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Abstract Most current online multi-object tracking (MOT) methods include two steps: object detection and data

association, where the data association step relies on both object feature extraction and affinity computation. This often

leads to additional computation cost, and degrades the efficiency of MOT methods. In this paper, we combine the object

detection and data association module in a unified framework, while getting rid of the extra feature extraction process,

to achieve a better speed-accuracy trade-off for MOT. Considering that a pedestrian is the most common object category

in real-world scenes and has particularity characteristics in objects relationship and motion pattern, we present a novel

yet efficient one-stage pedestrian detection and tracking method, named CGTracker. In particular, CGTracker detects the

pedestrian target as the center point of the object, and directly extracts the object features from the feature representation

of the object center point, which is used to predict the axis-aligned bounding box. Meanwhile, the detected pedestrians are

constructed as an object graph to facilitate the multi-object association process, where the semantic features, displacement

information and relative position relationship of the targets between two adjacent frames are used to perform the reliable

online tracking. CGTracker achieves the multiple object tracking accuracy (MOTA) of 69.3% and 65.3% at 9 FPS on

MOT17 and MOT20, respectively. Extensive experimental results under widely-used evaluation metrics demonstrate that

our method is one of the best techniques on the leader board for the MOT17 and MOT20 challenges at the time of submission

of this work.
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1 Introduction

Online multi-object tracking (MOT) aims to take

advantage of the object information contained in the

previous and the current frame to match the objects

across different frames in a video stream, and the mo-

tion trajectories of different objects can thus be derived

according to the cross-frame matching results. Since

only the information of the current and previous frames

can be used, it is extremely challenging for online track-

ing methods to satisfy both the high tracking accuracy

and the low time delay.

Currently, the MOT task is mainly solved by the

tracking-by-detection framework [1–3]. In this frame-

work, video frames are first inputted into an object de-

tection module to recognize and locate objects frame by

frame, and a data association module [3–5] is then used

to associate the same object across different frames.

Although a considerable progress has been made in the

field of MOT in the past few years, the existing MOT

methods still have two problems.

1) Data association often depends on the quality

of object detection. Therefore, in order to obtain a

good performance of data association, most tracking-

by-detection methods use anchor-based object detec-
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tion methods [6–9], which greatly increases the time cost

of the entire tracking solution. In addition, existing

trackers often adopt a pre-trained feature embedding

network to extract discriminative feature representa-

tion of detected objects for object association. How-

ever, this multi-stage pipeline network not only makes

model more complex, but also reduces the tracking ef-

ficiency.

2) Most MOT methods focus on associating objects

based on appearance features of the detected objects

through Intersection over Union (IOU) [10]. This data

association, however, does not consider the spatial re-

lationships between different objects in the same frame

and same objects in the consecutive frames.

The pedestrian is the most common and major ob-

ject category in real-world scenes. Especially, pedes-

trian detection and tracking is the key and fundamental

technique for many applications, such as auto-driving

and video surveillance. As multiple pedestrian targets

often appear in the visual scenes in company, pedestrian

tracking is taken as one of the main problems of MOT.

In order to realize highly efficient and accurate online

multi-pedestrian tracking, we design a novel one-stage

multi-object detection and tracking method to jointly

optimize the pedestrian detection and tracking tasks in

a unified framework, which we term as Center Graph

Tracker (CGTracker). CGTracker takes two consecu-

tive frames as input, and both of the frames perform

the center point based object detection to recognize,

localize and extract features of the objects simultane-

ously. By considering the continuous property of the

spatial relationship between pedestrians in a short time

interval, an object graph is then constructed from the

extracted pedestrian features and the spatial relation-

ship between objects in a frame and across frames to

learn the object association under the high accuracy

and the low time delay objectives of MOT.

In the tracking-by-detection based MOT implemen-

tation, object detection aims to provide accurate object

localization and discriminative feature representation

for subsequent data association. Recent MOT meth-

ods usually apply generic anchor based object detectors,

e.g., Faster RCNN [6], YOLO [7–9], to locate objects as

regular bounding boxes in an image frame. These de-

tectors, on the one hand, need to generate lots of region

proposals or anchors, which does not consider the re-

quirement of the downstream MOT task and brings ad-

ditional computational redundancy. On the other hand,

the detected bounding boxes contain redundant infor-

mation than the object location only, e.g., some back-

ground pixels. In fact, the object detection for MOT

does not require to detect the entire object body. It is

sufficient to use some key point as the object location

representation for MOT, especially for pedestrians.

Moreover, as demonstrated in anchor-based object

detection methods [6–9], high-level features extracted

from the backbone network contain the representative

information of objects. Hence, the feature points cor-

responding to the detected anchors and the resulted

objects are effective object feature representation. Fol-

lowing this idea, we propose to extract the features of

the detected objects directly from the multi-scale fea-

tures of the backbone network according to the detected

object center points. As a result, the pedestrian detec-

tion module in our CGTracker would provide both the

object location and the corresponding feature represen-

tation required by the subsequent multi-object associ-

ation process. This facilitates efficient one-stage multi-

pedestrian-object detection and tracking implementa-

tion.

