
Long YH, Chen YC, Chen XP et al. Test-driven feature extraction of web components. JOURNAL OF COMPUTER

SCIENCE AND TECHNOLOGY 37(2): 389–404 Mar. 2022. DOI 10.1007/s11390-022-0673-4

Test-Driven Feature Extraction of Web Components

Yong-Hao Long1,2 (9[Ó), Yan-Cheng Chen1 (��¥), Xiang-Ping Chen3 (��±), Member, CCF
Xiao-Hong Shi4 (�¡ù), and Fan Zhou1,∗ (± �)

1School of Computer Science and Engineering, National Engineering Research Center of Digital Life
Sun Yat-sen University, Guangzhou 510006, China

2School of Design, The Hong Kong Polytechnic University, Hong Kong, China
3Guangdong Key Laboratory for Big Data Analysis and Simulation of Public Opinion, The School of Communication

and Design, Sun Yat-sen University, Guangzhou 510006, China
4School of Information Technology and Engineering, Guangzhou College of Commerce, Guangzhou 511363, China

E-mail: {longyh3, chenych28}@mail2.sysu.edu.cn; chenxp8@mail.sysu.edu.cn; shixh@gcc.edu.cn
E-mail: isszf@mail.sysu.edu.cn

Received May 31, 2020; accepted February 18, 2022.

Abstract With the growing requirements of web applications, web components are developed to package the implemen-

tation of commonly-used features for reuse. In some cases, the developer may want to reuse some features which cannot be

customized by the component’s APIs. He/she has to extract the implementation by hand. It is labor-intensive and error-

prone. Considering the widely-used test cases which can be useful to specify the software features, a test-driven approach is

proposed to extract the implementation of the desired features in web components. The satisfaction of the user’s require-

ments is transformed into the passing rate of user-specified test cases. In this way, the quality of the extraction result can

be evaluated automatically. Meanwhile, a record/replay-based GUI test generation method is proposed to ensure that the

extraction result has the correct GUI appearance. To extract the feature implementation, a hierarchical genetic algorithm is

proposed to find the code snippet that can pass all the tests and has the approximate smallest size. We compare our method

with two existing feature extraction methods. The result shows that our method can extract the correct implementation

with the minimum size. A human-subject study is conducted to show the effectiveness and weaknesses of our method in

helping users extract the features.

Keywords feature extraction, genetic algorithm, graphical user interface, software reuse

1 Introduction

The web application is one of the fastest-growing

and most widespread application domains today, per-

forming a crucial role in daily life. Numerous features

are developed to meet the massive user requirements.

It makes the development efficiency more and more im-

portant. Among the updated features, some of the simi-

lar functionalities have already existed in a variety of

web applications, and facilitating their reuse offers sig-

nificant benefits [1].

Web components are proposed to package the imple-

mentation of commonly-used features to facilitate web

development. Fig.1 shows an example of using a muti-

selection component. The user needs to provide some

contents to be displayed (lines 1–5), initialize the com-

ponent object (lines 7–10), and customize the compo-

nent by using the given configurations (for instance,

multiple="multiple" in line 1 and closeOnSelect:

false in line 9). The component will handle the user’s

inputs and generate a multi-selection widget with pre-

defined appearances and interactions.

A problem arises when the user wants to utilize a

Regular Paper

This work was supported by the Key-Area Research and Development Program of Guangdong Province under Grant
No. 2020B010165001, the National Natural Science Foundation of China under Grant No. 61976061, and Guangdong Basic and Applied
Basic Research Foundation under Grant No. 2020A1515010973.

∗Corresponding Author

©Institute of Computing Technology, Chinese Academy of Sciences 2022

http://dx.doi.org/10.1007/s11390-022-0673-4

390 J. Comput. Sci. & Technol., Mar. 2022, Vol.37, No.2

1. <select class="basic-multiple" multiple="multiple">
2. <optgroup label="A/H Time Zone">
3. <option value="AK">Alaska</option>
4. <option value="HI">Hawaii</option>
5. </optgroup>
6. ... <script>
7. $(document).ready(function () {
8. $('.basic-multiple').select2({
9. closeOnSelect: false // API

10. }); }); ...
11. </script>

1. Defaults.prototype.apply = function (options) {
2. ...
3. if (options.closeOnSelect) {
4. options.dropdownAdapter = Utils.Decorate(
5. options.dropdownAdapter,
6. CloseOnSelect
7.);
8. }...} // Specified by pre-defined API
9. ...

10. this.$results.on('mouseenter',
11. '.select2-results__option[aria-selected]',
12. ...
13. self.getHighlightedResults()
14. .removeClass('option--highlighted');
15. ...
16. }; // Specified by test cases
17. ...
18. MultipleSelection.prototype.render = function () {
19. $selection.addClass('select2-selection--multiple');
20. $selection.html(
21. '<ul class="select2-selection__rendered">'
22.);
23. return $selection;
24. }; // Specified by usage scenario

(a) (b)

(c) (d)

Fig.1. A select box component in (a) implemented by select2 1○. The desired features are mixed with some default events in (b) and
cannot be customized by the component’s APIs in (c) but can be specified by the component’s test cases combined with the usage
scenario as shown in (d).

set of features that cannot be customized by configura-

tions in the component. For instance, the user wants to

extract the selecting feature (to update the input area

when clicking the “Hawaii” item as shown in the “Us-

age Scenario”) in the component shown in Figs.1(a) and

1(b). These events are default events that are bound to

the items when the component is initialized. No APIs

are provided by the component to specify the events. In

this case, the user has to manually forage and extract

the desired features from thousands of lines of code [2].

Extracting the code that corresponds to the feature is

complex since the feature may be related to the HTML

elements, JS codes, CSS definitions, etc. The dynamic

interplay between different entities makes the extract-

ing process labor-intensive and error-prone [3]. The lack

of flexible reusing supports makes developers turn to

reinvent the features [4].

The feature extraction aims to find a code snippet

that implements the required functionalities in a soft-

ware system [5]. In the domain of web applications, a

typical strategy is using the usage scenario to record the

user’s actions on the component (as shown in Fig.1).

Some methods based on software analysis like code

instrumentation [6, 7] or software slicing [8, 9] were used

to find the relevant statements to the usage scenario as

the extraction result.

Using the usage scenario to specify the features is

intuitive and straightforward. However, it may suffer

from quality problems. First, the improper scenario

will lead to an unsatisfied extraction result. Second,

some features are not appearance-relevant and easy to

be overlooked in the scenario such as memory mana-

gement and exception handlers. Considering the test

cases, which are widely used in web implementation,

especially in the open-source components, can be use-

ful to specify the software features.

In this paper, we propose a novel method to auto-

matically extract a code snippet and related resources

in a web component that implements the user-specific

functionalities. Considering test cases may not cover

all the software features in some cases, a GUI test case

generation algorithm based on the record/replay strat-

egy is proposed to ensure the elements of interest in the

extraction result have the same appearances as those in

the original component. An extraction result is thought

to contain the required features if it can pass the test

cases. As fewer lines of code mean less cost users spend-

ing on learning the core concepts of components [10], a

1○The select2 component. https://select2.org/, July 2021.

Yong-Hao Long et al.: Test-Driven Feature Extraction of Web Components 391

hierarchical genetic algorithm that considers the code

structure is proposed to get the approximate minimum

size of the extraction result. Several qualitative and

quantitative experiments were conducted to show the

effectiveness and correctness of our method. The con-

tributions in this paper include the followings.

• An automated GUI test case generating method

is proposed based on the record/replay strategy.

• A hierarchical genetic algorithm is proposed to ex-

tract an implementation that satisfies the requirements

and achieves the approximate minimum lines of code.

• Experimental comparison of our method and

existing feature extraction methods shows that our

method can correctly extract all the components’ fea-

tures and generate the minimum lines of code.

2 Related Work

Our method aims to extract desired features from a

web component. The related studies include feature lo-

cating, JavaScript analysis, and web application reuse.

