
Zhang G, Wang PF, Yue T et al. ovAFLow: Detecting memory corruption bugs with fuzzing-based taint inference. JOUR-

NAL OF COMPUTER SCIENCE AND TECHNOLOGY 37(2): 405–422 Mar. 2022. DOI 10.1007/s11390-021-1600-9

ovAFLow: Detecting Memory Corruption Bugs with Fuzzing-Based
Taint Inference

Gen Zhang (Ü �), Peng-Fei Wang (�+�), Tai Yue (W �), Xiang-Dong Kong (��À)
Xu Zhou (± R), and Kai Lu (© p), Member, CCF

College of Computer Science and Technology, National University of Defense Technology, Changsha 410073, China

E-mail: {zhanggen, pfwang, yuetai17, kongxiangdong, zhouxu, kailu}@nudt.edu.cn

Received May 21, 2021; accepted November 15, 2021.

Abstract Grey-box fuzzing is an effective technology to detect software vulnerabilities, such as memory corruption.

Previous fuzzers in detecting memory corruption bugs either use heavy-weight analysis, or use techniques which are not

customized for memory corruption detection. In this paper, we propose a novel memory bug guided fuzzer, ovAFLow.

To begin with, we broaden the memory corruption targets where we frequently identify bugs. Next, ovAFLow utilizes

light-weight and effective methods to build connections between the fuzzing inputs and these corruption targets. Based

on the connection results, ovAFLow uses customized techniques to direct the fuzzing process closer to memory corruption.

We evaluate ovAFLow against state-of-the-art fuzzers, including AFL (american fuzzy lop), AFLFast, FairFuzz, QSYM,

Angora, TIFF, and TortoiseFuzz. The evaluation results show better vulnerability detection ability of ovAFLow, and

the performance overhead is acceptable. Moreover, we identify 12 new memory corruption bugs and two CVEs (common

vulnerability exposures) with the help of ovAFLow.

Keywords fuzzing, memory corruption, taint inference

1 Introduction

Fuzz testing, or fuzzing, was introduced by Miller

et al. [1] in 1990. After three decades of development,

fuzzing has been widely adopted in both research and

industry to detect vulnerabilities and bugs.

Ever since the emergence of AFL (american fuzzy

lop) 1○, there has been an ongoing trend of coverage-

guided grey-box fuzzing (CGF) techniques [2–6]. In

essence, these CGF tools share similar core ideas that

they are designed to cover as many program paths as

possible. The key insight of driving the fuzzing process

with code coverage is to cover the program paths of the

program under test (PUT) and expose deeply hidden

bugs.

Existing CGF tools treat all program paths equally

and spend much effort in increasing code coverage [7, 8].

They forget the crux of a fuzzer lies in the ability to ef-

fectively detect bugs. Besides code coverage, more guid-

ing information is demanded to boost the fuzzing pro-

cess, such as memory bug information. Previous work

used this memory bug information, including TIFF [9],

MemFuzz [10], and CollAFL [11]. TIFF uses dynamic

taint analysis (DTA) to identify the input bytes that

can affect the values of important target variables in

the program. In MemFuzz and CollAFL, inputs with

more memory accesses are executed with a higher pos-

sibility in the fuzzing campaign.

These fuzzers identify some memory corruption

bugs. However, some inherent drawbacks reside in

them. 1) First, they are short-sighted in recognizing the

target variables in the programs, e.g., TIFF manually

collects 17 memory operation functions, and their ar-

guments are treated as targets. The detection method

is not automatic, and it detects an insufficient num-

Regular Paper

This work was supported by the National High-Level Personnel for Defense Technology Program of China under Grant No. 2017-
JCJQ-ZQ-013, the National Natural Science Foundation of China under Grant Nos. 61902405 and 61902412, the Natural Science
Foundation of Hunan Province of China under Grant No. 2021JJ40692, the Parallel and Distributed Processing Research Foundation
under Grant No. 6142110190404, and the Research Project of National University of Defense Technology under Grant Nos. ZK20-09
and ZK20-17.

1○AFL. http://lcamtuf.coredump.cx/afl, Oct. 2021.

©Institute of Computing Technology, Chinese Academy of Sciences 2022

http://dx.doi.org/10.1007/s11390-021-1600-9
http://lcamtuf.coredump.cx/afl


406 J. Comput. Sci. & Technol., Mar. 2022, Vol.37, No.2

ber of functions and target variables. It is known to

us that no matter what extreme values we can use in

mutation, insufficient taint targets will always result in

fewer memory corruption bugs. 2) DTA is too heavy-

weight when adopted in fuzzing. Though complicated

analysis, such as DTA, can provide precise information,

it suffers from slow execution speed (the number of exe-

cutions of PUT every second). It is commonly acknowl-

edged that fuzzing should be fast and light-weight, and

complicated analysis techniques that can slow down

the fuzzing process should be excluded [12–14]. Besides,

DTA requires extensive manual effort to write platform-

specific rules for every instruction. It is difficult to scale

DTA to different platforms. 3) MemFuzz and CollAFL

use coarse-grained seed prioritization by counting the

number of memory accesses in a seed. The guiding

information is not fine-grained enough for memory cor-

ruption detection. Memory bugs are closely related to

sensitive memory operations. Therefore, simply count-

ing the number of memory accesses is not an ideal so-

lution.

In this paper, we propose ovAFLow to overcome

the above drawbacks of existing memory bug guided

fuzzers. Fundamentally, our primary intention is to

identify more memory corruption with less performance

overhead. 1) We broaden the taint targets from two

perspectives. First, we automatically identify memory

operation functions from real-world programs through

static analysis and treat their arguments as targets.

Second, loops are commonly recognized as vulnerable

program parts [8, 15,16]. Therefore, we identify loops

with memory accesses and treat the variables that con-

trol the number of iterations of the loop as taint tar-

gets. 2) To achieve an acceptable fuzzing speed, we

adopt fuzzing-based taint inference (FTI) to obtain

taint information in ovAFLow. FTI is a newly pro-

posed technique, which can get taint information dur-

ing the fuzzing process without suffering from perfor-

mance overhead [17–19]. The basic idea of this technique

is to monitor the taint targets after mutating the in-

put bytes. If the value of the target changes after the

mutation, we say that the input can taint the target.

Furthermore, FTI is free of any intensive manual ef-

fort to write the platform-specific taint rules in DTA.

3) We design a fine-grained seed prioritization strat-

egy that contributes to the bug detection of the fuzzing

process. Taint information is used in our strategy. We

prioritize inputs that contain more identified taint in-

put bytes. The intuition is that the more the bytes in

the input that can taint the target variables, the more

the chances to trigger memory corruption. For exam-

ple, we prioritize input A with three taint bytes over

input B with one. Compared with simply counting the

number of memory accesses, our solution can guide the

fuzzing process to more sensitive memory operations

and closer to memory corruption.

We implement the prototype of ovAFLow based

on AFL. To answer the research questions in Sec-

tion 5, we evaluate ovAFLow against state-of-the-art

fuzzers in real-world programs and the LAVA-M [20]

dataset. Our evaluations show that ovAFLow identi-

fies more program crashes in 67 out of the 72 compa-

rison experiments with performance overhead at around

10%. Therefore, ovAFLow achieves the goal of detect-

ing more memory corruption bugs with acceptable per-

formance overhead. Moreover, we expose 12 new mem-

ory corruption bugs and two CVEs (common vulner-

ability exposures) in real-world programs. This result

also confirms the bug detection ability of ovAFLow.

In conclusion, we make the following contributions.

1) We reveal the defects of taint targets of previ-

ous memory bug fuzzers and expand them to memory

operation function arguments and memory access loop

counts.

2) Realizing the inappropriateness of heavy-weight

taint analysis in previous fuzzing tools, we use FTI to

identify taint input bytes that can taint our targets with

acceptable performance overhead.

3) We propose customized mutation and seed pri-

oritization strategies based on the taint information,

guiding the fuzzing process to more sensitive memory

operations and closer to memory corruption than previ-

ous work with coarse-grained prioritization strategies.

4) Extensive evaluations are performed to compare

ovAFLow with state-of-the-art fuzzers in real-world

programs and the LAVA-M dataset, and the results

show that ovAFLow completes the task of detecting

more memory bugs with acceptable overhead.

The rest of the paper is organized as follows. Sec-

tion 2 discusses about the background. Section 3 con-

tains the technique details. Implementation details are

listed in Section 4. Section 5 shows the evaluation re-

sults. The related work is in Section 6. Section 7 con-

cludes this paper.

2 Background

2.1 Fuzzing and AFL

Fuzzing is a widely used software testing technique.

It can automatically generate inputs to expose vulner-



Gen Zhang et al.: ovAFLow: Detecting Memory Corruption Bugs with Fuzzing-Based Taint Inference 407

abilities. Since the introduction of AFL in 2013, re-

searchers have been focusing on coverage-guided grey-

box fuzzers. CGF requires simple program analysis,

such as compile-time instrumentation, to obtain feed-

back and guide the fuzzing process. However, its coun-

terparts, such as black-box and white-box fuzzers, ei-

ther have no execution feedback to evolve the process,

or require heavy-weight analysis techniques. CGF tools

outperform black-box and white-box fuzzers in both ef-

ficiency and effectiveness because of the perfect balance

between the fuzzing speed and accuracy. Therefore, we

implement our ovAFLow prototype based on the AFL

framework.