Furthermore, most of current MOT methods only

consider the appearance feature of the object for object

association. But we believe that besides the appearance

feature, the relative relationship between pedestrians in

the same frame and the temporal correlation between

the same identity in consecutive frames are also im-

portant tracking cues. Hence, inspired by the object

graph representation for videos [11], we build an object

graph based on the detected objects for each frame, and

convert the object association problem in MOT into

the graphs matching process. Specifically, we denote

both the appearance feature and the position of the

object as the node description, and the position diffe-

rence between two pedestrians in a frame as the edge

description of the object graph. We then consider the

association process as the matching between two object

graphs, where the appearance matching between nodes

of the two graphs, the edge matching between the edge

description of the two graphs, and the relative displace-

ment matching between the nodes of the two graphs are

fused together to derive the final MOT results.

To summarize, our main contributions are as fol-

lows.

1) We propose a simple yet effective one-stage track-

ing method that combines both multi-object detection

and data association modules in a unified framework,

which we name as CGTracker.

2) In CGTracker, we propose to detect a pedestrian

object as a center point, and directly extract the ob-

ject feature based on the center point from the multi-
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scale feature representations of the backbone network

to realize the highly efficient one-stage multi-pedestrian

detection and tracking framework.

3) CGTracker proposes to build an object graph

based on the detected pedestrians in a video frame by

considering the continuous property of spatial relation-

ship between objects in a short-time period to improve

the tracking accuracy. The multi-object tracking is

then converted into the matching between two object

graphs of two consecutive frames from three aspects:

the appearance association for nodes between the two

graphs, the relative relationship similarity for edges be-

tween the two graphs, and the displacement constraints

between the nodes (objects) of the two graphs.

4) Extensive experiments are performed on the

widely-used MOT datasets: MOT17 and MOT20. Re-

sults demonstrate that CGTracker is a highly efficient

and accurate multi-pedestrian detection and tracking

method.

The rest of this paper is organized as follows. In

Section 2, we introduce some latest work in the field

of MOT. In Section 3, we describe the implementation

of our proposed joint detection and tracking method

in detail. In Section 4, we present the experimental

details, ablation study, and comparison results on the

widely-used benchmarks MOT17 and MOT20. Finally,

Section 5 draws conclusions of this paper.

2 Related Work

In recent years, with the development of deep learn-

ing, MOT techniques have also made great progress.

The existing MOT methods are mainly divided into the

following research directions.

Tracking-by-Detection Method. DeepSORT [12] is

the first deep learning based tracking-by-detection

MOT method. It applies the two-stage object detection

method “Faster R-CNN” for detection, a pre-trained

network for object feature extraction and the Kalman

filter to realize the whole MOT process. Yu et al. [13]

then showed that high-performance detection and ap-

pearance features that are extracted from multi-scale

deep neural network layers are significant factors to im-

prove MOT results in both online and offline tracking.

These tracking-by-detection based methods, however,

have some weakness. 1) The overall tracking perfor-

mance is highly dependent on the detection results. 2)

There are several independently trained modules, such

as detection, feature extraction and data association in

the MOT pipeline, which makes the whole MOT system

complex and time-consuming.

Partially End-to-End MOT Method. In this strat-

egy, researchers mainly combine object detection, fea-

ture extraction, and data association to form a partially

end-to-end method. Sun et al. [14] proposed to perform

an end-to-end data association by modeling the appear-

ance and learning the affinity between the targets in

different frames. Wang et al. [15] proposed a joint detec-

tion and embedding MOT paradigm by incorporating

the embedding learning into the object detector for fast

MOT systems. Similarly, Lu et al. [16] proposed single-

stage RetinaTrack by improving the single-stage Reti-

naNet, which combines target detection with feature ex-

traction. Zhu et al. [17] combined the Bi-LSTM network

with an attention mechanism to achieve an end-to-end

matching attention network. Although these methods

attempt to optimize some modules of MOT in the end-

to-end manner, they do not incorporate the entire de-

tection and association learning in a unified framework

for more efficient and accurate MOT systems.

Joint Detection and Tracking Methods. In the above

tracking methods, object detection and tracking are of-

ten separated so that the global optimal result cannot

be obtained. In recent years, a new multi-object track-

ing idea that jointly realizes multi-object detection and

tracking in a unified framework has emerged. For ex-

amples, Chained-Tracker [18] converts the data associ-

ation between consecutive frames into a paired object

detection problem, and achieves multi-object tracking

by linking the results of object detection in previous

and subsequent frames. CenterTrack [19] predicts the

offsets between objects in current frame and those in

the previous frame, and associates the predicted ob-

jects with previous ones through the predicted offsets

to achieve the final multi-object tracking. The very re-

cent work FairMOT [20] performs object detection based

on anchor-free detection method [21]. And with adding

an object feature embedding head on the object detec-

tion network, FairMOT directly outputs both the ob-

ject detection result and the object feature embedding.

Finally, by using some post-processing methods, such

as the Hungarian algorithm, Kallman filter and so on,

the final tracking results can be obtained.

