phase, checkpoint phase,

transmission phase, and restore phase. The time con-

sumed by booting the virgin target enclave is not re-

ported because this procedure is out of the critical path,

i.e., having finished before the final restore phase.

This evaluation shows the migration support brings

nearly zero overhead. It makes sense because UniTEE

3○CRIU: Checkpoint/Restore In Userspace. https://www.criu.org/Main_Page, Feb. 2021.

https://www.criu.org/Main_Page

480 J. Comput. Sci. & Technol., Mar. 2022, Vol.37, No.2

only requires each thread to do two extra operations

during normal execution for supporting migration. The

first one is to initialize the local migration flag, which

can be ignored since it only happens once. The second

one is to check the global migration flag at each mi-

gration point. However, checking the flag only requires

several instructions, which is negligible compared with

real workloads. Therefore, migration support does not

influence performance during normal execution.

Table 2. Breakdown of the Migration Cost

Benchmark Preparation Checkpoint Transmission Restore

Phase (µs) Phase (µs) Phase (µs) Phase (µs)

vedis 932 155 818 1 140 314 71 888

bzip2 543 618 690 2 526 885 162 563

milc 916 399 044 1 880 252 113 955

sjeng 713 529 231 2 173 368 150 601

libquantum 755 294 514 1 378 012 90 352

h264ref 598 206 130 1 261 305 76 975

lbm 701 1 251 807 4 629 325 410 445

Note: Preparation and checkpoint phases happen on the source
machine. The transmission phase is for transferring the enclave
checkpoint through the network. The restore phase happens on
the target machine.

Preparation Phase. This phase mainly consists of

the time of waiting for the quiescent point and per-

forming stack/register transformation. As shown in Ta-

ble 2, it takes less than 1% of total migration time in

all benchmarks. Here each enclave only has one worker

thread, thereby the quiescent point is reached once it

meets the first migration point. Stack transformation

can be done in a short time because all necessary infor-

mation has been stored in binaries during compilation

and the depth of the stack is usually not deep.

Checkpoint/Restore Phase. After the preparation

phase, the enclave (control thread) encrypts its mem-

ory data and dumps the encrypted data outside the

enclave, which is called the checkpoint phase here. Sim-

ilarly, for restoring the checkpoint in the target enclave,

the checkpoint needs to be copied into the enclave and

then decrypted. For better performance, the checkpoint

only contains the enclave memory in use. Firstly, the

code section of the enclave does not need to be dumped,

since the binary code for different architectures is diffe-

rent and can be placed on the target machine in ad-

vance. Secondly, the size of the data section is known

at compile time and does not change at runtime. The

data section is included in the checkpoint. Thirdly, only

the in-use enclave heap region is dumped to the check-

point. To be specific, the in-use heap region consists

of two parts: one is from the heap base to the heap

top; the other is a list of memory-mapped areas (i.e.,

through mmap). Fourthly, only the valid stack regions

are dumped according to the stack pointers.

The cost of the checkpoint phase (on the Intel SGX

machine) is obviously higher than that of the restore

phase (on the ARM TrustZone machine). This is be-

cause accessing the SGX-protected memory is much

more expensive, especially when SGX page swapping

happens.

The cost of such two phases is related to the in-use

enclave memory size. Therefore, we give a further ana-

lysis of the cost and Fig.11 shows the results. Fig.11(a)

and Fig.11(b) show the time spent on encryption and

decryption. The encryption mechanism is advanced en-

cryption standard (AES) and some hardware-assisted

acceleration can be used. For example, Fig.11(a) shows

Intel AES-NI [50] instructions can reduce over 60% of en-

cryption time. The time consumed in dumping (writing

the checkpoint to outside) and restoring (copying the

checkpoint into an enclave) is reported in Fig.11(c) and

Fig.11(d), respectively. The result shows the dumping

and restoring time grows linearly as the enclave size

increases, because dumping and restoring are actually

memory copy operations.

Transmission Phase. Fig. 12 presents the time of

transferring enclave checkpoints with different sizes.

The two machines connect to the same LAN, and the

bandwidth is about 115 MB/s. The evaluation results

show the time consumed in the transmission phase in-

creases as the enclave size grows. According to Table 2,

this phase takes most of the migration time (over 78%).

With a faster network, the total migration latency can

be significantly reduced.

Overlapping Phases. To further decrease the mi-

gration latency, we pipeline the execution of the

checkpoint/transmission/restore phases by dividing the

whole enclave checkpoint into pieces. Fig.13 shows the

time saved by using this strategy on the source ma-

chine. The total latency can be reduced by up to 30%.

Therefore, the total downtime for the enclave applica-

tions is bottlenecked/decided by the network speed. We

conclude the solution proposed by UniTEE is feasible.