Fig. 1 is the basic workflow of AFL 2○. When we

start AFL, 1) it reads all the initial seeds to the seed

queue. 2) Based on the prioritization rules, AFL selects

a seed as an input. 3) The input is mutated to gene-

rate several new inputs. 4) AFL executes PUT using

these inputs and 5) monitors whether a new program

path is covered. 6) If an input can cover a new path,

AFL adds it to the seed queue. Otherwise, the input is

discarded. 7) AFL goes back to step 2 and continues

to fuzz PUT. In the following parts, we are going to

discuss the mutation and seed prioritization strategies

in AFL.

Mutation

Execution

New

Code
Coverage?

Discard

Yes

Seed

Prioriti-
zation

Seed

Queue
Inputs

Fig.1. Basic workflow of AFL 2○.

2.1.1 Mutation

The mutation strategy of AFL can be divided into

two parts: the deterministic stage and the havoc

stage. The deterministic stage includes “bitflip”,

“arithmetic”, “interest”, and “dictionary”. “havoc”

and “splice” make up the havoc stage. Table 1 shows

the basic procedure of each mutation strategy. For ex-

ample, for an input “010”, “bitflip-1” mutates it to

“110”, “000”, and “011”. Specifically, we integrate

the FTI engine into the “bitflip-1” stage. Therefore,

ovAFLow will not perform extra executions to obtain

the taint information.

Table 1. Mutation Strategies of AFL

Item Detail

bitflip Flip by bit, one becomes zero, and zero becomes
one

arithmetic Integer addition or subtraction and arithmetic
operation

interest Replace some special integers in the original in-
put

dictionary Replace or insert the tokens automatically gene-
rated or provided by the user into the original
input

havoc Contain multiple rounds of variation of the orig-
inal input, and each round is a combination of a
variety of ways

splice The two seed files are spliced to get a new file,
and havoc mutation is performed on the new file

2.1.2 Seed Prioritization

This part can also be divided into two components.

First, AFL adopts input filtering to collect “interest-

ing” seeds which can cover new program paths, or the

hit count of a path reaches a new scale. For instance,

input A covers path 1 three times, input B covers path

1 and path 2, and input C covers path 1 100 times. In

this case, both input B and input C are interested in

the input filtering of AFL. Next, AFL uses queue culling

to rank the seeds. This algorithm prefers to prioritize

inputs with a smaller size and a faster execution speed.

After queue culling, a subset of the inputs is selected,

which is more efficient, and maintains the original code

coverage.

2.2 Fuzzing-Based Taint Inference

Generally speaking, complicated taint analysis tech-

niques, such as DTA, are hardly suitable when adopted

in a fuzzing situation. The major differences be-

tween DTA and FTI are illustrated in Table 2. Most

significantly, DTA suffers from performance overhead.

Whereas for FTI, it can be fast, and our evaluation

shows its overhead is about 10%. Meanwhile, DTA re-

quires extensive manual effort to write the taint rules,

and these rules are specific for different instructions of

different platforms. FTI requires no specific rule. As

for accuracy, FTI has no over-taint issue. If FTI reports

an input byte can taint the targets, it is very likely to

be true. However, under-taint is ubiquitous in DTA

2○AFL. http://lcamtuf.coredump.cx/afl, Oct. 2021.

http://lcamtuf.coredump.cx/afl


408 J. Comput. Sci. & Technol., Mar. 2022, Vol.37, No.2

because of the implicit data flow or loss of information.

FTI is free of these issues. For the above reasons, we

adopt FTI to assist our fuzzer to get taint information

with low performance overhead.

Table 2. Differences Between DTA and FTI

Item DTA FTI

Overhead High Low

Manual effort High Low

Platform-specific Yes No

Over-taint Yes No

Under-taint High Low

3 Technique Details

3.1 Overview

Fig. 2 shows the overview of ovAFLow, including

taint target recognition, FTI, mutation, seed prioritiza-

tion, and the main fuzzing loop. The colored shapes de-

note the changes to the original AFL. The taint target

recognition identifies memory operation function argu-

ments and memory access loop counts. Then, the main

fuzzing loop starts to execute PUT. Receiving the taint

targets, the FTI engine detects the input bytes that

can taint the targets during program execution. Mean-

while, the positions and the number of the taint bytes

are delivered to mutation and seed prioritization, re-

spectively, helping the fuzzing process to expose more

memory corruption bugs.

3.2 Taint Target Recognition

As mentioned above, TIFF manually collects 17 li-

brary functions and treats their arguments as taint tar-

gets. We argue that this solution is too narrow-scoped,

and it misses commonly-used memory operation func-

tions, such as CRYPTO malloc(). These absent functions

are also vulnerable. Incomplete recognition of taint tar-

gets will lead to the detection of fewer memory corrup-

tion bugs.

To solve this issue, we come up with two aspects of

methods to obtain the taint targets. The first one is

extending the number of memory operation functions

by automatically detecting them from real-world appli-

cations. With the help of static analysis, our basic idea

is to set up rules to identify functions that satisfy our

heuristics. Then, we can use statistical methods to con-

firm these memory operation functions, e.g., we can use

the times a function is identified as a memory operation

function. To achieve this goal, two questions need to

be answered. 1) What real-world programs can we use

to extract these functions? 2) What heuristics can we

use to filter these functions?

1) To extract our desired functions, the real-world

programs need to be sufficient in the amount of code to

perform statistical analysis, and the programs should

contain utilities of various kinds of purposes to main-

tain diversity. Through our study of commonly-used

datasets, we finally choose the Google fuzzer test

suite 3○ as our target. This dataset contains over six

million lines of code and 21 programs of different kinds,

such as json and libpng. 2) We set up two heuristics to

filter the functions. One is whether this function is per-

forming memory operations, and the other is whether

the arguments contain an integer that is similar to the

size argument in memcpy(). These two heuristics en-

sure that we obtain memory operation functions, and

Mutation Execution New Code
Coverage?

FTI

No
Discard

Yes

Position of 

Taints

Taint

Information

Seed
Prioriti-
zation

Number of

Taints

Taint Information

 Memory
Loop

Counts

Memory

Func Args

Taint Targets

Seed

Queue
Inputs

Taint Target Recognition

FTI Engine

Main Fuzzing Loop

Fig.2. Overview of ovAFLow. Func Args: function arguments.

3○Google fuzzer test suite. https://github.com/google/fuzzer-test-suite, Oct. 2021.

https://github.com/google/fuzzer-test-suite


Gen Zhang et al.: ovAFLow: Detecting Memory Corruption Bugs with Fuzzing-Based Taint Inference 409

they are controllable through the size argument. By

mutating the input bytes controlling the size, we can

trigger memory corruption with a higher possibility.

As shown in Algorithm 1, the input of the memory

operation function identification is the dataset DS. The

outputs are the arguments of the identified functions.

First, as shown in lines 2–4, for every function in the

dataset, we declare a frequency variable f and set f to

zero at the beginning. Then, in lines 5–11, we check

every call site of function F. We examine whether F

is accessing memory and whether the arguments of F

contain a size argument. If both the conditions are

satisfied, we increase fF by 1. It means this call site

of F is identified as a memory operation function. Af-

ter examining all the source code in the dataset, we

determine whether F is a memory operation function

by a threshold, which is shown in lines 12–15. If fF is

greater than or equal to the threshold, we add F to the

set of memory operation functions.

Algorithm 1. Memory Operation Function Identification

Require: dataset {DS}
1: {MF} = ∅
2: for F in {DS} do
3: fF = 0
4: end for
5: for F in {DS} do
6: if mem access(F ) == True then
7: if type args(F ) == int then
8: fF = fF + 1
9: end if

10: end if
11: end for
12: for F in {DS} do
13: if fF > Threshold then
14: {MF} = F∪{MF}
15: end if
16: end for
Ensure: memory operation function arguments {MF}

In addition, the threshold is determined by the fol-

lowing steps. When we have the frequencies of all the

functions, we can get the statistics of the frequencies.

The threshold is based on the statistics. For example,

we can calculate the average number of all the frequen-

cies and set the threshold to the average number.

The second part of taint target recognition is mem-

ory access loop count identification. Loops with mem-

ory accesses are vulnerable sections of programs, which

can lead to memory corruption. Our intuition is to go

beyond the scope of function arguments of traditional

approaches and to broaden the taint targets to the vari-

ables which control the loop iterations, i.e., loop counts.

When the input bytes that taint the loop counts are

mutated to extreme values, memory corruption bugs

are triggered. First, we construct control flow graphs

(CFG) of PUT and then identify loops with standard

back edge [21] analysis. Next, we filter out loops with-

out memory accesses or loop counts and finally get our

desired memory access loops and counts.

As shown in Algorithm 2, the inputs of the process

are the target programs, i.e., PUTs. The outputs are

the identified memory access loop counts. Lines 2 and

3 show the process of constructing CFG and identifying

loops. In lines 4–10, we check each loop to determine

whether it has memory accesses and whether the loop

iterations are controlled by a variable, i.e., the loop

count. If the conditions are satisfied, we add this loop

count to the set of loop counts.