3 Methodology of CGTracker

Given a sequence of video frames, the goal of the

MOT task is to associate the same identity in different

frames and assign it a unique trajectory ID. Existing

MOT methods mainly divide the task into three parts:

object detection, feature extraction and object asso-

ciation. These methods, however, often simply apply
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generic methods to implement each step, without fully

investigating the characteristics of the object category

for detection and tracking, especially for the commonly

appearing pedestrians. By exploring the advantage of

the center point based object detection method and

the relationship of the detected pedestrians in a frame

and across frames, we propose a center graph neural

network for one-stage multi-pedestrian-object detection

and tracking, referred to as CGTracker, which unifies

object detection and object association into a single

framework. In the following subsections, we introduce

the pipeline of our method, and describe the proposed

multi-object detection and association modules, respec-

tively.

3.1 Architecture of the Proposed Method

CGTracker aims to realize highly efficient deep

learning based pedestrian multi-pedestrian-object de-

tection and tracking to facilitate online tracking for

real-time applications, e.g., pedestrian detection track-

ing in autonomous driving. The method takes two

frames with interval n in the training phase as input,

and the multi-object detection and the multi-object

tracking are mainly implemented in the center point

based object detection and the object graph based as-

sociation modules respectively. The entire framework

is shown in Fig.1.

First, in order to render a more effective pedes-

trian detection for multi-object tracking, we propose

to detect the object as the center point by following

the idea of CenterNet [21], which is the center point

prediction module in Fig.1. Because the multi-object

tracking eventually relies on object feature association,

the highly discriminative feature representation of the

detected objects is very important for accurate MOT.

Since using extra feature extraction is time-consuming,

in CGTracker, we propose to extract multi-scale fea-

tures from the backbone network, which is the DLA34

network proposed in [22], according to the object cen-

ter point coordinate Pt of the t-th frame. The Nm
multi-scale feature maps are then fused effectively to

represent the appearance feature of the detected ob-

ject. As a result, the object detection module in CG-

Tracker will output both the pedestrian center-point

coordinates and the representative appearance features.

The joint detection and feature extraction process facil-

itates the one-stage object detection and tracking im-

plementation and is expected by the subsequent object

association step for high efficient MOT.

In the data association process, unlike recent object

association methods that mainly rely on the appearance

of the object, CGTracker proposes to construct an ob-

ject graph based on the center points of all detected

pedestrians for each frame, so as to effectively com-

bine the relative position constraints between pedestri-

ans in a frame, and the displacement constraints be-
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tween objects across different frames, in addition to

the appearance feature associations between different

frames. As shown in Fig.1, two object graphs Gt and

Gt−n are constructed for frames It and It−n respec-

tively. The nodes in each graph encode the detected

objects, and each node is described by the fusion of

the object appearance feature At (or At−n) and the

position feature Pt (or Pt−n). The edges of a graph en-

code the spatial relationship between different pedes-

trians in the frame. The two object graphs then fa-

cilitate an object graph association network to realize

the multi-constraint data association between frames

It and It−n through the matching of nodes appearance

similarity MA
t,t−n, edge (or structure) similarity MS

t,t−n
and nodes displacement similarity MP

t,t−n. At last, the

three matching matrices are then integrated to gene-

rate the object association result MP
t,t−n and the final

result of object tracking is obtained by the Hungarian

algorithm. Here, we add an additional column and row

on the matching matrix MP
t,t−n to deal with the newly

entered pedestrians and disappeared ones in frame It,

respectively.

3.2 Object As a Point for Detection

As aforementioned, the pedestrian detection for

MOT does not need to detect an object as a regular

bounding box, and some key point that is able to rep-

resent the location and salient features of the object

is sufficient. Therefore, different from recent tracking-

by-detection based MOT methods that simply adopt

generic object detection, CGTracker explores the ways

to detect a pedestrian as a point.

As is well known, the center of an image region is

the most representative point. In addition, there are

many saliency-based object detection methods consi-

dering the center point and its surroundings as the

most salient representation of an object [23]. On the

other hand, the recent anchor-free based deep learning

methods [21, 24,25] have greatly advanced the object de-

tection field. These methods learn to detect objects as

key points, and have shown to be more efficient than the

two-stage anchor based object detection methods and

more accurate than anchor-based one-stage object de-

tection methods. Inspired by these techniques, we pro-

pose to detect the center point of a pedestrian for the

object detection of MOT. By following CenterNet [21],

our center-point based object detection does not re-

quire preset anchors and the undifferentiable NMS [26]

operation, but learns to locate the center point that

is described by a set of neighbor points in the end-to-

end manner, which greatly improves the detection and

MOT efficiency.

Besides object localization, MOT needs to associate

the same identity in different frames based on the fea-

ture representation of the object. Instead of applying

an extra object re-identification network for the ob-

ject association, we propose to extract feature repre-

sentation from the backbone network of object detec-

tion according to the center point coordinate of an ob-

ject. Specifically, we use the deep layer aggregation

(DLA) [22] network as the backbone for pedestrian fea-

ture extraction. As shown in Fig.1, DLA is a network

building in the tree structure, which can deeply aggre-

gate multi-scale object features from low-level to high-

level convolution layers.