5.2 Between Two SGX Machines

We also measure the performance of enclave migra-

tion between two laptops with Intel Core i7-6700HQ

2.6 GHz CPU and 8 GB memory. The experiment is

Jin-Yu Gu et al.: Unified Enclave Abstraction and Secure Enclave Migration 481

 0

 50

 100

 150

 200

 250

 300

16 32 64 128 256

Enclave Size (MB)

E
n
c
ry

p
ti
o
n
 T

im
e
 (

m
s)

AES Encryption
AES-NI Encryption

 0

 20

 40

 60

 80

 100

 120

 140

16 32 64 128 256

Enclave Size (MB)

D
e
c
ry

p
ti
o
n
 T

im
e
 (

m
s)

 0

 100

 200

 300

 400

 500

 600

 700

16 32 64 128 256

Enclave Size (MB)

D
u
m

p
in

g
 T

im
e
 (

m
s)

 0

 20

 40

 60

 80

 100

 120

16 32 64 128 256

Enclave Size (MB)

R
e
st

o
ri
n
g
 T

im
e
 (

m
s)

(b)(a)

(c) (d)

Fig.11. Time consumed in the checkpoint/restore phase. (a) Encryption. (b) Decryption. (c) Dumping. (d) Restoring.

migrating a virtual machine (VM) with and without

enclaves running inside. KVM is chosen as the underly-

ing hypervisor, and the version of QEMU is 2.5.0. The

guest VM has four VCPUs (virtual CPUs) and 2 GB

memory.

 0

 5

 10

 10

 20

 20

 30

16 32 64 128 256

Enclave Size (MB)

T
ra

n
sm

is
si

o
n
 T

im
e
 (

m
s)

Τ102

Fig.12. Network transmission time.

 0

 1

 2

 3

 4

 5

 6

vedis bzip2 milc lbm

T
im

e
 (

m
s)

Checkpoint Phase
Transmission Phase
Overlapped

Τ103

Fig.13. Time saved by overlapping phases in the source machine.

We run two VMs respectively, one with some run-

ning enclave applications, and the other with the same

number of original applications. The enclaves run ei-

ther libjpeg or mcrypt, which are real-world applica-

tions. The enclave size is 1 MB, and the workload is an

482 J. Comput. Sci. & Technol., Mar. 2022, Vol.37, No.2

endless loop of picture decoding or encryption. Fig.14

shows the total migration time. The migration of VM

with no more than 32 enclaves has about 2% overhead.

The overhead increases to 5% when the number of en-

claves reaches 64.

 290

 295

 300

 305

 310

 315

8 16 32 64

T
o
ta

l
T

im
e
 (

m
s)

Enclave Number

w/o Enclave
w/ Enclave

Τ102

Fig.14. Total migration time with (w/) and without (w/o) en-
claves. Note that the x-axis does not start from 0.

Besides, we conduct an experiment to compare the

SDK performance, i.e., UniTEE and Intel official SGX

SDK. The benchmark is nbench 2.2.3 in which most

applications are computation-intensive. String-sort is

the one that accesses much more secure memory, which

leads to high SGX paging overhead. As shown in Fig.15,

our SDK shows similar or better performance compared

with Intel SDK.

 0

 1

 2

 3

 4

 5

 6

 7

N
um

er
ic
-S
or
t

St
ri
ng
-S
or
t

B
it
fi
el
d

F
P
-E

m
ul
at
io
n

A
ss
ig
nm

en
t

Id
ea

H
uf
fm

an

N
eu

ra
l-
N
et

L
U
-D

ec
om

p

N
o
rm

a
li
z
e
d
 T

im
e

Native

Intel SDK

Our SDK

Fig.15. SDK performance comparison on nbench.

5.3 Between SGX and SEV

Intel SGX and AMD SEV are two security exten-

sions to x86-64 and they share the same general purpose

registers as well as calling convention. Compared with

the migration between SGX and TrustZone, the migra-

tion between SGX and SEV needs no stack transforma-

tion while the other procedures are the same. Fig.16

shows the time for generating the enclave checkpoint.

The AMD machine is equipped with EPYC 7281 CPU

that supports SEV.

 0

 100

 200

 300

 400

 500

 600

 700

 800

pe
rl
be

nc
h

gc
c

hm
m
er

lib
qu

an
tu
m

bz
ip
2

sj
en

g

h2
64

re
f

sp
hi
nx

3

T
im

e
 (

m
s)

Fig.16. Cost for generating checkpoints.

Besides, we measure the execution time of 12 ap-

plications in SPEC CPU 2006 benchmarks on the SEV

machine and present the results in Fig.17. This experi-

ment is to show the protection overhead of UniTEE

on the SEV machine. For CPU-intensive benchmarks

such as bzip2 and gobmk, the performance of enclaves

is nearly the same as or even better than the native

execution performance. Two reasons can explain: first,

UniTEE will not bring overhead to enclave applications

when they do not invoke ocalls; second, when execut-

ing ocalls (system calls), the FlexSC-like design (de-

scribed in Subsection 3.3) avoids the context switches

for the enclave threads although it requires some ex-

tra cycles. Context switches between user-mode (ring

3) and kernel-mode (ring 0) may incur indirect costs

like TLB/cache pollution. Other applications show less

than 5% overhead which mainly comes from the mem-

ory copies (transferring arguments and results) during

ocalls.