Algorithm 2. Memory Access Loop Count Identification

Require: target programs PUT
1: {ML} = ∅
2: CFG = build cfg(PUT )

3: {Loop} = back edge(CFG)
4: for L in {Loop} do
5: if mem access(L) == True then

6: if have count(L) == True then

7: {ML} = L∪{ML}
8: end if
9: end if

10: end for

Ensure: memory access loop counts {ML}

3.3 Fuzzing-Based Taint Inference

Once we obtain the taint targets in PUT, we can

start the FTI engine to build connections between the

input bytes and these taint targets.

As shown in Algorithm 3, the inputs contain the

memory operation function arguments and memory ac-

cess loop counts. The outputs are the taint input bytes.

Before mutating bytei, we calculate the checksum of the

function arguments and the loop counts. Then, bytei
is mutated, and we execute PUT to calculate the new

checksum. If the two checksums are not equal, it means

the values of the taint targets are changed, and mutat-

ing bytei can cause this change. Therefore, we add bytei
to the set of taint input bytes.

Fig.3 shows a working example of FTI. Assume that

we have four bytes in the input and three taint targets.

Every time we mutate one byte from “00” to “01”, we

monitor the changes in the targets. For instance, when

we mutate byte1 from “00” to “01”, the value of V ar1

changes from 0 to 16, and we can say that byte1 can

taint V ar1. When all the mutations finish, we will unite

the results in each step to handle issues where several

continuous bytes taint the same target.



410 J. Comput. Sci. & Technol., Mar. 2022, Vol.37, No.2

Algorithm 3. Fuzzing-Based Taint Inference

Require: function arguments {MF} and loop counts {ML}
1: {T} = ∅
2: cksum1 = cksum({MF}, {ML})
3: for bytei in Input bytes do
4: mut exe(bytei)

5: cksum2 = cksum({MF}, {ML})
6: if cksum1! = cksum2 then
7: {T} = bytei∪{T}
8: end if

9: end for
Ensure: taint input bytes {T}

3.4 Mutation and Seed Prioritization

Strategies

3.4.1 Mutation

In this part, we are going to solve two problems.

1) Where to perform the memory bug guided muta-

tion? 2) What values to replace with? As mentioned

above, FTI identifies input bytes that can taint the tar-

gets, and these input bytes are delivered to mutation.

Receiving the positions of taint input bytes, our mu-

tation engine can mutate these bytes to extreme val-

ues. For memory operation function arguments, these

values will cause the manipulation of an unexpected

amount of memory, resulting in memory corruption. As

for memory access loop counts, by increasing the itera-

tions of accessing memory, we can also trigger sensitive

memory operations. Nevertheless, the extreme values

are not randomly selected. We manually analyze nu-

merous real-world memory corruption bugs and collect

commonly seen values in Table 3.

This table contains 14 extreme values for mutation.

By replacing the taint input bytes with these values,

memory corruption bugs are triggered with a higher

   

ı℘ taint

ı℘ taint

ı℘ taint

ı℘ taint

ı℘ taint

ı℘ taint

ı℘ taint

ı℘ taint

Var/

Var/

Var/

   

Var/

Var/

Var/

   

Var/

Var/

Var/

   

Var/

Var/

Var/

   

Var/

Var/

Var/

Union

ı↪↪ ↪ ℘ taint

ı↪℘ taint

ı↪℘ taint

Fig.3. Basic procedure of FTI.



Gen Zhang et al.: ovAFLow: Detecting Memory Corruption Bugs with Fuzzing-Based Taint Inference 411

probability. For instance, when we replace four bytes

in the input with the 32-bit overflow value, the mem-

ory operation function and the memory access loop may

operate an overflowed amount of memory, and this can

cause memory corruption.

Table 3. Manually Collected Extreme Values for Triggering
Memory Corruption

Extreme Value Description

−2147483648LL Overflow signed 32-bit when decremented

−100663046 Large negative number (endian-agnostic)

−32769 Overflow signed 16-bit

32768 Overflow unsigned 16-bit

65535 Overflow unsigned 16-bit when incremented

65536 Overflow unsigned 16-bit

100663045 Large positive number (endian-agnostic)

2147483647 Overflow signed 32-bit when incremented

2147483631 0x7fffffef

2147483646 0x7ffffffe

2147483648 0x80000000

2147483663 0x8000000f

4294967294 0xfffffffe

4294967295 0xffffffff

3.4.2 Seed Prioritization

Previous work [10, 11] in memory bug guided fuzzing

simply uses the number of memory accesses to priori-

tize seeds. We argue that this heuristics is not effec-

tive enough, because it fails to focus on more sensitive

memory operations that may easily trigger memory cor-

ruption. By realizing this problem, we propose a more

fine-grained seed prioritization strategy, aiming to pri-

oritize seeds with more taint input bytes. The input

bytes can taint the memory operation function argu-

ments and memory access loop counts. Concentrating

on these scenarios rather than simply the number of

memory accesses will help the fuzzer to trigger more

memory corruption bugs. In addition, we still keep the

original coverage-based seed prioritization strategy of

AFL to cover as many program paths as possible. In

conclusion, our seed prioritization strategy is shown in

the following equation.

Prioritize(seedi) =


1, if tainti > taintj

or afl prioi > afl prioj ,

0, otherwise.

tainti and afl prioi denote the strategies of

ovAFLow and AFL, respectively. seedi is the current

seed, and Prioritize() determines whether this seed

should be prioritized. As shown in the equation, a seed

that has more taint bytes or covers more program paths

can be prioritized. Otherwise, it will not be prioritized.

Algorithm 4 shows the procedure of our seed prior-

itization and mutation strategies. The inputs are the

identified taint bytes and the seeds. The output is the

mutated seed. In line 1, we select the most favored seed

among all the seeds through seed prioritization. Lines

2–4 show the process of mutation, where we mutate the

taint input bytes in the seed to extreme values. This

mutated seed will be executed in the PUT in the next

round of fuzzing.

Algorithm 4. Seed Prioritization and Mutation

Require: taint input bytes {T} and seeds {S}
1: s = prioritize({T}, {S})
2: for t in {T} do
3: s′ = mutation(s, t)

4: end for

Ensure: mutated seed s′

4 Implementation Details

In this section, we discuss about the details of

the implementation of ovAFLow, including the mem-

ory operation function identification, the FTI engine,

and other components. The ovAFLow prototype is

released 4○.

4.1 Memory Operation Function Identification

We write LLVM passes to conduct static analysis

to finish this task. By examining the functions and

their arguments, we can identify whether this func-

tion is operating on memory and whether a size ar-

gument exists. We use mayReadFromMemory() and

mayWriteToMemory() of LLVM to determine whether

this function is accessing memory. In addition, we use

getType() in LLVM to get the type of the arguments.

4.2 Taint Target Instrumentation

After we obtain the function arguments and loop

counts in PUT, we will trace their values and changes.

We modify the afl− llvm− pass.so.cc in AFL, which

instruments PUT and records the values in a new

bitmap every time when these targets are met. In de-

tail, we use the shared memory data structure, i.e.,

bitmap, to store the values of the taint targets. In

instrumentation, we first declare a pointer variable

4○ovAFLow prototype. https://github.com/zhanggenex/ovAFLow.git, Oct. 2021.

https://github.com/zhanggenex/ovAFLow.git


412 J. Comput. Sci. & Technol., Mar. 2022, Vol.37, No.2

TaintPtr for the bitmap region. Next, we locate the

taint targets in the source code, i.e., the function argu-

ments and loop counts. The values of the taint targets

are instrumented, and are stored in the bitmap. In ad-

dition, the changes in the checksums of the bitmap can

represent the changes in the bitmap. In this way, every

time when PUT is executed, we can monitor the val-

ues of the taint targets through the checksums of the

bitmap.

4.3 FTI

We integrate the FTI engine into the “bitflip-1”

stage of AFL and monitor the changes in our taint

targets. For example, after input A is executed, the

checksum of the bitmap is cksum1, and input B re-

sults in cksum2. We compare cksum1 with cksum2

to identify whether the values of our taint targets are

changed. If the checksums are not equal, the mutated

byte can taint the taint targets.

4.4 Mutation to Extreme Values

To insert the extreme values in Table 3 into the in-

puts, we modify the “interest-32” stage of AFL. The

FTI engine tells us the positions of the taint bytes in

the input, and we replace these bytes with extreme val-

ues to trigger memory corruption.

4.5 Seed Prioritization

We modify the corresponding code that controls

the prioritization of seeds in AFL. AFL maintains a

top rate data structure to get the most favored seed.

Besides the file size and execution speed, we also use

the number of taint bytes in the input as one factor to

calculate the top rate score to prioritize seeds.

5 Evaluation

In this section, we are going to answer these research

questions.

RQ1. Can ovAFLow find more unique crashes than

state-of-the-art fuzzers?

RQ2. Can ovAFLow identify more memory corrup-

tion bugs?

RQ3. Can ovAFLow accomplish the vulnerability

detection task with acceptable performance overhead?