2.1 Feature Extraction

The feature extraction aims to find a code snippet

that implements the required functionalities in a soft-

ware system [11]. Several studies [6, 9, 12] were conducted

based on code instrumentation, program slicing, etc.

An intuitive way of feature extraction is recording

the executed statements in the scenario as the imple-

mentation of the features [6]. Studies like Unravel [7] and

Scry [12] show the executed statements in each action in

the scenario to help users focus on the code mutating

the DOM states. The feature implementation is a sub-

set of the executed statements, and a part of the irrel-

evant statements is included in the extraction result.

Several feature extraction methods [8, 9] are based

on program slicing. These methods record the vis-

ited DOM elements and the trigger events in the us-

age scenario as the slicing start point. Then they apply

backward and forward slicing to find the statements in

the dependency graph. The feature implementation is

thought to be contained in the slicing result. The ex-

traction result might also contain some irrelevant state-

ments which have dependencies on the user scenario but

make no contributions to the features, for example, the

redundant assignments.

When the developer uses a scenario to specify the

features, some features may hardly be presented in

the scenario such as memory management or exception

handlers. Barr et al. [13] used the test cases to specify

the features. The code which could pass all the user-

specified test cases was thought to contain the feature.

Then, a genetic algorithm was developed to find the

feature implementation. In our work, we also specify

the features by user-specified tests, but we focus on ex-

tracting the features in the web components which are

cross-language, highly dynamic, and weak-typed.

2.2 JavaScript Analysis

The JavaScript code performs a crucial role in

web applications. It is dynamic, weakly-typed, and

prototype-based, which makes the JS code hard

to be understood and maintained [8]. Considerable

studies [14–30] have been proposed to analyze the JS pro-

gram in recent decades.

Some static analysis methods were proposed to an-

alyze the JS program without actually running it. The

static JS program analysis usually parses the source

code by an abstract interpreter like TAJS [14], JSAI [15],

and λJS
[16]. Combined with the specified rules or

mathematical constraints, the analyser is adopted in

pointer analysis [17, 18], type inference [14, 19], data flow

analysis [20, 21], call graph analysis [22, 23], etc.

The static analysis is effective, but it faces seri-

ous limitations in JavaScript because it cannot pre-

cisely reason about many dynamic language features.

Dynamic analysis was proposed to avoid the challenge

of statically approximating behavior [24]. Considerable

studies based on dynamic analysis have been proposed

in recent decades, in particular, studies like record/re-

play debugging [25, 26], feature locating [27, 28], and dy-

namic program slicing [29, 30] have close relations to our

work.

Our work has some relations to JavaScript analysis.

We propose an automated GUI test case generating

method based on the record/replay techniques. In the

code extraction, we parse the source code to find the

code structure and ensure the extraction process does

not break the code structures.

2.3 Web Application Reuse

Developing a satisfying web application requires the

developers to have rich knowledge of user experiences,

interface design, and programming on multi-languages.

Instead of developing from scratch, developers often

seek inspiration from examples to reduce the developing

cost [31].

Some studies [32, 33] were proposed to provide pre-

defined templates to simplify the development. Users

392 J. Comput. Sci. & Technol., Mar. 2022, Vol.37, No.2

can choose one template and replace the generic in-

formation in the template with their contents. The

Bricolage [34] was proposed to enlarge the scale of tem-

plates. According to a mapping between the elements

in source and reference web pages, the contents in the

source elements can be filled into the reference web

page, and thus every existing web page can be reused

as a template. These studies [32–34] center on providing

a static web page for inspiration, while the interactions

have to be manually implemented by the users.

In some cases, the users want to reuse part of the

features in an example, instead of reusing the whole

web page [35]. Several studies were proposed to handle

this issue. For example, the web component library [36]

allows developers to choose and reuse a component of

interest from the library. Similarly, some studies [37–40]

were proposed to extract and reuse components from

existing web pages. The markup languages CTS [37]

and Mavo [38] ask end-users to manipulate their HTML

files to build a mapping between the original HTML el-

ements and the example elements, in order to insert the

example components’ features into their applications.

The component encapsulates the commonly-used

functionalities into a class or package, and users can

easily reuse the feature by inserting the component into

their software. However, the component may contain

some features that the user does not want to use, and

removing some of the useless features may require the

user’s knowledge on the implementation of the compo-

nent. Hence, in this work, we propose a method that

helps users reuse the features from the components in

finer granularity.

3 Test-Driven Feature Extraction

In this section, we first formulate the feature extrac-

tion problem, in which we transfer the requirements of

features to passing a set of test cases related to the

features. Then we introduce an automated GUI test

generating method to guarantee the desired elements

in the extraction result have the same appearance as

those in the original component. We finally introduce

a hierarchical genetic algorithm to extract a code snip-

pet that both passes the given test cases and contains

statements as few as possible.

3.1 Problem Formulation

Feature. The feature refers to a specific function-

ality, defined by requirements, and accessible to deve-

lopers and users [41]. The feature in this context does

not include non-functional requirements such as perfor-

mance or reusability 2○. It is implemented by a subset

of code and resources of the whole application [9].

In this paper, we focus on extracting the JS code

that implements the specified features on the client side.

The web component is defined as (C,R) which has two

parts: the JS code C and related resources R. The

resources include HTML, CSS files, and external re-

sources like background images or videos. Features on

canvas are not included in the method.

A component (C,R) contains the specified features

F if it satisfies:

P (T, (C,R)) = |T |,

where T represents the set of test cases for F , and |T |
is the number of test cases. P (T, (C,R)) means the

number of test cases in T that (C,R) can pass. In this

way, the user can specify the features by a set of test

cases. It has two advantages: 1) the test cases are easy

to read since most of them contain descriptions, and 2)

we can automatically evaluate the degree of the result’s

satisfaction to the user’s requirements by checking the

passing rate of test cases.

In this paper, we focus on extracting the JS code

which contributes to the features. The related resources

are determined by code instrumentation: any resources

that the extraction result requires are kept as the re-

lated resources. As a result, we simplify the compo-

nent’s test passing rate as P (T,C).

Irrelevant Statements. For a code snippet C which

contains the desired features, there may be some state-

ments that make no contributions to the required fea-

ture. A statement s in C is regarded as irrelevant if

deleting it does not affect the passing rate of test cases:

P (T,C − s) = P (T,C).

Feature Extraction. Feature extraction refers to ex-

tracting a code snippet and related resources in a web

component that implements the user-specific function-

alities. The extraction result could run independently

and exclude irrelevant statements as many as possible.

Formally, we define the feature extraction as a

searching problem: given the source code C of the web

component and a set of user-specified test cases T , the

feature extraction is finding a code snippet C? in C,

which can pass all of the given test cases and has the

minimum LOC:

LOC(C?) = min{LOC(C ′)|C ′ ∈ C,P (T,C ′) = |T |},

2○Software, and S.E.S. Committee. IEEE Standard for Software and System Test Documentation. IEEE. 2008.

Yong-Hao Long et al.: Test-Driven Feature Extraction of Web Components 393

where LOC(C ′) refers to the lines of code in C ′.

We take Fig.2 to illustrate the process. Supposing

the required features are specified by the four tests, the

colored rectangles represent the feature implementation

specified by the tests. The extraction result must pass

all of the tests and contains the irrelevant statements as

few as possible. To achieve this goal, we look through

the original code and find the irrelevant statements hi-

erarchically. At the outmost block, only a function defi-

nition exists and it is crucial to keep it to pass the tests.

Then we look into the function definition block. The

handled statements are the single statements in lines

2–6, 19 and 20, and a compound statement for block

ranging from line 7 to line 18. Removing the state-

ments in lines 3–5 will not affect the passing rate and

they are thought to be irrelevant. The other statements

are crucial to the test passing rate. More specifically,

the statement in line 2 contributes to passing test #182,

and removing other statements will make the result fail

to pass tests #184 and #185. After that, we look into

the for block and find the statements in lines 10 and

11 are also irrelevant. Therefore, the feature extraction

result will exclude the statements in lines 3–5, 10 and

11.