 0

 100

 200

 300

 400

 500

 600

 700

 800

pe
rl
be

nc
h

bz
ip
2

gc
c

m
cf

m
ilc

go
bm

k

hm
m
er

sj
en

g

lib
qu

an
tu
m

h2
64

re
f

lb
m

sp
hi
nx

3

E
x
e
c
u
ti
o
n
 T

im
e
 (

s)

Native
UniTEE

Fig.17. Runtime overhead of UniTEE on the SEV machine.

Jin-Yu Gu et al.: Unified Enclave Abstraction and Secure Enclave Migration 483

6 Discussion

As mentioned in Subsection 3.2, the microkernel

used in UniTEE is included in the TCB. It makes sense

to assume the microkernel is trusted because it only

provides simple and clear functionalities and has a small

code base. This is also a common assumption (e.g.,

TrustVisor [51], CloudVisor [52], Nested Kernel [53]). It

may also be feasible to build UniTEE’s microkernel over

a formally verified OS kernel (e.g., Hyperkernel [54] and

seL4 [55]) and further verify the entire one with more ef-

fort. Besides, the implementations of existing hardware

enclaves also heavily rely on software. For example, as

mentioned in “Hardware is the new software” [56], much

of SGX’s logic is implemented by microcode, which

can be patched on-the-fly just as software. Meanwhile,

many researchers try to build enclaves from software

(with the help of hardware), like Komodo [57]. We cer-

tainly agree that from the perspective of security, it is

more preferable to construct the TCB in a more sim-

ple and predictable way. But we argue that the point

here is more about the level of semantics instead of

being hardware or software. In our design, we try to

move some of the hardware logic from firmware (e.g.,

on AMD PSP) to software running in the secure TEE,

which has low-level semantics, instead of developing a

new complex software like a guest OS.

7 Related Work

Enclave Programming Model. The strong security

insurance of hardware TEEs motivates a variety of

prior studies [18, 19,21,35,44,58,59] to protect applications

by leveraging one of Intel SGX, ARM TrustZone, and

AMD SEV. However, they do not focus on providing a

unified enclave programming model for hiding the un-

derlying hardware security technologies. Open Enclave

SDK 4○ aims to provide consistent API surface across

enclave technologies as well as all platforms from cloud

to edge, which shares the same goal of the unified pro-

gramming abstraction of UniTEE. Nevertheless, Open

Enclave SDK considers SGX and TrustZone while Uni-

TEE further considers SEV. Moreover, UniTEE enables

enclave migration across those platforms while Open

Enclave SDK does not.

Microkernel Usages. There is a long line of research

on microkernel OS [55, 60–64]. Owing to the desired ad-

vantages including good security and fault isolation,

microkernel has been used in some safety-critical sce-

narios like vehicles. Designing microkernels for general-

purpose scenarios is also on the way. Nevertheless, Uni-

TEE leverages the microkernel for constructing isolated

enclave instances in a single hardware TEE. A recent

work [65] also proposes to design a TEE OS based on the

microkernel architecture. Different from that, the mi-

crokernel of UniTEE only manages the enclave life cycle

without providing various OS services through system

calls because most system calls are redirected to the

full-fledged OS which runs the host application. The

microkernel used here is derived from [63].

Heterogeneous Migration. Live migration between

heterogeneous architectures has been studied by prior

work [11, 22,66,67]. UniTEE adopts and extends the ex-

isting migration techniques of Popcorn [11, 22] to migrate

the secure enclaves among different TEE hardware.

The major difference is that the OS is not trustworthy.

During migration, UniTEE relies on the OS functional-

ities without trusting it. For example, UniTEE requires

the OS to transfer the enclave checkpoint through the

network but protects the consistency, confidentiality,

and integrity of the checkpoint. [24] makes efforts to se-

curely migrate SGX enclaves on untrusted cloud, which,

however, does not provide unified enclave abstraction or

enclave migration support on heterogeneous platforms.

8 Conclusions

This paper proposed UniTEE whose target is two-

fold. It provides a unified enclave programming ab-

straction that can help programmers to write enclave

applications without considering the underlying hard-

ware TEEs. Further, with the unified abstraction, it en-

ables secure enclave migration between heterogeneous

platforms.

UniTEE could be extended to more heterogeneous

security architectures like confidential VMs, which is

our future work.

References

[1] Park H, Zhai S, Lu L, Lin F X. StreamBox-TZ: Secure

stream analytics at the edge with TrustZone. In Proc. the

2019 USENIX Annual Technical Conference, July 2019,

pp.537-554.