RQ4. Are the mutation and seed prioritization

strategies in ovAFLow effective?

5.1 Setup

All our evaluations are conducted on a server with

48 cores of Intelr Xeonr CPU E5-2680 v3 @ 2.50 GHz,

128 GB of RAM, and a Linux kernel of 4.4.0-142-

generic. The evaluations are divided into two parts:

the real-world programs and the LAVA-M dataset [20].

The information of the target programs and the base-

line fuzzers will be given in Subsection 5.2 and Subsec-

tion 5.3.

5.2 Real-World Programs

We test 12 real-world programs in total. They in-

clude image processing programs (tiff2pdf and tiff2ps

from libtiff, and exiv2 from exiv2), multimedia pro-

grams (mp42aac and mp4tag from Bento4, and av-

conv from libav), pdf programs (podofopdfinfo and

podofotxtextract from podofo), xml programs (xm-

llint from libxml), text processing program (infotacap

from ncurses), and binary processing programs (nm and

readelf from Binutils). Moreover, Table 4 shows the ba-

sic information of these target programs.

Table 4. Target Programs

Target Version Input Format

mp42aac @@ a.aac Bento4-1.5.1-628 mp4

mp4tag −−show-tags
−−list-symbols
−−list-keys @@

Bento4-1.5.1-628 mp4

tiff2pdf @@ libtiff-4.0.7 tiff

tiff2ps @@ libtiff-4.0.7 tiff

podofopdfinfo
@@(pdfinfo)

podofo-0.9.6 pdf

xmllint @@ libxml-2.98 xml

exiv2 @@/dev/null exiv2-0.27 jpeg

infototap @@ ncurses-6.1 txt

avconv-y-i @@-f null libav-12.3 mp4

podofotextextraxt
@@(pdfext)

podofo-0.9.6 pdf

nm-C @@ Binutils-2.30 elf

readelf-a @@ Binutils-2.30 elf

For real-world programs, AFL, AFLFast [2], Fair-

Fuzz [6], TortoiseFuzz [8], QSYM [5], and Angora [4] are

used in our evaluation 5○. They are chosen because they

are state-of-the-art fuzzers, and recent fuzzing papers

frequently use these fuzzers as baselines [8, 17,22–24].

We use seeds in the testcase directory provided

by AFL as initial seeds. We use the number of unique

crashes discovered by each fuzzer as the first metric

5○We use these abbreviations in Tables 5–8: OA: ovAFLow, AF: AFL, AT: AFLFast, FF: FairFuzz, TF: TortoiseFuzz, QS: QSYM,
and AG: Angora.



Gen Zhang et al.: ovAFLow: Detecting Memory Corruption Bugs with Fuzzing-Based Taint Inference 413

to answer RQ1. The second metric is the number of

memory corruption bugs in the crashes to answer RQ2.

Moreover, to answer RQ3, we compare the execution

speed of ovAFLow and the baseline fuzzers. RQ4 is

answered with the number of crashes triggered by our

mutation and seed prioritization strategies among all

the crashes. All the evaluations in this subsection are

repeated 10 times for 24 hours to eliminate the ran-

domness during fuzzing, and the p values of the Mann-

Whitney (M-W) U test are given to show the signif-

icance of the differences of the evaluations. Besides,

the bold numbers in the evaluation results are the best

among all the results.

5.2.1 Unique Crashes

Table 5 and Table 6 show the number of average

unique crashes of 10 repeated runs and the p values of

the M-W U test, respectively. The number of unique

crashes a fuzzer can find is an important indicator of the

vulnerability detection ability. In total, among the 72

pairs of comparisons, ovAFLow triggers more unique

crashes than the competitors 67 times. Especially in

xmllint and nm, ovAFLow exposes unique crashes and

other fuzzers cannot. Whereas for the p values of the

M-W U test, we can see 64 pairs of comparisons with a

significant difference (p < 0.05) in the 67 cases. This in-

dicates that ovAFLow can trigger more unique crashes

in more than 95% comparison evaluations with a sig-

nificant difference.

ovAFLow outperforms AFL, AFLFast, and Tor-

toiseFuzz in all the evaluations, demonstrating better

vulnerability detection ability of ovAFLow. However,

there are four pairs of comparisons where other fuzzers

identify more crashes. We argue that the reason behind

this is the rare branches FairFuzz, QSYM, and Angora

can cover, and ovAFLow is not focusing on these sce-

narios. Nevertheless, ovAFLow still outperforms Fair-

Fuzz in eight out of the 12 comparisons, QSYM in 11

out of the 12 comparisons, and Angora in 11 out of the

12 comparisons. In conclusion, we can answer RQ1 that

ovAFLow identifies more unique crashes than state-of-

the-art fuzzers.

5.2.2 Memory Corruption Bugs

Our design intention is to enable ovAFLow to find

more memory corruption bugs. Therefore, we are going

to demonstrate it with Table 7 and Table 8. Table 7

shows the number of memory corruption bugs among all

Table 5. Unique Crashes Discovered by the Fuzzers

Target OA AF AT FF TF QS AG

mp42aac 217.9 134.0 185.6 279.8 188.8 299.8 114.1

mp4tag 229.3 202.2 186.6 306.0 199.2 199.9 202.8

tiff2pdf 25.1 7.8 1.4 4.5 5.5 1.5 8.7

tiff2ps 22.6 19.2 15.8 18.5 13.1 16.4 18.2

pdfinfo 30.3 10.2 22.1 25.3 6.3 9.8 12.7

xmllint 3.3 0.5 0.0 0.0 0.0 0.0 0.0

exiv2 57.6 39.1 44.5 43.9 44.9 33.4 41.2

infotocap 273.9 159.9 264.0 300.7 113.1 209.1 197.6

avconv 226.4 34.3 38.5 377.1 134.9 44.9 378.9

pdfext 80.3 69.5 62.9 73.7 71.4 61.1 64.1

nm 10.1 0.8 3.0 0.0 0.0 0.0 4.5

readelf 87.3 67.0 67.0 77.3 66.1 61.9 71.9

Table 6. p Values of Table 5

Target AF AT FF TF QS AG

mp42aac 9.03 ×10−5 1.62 ×10−4 0.99 2.35 ×10−4 0.99 9.03 ×10−5

mp4tag 2.28 ×10−3 1.29 ×10−4 0.99 1.38 ×10−4 1.45 ×10−4 3.55 ×10−3

tiff2pdf 8.93 ×10−5 7.25 ×10−5 8.58 ×10−5 8.61 ×10−5 7.58 ×10−5 1.59 ×10−4

tiff2ps 2.37 ×10−4 5.19 ×10−5 5.21 ×10−4 4.03 ×10−5 7.29 ×10−5 1.44 ×10−4

pdfinfo 1.12 ×10−4 0.11 0.04 9.03 ×10−5 1.01 ×10−4 5.66 ×10−4

xmllint 0.03 2.92 ×10−3 2.92 ×10−3 2.92 ×10−3 2.92 ×10−3 2.92 ×10−3

exiv2 1.01 ×10−4 9.35 ×10−4 0.02 0.03 9.03 ×10−5 1.02 ×10−3

infotocap 4.33 ×10−4 0.39 0.51 9.03 ×10−5 0.01 2.05 ×10−3

avconv 9.03 ×10−5 9.03 ×10−5 0.99 0.02 5.87 ×10−3 0.99

pdfext 0.01 7.70 ×10−3 0.24 0.02 5.21 ×10−3 9.33 ×10−3

nm 3.28 ×10−3 0.03 3.72 ×10−4 0.72 ×10−4 3.72 ×10−4 0.04

readelf 2.88 ×10−4 1.81 ×10−4 0.01 9.03 ×10−5 1.22 ×10−5 3.78 ×10−3



414 J. Comput. Sci. & Technol., Mar. 2022, Vol.37, No.2

Table 7. Memory Corruption Bugs Among All the Unique Crashes

Target OA AF AT FF TF QS AG

mp42aac 3.80 2.6 21.7 4.4 3.1 2.2 2.2

mp4tag 4.60 2.8 3.5 3.9 2.5 1.9 1.9

tiff2pdf 1.80 0.0 0.0 0.0 0.0 0.0 0.0

tiff2ps 21.90 18.8 15.5 16.5 20.1 18.5 15.1

pdfinfo 19.80 3.5 9.8 10.6 11.8 4.3 10.1

xmllint 0.00 0.0 0.0 0.0 0.0 0.0 0.0

exiv2 9.50 5.1 7.1 19.4 19.9 4.8 6.0

infotocap 171.25 88.9 138.7 230.9 244.5 89.1 98.2

avconv 3.80 0.0 0.1 11.8 3.5 0.1 0.0

pdfext 79.60 67.5 60.6 72.8 74.3 61.9 62.5

nm 9.20 0.8 3.0 0.0 3.1 0.0 0.0

readelf 0.00 0.0 0.0 0.0 0.0 0.0 0.0

Table 8. p Values of Table 7

Target AF AT FF TF QS AG

mp42aac 0.01 0.99 0.91 0.04 8.21 ×10−3 7.55 ×10−3

mp4tag 0.29 0.29 0.46 0.14 0.09 0.09

tiff2pdf 0.03 0.03 0.03 0.03 0.03 0.03

tiff2ps 1.82 ×10−3 6.95 ×10−5 8.96 ×10−5 0.01 1.55 ×10−3 5.69 ×10−5

pdfinfo 7.64 ×10−5 1.83 ×10−3 5.39 ×10−3 0.03 9.03 ×10−5 2.88 ×10−3

xmllint – – – – – –

exiv2 3.32 ×10−3 0.14 0.71 0.82 2.12 ×10−3 9.11 ×10−3

infotocap 1.03 ×10−3 0.02 0.89 0.91 5.41 ×10−3 0.01

avconv 1.14 ×10−4 2.52 ×10−4 0.94 0.04 2.52 ×10−4 1.14 ×10−4

pdfext 5.54 ×10−3 6.97 ×10−3 0.22 0.35 9.21 ×10−3 0.01

nm 7.60 ×10−3 0.11 1.18 ×10−4 0.25 1.18 ×10−4 1.18 ×10−4

readelf – – – – – –

the unique crashes in Table 5. We determine whether

the crash is a memory corruption bug through manual

analysis with the help of AdressSanitizer (ASAN) [25].

