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Abstract Facade parsing aims to decompose a building facade image into semantic regions of the facade objects. Consi-

dering each architectural element on a facade as a parameterized rectangle, we formulate the facade parsing task as object

detection, allowing overlapping and nesting, which will support structural 3D modeling and editing for further applications.

In contrast to general object detection, the spatial arrangement regularity and appearance similarity between the facade

elements of the same category provide valuable context for accurate element localization. In this paper, we propose to exploit

the spatial arrangement regularity and appearance similarity of facade elements in a detection framework. Our element-

arrangement context network (EACNet) consists of two unidirectional attention branches, one to capture the column-context

and the other to capture row-context to aggregate element-specific features from multiple instances on the facade. We con-

duct extensive experiments on four public datasets (ECP, CMP, Graz50, and eTRIMS). The proposed EACNet achieves

the highest mIoU (82.1% on ECP, 77.35% on Graz50, and 82.3% on eTRIMS) compared with the state-of-the-art methods.

Both the quantitative and qualitative evaluation results demonstrate the effectiveness of our dual unidirectional attention

branches to parse facade elements.
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1 Introduction

Facade parsing aims to find regions of building fa-

cade components and annotate them with distinctive

semantic categories (e.g., window, sill, balcony, and

molding) in a given street-view facade image. This task

potentially supports many real-world applications, es-

pecially for urban street reconstruction. However, fa-

cade parsing faces many challenges in natural urban

scenes. Firstly, the facade style varies a lot among

buildings. The diversity of texture and element struc-

ture makes it difficult to generate robust and accurate

parsing results. Secondly, parsing a facade image may

be more challenging due to shadows, illumination, per-

spective effect, and occlusions caused by cluttered ob-

jects. Most importantly, since the arrangement regular-

ity of various building facade elements is naturally ex-

isting and widely presented, the parsing results should

globally follow regular arrangement.

Facade parsing has been attracting lots of interest

over the past few years. Traditional approaches usu-

ally combine architectural priors with image segmen-

tation. The facade structural priors, such as element

sizes, the spacing between elements, and hard align-

ment constraints, are encoded in the parsing procedure

to introduce essential architectural information. Some

grammar-based methods [1–5] perform top-down parsing

procedures to model facades with predefined primitive

shapes and grammar rules. Some other approaches [6–8]

utilize the low-level information extracted by per-pixel

classification to produce facade segmentation. Though

these methods consider the facade regularity, they rely

highly on hand-crafted knowledge priors. These hand-

crafted structural constraints do not always fit individ-

ual facades, especially for complex scenes.
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Recent progress in deep learning and deep convolu-

tional neural networks has made it possible to extract

and utilize high-level features and global structural in-

formation of a building facade. Several learning-based

methods [9–11] treat facade parsing as a semantic seg-

mentation problem and employ popular convolutional

neural networks (CNNs) to achieve better performance.

DeepFacade [10, 11] illustrates the importance of facade

structural priors and introduces the shape symmetry

of facade elements as a constraint, by using bounding

boxes as auxiliary data to refine the shape of segmenta-

tion regions. However, the element symmetry and the

facade layout regularity, which are crucial for obtain-

ing complete and reasonable facade parsing results, are

ignored.

Though a pixel collection can flexibly describe

freeform object shapes in the semantic segmentation

framework, we argue that dense semantic region masks

are not the most appropriate representation for facade

parsing. First, objects on a facade usually appear as

symmetrical quadrilaterals in a rectified street-view fa-

cade image. However, it is difficult to explicitly im-

pose these geometric constraints directly in pixel-wise

segmentation networks, while existing approaches add

these constraints in loss functions [10, 11]. Second, facade

segmentation usually results in a labeled mask image

where each pixel is assigned a single category. How-

ever, facade components are not always disjoint. Over-

lapping frequently happens among various categories

such as windows and blinds. Fig.1 shows a typical case

where the balconies overlap with the bottom regions

of their nearby windows. The dense single-category

assignment makes the rendering and modeling of the

overlapping regions much more complicated, even re-

sulting in the structure loss of the nesting regions. In

contrast, we propose a detection-based framework to

decompose facade images while supporting overlapping

facade elements and involving the global layout context

to generate more regular facade arrangements.