[2] Shi W, Cao J, Zhang Q, Li Y, Xu L. Edge computing: Vi-

sion and challenges. IEEE Internet of Things Journal, 2016,

3(5): 637-646. DOI: 10.1109/JIOT.2016.2579198.

[3] Hu Y C, Patel M, Sabella D, Sprecher N, Young V. Mobile

edge computing—A key technology towards 5G. Technical

4○Open Enclave SDK. https://openenclave.io/sdk/, Feb. 2021.

https://doi.org/10.1109/JIOT.2016.2579198
https://openenclave.io/sdk/

484 J. Comput. Sci. & Technol., Mar. 2022, Vol.37, No.2

Report, European Telecommunications Standards Institu-

te, 2015. https://infotech.report/Resources/Whitepaper-

s/f205849d-0109-4de3-8c47-be52f4e4fb27 etsi wp11 mec a

key technology towards 5g.pdf, Dec. 2021.

[4] Satyanarayanan M. The emergence of edge computing.

Computer, 2017, 50(1): 30-39. DOI: 10.1109/MC.2017.9.

[5] Shi W, Dustdar S. The promise of edge computing. Com-

puter, 2016, 49(5): 78-81. DOI: 10.1109/MC.2016.145.

[6] Stojkoska B L R, Trivodaliev K V. A review of Internet of

Things for smart home: Challenges and solutions. Jour-

nal of Cleaner Production, 2017, 140: 1454-1464. DOI:

10.1016/j.jclepro.2016.10.006.

[7] Nastic S, Rausch T, Scekic O, Dustdar S, Gusev M, Koteska

B, Kostoska M, Jakimovski B, Ristov S, Prodan R. A server-

less real-time data analytics platform for edge comput-

ing. IEEE Internet Computing, 2017, 21(4): 64-71. DOI:

10.1109/MIC.2017.2911430.

[8] Machen A, Wang S, Leung K K, Ko B J, Salonidis

T. Live service migration in mobile edge clouds. IEEE

Wireless Communications, 2017, 25(1): 140-147. DOI:

10.1109/MWC.2017.1700011.

[9] Wang S, Xu J, Zhang N, Liu Y. A survey on service mi-

gration in mobile edge computing. IEEE Access, 2018, 6:

23511-23528. DOI: 10.1109/ACCESS.2018.2828102.

[10] Islam M, Razzaque A, Islam J. A genetic algorithm for vir-

tual machine migration in heterogeneous mobile cloud com-

puting. In Proc. the 2016 International Conference on Net-

working Systems and Security, Jan. 2016. DOI: 10.1109/N-

SysS.2016.7400696.

[11] Barbalace A, Karaoui M L, Wang W, Xing T, Olivier

P, Ravindran B. Edge computing: The case for

heterogeneous-ISA container migration. In Proc. the 16th

ACM SIGPLAN/SIGOPS International Conference on

Virtual Execution Environments, Mar. 2020, pp.73-87.

DOI: 10.1145/3381052.3381321.

[12] Rodrigues T G, Suto K, Nishiyama H, Kato N, Temma K.

Cloudlets activation scheme for scalable mobile edge com-

puting with transmission power control and virtual machine

migration. IEEE Transactions on Computers, 2018, 67(9):

1287-1300. DOI: 10.1109/TC.2018.2818144.

[13] Roman R, Lopez J, Mambo M. Mobile edge computing,

fog et al.: A survey and analysis of security threats and

challenges. Future Generation Computer Systems, 2018, 78:

680-698. DOI: 10.1016/j.future.2016.11.009.

[14] Ning Z, Liao J, Zhang F, Shi W. Preliminary study

of trusted execution environments on heterogeneous

edge platforms. In Proc. the 2018 IEEE/ACM Sympo-

sium on Edge Computing, Dec. 2018, pp.421-426. DOI:

10.1109/SEC.2018.00057.

[15] Costan V, Devadas S. Intel SGX explained. IACR Cryptol.

ePrint Arch., 2016, 2016: Article No. 86.

[16] Kaplan D, Powell J, Woller T. AMD memory encryption.

https://developer.amd.com/wordpress/media/2013/12/A-

MD Memory Encryption Whitepaper v7-Public.pdf, Dec.

2021.

[17] Ngabonziza B, Martin D, Bailey A, Cho H, Martin S. Trust-

Zone explained: Architectural features and use cases. In

Proc. the 2nd IEEE International Conference on Collab-

oration and Internet Computing, Nov. 2016, pp.445-451.

DOI: 10.1109/CIC.2016.065.

[18] Kim T, Park J, Woo J, Jeon S, Huh J. ShieldStore: Shielded

in-memory key-value storage with SGX. In Proc. the 14th

EuroSys Conference 2019, Mar. 2019, Article No. 14. DOI:

10.1145/3302424.3303951.

[19] Arnautov S, Trach B, Gregor F et al. SCONE: Secure Linux

containers with intel SGX. In Proc. the 12th USENIX Sym-

posium on Operating Systems Design and Implementation,

Nov. 2016, pp.689-703.