3.2 Augmenting Test Cases

GUI testing is tedious and complex. Most visual

features are tested manually. A few of the features

are checked by test scripts [42]. Our observation on the

components’ test cases also supports the point of view:

most of the test assertions are checking the status of a

function of object in the JS code, instead of the DOM

element. To fill this gap, a GUI testing method is pro-

posed to ensure the desired elements in the component

will be correctly displayed in the extraction result.

The record/replay [26] method is used to generate

a GUI test case automatically. The elements manipu-

lated in the usage scenario are considered as the ele-

ments of interest. Users can also point out other ele-

ments as the desired elements. If the pointed element

is not a leaf, we will ask users to specify the desired

leaves in the subtree whose root is this element to filter

the uninterest elements.

For a usage scenario that consists of n actions on the

original component, our method first records the initial

appearances of the desired elements when no action

happens. Then, the method records the appearances

of the desired elements (named frame) in the compo-

nent when each of the actions happens. Hence we get

n+1 frames for the original component. After that, the

method generates a test case that triggers the n actions

and asserts the frames in the extraction result should

be the same as the frames in the original component.

The consistency of the elements’ appearances is

checked by comparing the visual-related attributes in

the source code rather than using the image-based

methods in GUI testing [43] for two reasons. The first is

our method will remove some elements in the original

component, which may change the extraction result’s

appearances. The second is the image-based methods

often consider the number of the same pixels between

two snapshots. The color distortion of the snapshots

may affect the result.

Four visual aspects that determine the component’s

appearance are considered in our method: 1) the posi-

tions of elements in the HTML file; 2) the required re-

sources such as the background image; 3) the contents

of the elements; 4) the inline, internal, and external

styles of the elements.

The path from the root <HTML> element to

(b)(a)

Fig.2. Combining different test cases in (a) can specify different feature implementations in (b).

394 J. Comput. Sci. & Technol., Mar. 2022, Vol.37, No.2

the target element is recorded as the element’s posi-

tion. The position is used as the element’s identifier.

The element’s resources and contents can be found in

HTML source code. The styles are determined by the

matching of selectors (including the pseudo-classes, e.g.,

a:hover) in CSS and HTML files. All of the visual

properties are recorded as the JSON-format text.

The generated test case triggers the actions in

sequence. Once an action is triggered, the desired

elements’ appearances in the extraction result are

recorded. And an assertion is generated to check if

the result’s appearance text is the same as the text ex-

tracted from the original component.

3.3 Hierarchical Genetic Algorithm

Feature extraction is a process of removing irrele-

vant statements. It is a combination problem since the

statements may cooperate to implement a feature. As

a result, removing the statements one by one could not

achieve the goal. For example, the two cases in line 3

and line 5 in Fig.3 should be removed together to pass

the test case. But removing one of them could not pass

the given test cases.

Fig.3. Statements in line 3 and line 5 are unwanted, and only
removing one of them will fail to pass the tests.

Finding the best solution (i.e., satisfying the re-

quirements with the minimum lines of codes) to this

combination problem is an NPC problem. We propose

a hierarchical genetic algorithm (HGA for short) to find

an approximate result that satisfies the user’s require-

ments and contains as few statements as possible. We

assume that the required feature is made up of state-

ments that are distributed in some block statements like

the functions or objects. As a result, our method starts

from the statements in the outmost code blocks, and

recursively finds irrelevant statements layer by layer as

shown in Algorithm 1.

The feature extraction method is based on the hier-

archical genetic algorithm, which detects and removes

the irrelevant statements hierarchically. Because re-

moving inner statements may cause the statements in

the outer layer to be irrelevant, HGA has to rerun the

extraction result. As Algorithm 1 shows, after each

running of HGA, we compare the result with the input

code to see if the result has LOC decreasing and HGA’s

running times do not exceed the maximum number R.

If so, we will run HGA on the result to find more irrel-

evant statements.

Algorithm 1. Hierarchical Genetic Algorithm

Input: the original JS code C, a set of test cases T that specify
the desired features in C

Output: a result code snippet CS which passes all of T and
contains the statements as few as possible

1: function HGA(C, count)

2: CS ← C;

3: l← 0;

4: while l 6 the max layer of statements in C do;

5: Sl ← the statements of C in layer l;

6: resl ← GA(C, Sl, T); B Remove the statements in
Sl that make no contributions to passing the tests in T

7: if fitness(resl) > 1 then

8: CS ← resl;

9: end if

10: + + l;

11: end while

12: if LOC(CS) < LOC(C) and count 6 R then

13: CS 6 HGA(CS, count + 1)

14: end if

15: return CS

16: end function

Removing the statements could be regarded as

pruning nodes in an abstract syntax tree (AST). Once

a statement is deleted, the corresponding nodes in the

AST should be removed. Any subtrees whose roots are

in the removed nodes should also be deleted. That is,

if a compound statement is removed, the inner state-

ments should also be removed. We give each statement

a number to indicate its layer in the hierarchical struc-

tures of statements in the AST. The statements in layer

0 are defined as the children of the root in the AST. The

sta-tement’s layer will be increased with the depth of

the AST node.

In each layer, a genetic algorithm (GA) is used to

find a code snippet with the highest fitness as denoted

by resl in Algorithm 1. If the fitness of resl is higher

than 1, which means some statements are removed and

the result passes all of the test cases without errors,

the result will be the candidate code and handled in

the next layer. Otherwise, the original code will be the

candidate in the next layer.

To perform the GA on each layer, we need to encode

the source code to a chromosome, define the gene, and

specify the crossover, mutation, and selection strate-

gies. Moreover, the individual’s fitness should be de-

fined and an appropriate initial population needs to be

Yong-Hao Long et al.: Test-Driven Feature Extraction of Web Components 395

constructed to find an approximate best result quickly.

For a code snippet with n lines of code, the algo-

rithm generates an array of n integers to be the chro-

mosome of the code. The element in the chromosome is

a gene which represents the choosing of the code. For

instance, if the i-th gene in chromosome is 1, the state-

ment in line i will be kept; otherwise, the statement

will be removed if the corresponding gene is 0.

The crossover in GA is Uniform Crossover, and the

mutation is Flip Mutation. The selection strategy in

GA is selecting the top 10% individuals into the next

generation first, and we use champion selection for the

others. The individuals are ranked by fitness.

In the GA process of software transplantation [13],

the passing rate of test cases is considered to evaluate

the fitness of an individual, while the compiler would

remove the individuals failing to compile. In our case,

JavaScript is an interpreted programming language and

has no “compile error”. But during the loading phase,

“Script Error” or “Reference Error” may appear. Any

individual with such errors will have zero fitness. Mean-

while, if both the two individuals can pass all of the test

cases with no errors, we prefer the one with less lines of

code. The assumption is based on the learning barriers

of unfamiliar codes [10]. From the user’s perspective,

the extraction result is a demo for using the desired

features. Less code means lower learning barrier and

less superfluous details that distract from learning core

concepts.

The calculation of fitness is defined as (1), where

fitness(i) is the fitness of individual i which contains

|chromosome| lines of code. P (T, i) stands for the num-

ber of tests in T that i can pass, and LOC(i) represents

the lines of code in i. ERRi indicates if the i-th individ-

ual has any “Script Error” or “Reference Error”, and

it is assigned to 1 if so.

fitness(i)

=



0, if ERRi = 1,

P (T,i)
|T | ,

if P (T,i)
|T | < 1 and ERRi = 0,

2− LOC(i)
|chromosome| ,

if P (T,i)
|T | = 1 and ERRi = 0.

(1)

The individual is run on the browser to calculate

the fitness. It will cost about 1 second per individual,

which means the time cost will be unacceptable if the

search space (i.e., the population of GA) is too large.

As a result, we generate a set of individuals that have

high fitness as the initial population in each layer as

shown in Algorithm 2. To ensure that we will get at

least one result that can pass all of the tests and has

no errors, we put the original code in the current layer

into the initial population (IP) as shown in line 3.