The element layout usually presents a strong reg-

ularity and shows a grid-like element arrangement, as

Fig.2 shows. A facade element is usually correlated with

facade objects in the same row or column. For example,

the window highlighted in Fig.2(a) can be accurately lo-

calized based on its related horizontal and vertical ele-

ment groups though it is partially occluded by vegeta-

tion. Based on this observation, we leverage the spatial

regularity of the facade layout in our element detec-

tion framework. We propose an element-arrangement

context network (EACNet) to exploit the arrangement

regularity among facade elements arranged in the same

row or column. We conduct extensive experiments to

evaluate the effectiveness of our method. Our EAC-

Net achieves the top performance on the Graz50 [12]

and ECP [3] datasets. Even on the challenging CMP [13]

dataset, our EACNet effectively captures the element-

arrangement spatial context and significantly facilitates

the facade parsing task.

(b)(a)

Fig.1. Two representations of facade parsing (the upper layer)
and modeling (the lower layer). (a) Semantic masks. (b) Bound-
ing boxes. Our method aims to produce compact parameterized
bounding boxes instead of dense pixel-wise semantics so that 3D
facade models can be generated more efficiently while allowing
structural overlapping of multiple elements.

(b)(a)

Fig.2. Two examples demonstrating the spatial regularity of fa-
cades. The layout of a building facade presents strong regularity,
as the architectural elements are well-aligned both vertically and
horizontally. The spatial correlation between facade elements in
the two directions provides the valuable context for the facade
element detection.

2 Related Work

We discuss related work on traditional facade pars-

ing and CNN-based facade segmentation. We also dis-

cuss several typical object detection approaches. In ad-

dition, we discuss attention mechanisms and several re-

lated general self-attention schemes.

Facade parsing and modeling from images have been

extensively studied in computer graphics and computer

vision. There are two mainstreams of traditional meth-
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ods: utilizing grammar-based recognition and following

conventional image segmentation pipeline. Grammar-

based approaches model facades according to a set

of parametric grammars, based on which the proce-

dural modeling procedure can utilize image analysis

techniques to derive a hierarchical facade subdivision

from an image [14–16]. Similar ideas can be found in

other methods that target general procedural model-

ing for structural objects [17–19]. The other stream of

facade layout generation methods is segmenting the

input images. Several approaches incorporate tradi-

tional machine learning to fit the procedural modeling

pipeline [4, 20,21]. Some others utilize architectural prin-

ciples to optimize facade segmentation [5, 6, 8, 22,23], aim-

ing to produce more regular segmentation regions. In

addition, the structural prior of facades including shape

symmetry and layout regularity has also been demon-

strated very effective to facilitate facade modeling from

point clouds [2, 24] or structural facade editing [25].

With the rapid development of deep learning, CNN-

based semantic segmentation frameworks have been

adopted for facade parsing. Directly applying the

fully-convolutional networks for semantic segmentation

into facade segmentation [9, 26] generates pixel-wise la-

bel prediction. Subsequently, object symmetry is taken

into account to refine the segmented region bound-

aries in DeepFacade [10] that uses a loss function to pe-

nalize segmentation regions that are not horizontally

or not vertically symmetric. Its extension work [11]

adds another loss term that forces the window regions

to match the rectangular shapes obtained by a pre-

trained auxiliary Mask R-CNN [27]. While DeepFacade

methods [10, 11] focus on improving the regularity of the

single element shape, our approach naturally ensures

the single shape regularity and exploits global layout

regularity with a well-designed attention scheme.

Object detection pipelines directly output rectan-

gular boxes for objects in an image. Many two-stage

region detection networks have been proposed [28, 29].

More recently, keypoint estimation has been utilized to

locate objects for one-stage detection. CornerNet [30]

detects objects by localizing a pair of key points

and groups them by using associative embedding [31].

CenterNet [32] treats the object center as a single shape-

agnostic anchor, detecting an object by extracting a

center point, and thus needs not any keypoint grouping

steps. Based on the one-stage detection framework, our

EACNet is designed specifically for facade parsing by

incorporating the spatial facade layout regularity.

Self-attention was first introduced in the pioneer-

ing work [33] to enhance the representation capability

of neural networks and now is widely used for various

tasks. However, self-attention suffers from quadratic

computation and memory cost, which is particularly

challenging for images. Recently, many efforts have

been made to investigate sparse and memory-efficient

forms, including hierarchical attention [34], clustering-

based sparse attention [35], attention to sparse keypoints

only [36], attention to image patches instead of pixels [37]

and attention with linear complexity [38]. These meth-

ods can greatly reduce extra computation and memory

costs and make self-attention more efficient.

For computer vision tasks, SENet [39] models

channel-wise relationships in an attention mechanism.