In CGTracker, the two consecutive frames are first

fed into the DLA network for feature extraction. And

inspired by [5], we intentionally make the two-stream

DLA network with shared weights. After the inference

on the center point based object detection network, the

center position of the detected pedestrians can be lo-

cated. We then trace back to the backbone network

to search for the best region of interest (RoI) feature

representation according to the center location of the

object Pt. It is shown that high-level semantic features

are good representation for object recognition, while

the data association in the MOT task requires feature

representation that can distinguish different objects, in-

stead of identifying the object category. Hence, we pro-

pose to extract the multi-scale features from different

down-sample layers of the DLA network, as shown in

Fig.2. The extracted feature tensors are then passed

to an additional 3×3 convolution layer and aggregated

to be the final appearance feature representation for

object association.

3.3 Object Graph for Association

In real-world scenes, multiple pedestrians often ap-

pear in crowds and groups. Although some of the ob-

jects may be occluded or motion-blurred at some time t

so that their trackers get lost, their relative positions, in

other words, the spatial relationship between objects,

would be maintained in a short time period. This ob-

servation motivates us to investigate the temporal con-

tinuity of both individual object motion and the rela-

tionship between objects in the same frame.

In CGTracker, we construct an object graph Gt for

each frame It at time t, where the node of the object
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Fig.2. Illustration of the center point based object detection and multi-scale feature extraction from DLA [22]. The red frame indicates
the structure of the backbone network DLA [22], where each green box represents the process of extracting high-level features from
the initial feature layer through multiple convolutional layers. The solid green cubes indicate the extracted feature tensors. Conv:
convolutional layer.

graph is composed of the object feature descriptors, and

the edge is represented by the relative position between

objects. Specifically, each node Oit in Gt is described

by the appearance features Ai
t ∈ R520 and the posi-

tion information P i
t ∈ R2 of object i. In addition,

the edge Ei,j
t ∈ R2 of object graph Gt is described

by the difference between center coordinates of the de-

tected objects i and j. As illustrated in Fig. 3, two

object graphs Gt and Gt−n are derived from frames

It and It−n respectively, where Gt = (Ot, Et), with

Node Association
Edge Association
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Fig.3. Illustration of two object graphs constructed from the t-th frame and the (t− n)-th frame. The solid blue lines in each object
graph are the edges between adjacent objects, the red dash lines denote the object node correspondences, and the gray dash lines
indicate the edge correspondences.
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Ot = {(Ai
t,P

i
t )}Nm

i=1 and Et = {(Ei,j
t )}Nm

i,j=1, and Nm
denotes the maximum number of objects detected in

frame It.

With the object graph representation for each

frame, the MOT task can thus be translated into a

graph matching process through the optimization of

both node-to-node and edge-to-edge association be-

tween two consecutive frames.

3.3.1 Node Association

Based on the object graph for each frame, we per-

form node matching to realize object association for

multi-pedestrian tracking. Node association is carried

from the matching of nodes descriptors: the appearance

feature Ai of object i and the position displacement Pi
of object i in consecutive frames.

As shown in Fig.4, the nodes in the object graph

for frame It are associated with the corresponding ob-

jects nodes in the object graph of frame It−n, which

is the association results learned through the appear-

ance similarity and the displacement similarity between

objects in frame It and frame It−n.

It↩n

Ot↩n



Ot



Ot

Ot



Ot↩n



Ot↩n



It

Fig.4. Node association and edge association between the two
object graphs of It and It−n, respectively. The red solid line
represents the association result of object nodes that are success-
fully matched by the node association strategy; the yellow solid
line represents the structural similarity information of the object
nodes learned by the edge association strategy.

Appearance Association of Object Nodes. The ap-

pearance feature of each detected object is extracted

from multi-scale CNN layers of the backbone network

according to the center position of the object, as shown

in Fig.2. The selection of multi-scale CNN layers will

be discussed in Subsection 4.4. The appearance fea-

tures of all the objects in frame It are aggregated, and

through the one-to-one correspondence of the appear-

ance features of the objects in the two object graphs,

an appearance feature matrix AN
t−n,t ∈ R1 040×Nm×Nm

is obtained. This matrix is then fed into a node asso-

ciation network, which is composed of five 3 × 3 con-

volution (conv) layers with (512, 256, 128, 64, 1) as the

channel number of each layer, to learn the appearance

similarity matrix MA
t−n,t ∈ RNm×Nm under the MOT

objective.

Position Association of Object Nodes. As is known,

the movement of pedestrians is temporally coherent.