In general, ovAFLow triggers more memory bugs in 53

out of the 60 (there are 12 pairs where all fuzzers find

no memory bug) pairs of comparisons. In addition, Ta-

ble 8 shows the p values of the M-W U test. The results

show ovAFLow outperforms the other tools in 42 out of

the 53 comparisons with a significant difference. Addi-

tionally, ovAFLow detects memory corruption in PUTs

where others fail to defect bugs such as tiff2pdf.

Moreover, ovAFLow has better performance in

100%, 90%, 70%, 80%, 100%, and 100% of the pairs

than AFL, AFLFast, FairFuzz, TortoiseFuzz, QSYM,

and Angora, respectively. None of them use memory

bug guided mutation or seed prioritization strategies

which are used in ovAFLow. Therefore, they cannot

trigger as many memory corruption bugs as ovAFLow.

With this evaluation result, we can answer RQ2 that

ovAFLow detects more memory bugs than the baseline

fuzzers.

5.2.3 Execution Speed

Fig.4 shows the execution speed of each fuzzer. At

first sight, ovAFLow has the same level of execution

speed as the baseline fuzzers. In tiff2ps, avconv, pod-

ofotxtextract, and readelf, ovAFLow even achieves the

highest speed. Specifically, we can see in 37 out of the

72 comparisons ovAFLow runs slower than the other

tools. Among the 37 pairs of comparisons, the average

performance overhead is 10.3%.

Furthermore, we record the average speed of all the

evaluations in Table 9. According to it, ovAFLow is

only slower than AFL and Angora with less than 5%

overhead. ovAFLow is faster than AFLFast, FairFuzz,

and TortoiseFuzz with more than 9% performance in-

crease. Moreover, GREYONE [17] is a state-of-the-art

fuzzer using FTI. The authors [17] claimed less than 25%

performance overhead in the paper. Therefore, RQ3 is

answered through this part of the evaluation. Com-

pared with these state-of-the-art fuzzers, ovAFLow ac-

complishes the vulnerability detection task with accept-

able performance overhead.



Gen Zhang et al.: ovAFLow: Detecting Memory Corruption Bugs with Fuzzing-Based Taint Inference 415

100

300

500

700

900

1 100

1 300

1 500

1 700

1 900

ovAFLow AFL AFLFast

N
u
m

b
e
r 

o
f 
E
x
e
c
u
ti
o
n
s 

p
e
r 

S
e
c
o
n
d

FairFuzz TortoiseFuzz QSYM Angora

mp42aac mp4tag tiff2pdf tiff2ps pdfinfo xmllint exiv2 infotocap avconv pdfext nm readelf

Fig.4. Average execution speed of each fuzzer during the 10 runs.

Table 9. Average Execution Speed of Each Fuzzer

Fuzzer Execution Speed

ovAFLow 670.3

AFL 702.3(−4.6%)

AFLFast 586.6(+14.3%)

FairFuzz 588.0(+14.0%)

TortoiseFuzz 611.5(+9.6%)

QSYM 667.6(+0.4%)

Angora 697.7(−3.9%)

Note: The numbers in the brackets show the performance in-
crease (+) or decrease (−) compared with the baseline fuzzers.

5.2.4 Crashes Triggered by Mutation and Seed Prior-
itization Strategies

We propose memory bug guided mutation and seed

prioritization in ovAFLow. Fig.5 and Table 10 show

the percentages and numbers of crashes triggered by

these strategies in each PUT, respectively. As we can

see in tiff2pdf, more than 60% of the crashes are trig-

gered by our customized strategies. Furthermore, the

average percentage of triggered crashes is around 25%,

which means a quarter of all the crashes result from the

mutation and seed prioritization strategies. The rest

of the crashes are from the original strategies in AFL,

which aim to improve code coverage. Therefore, we can

answer RQ4 that our mutation and seed prioritization

strategies make up 25% of all the unique crashes.

5.2.5 Path Coverage

Fig.6 illustrates the code coverage of each fuzzer.

We can see that ovAFLow covers more paths than

the baseline fuzzers in at least five PUTs, such as

0%

10%

20%

30%

40%

50%

60%

mp42aac mp4tag tiff2pdf tiff2ps pdfinfo xmllint

P
e
c
e
n
ta

g
e
 o

f 
C

ra
sh

e
s

exiv2 infotocap avconv pdfext nm readelf

Fig.5. Percentages of crashes triggered by our mutation and seed prioritization strategies.



416 J. Comput. Sci. & Technol., Mar. 2022, Vol.37, No.2

nm. Though we are not targeting code coverage in

ovAFLow, our mutation and seed prioritization strate-

gies possibly help the fuzzing process cover more paths.

Table 11 shows the average path coverage of all the eval-

uations. Compared with the baseline fuzzers, ovAFLow

covers 14.4%, 32.4%, 12.2%, and 15.7% more average

path than AFL, AFLFast, FairFuzz, and TortoiseFuzz,

respectively. ovAFLow mutates the taint input bytes

to extreme values, and these values possibly help cover

more program paths. However, QSYM and Angora out-

perform ovAFLow in detecting program paths. Both

QSYM and Angora are designed to pass magic bytes

and solve the constraints in the programs. Therefore,

they can outperform ovAFLow.

Table 10. Numbers of Crashes Triggered by Our Mutation and
Seed Prioritization

PUT Number of Crashes

mp42aac 44.0

mp4tag 74.7

tiff2pdf 13.7

tiff2ps 5.7

pdfinfo 5.5

xmllint 0.0

exiv2 12.4

infotocap 3.5

avconv 121.0

pdfext 28.3

nm 0.0

readelf 5.9

5.3 LAVA-M Dataset

The LAVA-M dataset contains base64, md5sum,

uniq, and who. They are manually injected with bugs

that fuzzers need to pass numerous magic byte checks

to trigger. In total, there are 44 injected bugs in base64,

57 in md5sum, 28 in uniq, and 2 136 in who.

We select QSYM [5], Angora [4], TIFF [9], AFLFast,

FairFuzz, and TortoiseFuzz to compare with. We

run ovAFLow in one thread and QSYM in another.

Adopting QSYM to help a fuzzer solve magic bytes

in the LAVA-M dataset is commonly seen in previous

work [8, 23]. Therefore, we follow this configuration to

conduct the evaluation. In addition, AFLFast, Fair-

Fuzz, and TortoiseFuzz are also following this configu-

ration.

The initial seeds are taken from the LAVA-M

dataset. We use the number of identified LAVA-M bugs

as one of the metrics. We further present the execution

speed to answer RQ3. All the evaluations last for 24

hours. We count the number of discovered bugs by the

lava validation.py script provided by Angora.

5.3.1 Identified Bugs

Table 12 shows the identified bugs of each fuzzer.

ovAFLow outperforms QSYM, TIFF, AFLFast, Fair-

Fuzz, and TortoiseFuzz in all the PUTs. The reason

is clear. Without customized mutation and seed pri-

oritization strategies, QSYM, AFLFast, FairFuzz, and

TortoiseFuzz cannot identify those memory corruption

bugs. Additionally, TIFF suffers from performance

200

5 200

10 200

15 200

20 200

mp42aac mp4tag tiff2pdf tiff2ps pdfinfo xmllint

N
u
m

b
e
r 

o
f 
C

o
v
e
re

d
 P

a
th

s

exiv2 infotocap avconv pdfext nm readelf

ovAFLow AFL AFLFast FairFuzz TortoiseFuzz QSYM Angora

Fig.6. Average path coverage of each fuzzer during the 10 runs.



Gen Zhang et al.: ovAFLow: Detecting Memory Corruption Bugs with Fuzzing-Based Taint Inference 417

overhead and triggers fewer bugs in a given time bud-

get. Moreover, ovAFLow detects more bugs in base64,

md5sum, and uniq than Angora and even exposes bugs

not listed in the LAVA-M dataset. Through manual

analysis, we find out that these unlisted bugs are mem-

ory corruption bugs. This proves that ovAFLow can

identify hidden memory bugs.