PSANet [40] learns two global attention maps to ag-

gregate the contextual information for each posi-

tion in the feature maps adaptively. The non-local

network [41] generates a huge attention map by calculat-

ing pairwise affinities of all points in the feature maps.

Transformer [33] is now the cutting-edge technology for

modeling global relations and has been adopted for se-

mantic segmentation. Segmenter [42] extends the patch-

based transformer architecture [37] to the semantic seg-

mentation problem for leveraging contextual informa-

tion. Pyramid Vision Transformer [43] learns multi-

scale patch embeddings through a progressive shrink-

ing pyramid transformer architecture. However, the

computation and memory cost for obtaining the at-

tention maps for global contexts in these methods is

significantly high. CCNet [44] develops a criss-cross at-

tention module that captures contextual information in

criss-cross paths instead of the whole image and then

employs a recurrent operation to harvest full-image

dependencies. Inspired by CCNet [44], we further de-

compose the criss-cross correlation into two indepen-

dent unidirectional attention branches that only cap-

ture long-range dependencies between elements aligned

in the same row and column separately, considering the

spatial regularity of facade elements. This separation

explicitly brings structural priors for the spatial corre-

lation between pixels and makes our network more ef-

ficient and precise by considering the column-wise and

row-wise distinction.

3 Our Approach

In this section, we first introduce the architecture of

our EACNet. Then we describe the proposed element-

arrangement context module (EACM) in detail, includ-

ing the row and column context branches that capture
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the spatial context to enforce the arrangement regular-

ity of the facade elements.

3.1 Network Architecture

Fig.3 shows the overview of the proposed EACNet.

Given an input facade image, the Hourglass network [45]

is employed as the backbone that downsamples the in-

put image by four times and extracts feature maps F

with the spatial dimension H ×W from the input im-

age. The feature maps F ∈ RC×H×W are then fed

into EACM that learns the correlations between a po-

sition on the facade and all different positions in the

same row and the same column. The long-range de-

pendencies in the two axis-aligned directions are cru-

cial for localizing facade objects because they show

strong repetitiveness and alignment regularity in struc-

ture. The two branches in EACM produce feature maps

Scol ∈ RC×H×W and Srow ∈ RC×H×W that collect spa-

tial context in a single column and row, respectively.

The feature maps Scol and Srow are concatenated and

fed to a convolutional layer that acts as feature adapta-

tion. The produced feature maps M are added to the

image feature maps F to enhance the representation of

each position. The enhanced feature maps F ′ are fed

into a detector head to predict the bounding boxes that

represent the parsing results.

3.2 Element-Arrangement Context Module

It is crucial to exploit the priors of facade struc-

ture such as shape symmetry and global alignment in

facade parsing. To incorporate hand-crafted rules into

an end-to-end neural network, existing CNN-based fa-

cade parsing methods either restrict the object shape

by symmetry constraint [10, 11] or capture nonlocal con-

textual information. But they seldom take advantage of

the holistic facade structure efficiently. Facade elements

share strong repetitiveness and alignment in structure.

To explicitly leverage the arrangement regularity, our

EACM learns to exploit the correlations between the fa-

cade elements aligned in the same row and the same col-

umn. As shown in Fig.4, the proposed EACM contains

a column-context branch and a row-context branch to

collect element-arrangement spatial context in two di-

rections. To the best of our knowledge, this is the first

attempt to employ self-attention to incorporate the fa-

cade layout structural regularity into a facade parsing

network.

Following the self-attention mechanism, we first ap-

ply three parallel convolutional layers with 1× 1 filters

on the feature maps F to obtain query feature maps Q,

key feature maps K, and value feature maps V , with

dimensions of C×H×W . The two branches of EACM

both use Q, K, and V to generate contextual features

in two directions. For a pixel located at p = (i, j), the

column-context branch calculates the correlations be-

tween p and all positions in the j-th column, and the

row-context branch calculates the correlations between

p and all positions in the i-th row. For a query vector

Qp ∈ RC×1 in feature maps Q, we extract key vectors

from the feature maps K along the i-th row and the

j-th column separately and compose two matrices from

the two sets of feature vectors respectively:

Xp = (K(i,1),K(i,2), . . . ,K(i,j), . . . ,K(i,W )),

Yp = (K(1,j),K(2,j), . . . ,K(i,j), . . . ,K(H,j)),

where Xp ∈ RC×1×W and Yp ∈ RC×H×1. In the

column-context branch, the correlations between p and

Hourglass Network

D
e
te

c
to

r 
H

e
a
d

Facade Image Parsing Result

FF Column-Context Branch

Row-Context Branch

C

Element-Arrangement Context Module

C
o
n
v

S M

F   '