This means that there are few changes in the position

of an object in a short-time period. We then consider

measuring the displacement similarity between objects

in different object graphs of consecutive frames. In spe-

cial, the position distance between objects of the same

identity in consecutive frames would be smaller than

that between the objects of different identities. Hence,

we calculate the position distance between all nodes in

two consecutive object graphs and form the position

similarity matrix MP
t,t−n, where each item is computed

as:

MP
i,j =

e−di,j/Dia(I) − e−1

1− e−1
, (1)

where di,j is the Euclidean distance between the center

position of the i-th object node in frame It−n and the

j-th node in frame It. By taking the length of image

diagonal Dia(I) as the largest distance between object

i in frame It and corresponding object j in frame It−n,

di,j is first normalized by Dia(I) to the range of [0, 1].

Here, we do not normalize di,j by the relative largest

distance between objects in two consecutive frames, be-

cause we tend to normalize the movements of all the

objects over time with respect to the largest distance

across the entire video so that the whole tracking tra-

jectory is smoothly correlated. The normalized di,j is

then converted to the similarity measurement by the

exponential decay function in (1).

3.3.2 Edge Association

In the multi-object tracking scenario, a moving

pedestrian often moves along certain direction in a short

time. If we consider the relative relation between a

pedestrian and other pedestrians in a frame, such as

pedestrian A at the northwest of pedestrian B at time t,

this relation will be maintained in a short-time period,

e.g., two consecutive frames in online tracking. There-

fore, besides tracking over individual moving object, we

propose an additional tracking objective by taking the

relationship consistency over time into account.

As shown in Fig.3, based on the edge descriptor that

calculates the direction vectors between objects in the

same frame, CGTracker performs the edge-to-edge as-

sociation between consecutive object graphs to realize
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the relationship correspondence of pedestrians. In ad-

dition, the learning process of edge association is illus-

trated in Fig.5. Sit ∈ R320 denotes the aggregated de-

scriptors of all edges that are connected to object i, and

by combining the edge descriptors of all edges of both

object graphs, we derive the relation structure matrix

SEt−n,t ∈ R320×Nm×Nm . Similar to node association, we

construct an edge association network to learn the re-

lation structure similarity matrix MS
t−n,t ∈ RNm×Nm ,

which also consists of five 3×3 convolutional layers with

(160, 80, 40, 20, 1) as the channel number for each layer.

Finally, by comprehensively fusing the node associa-

tion and edge association results of the two consecutive

object graphs, we obtain the final object incidence ma-

trix:

Mt−n,t = (MA
t−n,t + MS

t−n,t)�MP
t−n,t,

where � represents the dot product between two ma-

trices. In order to solve the object entering or leaving

problem in consecutive frames, we add an extra row and

column to Mt−n,t, and obtain the final object associa-

tion matrix Mt−n,t ∈ R(Nm+1)×(Nm+1) followed by the

row and column regularization for MOT optimization,

as shown in Fig.5.

3.4 Network Loss

In order to facilitate the whole network for learn-

ing, we optimize the object detection loss for object

classification and center localization, and the graph as-

sociation loss for multi-object association for MOT.

Object Detection Loss. We follow the object learning

strategy of CenterNet [21] to predict the object center,

which is mainly carried out by combining the prediction

of the object category and the regression of the center

location. In order to recognize the pedestrian and lo-

calize the object center, we use the Gaussian kernel

function: Hxyc = exp(− (x−b xk
r c)2+(y−b yk

r c)2
2σ2

k
), to dis-

tribute the centers of all ground truth (GT) targets on

the heatmap, H ∈ RW
R ×H

R ×C where R is the number of

down-sampling operations, r is the r-th down-sampling

pooling in the network, (xk, yk) is the center coordinate

of the GT object k, and σk is an object size-adaptive

standard deviation [24].

With the Gaussian-based center point representa-

tion, we optimize the loss between the predicted and the

GT center category by following the focal loss in [21] to

derive Lcls. And we use the L1 regularization to calcu-

late the loss Lsize between the GT size and the predicted

size, and the object center offset loss Loff . In summary,

the overall object detection learning objective Ldet is

as follows.

Ldet = λ1Lcls + λ2Lsize + λ3Loff ,

where λ1 = 1, λ2 = 1, and λ3 = 0.1.

Object Association Loss. For object association, we

mainly follow the loss function designed in DAN [14].

Specifically, our loss function combines the following

four considerations.

1) Forward Association Loss L1. We first learn to

associate objects forwardly from frame It−n to frame
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Fig.5. Object graph association network structure diagram. After constructing the object in the t-th frame image It and the (t−n)-th
frame image It−n into the object graphs Gt and Gt−n respectively, we use the information such as appearance, displacement, and
relative position, and use different association strategies to obtain the association matrix Mt,t−n of the pedestrians in the two frames.
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It. Let us denote M1 ∈ RNm×(Nm+1) as the first m

rows of data of the object incidence matrix Mt−n,t ∈
R(Nm+1)×(Nm+1), with Nm + 1 representing the maxi-

mum number of objects in a frame plus an extra column

of the newly entered target in It. The forward associa-

tion objective can thus be supervised by the one-to-one

correspondence matrix Gt ∈ RNm×(Nm+1) constructed

from the tracking ground truth of objects in frame It−n
to objects in It as:

L1 =

∑
coeff

(Gt � (−log(S(M1))))∑
coeff

(Gt)
, (2)

where S is the softmax function, coeff represents the

summation of all the coefficients of a matrix, and � is

the Hadamard product.