Algorithm 2. Initial Population Generation

Input: the handled JS statements Sl in the current layer l, the
size n of population, the chosen test cases T

Output: the initial population IP

1: function IPGENERATOR(C, Sl, T)

2: IP ← ∅;
3: IP .push(C)

4: greedyRes← GETGREEDYRES(C, Sl, T);

5: IP .push(greedyRes);

6: for si ∈ Sl do

7: IP .push(Sl − si);

8: end for

9: if |IP | > n then

10: IP ← top-n individuals in IP sorted by fitness;

11: else

12: randomIP ← RANDOMCHOOSING(Sl, n− |IP |)
13: IP .push(randomIP)

14: end if

15: return IP

16: end function

17: function GETGREEDYRES(C, Sl, T)

18: C′ ← C;

19: for si ∈ Sl do

20: if P (T,C′ − si) = P (T,C) then

21: C′ ← C′ − si

22: C′ ← GETGREEDYRES(C′, Sl, T)

23: end if

24: end for

25: return C′

26: end function

Then, we use the greedy strategy (line 4) to find a

result by removing the statements individually as the

second member of IP . More specifically, for each state-

ment in the current layer, it will be removed if the re-

moving does not affect the result’s passing rate; oth-

erwise, it will be kept. Once a statement is removed,

the algorithm will repeat checking the irrelevant state-

ments in the result until no statements can be removed

(as shown in lines 20–22).

To enlarge the population of IP , we remove the

statements in the current layer in sequence and add

the results to IP as shown in lines 5–7. If the popu-

lation is beyond the threshold of IP (supposed to be

n), we will sort the individuals by fitness, and choose

top n individuals to be the final result as shown in line

396 J. Comput. Sci. & Technol., Mar. 2022, Vol.37, No.2

9 and line 10. Otherwise, we will randomly select a set

of statements in C as individuals to fill up IP as shown

in lines 11–13.

The number of generation and the size of population

per generation are related to the handled statements

(denoted as |gene|) in the current layer. We set two

upper bounds to limit the searching space. The two

properties are defined as:

|generation| = max(5× |gene|, 100),

|population| = max(10× |gene|, 200).

3.4 Running Example

We take the code snippet in Fig.2 to illustrate the

HGA process. As Fig.4(a) shows, we first transform

the code to a chromosome, where each gene is a binary

number that represents the choosing of statements. In

the first layer, only one statement (i.e., the function

declaration of update) exists. We do bit flip mutation

on the first gene in individual i1−1, and get a new indi-

vidual i1−2. Note that the first gene in i1−1 corresponds

to the function definition in line 1 in Fig.2, and the last

gene is the end of the definition statement. To keep

the code structure, both genes are changed to 0, and

the inner statements are set to be 0 consequently. The

fitness of i1−2 is zero since none of the chosen tests can

be passed.

In the second layer, suppose we get three individuals

i2−1, i2−2 and i2−3, in one generation. The fitness of

i2−1 is 0.25 since it can only pass test #183. While in

the second generation, the uniform crossover happens

on i2−1 and i2−2. We get i2−4 and i2−5. Similarly, the

fitness of i2−4 is 0.25 since it can only pass test #183.

Meanwhile, one gene (in orange) in i2−3 is mutated (bit

flip) and we get a new individual i2−6.

Suppose the upper bound of the population is 4,

when picking the individuals to the next generation,

i2−6 is picked since its fitness is in the top 10%. And

the other three individuals will be selected from the left

five individuals by champion selection.

4 Implementation

We run all the tests on Ubuntu 18.04 with 3.0 GHz

Intel Core i5 and 8 GB Memory. The test tool and the

browser are on the SSD for the I/O speed purposes. We

run the tests on headless Chrome and the GPU-disabled

mode.

We develop the GA algorithm based on DEAP 3○,

and the probability of crossover is 0.5 and that of mu-

tation is 0.1. In our implementation, we set the upper

bound of HGA’s running times to be 3.

In some cases, the component contains more than

one JS file. A feature implementation may involve sub-

routine invocations. In respect of HGA, we use one

chromosome to represent the statements in all of the

JS files. We build a gene-statement mapping to ease

the modifications of the statements in JS files: once a

gene is changed, we find the location of the correspond-

ing statement in the mapping and change the statement

in the corresponding file.

5 Evaluation

In this section, we investigate the correctness and

effectiveness of our method. We address two research

questions.

RQ1. Compared with existing studies, what are the

strength and weakness of our method?

RQ2. To what extent can our method facilitate the

user in feature extraction?

Bit Flip

1 1 1 ... 1 1 0 0

1 0 0 0 1 1 0 ... 0 1 1 1

1 0 0 1 1 1 1 ... 1 1 1 1

1 0

1 0

Bit Flip

Uniform
Crossover

1 1 0 0 1 1 1 ... 0 1 1 1 1 1

00 ... 0 0

00

0

1 1 1 0 ... 0 1 1 1

0 0 1 1 1 ... 1 1 1 1

0 0 0 1 1 ... 1 1 1 1

fitness↼i↩↽/

 fitness↼i↩↽
/.

 fitness↼i↩↽
/⇁/

 fitness↼i↩↽
/⇁/

 fitness↼i↩↽
/⇁/

 fitness↼i↩↽
/⇁/

 fitness↼i↩↽
/.

fitness↼i↩↽/

1

1

1

0

0

(b)

(a)

0

Fig.4. Running example of the code in Fig.2. (a) Individuals in layer 1. (b) Individuals in layer 2.

3○DEAP evolutionary computation framework. https://github.com/DEAP/deap, July 2021.

Yong-Hao Long et al.: Test-Driven Feature Extraction of Web Components 397

5.1 RQ1: Method Comparison

Two existing feature extraction methods were com-

pared with our method: FireCrystal [6] and Firecrow [9].

FireCrystal is based on code instrumentation, and Fire-

crow is based on program slicing.

5.1.1 Study Design

We conducted the feature extraction on two data-

sets. One dataset (denoted as dataset-1) is proposed

in Firecrow [9], which includes nine web pages and 13

required features. One feature was not included in

our evaluation since it was not found in the author’s

dataset 4○ and the given URL was not accessible. Hence

we actually used eight different web pages and 12 re-

quired features. The features in this dataset were spe-

cified by usage scenarios which were described as Sele-

nium test script.

The features in dataset-1 are GUI-related and we

built another dataset (denoted as dataset-2) containing

10 web components with 10 sets of features specified

by usage scenarios and test cases. The web components

were collected from Github. As shown in Table 1, #TA

and #TC represent the number of test assertions and

test cases respectively. All the components have more

than 100 stars and have relatively complete test cases

using QUnit 5○. The required features could not be di-

rectly extracted by configurations. The test cases were

chosen by two participants, and we accepted the test

case for a feature if it was chosen by both of the par-

ticipants; otherwise, we would ask another participant

to decide the test cases.

We did not have FireCrystal’s source code. Instead,

we implemented it by recording the executed state-

ments in the usage scenario and the test cases. Firecrow

was a Firefox plugin, thereby we conducted the experi-

ments on Firefox (v28.0.0.5186).

The extracted result was thought to be correct if the

usage scenario could be reproduced on the result cor-

rectly, and it could pass the given tests with no errors.

If two results were correct, we preferred the result with

fewer statements.

The goal of our method was to extract the imple-

mentation of features in the component. As a result,

we did not extract the library codes like jQuery 6○ or

requireJS 7○ although they contributed to the feature.

5.1.2 Results

Table 2 and Table 3 describe the extraction re-

sults in the two datasets respectively. In dataset-2, we

failed to use Firecrow to do the extraction in any of

the components. The main reason was that Firecrow

did not support handling the JS files written with EC-

MAScript6.