Scol

Srow

Fig.3. Overview of the proposed EACNet. After extracting feature maps from the input image using an hourglass network, we
aggregate the spatial context between facade elements by the proposed element-arrangement context module. Two rectilinear context
branches are designed to capture the vertical and horizontal correlations between elements, and the contexts in the two directions
are aggregated to enhance the local features. Finally, a detector head is attached to obtain the final facade parsing results from the
aggregated feature maps. “©” denotes feature concatenation, and “⊕” denotes element-wise addition.
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Fig.4. Architecture of the two context branches in EACM. The column-context branch and the row-context branch take feature maps
produced by the backbone network to capture the spatial context in vertical and horizontal directions, respectively. “⊗” denotes matrix
multiplication.

its corresponding column-path positions can be calcu-

lated and collected in a vector cAp ∈ RH×1 located in

attention maps Acol, which is defined as

cA(k)
p =

exp
(
QT

pY
(k)
p

)∑|Yp|
t=1 exp

(
QT

pY
(t)
p

) ,
where cA

(k)
p is the k-th element of vector cAp, and Y

(k)
p

is the k-th feature vector of Yp.

In the row branch, similar to the calculation ofAcol,

we calculate the attention maps Arow, where the vector

located at position p is defined as

rA(k)
p =

exp
(
QT

pX
(k)
p

)∑|Xp|
t=1 exp

(
QT

pX
(t)
p

) ,
where rA

(k)
p is the k-th element of vector rAp ∈ RW×1,

and X
(k)
p is the k-th feature vector of Xp.

After obtaining attention maps Arow and Acol that

measure correlations in row and column paths, we ex-

tract values from feature maps V in the row and column

paths for further context aggregation. For a position

p = (i, j), two matrices Λp and Ωp can be obtained.

The c-th elements of Λp and Ωp are respectively de-

fined as follows:

Λ(c)
p = (Vci1, Vci2, . . . , VciW )T,

Ω(c)
p = (Vc1j , Vc2j . . . , VcHj)

T,

where Vcij denotes the value located at (i, j) of the c-th

channel of the feature maps V .

The elements of correlation vectors cAp and rAp are

separately used as the weights of vectors Ω
(c)
p and Λ

(c)
p

for conducting spatial context aggregation at position

p, which generates cSp ∈ RC×1 and rSp ∈ RC×1 as

follows:
cS(c)

p = cAT
pΩ

(c)
p ,

rS(c)
p = rAT

pΛ
(c)
p .

Collecting the spatial context at different positions

finally gives the context feature maps Srow and Scol,
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both with dimensions of C × H ×W . They are con-

catenated and fused together by a convolution layer to

produce the integrated contextual feature maps M ∈
RC×H×W , which is then added to the image feature

maps F to produce the enhanced feature maps F ′ as

F ′ = ω(S) + F ,

where ω is a projection function implemented by a con-

volutional layer with 1× 1 kernel size. S ∈ R2C×H×W

is produced by concatenating Scol and Srow together.

3.3 Detector Head

The enhanced feature maps F ′ are fed into a detec-

tor head to obtain the final facade parsing results. As

shown in Fig.5, it is effective to represent a symmetric

facade element by a center and its width and height. We

employ CenterNet [32] which models an object bound-

ing box with a center point and an object size in our

EACNet. The detector head consists of three branches.

Each branch applies convolutional layers on F ′ to gene-

rate a set of heatmaps for center location prediction for

each element category, local offset prediction, and ob-

ject size prediction, respectively. The center location

prediction branch generates Ê ∈ RC′×H×W , where C ′

is the number of categories of the facade elements. The

value of Êcij at location p = (i, j) is the score for class

c in the predicted heatmaps. The local offset predic-

tion branch generates Ô ∈ R2×H×W , which is used as

a slight adjustment of the center location. The object

size prediction branch generates Û ∈ R2×H×W , which

gives the height and the width of an object. To obtain

the coordinates of center points, a 3 × 3 max pooling

layer is applied on Ê for peaks extraction.

Fig.5. Output of the detector head in EACNet. We encode a fa-
cade object by a center point and its size parameters and predict
heatmaps for the center point.