2) Backward Association Loss L2. In order to learn

more accurate data association results, we further con-

sider the backward object association from frame It
to frame It−n. The ground truth matrix Gt−n ∈
R(Nm+1)×Nm is constructed from the one-to-one cor-

respondence of objects in frame It to frame It−n, with

Nm + 1 here representing the maximum number of ob-

jects in a frame plus an extra row of the disappeared

target in It. The backward association loss L2 is then

calculated as:

L2 =

∑
coeff

(Gt−n � (−log(S(M2))))∑
coeff

(Gt−n)
, (3)

where M2 ∈ R(Nm+1)×Nm represents the first m

columns of data of the object incidence matrix

Mt−n,t ∈ R(Nm+1)×(Nm+1).

3) Consistency Judgment Loss L3. Basically, the

forward and backward association between objects in

frames It and It−n would be consistent; hence, we for-

mulate the bi-direction association consistency between

(1) and (2) as:

L3 =
∥∥∥Ŝ(M1)− Ŝ(M2)

∥∥∥
1
. (4)

4) Joint Judgment Loss L4. Similar to [14], we per-

form the non-maximum suppression for both forward

and backward object association results, which is for-

mulated as:

L4 =

∑
coeff

(Gt−n,t � (−log(max(Ŝ(M1), Ŝ(M2)))))∑
coeff

(Gt−n,t)
.

(5)

By combining the four loss functions (2), (3), (4)

and (5), we have the overall object association loss as:

Lass =
L1 + L2 + L3 + L4

4
.

Finally, the total loss of CGTracker can be summa-

rized as:

Lall = η1Ldet + η2Lass.

According to our experimental results, the hyper-

parameters of η1 and η2 can be set as η1 = 1 and

η2 = 0.1 for the best results.

4 Experiments

4.1 Dataset

We conduct experiments on the widely-used Multi-

Object Tracking (MOT) benchmarks: MOT17 [27] and

MOT20 [28]. MOT17 contains seven training sequences

and seven testing sequences, and these videos are

mainly from still or moving cameras in unconstrained

environments. Pedestrians in the scene have frequent

access, crowding and occlusion, and the frame rate is 25

FPS–30 FPS. MOT20 is the newly released pedestrian

multi-object tracking challenge, which consists of four

training sequences and four testing sequences. Com-

pared with MOT17, the pedestrians in the MOT20

scene are more crowded and difficult for tracking. The

video sequences used for training the model all provide

accurate annotations, and the detection results from

three different detectors, namely DPM [29], SDP [30],

and Faster R-CNN [6]. For a fair comparison, labels

of test data are not publicly released. Since the dataset

does not provide an official validation set, we split the

training data into training sets and validation sets re-

spectively, each containing roughly half of the whole

training data, where the first half frames are used for

training, and the second half for validation. Because

of the limited access to the test server, we evaluate our

main results on the test set, but the other results on the

validation set, e.g., ones from ablation experiments.

4.2 Evaluation Metrics

In order to evaluate the performance of object de-

tection module, we use the widely-used metrics: ave-

rage precision (AP), precision (Prcn) and recall rate

(Rcll) to compare our proposed CGTracker with other

algorithms. At the same time, in order to quantita-

tively evaluate the MOT results on the MOT chal-

lenge, we apply the official evaluation standard CLEAR
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MOT metrics [31], including the multiple object track-

ing accuracy (MOTA), multiple object tracking preci-

sion (MOTP), false positives (FP), false negatives (FN),

identity switches (IDSw) and IDF1 scores. In addition,

evaluation criteria such as the percentage of mostly

tracked targets (MT) and the percentage of mostly lost

targets (ML) have also been adopted. MT refers to the

ratio of ground-truth trajectories that are covered by

any track hypothesis for at least 80% of their respective

life span. ML is computed as the ratio of ground-truth

trajectories that are covered by any track hypothesis for

at most 20% of their respective life span. Recently, a

new evaluation metric HOTA [32] has been proposed to

evaluate the higher-order tracking association accuracy.

4.3 Implementation Details

We implement our proposed approach using the Py-

torch framework [33]. Similar to recent FairMOT [20],

we first perform pre-training for object detection

module in CGTracker on multiple object detection

datasets, such as Crowdhuman [34], Widerperson [35]

and CityPersons [36]. The whole training is performed

on an NVIDIA GeForce RTX 2080ti GPU with stan-

dard stochastic gradient decent (SGD) for 35 epochs.

The input images are all resized to 544 × 960. Other

hyper-parameters used in our implementation include

the batch size batch size=3, the maximum number of

object detection per frame Nm = 80, and the initial

learning rate learning rate=0.01. The learning rate

is decreased by 10 at the 13th, 22nd, 28th, and 35th

epoch. During training, we select targets with visibil-

ity greater than 0.3 for association, and the maximum

time interval between two frames n = 30. In the infer-

ence stage, we set n to 1 to associate objects between

two consecutive frames.