[20] Priebe C, Vaswani K, Costa M. EnclaveDB: A secure

database using SGX. In Proc. the 2018 IEEE Sympo-

sium on Security and Privacy, May 2018, pp.264-278. DOI:

10.1109/SP.2018.00025.

[21] Tsai C C, Porter D E, Vij M. Graphene-SGX: A practical

library OS for unmodified applications on SGX. In Proc.

the 2017 USENIX Annual Technical Conference, July 2017,

pp.645-658.

[22] Barbalace A, Lyerly R, Jelesnianski C, Carno A, Chuang

H R, Legout V, Ravindran B. Breaking the boundaries

in heterogeneous-ISA datacenters. ACM SIGARCH Com-

puter Architecture News, 2017, 45(1): 645-659. DOI:

10.1145/3093337.3037738.

[23] Barbalace A, Sadini M, Ansary S, Jelesnianski C, Ravichan-

dran A, Kendir C, Murray A, Ravindran B. Popcorn:

Bridging the programmability gap in heterogeneous-ISA

platforms. In Proc. the 10th European Conference on

Computer Systems, Apr. 2015, Article No. 29. DOI:

10.1145/2741948.2741962.

[24] Gu J, Hua Z, Xia Y, Chen H, Zang B, Guan H, Li J. Secure

live migration of SGX enclaves on untrusted cloud. In Proc.

the 47th Annual IEEE/IFIP International Conference on

Dependable Systems and Networks, June 2017, pp.225-236.

DOI: 10.1109/DSN.2017.37.

[25] Choy S, Wong B, Simon G, Rosenberg C. The brewing

storm in cloud gaming: A measurement study on cloud to

end-user latency. In Proc. the 11th Annual Workshop on

Network and Systems Support for Games, Nov. 2012. DOI:

10.1109/NetGames.2012.6404024.

[26] Furlong M, Quinn A, Flinn J. The case for determinism

on the edge. In Proc. the 2nd USENIX Workshop on Hot

Topics in Edge Computing, July 2019.

[27] Ha K, Abe Y, Eiszler T, Chen Z, Hu W, Amos B, Upad-

hyaya R, Pillai P, Satyanarayanan M. You can teach ele-

phants to dance: Agile VM handoff for edge computing. In

Proc. the 2nd ACM/IEEE Symposium on Edge Computing,

Oct. 2017, Article No. 12. DOI: 10.1145/3132211.3134453.

[28] Nadgowda S, Suneja S, Bila N, Isci C. Voyager: Complete

container state migration. In Proc. the 37th IEEE Interna-

tional Conference on Distributed Computing Systems, June

2017, pp.2137-2142. DOI: 10.1109/ICDCS.2017.91.

[29] Jamshidi P, Ahmad A, Pahl C. Cloud migration research:

A systematic review. IEEE Transactions on Cloud Com-

puting, 2013, 1(2): 142-157. DOI: 10.1109/TCC.2013.10.

[30] Zhu J, Hou R, Wang X et al. Enabling rack-scale confi-

dential computing using heterogeneous trusted execution

environment. In Proc. the 2020 IEEE Symposium on

Security and Privacy, May 2020, pp.1450-1465. DOI:

10.1109/SP40000.2020.00054.

[31] Hua Z, Gu J, Xia Y, Chen H, Zang B, Guan H. vTZ: Vir-

tualizing ARM TrustZone. In Proc. the 26th USENIX Se-

curity Symposium, Aug. 2017, pp.541-556.

https://doi.org/10.1109/MC.2017.9
https://doi.org/10.1109/MC.2016.145
https://doi.org/10.1016/j.jclepro.2016.10.006
https://doi.org/10.1109/MIC.2017.2911430
https://doi.org/10.1109/MWC.2017.1700011
https://doi.org/10.1109/ACCESS.2018.2828102
https://doi.org/10.1109/NSysS.2016.7400696
https://doi.org/10.1109/NSysS.2016.7400696
https://doi.org/10.1145/3381052.3381321
https://doi.org/10.1109/TC.2018.2818144
https://doi.org/10.1016/j.future.2016.11.009
https://doi.org/10.1109/SEC.2018.00057
https://doi.org/10.1109/CIC.2016.065
https://doi.org/10.1145/3302424.3303951
https://doi.org/10.1109/SP.2018.00025
https://doi.org/10.1145/3093337.3037738
https://doi.org/10.1145/2741948.2741962
https://doi.org/10.1109/DSN.2017.37
https://doi.org/10.1109/NetGames.2012.6404024
https://doi.org/10.1145/3132211.3134453
https://doi.org/10.1109/ICDCS.2017.91
https://doi.org/10.1109/TCC.2013.10
https://doi.org/10.1109/SP40000.2020.00054

Jin-Yu Gu et al.: Unified Enclave Abstraction and Secure Enclave Migration 485

[32] Nightingale E B, Hodson O, McIlroy R, Hawblitzel C, Hunt

G. Helios: Heterogeneous multiprocessing with satellite

kernels. In Proc. the 22nd ACM SIGOPS Symposium on

Operating Systems Principles, Oct. 2009, pp.221-234. DOI:

10.1145/1629575.1629597.