Table 1. Web Components Used in Dataset-2

ID URL Feature Requirement #TA #TC

C1 uxsolutions/bootstrap-datepicker Get the “highlight day of the week” feature from the
calendar

5 1

C2 mugifly/jquery-simple-datetimepicker Extract the “date” from “datetimepicker” 29 9

C3 Mottie/Keyboard Simple arithmetic operations (+, −, ×, ÷, =) and
numbers

13 1

C4 OwlCarousel2 /OwlCarousel2 Extract the “swipe” function which can browse the
image by dragging or clicking the buttons

17 8

C5 Prinzhorn/skrollr Get the “rotate texts”, “horizonal or vertical text mov-
ing” when the scrollbar moves

64 6

C6 smalot/bootstrap-datetimepicker Change the “dateTimePicker” to a simple date picker,
without changing the format of the date

239 53

C7 igorescobar/jQuery-Mask-Plugin Get the telephone number formatting function 60 10

C8 select2/select2 Select a set of elements; when selecting the same ele-
ment or clicking the fork icon of the element, the ele-
ment should be removed

10 5

C9 jquery-backstretch/jquery-backstretch Clicking different buttons, change the background to
the corresponding image

8 3

C10 jquery-validation/jquery-validation Get the E-mail and password formatting function 9 1

Note: All of the URLs start with “https://github.com/”. #: number of.

4○Firecrow. https://github.com/jomaras/Firecrow, July 2021.
5○QNnit JavaScript testing framework. https://qunitjs.com/, July 2021.
6○The jQuery JavaScript library. https://jquery.com/, July 2021.
7○RequireJS. https://requirejs.org/, July 2021.

398 J. Comput. Sci. & Technol., Mar. 2022, Vol.37, No.2

Table 2. Feature Extraction Results on Dataset-1

ID LOCori LOCFireCrystal LOCFireCrow LOCours

F1 1 642 476 239 35

F2 1 642 474 207 13

F3 1 642 592 345 207

F4 1 174 229 139 19

F5 1 174 228 139 17

F6 260 71 38 26

F7 594 160 130 13

F8 53 47 47 46

F9 10 10 10 10

F10 16 16 16 16

F11 301 161 125 101

F12 518 224 202 158

Table 3. Feature Extraction Results on Dataset-2

ID LOCori FireCrystal Ours

LOC Correct LOC Correct

C1 1 757 980 Y 258 Y

C2 2 143 1 679 Y 578 Y

C3 4 267 2 557 N 802 Y

C4 2 976 2 318 Y 1 368 Y

C5 1 088 736 Y 600 Y

C6 1 772 1 257 Y 610 Y

C7 473 364 Y 161 Y

C8 5 301 3 375 Y 1 304 Y

C9 1 276 688 Y 273 Y

C10 1 404 833 Y 371 Y

All of the tasks in the first dataset were successfully

fulfilled by the three methods. In dataset-2, one Fire-

Crystal’s result (C3) included some irrelevant buttons

and got the wrong result. In general, FireCrystal got

the biggest size of results, FireCrow the medium, and

our method the minimum.

The reason for FireCrystal having the biggest size

of results is that the code instrumentation would in-

volve statements that were executed in the scenario but

made no contributions to the features [6]. As shown

in Fig.5, in C3, the features were specified by a test

case including 13 assertions checking the calculation of

plus, minus, multiplication, and division for the inte-

gers and floats. Hence an acceptable result should only

contain the basic arithmetic operators and the digits.

The developer gave every button a property to define

the functionality and these definitions were located in

the constructor function. The definitions were executed

and thus some irrelevant buttons were kept with the

buttons of interest in FireCrystal’s result.

(b)(a)

Fig.5. FireCrystal’s result in (a) includes some unwanted but-
tons which are not in the red closure and is different to (b) the
correct appearance.

In Firecrow, the method first built a dependency

graph of the source code. Then the method did dy-

namic slicing starting from the triggered events and the

user-specified DOM elements. All the dependent state-

ments were treated as the feature implementation, and

thus the executed irrelevant statements were removed.

The dynamic slicing was heuristic. It would keep

the statements that manifest the features directly or

indirectly. From our observation of Firecrow’s res-

ults, statements that had dependencies on the specified

DOM elements were kept as the feature implements.

And consequently, some irrelevant statements were in-

volved. For instance, in F4 and F5, some event listeners

of the specified DOM elements were kept in Firecrow,

while the handlers were removed (as shown in lines 18,

21–25, Fig.6). These events were not triggered in the us-

age scenario, thereby they were feature-irrelevant. But

in the view of program slicing, these events belonged

to the DOM object’s properties and thus had depen-

dencies on the DOM element. As a consequence, these

events were kept. Another majority part of irrelevant

statements kept in Firecrow were the maps, since the

method did not handle arrays (as shown in lines 3–12,

in Fig.6). But in the jQuery code, many parameters in

the callbacks were written in a key-value way, and that

is another reason why our method reduced irrelevant

statements significantly.

Compared with the above methods, our method

achieved the minimum size of feature implementation.

However, some of the removed statements should be

kept to enhance the robustness of the program. For

instance, our method removed the variable declara-

tions without assignments. The result could also run

correctly, but the related variables became global and

would be harmful to the program’s robustness.

Briefly speaking, all of the methods supported ex-

tracting features specified by usage scenarios or test

cases (Firecrow also supports extracting the features

specified by the tests as described in [9]). Our method

Yong-Hao Long et al.: Test-Driven Feature Extraction of Web Components 399

Arrays

Event Handlers

Fig.6. Some redundant statements kept in Firecrow: the arrays and event handlers.

generated the smallest size of results in all of the tasks.

5.2 RQ2: Human-Subject Study

In this study, we checked if our method could help

the participants extract the features. We investigated

the efforts that the participants spent on using our

method and extracting the feature implementation by

hand. We transformed the usage scenario to be a GUI

test case with a series of assertions. The GUI test case

was appended to the chosen test cases as the require-

ments of features. Moreover, the diversity of the test

cases chosen by participants was checked to see if they

had a significant difference. Our results were compared

with the manually extracted results to see the advan-

tages and drawbacks of our method.

5.2.1 Study Design

We invited five participants to the experiments.

They had some experience with programming but were

relatively new to JavaScript programming. The sub-

jects were three sets of features in three web compo-

nents listed in Table 1. Each set of features contains

both visual and appearance-irrelevant features.

On the one hand, we asked the participants to

choose the feature-relevant tests from the test cases pro-

vided by the implementation of the corresponding web

component. On the other hand, the participants were

asked to use our GUI generating method to interact

with the feature-relevant elements to generate a GUI

test script.

We recorded the time that participants spent on

choosing the test cases and interacting with the com-

ponents (the two processes were denoted as “feature

specification”). The time cost represented the labor

cost of using our method in the feature extraction. For

comparison, we asked the participants to manually ex-

tract the implementation of the features and recorded

the extraction time. A retrospective interview was con-

ducted after the participants finished the extraction.

We compared the time of feature specification with

the time of manual feature extraction to see if our

method can help reduce the human efforts. Then we

evaluated the consistency of the test cases chosen by dif-

ferent participants. Moreover, we compared the man-

ually extracting result with our result and asked the

participants to explain why they kept or deleted the

statements.

5.2.2 Results

Fig. 7 shows the comparison of time cost on fea-

ture specification and extracting the implementation

by hand. We can see the time cost spent on feature

400 J. Comput. Sci. & Technol., Mar. 2022, Vol.37, No.2

specification is much less than that spent on manual

extraction. Participants reported that in C5 and C6,

they could not get the correct entry point of the fea-

ture by Firefox Developer tools. Instead, they started

foraging from the constructors and guessed the entry

point by reading the API documentation and the deve-

lopers’ comments. When the participants found out

the core functions related to the features, they strug-

gled to find all of the dependencies that supported the

executing of the core functions. In contrast, the partic-

ipants told that choosing the feature-related test cases

was much easier since the test cases provide detailed de-

scriptions and the number of test cases was smaller than

the number of statements. And interacting with the

feature-relevant elements was also simple to the partic-

ipants because the feature descriptions were clear and

straightforward.

160

140

120

100

80

60

40

20

0

T
im

e
 (

m
in

)

Web Component ID

Feature Specification

Code Extraction

C2 C5 C6

Fig.7. Time cost of feature specification and manually feature
extraction by five participants.