4.4 Results and Analysis

In this subsection, we intend to evaluate the perfor-

mance of our proposed method from the following three

aspects. First, we compare the performance of diffe-

rent detectors on the MOT results. Second, we prove

the effectiveness of the selected semantic features for

object feature representation. Finally, we make abla-

tion study of our CGtracker under different constraints

and comparison with other methods on MOT17 and

MOT20 challenges respectively. Note that for all Ta-

bles 1–6, the symbol ↑ indicates that higher is better,

↓ means that lower is better. The best result is high-

lighted in bold.

Detection Results on Tracking Task. We compare

our proposed object detection method with the three

public detection results provided on MOT Challenge of-

ficial website 1○. These results are shown in Table 1. It

is shown that although our proposed object detection

method in CGTracker gets lower AP than that using

SDP [30], it can better detect the existing objects with

a higher recall rate.

Table 1. Evaluation Results on the MOT17 Test Set Using
Public Detection and Our Private Detection Methods

Detector AP↑ TP↑ FP↓ FN↓ Rcll↑ Prcn↑
DPM [29] 0.61 78 077 42 308 36 577 68.1 64.8

Faster R-CNN [6] 0.72 88 601 10 081 25 963 77.3 89.8

SDP [30] 0.81 95 699 7 599 18 865 83.5 92.6

Ours 0.75 105 694 12 901 8 813 92.3 89.1

Data Association. Table 2 shows the comparison be-

tween our proposed CGTracker and DAN [14] in terms

of the MOT performance by using the same object de-

tector. In order to obtain the comparable results, we

choose VGG16 [37] as the feature extraction module for

the two methods. It can be seen that our method ob-

tains higher MOTA, MT and ML scores than DAN [14],

which indicates that CGTracker has a higher tracking

accuracy and better tracking stability than DAN [14].

Feature Extraction Layer. We believe that the fu-

sion of different layers of features can make objects

contain multi-scale information. As shown in Table 3,

when we compare using multi-scale feature fusion with

using deep semantic features as object feature represen-

tation, we find that the multi-scale features we selected

are far superior compared with tracking by only using

high-level features in terms of all evaluation metrics.

Object Graph Based Multi-Object Association. As

aforementioned, we propose to associate the pedestrian

targets between two frames through the appearance fea-

ture information, displacement information and relative

Table 2. Tracking Performance of Different Detectors on the MOT17 Test Set

Method MOTA↑ MOTP↑ IDF1↑ MT↑ ML↓ FP↓ FN↓ IDSw ↓
SDP [30]+DAN [14] 55.1 76.1 52.9 20.8 31.7 27 792 218 973 6 915

SDP [30]+Objectgraph 56.8 76.7 51.4 23.9 29.7 22 773 213 459 7 419

1○https://motchallenge.net/, Apr. 2022.
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Table 3. Comparisons of Tracking Results Using Different Feature Selection Methods on the MOT17 Validation Set

Feature Selection Method MOTA↑ IDF1↑ MOTP↑ MT↑ ML↓ FP↓ FN ↓ IDSw ↓
Multi-scale feature fusion 61.5 76 64.2 58 7 2 420 1 880 178

Only deep semantic features 56.5 76 53.3 59 8 2 444 1 888 727

position information. In order to explore the influence

of different information on the overall tracking results,

we gradually add different association information on

the appearance feature association to prove the effec-

tiveness of the proposed object graph based data as-

sociation for MOT. The experimental results on the

MOT17 test set are shown in Table 4.

1) Only Appearance Information. This is the sim-

plest implementation of CGTracker. When we only use

appearance feature information, our tracker will con-

fuse those pedestrians with similar appearances, thus

leading to an increase of IDSw.

2) Appearance Information and Displacement Infor-

mation. Compared with using the appearance feature

only, when displacement information is included in the

data association module, although the number of FP

slightly increases, the position association effectively

reduces the number of IDSw. Therefore, CGtracker

achieves certain improvement in terms of MOTA.

3) All Information. As we can see in Table 4, when

all the association strategies are included for data as-

sociation, CGtracker achieves the best performance in

terms of major MOT metrics. In special, CGTracker

significantly reduces the number of IDSw, improves the

stability of tracking in terms of MT and reduces the

number of missing objects in tracking indicated by FN.

In order to further demonstrate the effectiveness of

the proposed object graph association strategy, we vi-

sualize the tracking results of the proposed CGTracker

and DAN [14] on three selected consecutive video se-

quences in the test set of MOT17 in Fig. 6. As we

can see from all the example video sequences, when we

follow DAN to track objects by using the appearance

features association only, the misalignment between ob-

jects in consecutive frames occurs. But because CG-

Tracker contains multiple association constraints, es-

pecially with the relative relationship temporal consis-

tency, the tracking results of CGTracker obtain consis-

tent ID labels for all pedestrians across frames.