[33] Piraghaj S F, Dastjerdi A V, Calheiros R N, Buyya R. A

framework and algorithm for energy efficient container con-

solidation in cloud data centers. In Proc. the 2015 IEEE

International Conference on Data Science and Data In-

tensive Systems, Dec. 2015, pp.368-375. DOI: 10.1109/DS-

DIS.2015.67.

[34] Wang H, Shi P, Zhang Y. JointCloud: A cross-cloud

cooperation architecture for integrated internet service cus-

tomization. In Proc. the 37th IEEE International Confe-

rence on Distributed Computing Systems, June 2017,

pp.1846-1855. DOI: 10.1109/ICDCS.2017.237.

[35] Baumann A, Peinado M, Hunt G. Shielding applications

from an untrusted cloud with Haven. ACM Transactions

on Computer Systems, 2015, 33(3): Article No. 8. DOI:

10.1145/2799647.

[36] Hunt T, Zhu Z, Xu Y, Peter S, Witchel E. Ryoan: A dis-

tributed sandbox for untrusted computation on secret data.

In Proc. the 12th USENIX Symposium on Operating Sys-

tems Design and Implementation, Nov. 2016, pp.533-549.

[37] Ohrimenko O, Schuster F, Fournet C, Mehta A, Nowozin S,

Vaswani K, Costa M. Oblivious multi-party machine learn-

ing on trusted processors. In Proc. the 25th USENIX Confe-

rence on Security Symposium, August 2016, pp.619-636.

[38] Shinde S, Le Tien D, Tople S, Saxena P. Panoply: Low-TCB

Linux applications with SGX enclaves. In Proc. the 24th

Annual Network and Distributed System Security Symp.,

Feb. 26-Mar. 1, 2017. DOI: 10.14722/ndss.2017.23500.

[39] Schuster F, Costa M, Fournet C, Gkantsidis C, Peinado M,

Mainar-Ruiz G, Russinovich M. VC3: Trustworthy data

analytics in the cloud using SGX. In Proc. the 2015 IEEE

Symposium on Security and Privacy, May 2015, pp.38-54.

DOI: 10.1109/SP.2015.10.

[40] Li M, Zhang Y, Lin Z, Solihin Y. Exploiting unprotected

I/O operations in AMD’s secure encrypted virtualization.

In Proc. the 28th USENIX Security Symposium, Aug. 2019,

pp.1257-1272.

[41] Morbitzer M, Huber M, Horsch J. Extracting secrets from

encrypted virtual machines. In Proc. the 9th ACM Confe-

rence on Data and Application Security and Privacy, Mar.

2019, pp.221-230. DOI: 10.1145/3292006.3300022.

[42] Alves T, Felton D. TrustZone: Integrated hardware and

software security. ARM White Paper, 2004, 3(4): 18-24.

[43] Sun H, Sun K, Wang Y, Jing J. TrustOTP: Transform-

ing smartphones into secure one-time password tokens. In

Proc. the 22nd ACM SIGSAC Conference on Computer

and Communications Security, Oct. 2015, pp.976-988. DOI:

10.1145/2810103.2813692.

[44] Santos N, Raj H, Saroiu S, Wolman A. Using ARM

TrustZone to build a trusted language runtime for mo-

bile applications. In Proc. the 19th International Confe-

rence on Architectural Support for Programming Lan-

guages and Operating Systems, Feb. 2014, pp.67-80. DOI:

10.1145/2541940.2541949.

[45] Zhang N, Sun K, Lou W, Hou Y T. CaSE: Cache-assisted se-

cure execution on ARM processors. In Proc. the 2016 IEEE

Symposium on Security and Privacy, May 2016, pp.72-90.

DOI: 10.1109/SP.2016.13.

[46] Guan L, Liu P, Xing X, Ge X, Zhang S, Yu M, Jaeger

T. TrustShadow: Secure execution of unmodified appli-

cations with ARM TrustZone. In Proc. the 15th An-

nual International Conference on Mobile Systems, Ap-

plications, and Services, June 2017, pp.488-501. DOI:

10.1145/3081333.3081349.

[47] Zhao S, Zhang Q, Qin Y, Feng W, Feng D. SecTEE: A

software-based approach to secure enclave architecture us-

ing TEE. In Proc. the 2019 ACM SIGSAC Conference

on Computer and Communications Security, Nov. 2019,

pp.1723-1740. DOI: 10.1145/3319535.3363205.