We calculated the consistency of the test cases cho-

sen by different participants to check if the chosen test

cases were varied by different participants. Table 4

shows that in C2 and C5, most of the tests are the

same in five participants’ results. That means the par-

ticipants have a similar understanding of the test cases.

The main reason was that the test cases in these compo-

nents had explicit descriptions and were well structured

in modules, as one participant said: “It is easy to know

what this test is working for. I clearly know what I

want.”

Table 4. Number of Consistency Test Assertions Chosen by
Participants

Component #Inconsistency/#Ours

P01 P02 P03 P04 P05

C2 0/25 0/25 0/25 2/25 1/25

C5 0/64 −1/64 0/64 0/64 0/64

C6 −2/239 +44/239 +31/239 +12/239 +15/239

Note: The positive number means the participant chose more
test assertions than ours. And the negative number means the
participant missed some test assertions. “#Ours” represents the
number of assertions chosen by our method.

In C6, there were some test assertions that the par-

ticipants chose but were not included in our tests. We

found that most of these assertions were described as

testing the format of the date like “tomorrow”, “next

year”, “last month”. But in fact, the subject of these

test cases was a JS function “val()”. The test oracles

checked if the outputs of this function were as expected

in various inputs as shown in Fig.8. The participants

were misled by the test description, and they wrongly

chose these test cases since they did not check the im-

plementations of these tests.

An essential question is whether the addition-

al/missing test cases will make the extraction result

different. The answer is yes. The extracting result

will be influenced by the type of additional/missing test

cases.

If an additional test case is chosen by users, an extra

feature will be included in our result. If a test case is

missing, a feature may or may not be lost in the extrac-

tion result. If the chosen tests and the usage scenario do

not cover the missing feature, the extraction result will

lose the feature. Otherwise, the extracting result will

be the same as expected. The missing test case needs

to be selected by hand. Luckily, the foraging cost is not

big.

(b)(a)

Fig.8. Test cases in C6 wrongly chosen by participants. (a) #15 was described to test the format of the setting of the day “Tomorrow”,
but in fact, the test assertion was checking if the function input.val(’+1d’) in (b) could correctly run.

Yong-Hao Long et al.: Test-Driven Feature Extraction of Web Components 401

We compared the manual extraction results of the

five participants with our results as shown in Table 5.

Our results contained fewer statements than any of the

participants’ results. We found that the participants

mostly deleted the coarse-grained code snippets, for in-

stance, the class or function definitions, the if state-

ments, or the try-catch blocks, while they seldom re-

moved the single statements. All of them said they

could delete more statements in their results. But they

gave up as most of the rest had complex dependencies,

and removing the irrelevant statements costs much ef-

fort. One participant said in the interview: “Locat-

ing the implementation (of the core function) is over-

whelming. I think it is enough to delete the irrelevant

functions. And I have to admit that there are more

statements that could be removed. But it will cost me

much more time (to finish the task), because finding the

dependencies of variables is very complex and boring.”

Table 5. LOC Comparison Between Manual Results and Our
Results

Component Participant’s ID Our Result

P01 P02 P03 P04 P05

C2 896 1 140 876 912 843 578

C5 869 982 757 891 756 600

C6 1 053 1 366 1136 964 1 169 610

Our results were compared with manual results to

see the divergent decisions on the statements. The

removed code snippets were classified into three cat-

egories by their sizes: small block (1–5 consecutively

deleted statements), medium block (6–10 consecutively

deleted statements), and large block (10+ consecutively

deleted statements). We counted the number of blocks

and LOC for each kind of blocks. There were 1 001

small blocks (total LOC = 2 077), 158 medium blocks

(total LOC = 1 144) and 157 large blocks (total LOC

= 2 448). In respect of LOC, the small blocks oc-

cupied 36.63% of the deleted statements (delLOC =

2.05), 20.19% of the deleted statements were in medium

blocks (delLOC = 7.25), and 43.18% were in large

blocks (delLOC = 15.59); while in respect of the num-

ber of blocks, 76.24% of the deleted code snippets were

small blocks, 11.92% were medium blocks, and 11.84%

were large blocks.

We looked through the deleted statements and

found some typical statements that were missed by

the participants. Most statements in small blocks were

variable declarations, branches, function calls, etc. The

medium and large blocks were mostly function def-

initions and class definitions. Our method removed

considerable small code blocks, meaning that the par-

ticipants forgot to remove a lot of scattered small code

snippets.

We also found some statements that could be re-

tained as the participants did but were removed from

our results. The typical statements are the variable dec-

larations without initializations and the functions for

enhancing the compatibility on different browsers. In

our results, the variable declaration without the initial-

ization was deleted and made the variable global if no

error happened. This would influence the program un-

derstanding and software maintenance. In the further,

heuristic rules to enhance code quality will be added to

solve this problem, which will be discussed in Section 6.

The code of adaptation was removed since we only used

Firefox and these statements were not executed in the

test cases. The latter case happened in the other exist-

ing methods since these features were not specified in

the scenario or the test cases. Keeping these statements

in the extraction result can enhance the robustness of

the component. But checking the completeness of the

feature specification is beyond the scope of this paper.

In conclusion, our method can extract the imple-

mentation of certain features. Users can save significant

time with our method. To enhance the implementation

quality, users could manually look through the extrac-

tion result and decide the statements which should be

deleted.

6 Limitations and Discussion

In this section, we discuss the limitations in our

method, including the flaky test problem, the quality of

test cases, and possible irrelevant code in the extraction

result.

We generate a GUI test case to compare the de-

sired elements’ appearance-related properties. In some

cases, the properties may be dynamically generated by

the components and may not be consistent in different

runs of tests. The generated test case may be flaky. For

instance, a test assertion checks the value of “current-

Date” to be “1st Jan.”, resulting in that the extracting

result can pass the test only on 1st Jan..

Our HGA method only considers the hierarchical

structure of the code, and it works in most cases. How-

ever, the code structure is more complex. For instance,

there may be some irrelevant statements distributed in

different layers and had dependencies on each other.

In this case, our method will be ineffective since it only

considers removing statements in the same layer. These

402 J. Comput. Sci. & Technol., Mar. 2022, Vol.37, No.2

cases rarely happened in our experiments and are re-

mained to be solved in our future work.

If the case cannot cover all the feature implemen-

tation, some features such as the exception handlers or

adaptation functions may be removed. Enlarging the

test cases is vital but beyond the scope of this paper.

Currently, we generate a result that highlighted the re-

moved statements and asked the user to reserve or re-

move them. Moreover, some irrelevant parameters may

also exist in our result even though they are not active

since the handlers are removed. Removing these irrel-

evant parameters can help users better understand the

implementation of features. But the process is complex

since the parameters have much more complex depen-

dencies than statements.

7 Conclusions

In this paper, a novel code extraction method was

proposed to extract the implementation of features spe-

cified by the test cases. The feature requirements were

transformed to be a set of test cases which cover both

the visual and logical functionalities. The results of

quantitative and qualitative experiments showed that

the proposed method could correctly extract the imple-

mentation utilizing the test cases provided by users and

generated from user scenarios. Compared with directly

extracting features from the source code, specifying the

features by test cases could significantly save the hu-

man efforts. The proposed method could facilitate the

software reuse of web applications.

In the GUI test case generation, we only generated a

test case that checks the visual appearance of the result

but ignores the appearance-unrelated features such as

the memory cost. If these features are not covered by

the test cases or usage scenario, they cannot be chosen

in our method. We will provide more information on

the user’s interaction with the component in the future

work, and this may help the user find more features of

interest.

It is also important to seek to insert the extracted

result into users’ software automatically. That will help

the users reuse the components in a flexible and easy

way. In this case, the extraction result has to adapt to

the environment. We prepare to seek inspiration from

studies on software transplantation [13] to achieve the

goal.

References

[1] Krueger C W. Software reuse. ACM Computing Surveys,

1992, 24(2): 131-183. DOI: 10.1145/130844.130856.