Table 11. Average Path Coverage of Each Fuzzer

Fuzzer Path Coverage

ovAFLow 4 113.9

AFL 3 595.23(+14.4%)

AFLFast 3 107.7(+32.4%)

FairFuzz 3 665.9(+12.2%)

TortoiseFuzz 3 556.4(+15.7%)

QSYM 4 284.0(−4.0%)

Angora 4 481.7(−8.2%)

Note: The numbers in the brackets show the increase (+) or
decrease (−) compared with the baseline fuzzers.

5.3.2 Execution Speed

Fig.7 is the speed of each fuzzer on the LAVA-M

dataset. ovAFLow is slower than QSYM in three out

of the four PUTs. This is similar to the evaluation

results in the real-world programs. Most significantly,

ovAFLow is about 10 000 times faster than TIFF. TIFF

can only execute an input every few seconds, while

ovAFLow can reach the speed of hundreds of execu-

tions per second. Our application of FTI rather than

heavy-weight taint analysis results in this huge diffe-

rence in speed. In addition, compared with AFLFast,

FairFuzz, and TortoiseFuzz, the speed of ovAFLow is

at the same level. This part of the evaluation answers

RQ3 that ovAFLow is running with acceptable perfor-

mance overhead.

5.3.3 Path Coverage

Furthermore, we record the program paths each

fuzzer covers in Fig.8. We get similar results as in the

real-world programs that ovAFLow covers more paths

than TIFF in the four PUTs. Angora can outperform

ovAFLow in three out of the four programs because

of its constraint solving ability. In addition, ovAFLow

outperforms AFLFast, FairFuzz, and TortoiseFuzz in

most of the PUTs.

Table 13 shows the average covered paths of each

fuzzer. As we can see from the table, the program

paths of ovAFLow are 1.4% and 8.8% less than those

Table 12. Number of Identified LAVA-M Bugs for Each Fuzzer

Target Total OA QS AG IF AT FF TF

base64 44 44+3 44 44+1 38 44 44 44

md5sum 57 57+3 57 57 27 57 57 57

uniq 28 28+1 28 28 28 28 28 28

who 2 136 1 724+14 1 215 1 866 171 1 591 1 699 1 650

Note: The values consist of listed bugs and unlisted memory corruption bugs. We use these abbreviations in this paper: OA: ovAFLow,
QS: QSYM, AG: Angora, IF: TIFF, AT: AFLFast, FF: FairFuzz, and TF: TortoiseFuzz.

0

500

1 000

1 500

2 000

2 500

base64 md5sum

N
u
m

b
e
r 

o
f 
E
x
e
c
u
ti
o
n
s 

p
e
r 

S
e
c
o
n
d

uniq who

ovAFLow QSYM Angora TIFF AFLFast FairFuzz TortoiseFuzz

Fig.7. Execution speed of each fuzzer.



418 J. Comput. Sci. & Technol., Mar. 2022, Vol.37, No.2

40

90

140

190

240

290

340

390

base64 md5sum

N
u
m

b
e
r 

o
f 
C

o
v
e
re

d
 P

a
th

s

uniq who

ovAFLow QSYM Angora TIFF AFLFast FairFuzz TortoiseFuzz

Fig.8. Path coverage of each fuzzer.

of QSYM and Angora, respectively. ovAFLow outper-

forms TIFF, AFLFast, FairFuzz, and TortoiseFuzz by

72.8%, 5.6%, 3.0%, and 11.3%, respectively. In con-

clusion, though we are not aiming to increase program

coverage, we still get better results than most of the

baseline fuzzers.

Table 13. Average Path Coverage of Each Fuzzer in the LAVA-
M Dataset

Fuzzer Path Coverage

ovAFLow 226.8

QSYM 230.0(−1.4%)

Angora 248.5(−8.8%)

TIFF 131.3(+72.8%)

AFLFast 214.8(+5.6%)

FairFuzz 220.2(+3.0%)

TortoiseFuzz 203.8(+11.3%)

Note: The numbers in the brackets show the increase (+) or
decrease (−) compared with the baseline fuzzers.

5.4 Additional Evaluation Results

5.4.1 New Bugs

During the evaluation, we identify 12 new bugs

which are listed in Table 14. All of them are reported

to maintainers, and some are confirmed and then fixed

to the time of writing this paper. As we can see, all of

them are overflow bugs, which are a subset of memory

corruption bugs. These bugs are harmful, and they can

lead to severe consequences such as denial-of-service.

Our strategies to mutate the memory operation func-

tion arguments and memory access loop counts drive

these overflow bugs to be triggered.

In addition, by mutating the target variables to ex-

treme values, we can detect other types of memory

bugs. For example, by mutating the size argument

in malloc(), we identify several memory consumption

bugs. These bugs can consume too much memory and

make the operating system reboot. However, these

identified bugs have already been discovered by the

other fuzzing tools [26, 27]. Therefore, they are not listed

in the table.

Moreover, two CVEs based on these new bugs are

assigned. We list them in Table 15. These CVEs

demonstrate that these bugs are harmful, and they can

cause security issues.

5.4.2 Memory Operation Functions

We use static analysis to identify memory operation

functions in the Google fuzzer test suite. Table 16

shows the function names and the times they are identi-

fied as memory operation functions. Commonly used li-

brary functions are listed in the table, such as memcpy()

and memset(). Meanwhile, we also collect other func-

tions with high frequencies that may be missed with

manual analysis, such as CRYPTO malloc(). In total,

we automatically identify 44 functions, and their argu-

ments are used as taint targets.

5.5 Discussion

In Algorithm 1, we use offline statistics to identify

the memory operation functions. However, online algo-

rithms may also be effective in identifying the functions.

We consider the trade-off between offline and online



Gen Zhang et al.: ovAFLow: Detecting Memory Corruption Bugs with Fuzzing-Based Taint Inference 419

Table 14. New Bugs Discovered by ovAFLow

Target Bug Description

mp42aac heap-buffer-overflow Bento4-1.6.0-637/Source/C++/Core/Ap4HvccAtom.cpp:282:24 in AP4 HvccAtom
::AP4 HvccAtom(unsigned int, unsigned char const*)

mp42aac heap-buffer-overflow Bento4-1.6.0-637/Source/C++/Core/Ap4AvccAtom.cpp:165:31 in AP4 AvccAtom
::AP4 AvccAtom(unsigned int, unsigned char const*)

mp42aac heap-buffer-overflow Bento4-1.6.0-637/Source/C++/Core/Ap4Utils.cpp:548 AP4 BitReader ::Skip-
Bits(unsigned int)

mp42aac heap-buffer-overflow Bento4-1.6.0-637/Source/C++/Core/Ap4Dec3Atom.cpp:97 AP4 Dec3Atom::
AP4 Dec3Atom (unsigned int, unsigned char const*)

mp4tag heap-buffer-overflow Bento4-1.6.0-637/Source/C++/Core/Ap4AvccAtom.cpp:88 AP4 AvccAtom ::Cre-
ate(unsigned int, AP4 ByteStream&)

mp4tag heap-buffer-overflow Bento4-1.6.0-637/Source/C++/Core/Ap4RtpAtom.cpp:51 AP4 RtpAtom::
AP4 RtpAtom(unsigned int, AP4 ByteStream&)

mp4tag heap-buffer-overflow Bento4-1.6.0-637/Source/C++/Core/Ap4AvccAtom.cpp:165 AP4 AvccAtom::
AP4 AvccAtom(unsigned int, unsigned char const*)

tiff2pdf heap-buffer-overflow (tiff-4.1.0/build-orig-asan/mybin/bin/tiff2pdf+0x459d44) in interceptor
memcpy.part.42

tiff2ps heap-buffer-overflow tiff-4.1.0/tools/tiff2ps.c:2479:20 in PSDataColorContig

infotocap heap-buffer-overflow ncurses/tinfo/captoinfo.c:644 nc infotocap

infotocap stack-buffer-overflow ncurses/progs/dump entry.c:1144 fmt entry

infotocap global-buffer-overflow (ncurses-6.2/build-orig-asan/mybin/bin/infotocap+0x460e85)

statistics. Fuzzing is sensitive to execution speed. On-

line algorithms possibly require complex program ana-

lysis. We think online algorithms may slow down the

speed of fuzzing. Therefore, we use offline statistics,

which are easy and direct.

Table 15. CVEs Discovered by ovAFLow

CVE ID Description

2020-21064 A buffer-overflow vulnerability in the AP4 Rtp-
Atom::AP4 RtpAtom function in Ap4RtpA-
tom.cpp of Bento4 1.5.1.0 allows attackers to
cause a denial of service

2020-21066 An issue was discovered in Bento4 v1.5.1.0.
There is a heap-buffer-overflow in AP4 Dec-
3Atom::AP4 Dec3Atom at Ap4Dec3Atom.cpp,
leading to a denial of service (program crash),
as demonstrated by mp42aac

6 Related Work

6.1 Seed Selection

In the fuzzing process, the fuzzer needs to choose

a seed at the end of the previous round of fuzzing. It

is important to select the best seed based on the goal

of the fuzzer. When a seed is marked as favored, it

will be selected with a higher probability in the follow-

ing rounds. In addition, MemLock [26] and UAFL [27]

choose seeds with more memory consumption and more

UAF (use-after-free) sequences, respectively. Further-

more, AFLGo [28] and CollAFL [11] also select seeds with

their specific goals. However, they require complex pro-

gram analysis to finish the task. Unlike them, ovAFLow

does not need additional static analysis to select the

seeds. The process of FTI and the following seed selec-

tion are integrated into the original procedure of AFL,

which requires no complex operation.