During training, we use a pixel-wise logistic regres-

sion with focal loss [46] for center location prediction:

Lp = − 1

N

∑
c,i,j


(1− Êcij)α log(Êcij),

if Ecij = 1,

(1− Ecij)β(Êcij)
α log(1− Êcij),

otherwise,

where E is the ground truth and N is the number of

facade objects. Both α and β are hyper-parameters

that control the contribution of each point. We set

α = 2 and β = 4 in all experiments. The local offset

and the object size are both trained with the loss func-

tion L1(·, ·) that computes the L1 distance between the

ground truth and the predicted values. The total loss

function is

L = Lp +
λ

N

N∑
k

L1(Ôk, Ok) +
µ

N

N∑
k

L1(Ûk, Uk), (1)

where Ok and Uk are the location offset and the object

size of the k-th element, respectively. The scale factors

λ and µ are used for weight adjustment.

4 Experimental Results and Discussions

In this section, we first introduce four facade

datasets used for evaluation and present the cor-

responding evaluation metrics and the training de-

tails. Then, we compare our facade parsing

method with existing segmentation-based facade pars-

ing methods [6, 8, 10,11,20,22,23,47,48]. A series of ablation

experiments are also conducted to demonstrate the ef-

fectiveness of the proposed EACM.

4.1 Datasets and Evaluation Metrics

Four public facade datasets are used in our experi-

ments, including ECP [3], CMP [13], Graz50 [12], and

eTRIMS [11]. The first three contain rectified facade

images with their semantic label masks. Images in the

eTRIMS dataset are not rectified.

The ECP facade dataset [3] consists of 104 well-

rectified building facade images. All the images con-

tain facades from Paris and share similar architectural

styles. The pixel annotations contain eight classes, in-

cluding “window”, “wall”, “balcony”, “door”, “shop”,

“sky”, “chimney”, and “roof”. Since there are some

categories not belonging to facade elements, we choose

“window”, “balcony”, “door”, and “shop” for evalua-

tion. Since the ECP dataset does not have bounding

box annotation, we perform contour fitting on the pro-

vided semantic masks to generate the bounding box for

each element. For overlapping elements, we adjust their

bounding box sizes to match the corresponding regions.

We follow DeepFacade-V2 [11] to divide the dataset, us-

ing 80 images for training and 24 for testing.

The Graz50 facade dataset [12] contains 50 facade

images with multiple building styles. Similar to the



658 J. Comput. Sci. & Technol., May 2022, Vol.37, No.3

ECP dataset, the Graz50 dataset only contains rect-

angular areas labeled as ground truth semantic masks.

Contour fitting is also applied to obtain suitable bound-

ing box annotation. The provided data contains two fa-

cade element classes, “window”, and “door”, which are

both used in our experiments. We follow the dataset

division strategy used in DeepFacade-V2 [11], using 30

images for training and 20 images for testing.

The CMP facade dataset [13] contains 606 rectified

images of facades with diverse architectural styles. The

dataset is split into two parts that consist of 378 and

228 images. The latter part contains more irregular

and non-planar facades that often have substantial oc-

clusion from vegetation, making the CMP dataset very

challenging. The annotation of this dataset is a set

of rectangles with class labels and allows overlapping

and nesting. The dataset includes 12 specified classes.

In our experiment, we use six categories that belong

to facade elements, including “sill”, “balcony”, “door”,

“molding”, “window”, and “cornice”. We use 484 im-

ages that are randomly selected from two subsets for

training. The remaining 122 facade images are used for

testing.

4.2 Training Settings

The Hourglass backbone [45] used in our EACNet is

initialized using the weights of a model pre-trained on

the COCO dataset [49]. The remaining part of the net-

work is initialized randomly. In all experiments, the

network is trained on a single GPU, using an Adam

optimizer with β1 = 0.9, β2 = 0.999, and the initial

learning rate as 0.000 1, 0.000 2, 0.000 2, and 0.000 4 for

the CMP, ECP, eTRIMS, and Graz50 datasets, respec-

tively. The scale factors λ and µ in (1) are set to 1 and

0.1 respectively. We use the batch size 4 for all the four

datasets. For the ECP, eTRIMS, and Graz50 datasets,

the network is trained for 120, 100, and 80 epochs re-

spectively. For the CMP dataset, the network is trained

for 200 epochs, and we reduce the learning rate by 90%

after 140 epochs. We use random horizontal flipping,

random scaling in the range of [0.6, 1.3], and color jit-

tering for data augmentation. We randomly crop large

images or pad small images into a fixed size for training.