[2] Chattopadhyay S, Nelson N, Gonzalez Y R, Leon A A,

Pandita R, Sarma A. Latent patterns in activities: A field

study of how developers manage context. In Proc. the 41st

IEEE/ACM Int. Conference on Software Engineering, May

2019, pp.373-383. DOI: 10.1109/ICSE.2019.00051.

[3] Gascon-Samson J, Jung K, Goyal S, Rezaiean-Asel A,

Pattabiraman K. ThingsMigrate: Platform-independent

migration of stateful JavaScript IoT applications. In

Proc. the 32nd European Conference on Object-Orie-

nted Programming, July 2018, Article No. 18. DOI:

10.4230/LIPIcs.ECOOP.2018.18.

[4] Xu B, An L, Thung F, Khomh F, Lo D. Why reinvent-

ing the wheels? An empirical study on library reuse and

re-implementation. Empirical Software Engineering, 2020,

25(1): 755-789. DOI: 10.1007/s10664-019-09771-0.

[5] Krüger J, Mukelabai M, Gu W, Shen H, Hebig R, Berger T.

Where is my feature and what is it about? A case study on

recovering feature facets. Journal of Systems and Software,

2019, 152: 239-253. DOI: 10.1016/j.jss.2019.01.057.

[6] Oney S, Myers B. FireCrystal: Understanding inte-

ractive behaviors in dynamic web pages. In Proc. the

2019 IEEE Symp. Visual Languages and Human-Centric

Computing, Sept. 2009, pp.105-108. DOI: 10.1109/VL-

HCC.2009.5295287.

[7] Hibschman J, Zhang H. Unravel: Rapid web application

reverse engineering via interaction recording, source trac-

ing, and library detection. In Proc. the 28th Annual ACM

Symp. User Interface Software & Technology, Nov. 2015,

pp.270-279. DOI: 10.1145/2807442.2807468.

[8] Alimadadi S, Sequeira S, Mesbah A, Pattabiraman K. Un-

derstanding JavaScript event-based interactions. In Proc.

the 36th Int. Conference on Software Engineering, May

2014, pp.367-377. DOI: 10.1145/2568225.2568268.

[9] Maras J, Stula M, Carlson J, Crnkovic I. Identifying code

of individual features in client-side web applications. IEEE

Trans. Software Engineering, 2013, 39(12): 1680-1697.

DOI: 10.1109/TSE.2013.38.

[10] Shaffer D W, Resnick M. “Thick” authenticity: New me-

dia and authentic learning. Journal of Interactive Learning

Research, 1999, 10(2): 195-216.

[11] Razzaq A, Le Gear A, Exton C, Buckley J. An empiri-

cal assessment of baseline feature location techniques. Em-

pirical Software Engineering, 2020, 25(1): 266-321. DOI:

10.1007/s10664-019-09734-5.

[12] Burg B, Ko A J, Ernst M D. Explaining visual changes in

web interfaces. In Proc. the 28th Annual ACM Symp. User

Interface Software & Technology, Nov. 2015, pp.259-268.

DOI: 10.1145/2807442.2807473.

[13] Barr E T, Harman M, Jia Y, Marginean A, Petke J. Au-

tomated software transplantation. In Proc. the 2015 Int.

Symp. Software Testing and Analysis, July 2015, pp.257-

269. DOI: 10.1145/2771783.2771796.

[14] Jensen S H, Møller A, Thiemann P. Type analysis for

JavaScript. In Proc. the 16th Int. Symp. Static Analysis,

August 2009, pp.238-255. DOI: 10.1007/978-3-642-03237-

0 17.

[15] Kashyap V, Dewey K, Kuefner E A et al. JSAI: A static

analysis platform for JavaScript. In Proc. the 22nd ACM

SIGSOFT Int. Symp. Foundations of Software Engineer-

ing, Nov. 2014, pp.121-132. DOI: 10.1145/2635868.2635904.

https://doi.org/10.1145/130844.130856
https://doi.org/10.1109/ICSE.2019.00051
https://doi.org/10.4230/LIPIcs.ECOOP.2018.18
https://doi.org/10.1007/s10664-019-09771-0
https://doi.org/10.1016/j.jss.2019.01.057
https://doi.org/10.1109/VLHCC.2009.5295287
https://doi.org/10.1109/VLHCC.2009.5295287
https://doi.org/10.1145/2807442.2807468
https://doi.org/10.1145/2568225.2568268
https://doi.org/10.1109/TSE.2013.38
https://doi.org/10.1007/s10664-019-09734-5
https://doi.org/10.1145/2807442.2807473
https://doi.org/10.1145/2771783.2771796
https://doi.org/10.1007/978-3-642-03237-0_17
https://doi.org/10.1007/978-3-642-03237-0_17
https://doi.org/10.1145/2635868.2635904

Yong-Hao Long et al.: Test-Driven Feature Extraction of Web Components 403

[16] Guha A, Saftoiu C, Krishnamurthi S. The essence of

JavaScript. In Proc. the 24th European Conference on

Object-Oriented Programming, June 2010, pp.126-150.

DOI: 10.1007/978-3-642-14107-2 7.

[17] Madsen M, Livshits B, Fanning M. Practical static analysis

of JavaScript applications in the presence of frameworks and

libraries. In Proc. the 9th Joint Meeting of the European

Software Engineering Conference and the ACM SIGSOFT

Symposium on Foundations of Software Engineering, Au-

gust 2013, pp.499-509. DOI: 10.1145/2491411.2491417.

[18] Guarnieri S, Pistoia M, Tripp O, Dolby J, Teilhet S, Berg R.

Saving the world wide web from vulnerable JavaScript. In

Proc. the 2011 Int. Symp. Software Testing and Analysis,

July 2011, pp.177-187. DOI: 10.1145/2001420.2001442.

[19] Malik R S, Patra J, Pradel M. NL2Type: Inferring

JavaScript function types from natural language infor-

mation. In Proc. the 41st IEEE/ACM Int. Conference

on Software Engineering, May 2019, pp.304-315. DOI:

10.1109/ICSE.2019.00045

[20] Jensen S H, Madsen M, Møller A. Modeling the HTML

DOM and browser API in static analysis of JavaScript

web applications. In Proc. the 19th ACM SIGSOFT

Symp. and the 13th European Conference on Founda-

tions of Software Engineering, Sept. 2011, pp.59-69. DOI:

10.1145/2025113.2025125.

[21] Kristensen E K, Møller A. Reasonably-most-general clients

for JavaScript library analysis. In Proc. the 41st Int. Confe-

rence on Software Engineering, May 2019, pp.83-93. DOI:

10.1109/ICSE.2019.00026.

[22] Madsen M, Tip F, Lhoták O. Static analysis of event-driven

Node.js JavaScript applications. ACM SIGPLAN Notices,

2015, 50(10): 505-519. DOI: 10.1145/2858965.2814272.

[23] Park C, Ryu S. Scalable and precise static ana-

lysis of JavaScript applications via loop-sensitivity.

In Proc. the 29th European Conference on Object-

Oriented Programming, July 2015, pp.735-756. DOI:

10.4230/LIPIcs.ECOOP.2015.735.

[24] Andreasen E, Gong L, Møller A et al. A survey of dy-

namic analysis and test generation for JavaScript. ACM

Computing Surveys, 2017, 50(5): Article No. 66. DOI:

10.1145/3106739.

[25] Sen K, Kalasapur S, Brutch T, Gibbs S. Jalangi: A se-

lective record-replay and dynamic analysis framework for

JavaScript. In Proc. the 9th Joint Meeting of the European

Software Engineering Conference and the ACM SIGSOFT

Symposium on the Foundations of Software Engineering,

August 2013, pp.488-498. DOI: 10.1145/2491411.2491447.

[26] Burg B, Bailey R, Ko A J, Ernst M D. Interactive record/re-

play for web application debugging. In Proc. the 26th ACM

Symp. User Interface Software and Technology, Oct. 2013,

pp.473-484. DOI: 10.1145/2501988.2502050.