[48] Lind J, Priebe C, Muthukumaran D et al. Glamdring: Au-

tomatic application partitioning for Intel SGX. In Proc. the

2017 USENIX Annual Technical Conference, July 2017,

pp.285-298.

[49] Soares L, Stumm M. FlexSC: Flexible system call schedul-

ing with exception-less system calls. In Proc. the 9th

USENIX Conference on Operating Systems Design and Im-

plementation, Oct. 2010, pp.33-46.

[50] Rott J. Intelr advanced encryption standard instructions

(AES-NI). https://www.intel.com/content/www/us/en/d-

eveloper/articles/technical/advanced-encryption-standard-

instructions-aes-ni.html, Dec. 2021.

[51] McCune J M, Li Y, Qu N, Zhou Z, Datta A, Gligor V,

Perrig A. TrustVisor: Efficient TCB reduction and attesta-

tion. In Proc. the 2010 IEEE Symposium on Security and

Privacy, May 2010, pp.143-158. DOI: 10.1109/SP.2010.17.

[52] Zhang F, Chen J, Chen H, Zang B. CloudVisor: Retrofitting

protection of virtual machines in multi-tenant cloud with

nested virtualization. In Proc. the 23rd ACM Symposium

on Operating Systems Principles, Oct. 2011, pp.203-216.

DOI: 10.1145/2043556.2043576.

[53] Dautenhahn N, Kasampalis T, Dietz W, Criswell J, Adve V.

Nested kernel: An operating system architecture for intra-

kernel privilege separation. ACM SIGPLAN Notices, 2015,

50(4): 191-206. DOI: 10.1145/2694344.2694386.

[54] Nelson L, Sigurbjarnarson H, Zhang K, Johnson D, Born-

holt J, Torlak E, Wang X. Hyperkernel: Push-button ver-

ification of an OS kernel. In Proc. the 26th Symposium on

Operating Systems Principles, Oct. 2017, pp.252-269. DOI:

10.1145/3132747.3132748.

[55] Klein G, Elphinstone K, Heiser G et al. sel4: Formal veri-

fication of an OS kernel. In Proc. the 22nd ACM SIGOPS

Symposium on Operating Systems Principles, Oct. 2009,

pp.207-220. DOI: 10.1145/1629575.1629596.

[56] Baumann A. Hardware is the new software. In Proc. the

16th Workshop on Hot Topics in Operating Systems, May

2017, pp.132-137. DOI: 10.1145/3102980.3103002.

[57] Ferraiuolo A, Baumann A, Hawblitzel C, Parno B. Komodo:

Using verification to disentangle secure-enclave hardware

from software. In Proc. the 26th Symposium on Ope-

rating Systems Principles, Oct. 2017, pp.287-305. DOI:

10.1145/3132747.3132782.

https://doi.org/10.1145/1629575.1629597
https://doi.org/10.1109/DSDIS.2015.67
https://doi.org/10.1109/DSDIS.2015.67
https://doi.org/10.1109/ICDCS.2017.237
https://doi.org/10.1145/2799647
https://doi.org/10.14722/ndss.2017.23500
https://doi.org/10.1109/SP.2015.10
https://doi.org/10.1145/3292006.3300022
https://doi.org/10.1145/2810103.2813692
https://doi.org/10.1145/2541940.2541949
https://doi.org/10.1109/SP.2016.13
https://doi.org/10.1145/3081333.3081349
https://doi.org/10.1145/3319535.3363205
https://doi.org/10.1109/SP.2010.17
https://doi.org/10.1145/2043556.2043576
https://doi.org/10.1145/2694344.2694386
https://doi.org/10.1145/3132747.3132748
https://doi.org/10.1145/1629575.1629596
https://doi.org/10.1145/3102980.3103002
https://doi.org/10.1145/3132747.3132782

486 J. Comput. Sci. & Technol., Mar. 2022, Vol.37, No.2

[58] Brasser F, Gens D, Jauernig P, Sadeghi A R, Stapf

E. SANCTUARY: ARMing TrustZone with user-space

enclaves. In Proc. the 26th Annual Network and Dis-

tributed System Security Symposium, Feb. 2019. DOI:

10.14722/ndss.2019.23448.

[59] Gu J, Wu X, Zhu B, Xia Y, Zang B, Guan H, Chen H.

Enclavisor: A hardware-software co-design for enclaves on

untrusted cloud. IEEE Transactions on Computers, 2021,

70(10): 1598-1611. DOI: 10.1109/TC.2020.3019704.

[60] Levin R, Cohen E, Corwin W, Pollack F, Wulf W. Poli-

cy/mechanism separation in Hydra. In Proc. the 5th ACM

Symposium on Operating Systems Principles, Nov. 1975,

pp.132-140. DOI: 10.1145/800213.806531

[61] Liedtke J. Improving IPC by kernel design. In Proc. the

14th ACM Symposium on Operating Systems Principles,

Dec. 1993, pp.175-188. DOI: 10.1145/168619.168633.