For the ECP, CMP, and eTRIMS datasets, we train on

an input resolution of 512×512. Because the images in

Graz50 have lower resolutions, which vary between 200

and 500 pixels in the height and the width respectively,

we use 256× 256 input resolution for this dataset.

4.3 Quantitative Evaluation

We quantitatively evaluate our method by com-

paring it with several facade parsing approac-

hes [10, 11,20,22,23,47,48] on the Graz50 and ECP

datasets. As stated in the recent work DeepFacade-

V2 [11], most of the existing approaches merely use the

simple pixel accuracy metric for evaluation. However,

the high pixel accuracy does not always imply superior

performance because of the class imbalance. Following

the previous work [11], we mainly use the intersection

over union (IoU) metric for evaluation and also report

pixel accuracy results as reference.

Table 1 shows the performance of our method and

other state-of-the-art methods on the Graz50 dataset.

The bold numbers indicate the highest value for each

metric. As it shows, our method achieves the highest

average pixel accuracy. Compared with the state-of-

the-art method DeepFacade-V2 [11], our method gives

better IoU results by a large margin.

Table 1. Quantitative Comparison on the Graz50 Dataset

Method Pixel Accuracy (%) IoU (%)

Window Door Avg. Window Door

Koziński et al. [47] 82.0 50.0 66.0 – –

Koziński et al. [22] 84.0 60.0 72.0 – –

Cohen et al. [23] 85.0 64.0 74.5 – –

Rahmani et al. [20] 79.3 79.1 79.2 – –

DeepFacade-V1 [10] 87.7 88.2 87.9 – –

Rahmani et al. [48] 83.7 93.8 88.8 – –

DeepFacade-V2 [11] 88.8 89.1 88.9 71.3 56.5

Ours 89.9 87.8 88.9 80.9 73.8

In Table 2 and Table 3, we provide the quantita-

tive comparison on the ECP dataset. It shows that

our method outperforms the state-of-the-art method in

IoU of all classes and provides comparable pixel accu-

racy results with DeepFacade-V2 [11]. “∆” denotes the

performance gain brought by our EACNet compared

with DeepFacade-V2, showing the superiority of our

approach.

Table 1, Table 2, and Table 3 show that our method

provides a much higher IoU on each facade element

category, especially those highly aligned and repetitive

in structure. In particular, for the “window” category

which is the most frequent element on facades, com-

pared with DeepFacade-V2 [11], our method improves

the IoU by about 10% on both the Graz50 and ECP

datasets. It demonstrates that our EACNet effectively

leverages the layout regularity of building facades and
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exploits long-range dependencies between facade ele-

ments.

Table 2. Comparison of Pixel Accuracy on the ECP Dataset

Method Window Balcony Door Shop Avg.

Cohen et al. [6] 85.0 91.0 79.0 94.0 87.3

ATLAS [8] 78.0 87.0 71.0 95.0 82.8

Cohen et al. [23] 87.0 92.0 79.0 96.0 88.5

Rahmani et al. [20] 80.4 86.4 79.5 95.2 85.4

DeepFacade-V1 [10] 93.0 95.0 90.9 95.6 93.6

Rahmani et al. [48] 78.6 89.2 89.2 96.3 88.3

DeepFacade-V2 [11] 97.6 96.2 92.3 96.0 95.5

Ours 94.4 95.9 95.3 92.0 94.4

Table 3. Comparison of IoU on the ECP Dataset

Method Window Balcony Door Shop Avg.

DeepFacade-V2 [11] 80.3 85.2 63.1 80.3 77.2

Ours 89.8 88.0 64.3 86.1 82.1

∆ 9.5 2.8 1.2 5.8 4.9

4.4 Qualitative Evaluation

To better demonstrate the superiority of our facade

parsing framework, we show some facade parsing results

in Fig.6 of our method and the state-of-the-art methods

DeepFacade-V1/V2 on the ECP dataset. DeepFacade-

V1 tends to produce rough region boundaries for facade

elements. DeepFacade-V2 produces more rectangular

regions but mistakenly classifies the door as a window

in the first row. In contrast, our method produces more

regular regions for various facade element categories.

Moreover, the parameterized parsing results allow over-

lapping and nesting, thus being more applicable than

dense pixel-wise masks to applications such as facade

modeling. In particular, though the area where win-

dows and balconies overlap has a complex texture, our

parsing framework is able to produce complete regions

for “window” and “balcony” objects.