[27] Mahajan S, Halfond W G. Finding HTML presen-

tation failures using image comparison techniques. In

Proc. the 29th ACM/IEEE Int. Conference on Auto-

mated Software Engineering, Sept. 2014, pp.91-96. DOI:

10.1145/2642937.2642966.

[28] Ocariza F S, Pattabiraman K, Mesbah A. Detecting in-

consistencies in JavaScript MVC applications. In Proc. the

37th Int. Conference on Software Engineering, May 2015,

pp.325-335. DOI: 10.1109/ICSE.2015.52.

[29] Wang J, Dou W, Gao C, Wei J. JSTrace: Fast reproducing

web application errors. Journal of Systems and Software,

2018, 137: 448-462. DOI: 10.1016/j.jss.2017.06.038.

[30] Li P, Wohlstadter E. Script InSight: Using models to ex-

plore JavaScript code from the browser view. In Proc.

the 9th Int. Conference on Web Engineering, June 2009,

pp.260-274. DOI: 10.1007/978-3-642-02818-2 21.

[31] Dow S P, Glassco A, Kass J, Schwarz M, Schwartz D L,

Klemmer S R. Parallel prototyping leads to better design

results, more divergence, and increased self-efficacy. ACM

Trans. Computer-Human Interaction, 2010, 17(4): Article

No. 18. DOI: 10.1145/1879831.1879836.

[32] Gibson D, Punera K, Tomkins A. The volume and evolu-

tion of web page templates. In Proc. the 14th Int. Confe-

rence on World Wide Web, May 2005, pp.830-839. DOI:

10.1145/1062745.1062763.

[33] Lee B, Srivastava S, Kumar R, Brafman R, Klem-

mer S R. Designing with interactive example galleries.

In Proc. the SIGCHI Conference on Human Factors

in Computing Systems, Apr. 2010, pp.2257-2266. DOI:

10.1145/1753326.1753667.

[34] Kumar R, Talton J O, Ahmad S, Klemmer S R.

Bricolage: Example-based retargeting for web design.

In Proc. the SIGCHI Conference on Human Factors

in Computing Systems, May 2011, pp.2197-2206. DOI:

10.1145/1978942.1979262.

[35] Swearngin A, Dontcheva M, Li W, Brandt J, Dixon M,

Ko A J. Rewire: Interface design assistance from exam-

ples. In Proc. the 2018 CHI Conference on Human Factors

in Computing Systems, Apr. 2018, Article No. 504. DOI:

10.1145/3173574.3174078.

[36] Wang Z, Cheng B, Jin Y, Feng Y, Chen J. EasyApp: A

widget-based cross-platform mobile development environ-

ment for end-users. In Proc. the 23rd Annual Int. Confe-

rence on Mobile Computing and Networking, Oct. 2017,

pp.591-593. DOI: 10.1145/3117811.3131242.

[37] Benson E O, Karger D R. Cascading tree sheets and

recombinant HTML: Better encapsulation and retarget-

ing of web content. In Proc. the 22nd Int. Confe-

rence on World Wide Web, May 2013, pp.107-118. DOI:

10.1145/2488388.2488399.

[38] Verou L, Zhang A X, Karger D R. Mavo: Creat-

ing interactive data-driven web applications by author-

ing HTML. In Proc. the 29th Annual Symp. User Inter-

face Software and Technology, Oct. 2016, pp.483-496. DOI:

10.1145/2984511.2984551.

[39] Liu X, Huang G, Zhao Q, Mei H, Brain B M. iMashup:

A mashup-based framework for service composition. Sci-

ence China Information Sciences, 2014, 57(1): 1-20. DOI:

10.1007/s11432-013-4782-0.

[40] Huang G, Liu X, Ma Y, Lu X, Zhang Y, Xiong Y. Pro-

gramming situational mobile web applications with cloud-

mobile convergence: An Internetware-oriented approach.

IEEE Trans. Services Computing, 2016, 12(1): 6-19. DOI:

10.1109/TSC.2016.2587260.

[41] Eisenbarth T, Koschke R, Simon D. Locating features

in source code. IEEE Trans. Software Engineering, 2003,

29(3): 210-224. DOI: 10.1109/TSE.2003.1183929.

https://doi.org/10.1007/978-3-642-14107-2_7.
https://doi.org/10.1145/2491411.2491417
https://doi.org/10.1145/2001420.2001442
https://doi.org/10.1109/ICSE.2019.00045
https://doi.org/10.1145/2025113.2025125
https://doi.org/10.1109/ICSE.2019.00026
https://doi.org/10.1145/2858965.2814272
https://doi.org/10.4230/LIPIcs.ECOOP.2015.735
https://doi.org/10.1145/3106739
https://doi.org/10.1145/2491411.2491447
https://doi.org/10.1145/2501988.2502050
https://doi.org/10.1145/2642937.2642966
https://doi.org/10.1109/ICSE.2015.52
https://doi.org/10.1016/j.jss.2017.06.038
https://doi.org/10.1007/978-3-642-02818-2_21
https://doi.org/10.1145/1879831.1879836
https://doi.org/10.1145/1062745.1062763
https://doi.org/10.1145/1753326.1753667
https://doi.org/10.1145/1978942.1979262
https://doi.org/10.1145/3173574.3174078
https://doi.org/10.1145/3117811.3131242
https://doi.org/10.1145/2488388.2488399
https://doi.org/10.1145/2984511.2984551
https://doi.org/10.1007/s11432-013-4782-0
https://doi.org/10.1109/TSC.2016.2587260
https://doi.org/10.1109/TSE.2003.1183929

404 J. Comput. Sci. & Technol., Mar. 2022, Vol.37, No.2

[42] Mahajan S, Alameer A, McMinn P, Halfond W G. Auto-

mated repair of layout cross browser issues using search-

based techniques. In Proc. the 26th ACM SIGSOFT Int.

Symp. Software Testing and Analysis, July 2017, pp.249-

260. DOI: 10.1145/3092703.3092726.

[43] Chang T H, Yeh T, Miller R C. GUI testing using com-

puter vision. In Proc. the 28th International Conference on

Human Factors in Computing Systems, Apr. 2010, pp.1535-

1544. DOI: 10.1145/1753326.1753555.

Yong-Hao Long is currently a post-

doc fellow in The Hong Kong Polytech-

nic University, Hong Kong. He received

his Ph.D. degree in computer science at

Sun Yat-sen University, Guangzhou, in

2021. His research interests include soft-

ware reuse and GUI testing.

Yan-Cheng Chen received his M.S.

degree in software engineering from Sun

Yat-sen University, Guangzhou, in 2020.

His research interests include software

testing and verification.

Xiang-Ping Chen is currently an

associate professor in the Sun Yat-sen

University, Guangzhou. She received

her Ph.D. degree in software engi-

neering from the Peking University,

Beijing, in 2010. Her research interests

include software engineering and mining

software repositories.

Xiao-Hong Shi is currently a lec-

turer in Guangzhou College of Com-

merce, Guangzhou. She received her

Ph.D. degree in mathematics from

Guangzhou University, Guangzhou, in

2021. Her research interests include

software engineering and multimedia

processing.

Fan Zhou is currently a professor

in Sun Yat-sen University, Guangzhou.

He received his Ph.D. degree in com-

puter science from Sun Yat-sen Uni-

versity, Guangzhou, in 2007. His re-

search interests include computer graph-

ics, computer aided design and image

processing.

https://doi.org/10.1145/3092703.3092726
https://doi.org/10.1145/1753326.1753555

	1 Introduction
	2 Related Work
	2.1 Feature Extraction
	2.2 JavaScript Analysis
	2.3 Web Application Reuse

	3 Test-Driven Feature Extraction
	3.1 Problem Formulation
	3.2 Augmenting Test Cases
	3.3 Hierarchical Genetic Algorithm
	3.4 Running Example

	4 Implementation
	5 Evaluation
	5.1 RQ1: Method Comparison
	5.1.1 Study Design
	5.1.2 Results

	5.2 RQ2: Human-Subject Study
	5.2.1 Study Design
	5.2.2 Results

	6 Limitations and Discussion
	7 Conclusions