4.5 Benchmark Evaluation

Since the test sequence does not contain annota-

tions, we submit the results of CGTracker to the official

website of MOT Challenge 2○ to obtain the final evalua-

tion results. Table 5 and Table 6 give the comparison

results of methods exposed by the MOT17 and MOT20

challenges and our CGTracker. All the compared meth-

ods are online MOT methods, and on the leader board

of both MOT17 and MOT20 challenges. In Table 5 and

Table 6 we can see the followings.

1) For the evaluation results on MOT17, all the

compared methods are joint multi-object detection and

tracking implementations. In particular, compared

with the original DAN [14] method using an extra ob-

ject feature extraction network and a data association

network based on object features, CGTrakcer compre-

hensively considers the object feature correlation and

the relation structure consistency over time, leading to

significant improvement over all the MOT evaluation

metrics and inference speed in terms of Hz in Table 5.

Moreover, compared with the other end-to-end joint

detection and tracking methods, such as CTracker [18],

CenterTrack [19], Tube TK [38] and FairMOT [20], CG-

Tracker performs much better than CTracker, Center-

Track and Tube TK for most of the evaluation metrics,

and obtains comparable results with the state-of-the-

art MOT method, e.g., FairMOT [20]. Moreover, CG-

Tracker achieves the highest MOTP, which indicates

that CGTracker achieves the best precision of object

position prediction in tracking.

Table 4. Multi-Constraint Relationship Ablation Experiments on the MOT17 Test Set

Ai Di Rpi MOTA↑ MOTP↑ MT↑ ML↓ FP↓ FN ↓ IDSw ↓
X 65.2 77.5 36.4 19.6 39 990 151 959 4 176

X X 65.3 77.5 36.4 19.5 40 119 151 689 4 128

X X X 65.3 77.5 36.6 19.7 40 146 151 626 3 885

Note: Ai, Di, and Rpi denote appearance information, displacement information, and relative position information, respectively.

2○https://motchallenge.net/, Apr. 2022.
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Fig.6. Tracking visualization results comparison between CGTracker and DAN [14]. Example frames are extracted from three video
segments of MOT17: (a) MOT17-01, (b) MOT17-06, and (c) MOT17-08. The first row of each video segment indicates the tracking
results of DAN [14], where the data association is only based on object appearance features. And the second row of each video segment is
the tracking results of our proposed CGTracker. The predicted objects and trajectory IDs are identified by different colors of bounding
boxes and lines. And the red circle in each image highlights the position of a particular object that may have misalignment in DAN
tracking results.
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Table 5. Comparison of MOT Methods on the MOT17 Test Set

Method MOTA↑ IDF1↑ MOTP↑ MT↑ ML↓ FP↓ FN ↓ IDSw ↓ Hz ↑

DAN [14] 52.4 49.5 76.9 504 723 25 423 234 592 8 431 6.3

CTracker [18] 66.6 57.4 78.2 759 570 22 284 160 491 5 529 34.4

CenterTrack [19] 67.8 64.7 78.4 816 579 18 498 160 332 3 039 22.0

Tube TK [38] 63.0 58.6 78.3 735 468 27 060 177 483 4 137 3.0

FairMOT [20] 73.7 72.3 - 1 017 408 27 507 117 477 3 303 15.0

Ours (CGTracker) 69.3 62.8 80.8 909 465 22 434 145 017 5 682 9.0

Table 6. Comparison of MOT Methods on the MOT20 Test Set

Method MOTA↑ IDF1↑ HOTA↑ MT↑ ML↓ FP↓ FN ↓ IDSw ↓

MLT [39] 48.9 54.6 43.2 384 274 45 660 216 803 2 187

RekTCL [40] 65.2 70.1 55.3 761 131 61 209 114 709 4 139

FairMOT [20] 61.8 67.3 54.6 855 94 103 440 88 901 5 243

Ours (CGTracker) 65.3 59.7 49.7 727 154 50 455 121 803 7 190

2) For the evaluation results on the more chal-

lenged MOT20 benchmark, CGTracker achieves the

best MOTA score over all recent MOT methods. While

FairMOT [20] is the best method in MOT17 challenge

on both the tracking accuracy and efficiency, it is worse

than CGTracker on MOT20 test set, which demon-

strates that CGTracker is very effective for tracking in

crowded MOT scenarios, and is a highly efficient im-

plementation for real-time MOT applications.

5 Conclusions

In this paper, we introduced a graph-based one-

stage multi-pedestrian-object detection and tracking

method, referred to as Center Graph Network (CG-

Tracker). With extensive experiments, we showed

that the center point based object detection and the

straight feature extraction strategy in CGTracker facil-

itate highly efficient one-stage multi-pedestrian detec-

tion and tracking. In addition, the object graph based

data association module casts the online MOT task

into a graph matching process and further improves the

overall detection and tracking accuracy. Experimental

results on the challenging MOT datasets MOT17 and

MOT20 showed that CGTracker achieves the highest

tracking accuracy of 69.3% and 65.3%, respectively, and

is able to reach 9 FPS in terms of inference speed. In

summary, CGTracker is an end-to-end framework that

jointly learns the multi-pedestrian-object detection and

tracking, which is highly efficient and can be applied in

real-time MOT applications.
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