6.2 Memory Bug Guided Fuzzing

Memory corruption is non-trivial in software, and

fuzzing memory bugs has drawn the attention of re-

searchers. TIFF [9] uses DTA to identify input bytes

that can taint commonly-seen memory operation func-

tions. The building block of TIFF is a type-aware mu-

tation strategy to efficiently trigger memory corruption

bugs. In the beginning, TIFF manually collects library

functions, such as memcpy(), and marks the arguments

of these functions as target variables. Then, TIFF rec-

ognizes important input bytes with a heavy-weight ana-

lysis technique: dynamic taint analysis. Next, TIFF

mutates the recognized taint input bytes to extreme

values in the fuzzing process to trigger memory cor-

ruption. However, the memory operation functions are

manually collected in TIFF, including only 17 func-

tions. In contrast, ovAFLow automatically identifies

44 functions where memory bugs may happen. Mean-

while, the heavy-weight DTA in TIFF cannot fit the

fuzzing process. We use light-weight detecting tech-

niques in ovAFLow, such as FTI, to keep the fuzzing

process fast.



420 J. Comput. Sci. & Technol., Mar. 2022, Vol.37, No.2

Table 16. Identified Memory Operation Functions and Their
Frequencies

Function Name Frequency

memcpy 11 819

memset 4 932

CRYPTO free 3 466

snprintf 1 034

CRYPTO malloc 895

memmove 735

malloc 701

BIO printf 668

fprintf 561

archive read data 535

strncmp 430

CRYPTO clear free 317

archive read open filename 237

strchr 226

BIO snprintf 221

ft mem realloc 196

realloc 189

archive write data 161

strtol 140

strncpy 140

archive write open memory 134

BIO read 130

sprintf 129

fwrite 126

archive write output 124

archive read open memory 121

read pbm integer 112

ft mem alloc 103

strncat 84

strtoull 82

strtoll 81

open 81

CRYPTO memcmp 76

app malloc 75

write 66

read 59

strrchr 54

memchr 52

strtoul 41

fstat 33

vsnprintf 32

fgets 29

fseek 23

fputc 22

Whereas for MemFuzz [10] and CollAFL [11], they

share similar ideas that they identify memory accesses

in each program input, and inputs with more mem-

ory accesses can be executed with a higher possibility

in the following fuzzing campaign. The intuition be-

hind this idea is to increase the chance of detecting

memory bugs by performing more memory operations.

However, their prioritization strategies are not efficient.

The prioritization strategy is coarse-grained and can-

not distinguish seeds with different numbers of taint

bytes. To solve these problems, we use more precise

taint-based seed prioritization strategies in ovAFLow

to detect more memory bugs.

6.3 Fuzzing with FTI

FTI is a newly proposed technique in fuzzing. It

is designed in replacement of heavy-weight taint ana-

lysis, such as DTA. SLF [19] adopts random mutations

to mark inputs, inferring taints directly related to in-

puts. ProFuzzer [18] monitors the changes in control

flow and partially infers the types of bytes. Our pro-

posed FTI is different from these tools. The goal of

SLF and ProFuzzer is to identify the accurate type

of the input bytes. For example, they want to deter-

mine whether byte A of the input was working as an

enumeration variable in the PUT. In addition, both of

them mutate a byte 256 (28) times in the FTI process.

This causes considerable performance overhead in iden-

tifying the taint input bytes. In contrast, the FTI of

ovAFLow is integrated into the “bitflip-1” mutation of

AFL. The “bitflip-1” process only mutates a byte eight

times. The FTI in ovAFLow will not cause additional

performance overhead.

GREYONE [17] performs complete byte-level muta-

tion and monitors the changes to infer taint attributes.

In ovAFLow, we implement our own FTI from scratch,

which is different from GREYONE. Our taint targets

are automatically collected from real-world programs

and the PUTs. Furthermore, we integrate the FTI pro-

cess into the “bitflip-1” stage of AFL, and it causes neg-

ligible performance overhead. In addition, the source

code of GREYONE is unavailable. We will make our

code public to boost the research in this field.

7 Conclusions

In this paper, we introduced a new memory bug

guided fuzzer, ovAFLow. We broadened the vulnerable

targets to memory operation function arguments and

memory access loop counts. Furthermore, we used FTI

to replace heavy-weight DTA in fuzzing. In evaluation,

ovAFLow outperforms the other fuzzers in bug detec-

tion and other aspects. We had the following discover-

ies. First, speed is the first priority in fuzzing, and we



Gen Zhang et al.: ovAFLow: Detecting Memory Corruption Bugs with Fuzzing-Based Taint Inference 421

should never slow down the fuzzing process when adopt-

ing new techniques. Heavy-weight techniques which

slow down the execution speed will have a negative

effect on fuzzing. Second, the essence of fuzz testing

is to detect more bugs. Our evaluation demonstrated

that fuzzers should focus more on vulnerability detec-

tion ability, along with code coverage. Third, ovAFLow

identifies many vulnerable targets that can be easily

triggered into memory corruption, e.g., the arguments

of memory operation functions. Programmers and re-

searchers should spend effort in protecting these tar-

gets from being triggered into memory bugs. Addition-

ally, in the future, we would like to add more precise

program analysis techniques to ovAFLow. With these

techniques, ovAFLow can generate more precise results

and find memory corruption with a higher possibility.

References

[1] Miller B P, Fredriksen L, So B. An empirical study of the

reliability of UNIX utilities. Communications of the ACM,

1990, 33(12): 32-44. DOI: 10.1145/96267.96279.

[2] Böhme M, Pham V T, Roychoudhury A. Coverage-based

Greybox Fuzzing as Markov chain. IEEE Transactions

on Software Engineering, 2017, 45(5): 489-506. DOI:

10.1109/TSE.2017.2785841.

[3] Rawat S, Jain V, Kumar A, Cojocar L, Giuffrida C,

Bos H. VUzzer: Application-aware evolutionary fuzzing.

In Proc. the 24th Annual Network and Distributed Sys-

tem Security Symposium, Feb. 26-Mar. 1, 2017. DOI:

10.14722/ndss.2017.23404.

[4] Chen P, Chen H. Angora: Efficient fuzzing by prin-

cipled search. In Proc. the 2018 IEEE Symposium on

Security and Privacy, May 2018, pp.711-725. DOI:

10.1109/SP.2018.00046.

[5] Yun I, Lee S, Xu M, Jang Y, Kim T. QSYM: A practi-

cal concolic execution engine tailored for hybrid fuzzing. In

Proc. the 2018 USENIX Security Symposium, Aug. 2018,

pp.745-761.

[6] Lemieux C, Sen K. FairFuzz: A targeted mutation strat-

egy for increasing greybox fuzz testing coverage. In Proc.

the 2018 ACM/IEEE International Conference on Auto-

mated Software Engineering, Sept. 2018, pp.475-485. DOI:

10.1145/3238147.3238176.

[7] Li Y, Ji S, Lv C, Chen Y, Chen J, Gu Q, Wu C. V-

Fuzz: Vulnerability-oriented evolutionary fuzzing. arXiv:1-

901.01142, 2019. https://arxiv.org/abs/1901.01142, Sept.

2021.

[8] Wang Y, Jia X, Liu Y, Zeng K, Bao T, Wu D, Su P. Not

all coverage measurements are equal: Fuzzing by cover-

age accounting for input prioritization. In Proc. the 2020

Network and Distributed System Security Symposium, Feb.

2020. DOI: 10.14722/ndss.2020.24422.

[9] Jain V, Rawat S, Giuffrida C, Bos H. TIFF: Using in-

put type inference to improve fuzzing. In Proc. the 2018

Annual Computer Security Applications Conference, Dec.

2018, pp.505-517. DOI: 10.1145/3274694.3274746.

[10] Coppik N, Schwahn O, Suri N. MemFuzz: Using memory

accesses to guide fuzzing. In Proc. the 2019 IEEE Confe-

rence on Software Testing, Validation and Verification,

Apr. 2019, pp.48-58. DOI: 10.1109/ICST.2019.00015.

[11] Gan S, Zhang C, Qin X, Tu X, Li K, Pei Z, Chen Z. Col-

lAFL: Path sensitive fuzzing. In Proc. the 2018 IEEE Sym-

posium on Security and Privacy, May 2018, pp.679-696.

DOI: 10.1109/SP.2018.00040.

[12] Zhou C, Wang M, Liang J, Liu Z, Jiang Y. Zeror: Speed up

fuzzing with coverage-sensitive tracing and scheduling. In

Proc. the 2020 IEEE/ACM International Conference on

Automated Software Engineering, Sept. 2020, pp.858-870.

DOI: 10.1145/3324884.3416572.