[62] David F M, Chan E, Carlyle J C, Campbell R H. CuriOS:

Improving reliability through operating system structure.

In Proc. the 8th USENIX Conference on Operating Sys-

tems Design and Implementation, Dec. 2008, pp.59-72.

[63] Gu J, Wu X, Li W, Liu N, Mi Z, Xia Y, Chen H. Harmoniz-

ing performance and isolation in microkernels with efficient

intra-kernel isolation and communication. In Proc. the 2020

USENIX Annual Technical Conference, July 2020, pp.401-

417.

[64] Hildebrand D. An architectural overview of QNX. In Proc.

the Workshop on Micro-Kernels and Other Kernel Archi-

tectures, Apr. 1992, pp.113-126.

[65] Ji D, Zhang Q, Zhao S, Shi Z, Guan Y. MicroTEE: Design-

ing TEE OS based on the microkernel architecture. In Proc.

the 18th IEEE International Conference on Trust, Secu-

rity and Privacy in Computing and Communications/13th

IEEE International Conference on Big Data Science and

Engineering, Aug. 2019, pp.26-33. DOI: 10.1109/Trust-

Com/BigDataSE.2019.00014.

[66] DeVuyst M, Venkat A, Tullsen D M. Execution migration in

a heterogeneous-ISA chip multiprocessor. In Proc. the 17th

International Conference on Architectural Support for Pro-

gramming Languages and Operating Systems, Mar. 2012,

pp.261-272. DOI: 10.1145/2150976.2151004.

[67] Gordon M S, Jamshidi D A, Mahlke S, Mao Z M, Chen

X. COMET: Code offload by migrating execution transpar-

ently. In Proc. the 10th USENIX Symposium on Operating

Systems Design and Implementation, Oct. 2012, pp.93-106.

Jin-Yu Gu received his B.S. degree

in software engineering from Shanghai

Jiao Tong University, Shanghai, in

2016. He is now a Ph.D. candidate at

the Institute of Parallel and Distributed

Systems and the School of Software,

Shanghai Jiao Tong University, Shang-

hai. His research interests include

operating systems, computer architecture, and security.

Hao Li received his B.S. degree in

software engineering from Shanghai

Jiao Tong University, Shanghai, in 2020.

He is a Master student at the Institute

of Parallel and Distributed Systems and

the School of Software, Shanghai Jiao

Tong University, Shanghai. His research

interests include computer architecture

and security.

Yu-Bin Xia received his diploma

degree from Software School, Fudan

University, Shanghai, in 2004, and his

Ph.D. degree in computer science and

technology from Peking University,

Beijing, in 2010. He is currently an

associate professor in Shanghai Jiao

Tong University, Shanghai. His research

interests include computer architecture, operating system,

virtualization, and security.

Hai-Bo Chen received his B.S. and

Ph.D. degrees in computer science from

Fudan University, Shanghai, in 2004

and 2009, respectively. He is currently

a professor and the director of the

Institute of Parallel and Distributed

Systems, Shanghai Jiao Tong Univer-

sity, Shanghai. He is a distinguished

member of both CCF and ACM. His research interests

include operating systems, and parallel and distributed

systems.

Cheng-Gang Qin received his

Ph.D. degree in computer science

from Graduate School of the Chinese

Academy of Sciences, Beijing, in 2012.

He is currently a senior technical expert

in the Ant Group, Hangzhou. His

research interests include operating

system, computer architecture and

system security.

Zheng-Yu He received his Ph.D.

degree in computer engineering from

Georgia Institute of Technology, At-

landa in 2012. He currently leads the

technical infrastructure in Ant Group,

Hangzhou, and his research interests in-

clude operating systems, programming

models and software engineering.

https://doi.org/10.14722/ndss.2019.23448
https://doi.org/10.1109/TC.2020.3019704
https://doi.org/10.1145/800213.806531
https://doi.org/10.1145/168619.168633
https://doi.org/10.1109/TrustCom/BigDataSE.2019.00014
https://doi.org/10.1109/TrustCom/BigDataSE.2019.00014
https://doi.org/10.1145/2150976.2151004

	1 Introduction
	2 Motivation and Background
	2.1 Motivation
	2.2 Background of Hardware-Secured TEEs

	3 Unified TEE Programming Abstraction
	3.1 Abstraction Analysis
	3.2 System Architecture
	3.3 Programming Interfaces
	3.3.1 Enclave Creation
	3.3.2 Enclave Attestation
	3.3.3 Enclave Interaction
	3.3.4 Enclave Library

	4 Heterogeneous TEE Migration
	4.1 Overview of Migration
	4.2 Preparation for Checkpointing
	4.3 Hiding Heterogeneity for Migration

	5 Evaluation
	5.1 Between SGX and TrustZone
	5.2 Between Two SGX Machines
	5.3 Between SGX and SEV

	6 Discussion
	7 Related Work
	8 Conclusions