4.5 Results on Unrectified Facade Images

While the results on the ECP and Graz50 datasets

well demonstrate the effectiveness of our EACNet, we

also show the flexibility of our EACNet on parsing un-

rectified facade images. On unrectified facade images,

elements are not perfectly rectangular, for which our

EACNet is not applicable directly. However, there are

many well-established rectification approaches for fa-

cade images. We take the TILT approach [50] which

estimates the homography matrix for image rectifica-

tion based on low-rank texture features. Given an im-

age region that contains windows, TILT [50] estimates

a homography matrix and applies the projection trans-

formation on the entire image to produce a rectified

facade image.

We conduct evaluations on the 8-class eTRIMS

datasets [11], which contain 60 facade images from diffe-

(b)(a) (c) (d) (e) (f) (g)

Fig.6. Qualitative comparisons of our method and the state-of-the-art facade parsing methods DeepFacade-V1 [10] and DeepFacade-
V2 [11] on the ECP dataset. (a) Input image. (b) Ground-truth annotation. (c) Segmentation result of DeepFacade-V1 [10]. (d)
Segmentation result of DeepFacade-V2 [11]. (e) Detection results of our EACNet mapped on the input image. (f) Detected bounding
boxes. (g) Semantic masks rendered from the detection results of our EACNet.
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rent perspectives. We use 48 images for training and

12 images for testing. The eTRIMS dataset consists

of eight classes including “window”, “wall”, “door”,

“sky”, “pavement”, “vegetation”, “car”, and “road”.

Putting aside the categories not belonging to facade el-

ements, we choose the “window” and “door” categories

for evaluation. Since only semantic masks on the un-

rectified views are provided in the eTRIMS dataset, we

manually label the bounding boxes for evaluation.

We train two models of our EACNet on the rec-

tified images and the unrectified images respectively

and compare the results with those of the DeepFacade-

V2 [11] in Table 4. The “Ours-Unrectified” model is

directly trained with the 2D bounding boxes of facade

elements on unrectified perspectives. It is reasonable

that this model cannot achieve a higher IoU with the

ground-truth segmentation masks that are not rectan-

gular. “Ours-Rectified” is the model trained with 2D

bounding boxes that are well-fitted to the element re-

gions on the rectified images. We test our model on the

testing set of the rectified images and obtain the bound-

ing boxes detected on the rectified images. Then we ap-

ply the inverse projection transformation on the bound-

ing boxes to produce the semantic masks on the unrecti-

fied images. We calculate the IoU with the ground truth

masks. As Table 4 shows, our method outperforms

the segmentation-based method DeepFacade-V2 [11] by

a large margin with image rectification.

Table 4. Comparison of IoU on the eTRIMS Dataset [11]

Method Window Door Avg.

DeepFacade-V2 [11] 71.1 77.9 74.5

Ours-Unrectified 65.2 68.8 67.0

Ours-Rectified 85.2 79.4 82.3

Fig.7 shows an example of facade parsing for un-

rectified images using different methods. Though the

segmentation-based method is flexible to represent non-

rectangular regions under perspective projection, it fails

to generate accurate and regular region boundaries for

facade elements. Due to the restriction of rectangular

shapes of the detection framework, directly applying

our EACNet on the unrectified images successfully de-

tects all elements but fails to generate well-fitted region

boundaries. In comparison, with a well-established rec-

tification step, our EACNet can produce accurate and

structured region boundaries for facade elements.

4.6 Ablation Study

To verify the rationality of the proposed EACM, we

carry out ablation experiments mainly on the challeng-

ing CMP dataset. ECP and Graz50 are also used for

conducting additional comparisons.

4.6.1 Effect of EACM

In Table 5, we show the quantitative performance of

our method with different configurations on the CMP

dataset. “+ EACM” means adding an EACM between

the Hourglass backbone and the detector head. “Flip

Test” means combining horizontally flipped images dur-

ing inference, which is widely used in recent detection

networks [30, 32]. “X” means using corresponding con-

figurations mentioned above for experiments. We use

the average precision over all the IoU thresholds (AP),

the average precision at IoU threshold 0.5 (AP50), and

0.75 (AP75) for evaluation. The last six columns in

Table 5 are per-class AP results of facade element cat-

egories of the CMP dataset. The results show that

our EACM consistently improves the three AP metrics

and per-class AP of important facade element classes.