[13] Nagy S, Hicks M. Full-speed fuzzing: Reducing fuzzing

overhead through coverage-guided tracing. In Proc. the

2019 IEEE Symposium on Security and Privacy, May 2019,

pp.787-802. DOI: 10.1109/SP.2019.00069.

[14] Zhang C, Dong W Y, Ren Y Z. INSTRCR: Lightweight

instrumentation optimization based on coverage-guided

fuzz testing. In Proc. the 2nd IEEE International

Conference on Computer and Communication En-

gineering Technology, Aug. 2019, pp.74-78. DOI:

10.1109/CCET48361.2019.8989335.

[15] Jia X, Zhang C, Su P, Yang Y, Huang H, Feng D. Towards

efficient heap overflow discovery. In Proc. the 2017 USENIX

Security Symposium, Aug. 2017, pp.989-1006.

[16] Qin F, Lu S, Zhou, Y. SafeMem: Exploiting ECC-memory

for detecting memory leaks and memory corruption dur-

ing production runs. In Proc. the 2005 International Sym-

posium on High-Performance Computer Architecture, Feb.

2005, pp.291-302. DOI: 10.1109/HPCA.2005.29.

[17] Gan S, Zhang C, Chen P, Zhao B, Qin X, Wu D, Chen Z.

GREYONE: Data flow sensitive fuzzing. In Proc. the 2020

U SENIX Security Symposium, Aug. 2020, pp.2577-2594.

[18] You W, Wang X, Ma S, Huang J, Zhang X, Wang X, Liang

B. ProFuzzer: On-the-fly input type probing for better zero-

day vulnerability discovery. In Proc. the 2019 IEEE Sympo-

sium on Security and Privacy, May 2019, pp.769-786. DOI:

10.1109/SP.2019.00057.

[19] You W, Liu X, Ma S, Perry D, Zhang X, Liang B.

SLF: Fuzzing without valid seed inputs. In Proc.

the 2019 IEEE/ACM International Conference on

Software Engineering, May 2019, pp.712-723. DOI:

10.1109/ICSE.2019.00080.

[20] Dolan-Gavitt B, Hulin P, Kirda E, Leek T, Mambretti A,

Robertson W, Whelan R. LAVA: Large-scale automated

vulnerability addition. In Proc. the 2016 IEEE Sympo-

sium on Security and Privacy, May 2016, pp.110-121. DOI:

10.1109/SP.2016.15.

[21] Aho A V, Sethi R, Ullman J D. Compilers, Principles, Tech-

niques, and Tools (1st edition). Addison Wesley, 1986.

[22] Zhang G, Zhou X, Luo Y, Wu X, Min E. PTfuzz: Guided

fuzzing with processor trace feedback. IEEE Access, 2018,

6: 37302-37313. DOI: 10.1109/ACCESS.2018.2851237.

[23] Lyu C, Ji S, Zhang C, Li Y, Lee W H, Song Y, Beyah

R. MOPT: Optimized mutation scheduling for fuzzers. In

Proc. the 2019 USENIX Security Symposium, Aug. 2019,

pp.1949-1966.

https://doi.org/10.1145/96267.96279
https://doi.org/10.1109/TSE.2017.2785841
https://doi.org/10.14722/ndss.2017.23404
https://doi.org/10.1109/SP.2018.00046
https://doi.org/10.1145/3238147.3238176
https://doi.org/10.14722/ndss.2020.24422
https://doi.org/10.1145/3274694.3274746
https://doi.org/10.1109/ICST.2019.00015
https://doi.org/10.1109/SP.2018.00040
https://doi.org/10.1145/3324884.3416572
https://doi.org/10.1109/SP.2019.00069
https://doi.org/10.1109/CCET48361.2019.8989335
https://doi.org/10.1109/HPCA.2005.29
https://doi.org/10.1109/SP.2019.00057
https://doi.org/10.1109/ICSE.2019.00080
https://doi.org/10.1109/SP.2016.15
https://doi.org/10.1109/ACCESS.2018.2851237


422 J. Comput. Sci. & Technol., Mar. 2022, Vol.37, No.2

[24] Yue T, Wang P, Tang Y, Wang E, Yu B, Lu K, Zhou X.

EcoFuzz: Adaptive energy-saving greybox fuzzing as a vari-

ant of the adversarial multi-armed bandit. In Proc. the 2020

USENIX Security Symposium, Aug. 2020, pp.2307-2324.

[25] Serebryany K, Bruening D, Potapenko A, Vyukov D. Ad-

dressSanitizer: A fast address sanity checker. In Proc. the

2012 USENIX Security Symposium, Aug. 2012, pp.309-318.

[26] Wen C, Wang H, Li Y, Qin S, Liu Y, Xu Z,

Liu T. MemLock: Memory usage guided fuzzing. In

Proc. the 2020 ACM/IEEE International Conference

on Software Engineering, July 2020, pp.765-777. DOI:

10.1145/3377811.3380396.

[27] Wang H, Xie X, Li Y, Wen C, Li Y, Liu Y, Sui Y. Typestate-

guided fuzzer for discovering use-after-free vulnerabilities.

In Proc. the 2020 ACM/IEEE International Conference

on Software Engineering, July 2020, pp.999-1010. DOI:

10.1145/3377811.3380386.

[28] Böhme M, Pham V T, Nguyen M D, Roychoudhury

A. Directed Greybox Fuzzing. In Proc. the 2017 ACM

SIGSAC Conference on Computer and Communications

Security, Oct. 30-Nov. 03, 2017, pp.2329-2344. DOI:

10.1145/3133956.3134020.

Gen Zhang received his B.S. and

M.S. degrees in computer science and

technology, in 2016 and 2018, respec-

tively, from the College of Computer

Science and Technology, National

University of Defense Technology,

Changsha. He is now pursuing his

Ph.D. degree in the College of Com-

puter Science and Technology, National University of

Defense Technology, Changsha. His research interests

include software fuzzing and software testing.

Peng-Fei Wang received his B.S.,

M.S., and Ph.D. degrees in computer

science and technology, in 2011, 2013,

and 2018, respectively, from the College

of Computer Science and Technology,

National University of Defense Techno-

logy, Changsha. His research interests

include operating system and software

testing.

Tai Yue received his B.S. degree,

in 2017, from Nanjing University,

Nanjing, and his M.S. degree in 2019

from the College of Computer Science

and Technology, National University of

Defense Technology, Changsha, both in

computer science and technology. He

is now pursuing his Ph.D. degree in the

College of Computer Science and Technology, National

University of Defense Technology, Changsha. His research

interests include software fuzzing and software testing.

Xiang-Dong Kong received his

B.S. degree in computer science and

technology in 2019, from the College

of Computer Science and Technology,

National University of Defense Techno-

logy, Changsha. He is now pursuing his

M.S. degree in the College of Computer

Science and Technology, National

University of Defense Technology, Changsha. His research

interest includes software fuzzing.

Xu Zhou received his B.S., M.S.,

and Ph.D. degrees in computer science

and technology, in 2007, 2009, and

2014, respectively, from the College

of Computer Science and Techno-

logy, National University of Defense

Technology, Changsha. He is now

an assistant professor in the College

of Computer Science and Technology, National Uni-

versity of Defense Technology, Changsha. His research

interests include operating systems and parallel computing.

Kai Lu received his B.S. and Ph.D.

degrees in 1995 and 1999, respectively,

both in computer science and techno-

logy, from the College of Computer Sci-

ence and Technology, National Univer-

sity of Defense Technology, Changsha.

He is now a professor in the College of

Computer Science and Technology, Na-

tional University of Defense Technology, Changsha. His

research interests include operating systems, parallel com-

puting, and security.

https://doi.org/10.1145/3377811.3380396
https://doi.org/10.1145/3377811.3380386
https://doi.org/10.1145/3133956.3134020

	1 Introduction
	2 Background
	2.1 Fuzzing and AFL
	2.1.1 Mutation
	2.1.2 Seed Prioritization

	2.2 Fuzzing-Based Taint Inference

	3 Technique Details
	3.1 Overview
	3.2 Taint Target Recognition
	3.3 Fuzzing-Based Taint Inference
	3.4 Mutation and Seed PrioritizationStrategies
	3.4.1 Mutation
	3.4.2 Seed Prioritization


	4 Implementation Details
	4.1 Memory Operation Function Identification
	4.2 Taint Target Instrumentation
	4.3 FTI
	4.4 Mutation to Extreme Values
	4.5 Seed Prioritization

	5 Evaluation
	5.1 Setup
	5.2 Real-World Programs
	5.2.1 Unique Crashes
	5.2.2 Memory Corruption Bugs
	5.2.3 Execution Speed
	5.2.4 Crashes Triggered by Mutation and Seed Prioritization Strategies
	5.2.5 Path Coverage

	5.3 LAVA-M Dataset
	5.3.1 Identified Bugs
	5.3.2 Execution Speed
	5.3.3 Path Coverage

	5.4 Additional Evaluation Results
	5.4.1 New Bugs
	5.4.2 Memory Operation Functions

	5.5 Discussion

	6 Related Work
	6.1 Seed Selection
	6.2 Memory Bug Guided Fuzzing
	6.3 Fuzzing with FTI

	7 Conclusions