In particular, our EACM significantly improves the

(b)(a) (c) (d) (e) (f)

Fig.7. Qualitative comparison for unrectified facade images. (a) Input image. (b) Ground-truth masks. (c) Semantic segmentation
result of DeepFacade-V1 [10]. (d) Our detection results without rectification. (e) Our detection results on the rectified image. (f)
Semantic masks obtained by transforming the detection results on the rectified image to the original view.
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Table 5. Effect of EACM

Flip Test + EACM AP AP50 AP75 Sill Balcony Door Molding Window Cornice

38.6 67.1 38.9 38.6 33.9 33.8 25.3 59.2 40.8

X 39.2 67.5 40.1 39.9 35.0 34.4 24.9 60.4 40.6

X 39.7 67.9 41.0 40.3 34.9 34.5 25.5 60.8 42.2

X X 40.2 68.4 42.3 40.9 35.8 34.6 26.0 62.0 41.6

parsing accuracy of the “window” category (from 59.2

to 60.4 without flip-test and from 60.8 to 62.0 with

flip-test). It is mainly because that windows show

strong regularity and repetitiveness and our EACM ef-

fectively exploits the arrangement regularity and ap-

pearance similarity among window elements. Doors

do not strictly follow the arrangement regularity with

other elements. Nevertheless, the slight improvement

for the “door” category also indicates that our EACM

is also helpful for shape regularity since it collects local

spatial context for each position on a door.

4.6.2 Different Attention Mechanisms

As described in Subsection 3.2, our EACM is de-

signed to collect row-column spatial contextual infor-

mation and leverage the arrangement regularity of the

facade elements. The recurrent criss-cross attention

(RCCA) module of CCNet [44] collects spatial context

in criss-cross paths, which is similar to but different

from our EACM. We compare our EACM with RCCA

on the Graz50, ECP, and CMP datasets. We replace

EACM with RCCA in our framework and use the same

training settings for comparison. We test two models,

RCCA1 and RCCA2 which employ one-loop and two-

loops of RCCAs, respectively. As Table 6 shows, our

EACM brings performance gain on all three datasets,

while RCCA only achieves slight improvement on the

CMP dataset. RCCA even performs worse than the

baseline network on Graz50 and ECP. One reason is

that RCCA collects the contextual information from all

the pixels on the criss-cross paths and applies softmax

on them, and subsequently cannot efficiently utilize the

element-arrangement regularity on each direction sep-

arately. As a result, for the Graz50 and ECP datasets

that contain facades with neatly arranged facade ele-

ments, RCCA does not work well. For facades with

complex layouts and more categories in CMP, the dense

full-image contextual information harvested by RCCA

can be helpful. In contrast, our EACM effectively ex-

ploits the layout regularity in horizontal and vertical

directions separately and outperforms RCCA on vari-

ous scenarios.

Table 6. Comparison of the Proposed EACM and RCCA [44]

Dataset Method AP AP50 AP75

Graz50 Baseline 65.8 94.1 85.2

+ RCCA1 62.3 94.1 79.7

+ RCCA2 63.8 94.7 83.1

+ EACM 68.2 96.8 84.2

ECP Baseline 79.3 99.4 93.6

+ RCCA1 78.1 99.4 93.0

+ RCCA2 78.4 99.4 94.1

+ EACM 80.1 99.4 95.2

CMP Baseline 39.7 67.9 41.0

+ RCCA1 39.7 68.4 40.7

+ RCCA2 39.8 68.3 41.2

+ EACM 40.2 68.4 42.3

4.6.3 Visualization of EACM

To validate the effectiveness of the proposed EACM

on leveraging the layout regularity, we visualize the at-

tention maps in Fig. 8. We can see that EACM fo-

cuses on element regions aligned in the same row or

column, which proves that our method effectively ex-

ploits the spatial arrangement regularity and appear-

ance similarity. In addition, we further investigate the

effect of EACM by exploring two different strategies

for fusing the contextual features produced by the two

context branches. Besides concatenating feature maps

Srow and Scol to produce S, the other fusion strategy is

element-wise addition. The precision-recall curves un-

der different IoU thresholds are shown in Fig.9. The

results indicate that the two configurations of EACM

both make performance improvement and concatena-

tion fusion achieves the best performance.

4.6.4 Different Backbones

To further demonstrate the effectiveness of our

EACM on various networks, we combine our EACM

with different backbone networks, including ResNet-

101 [51], DLA-34 [52], and Hourglass [45]. Table 7

shows our quantitative results on the CMP dataset.

“+EACM” means adding our EACM module between

the backbone network and the detector head. “Flip”

means using test-time flip augmentation. “w/o Flip”
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Fig.8. Visualization of attention maps Acol and Arow in our EACM. The query points are marked in red.
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Fig.9. Effect of using different fusion strategies in EACM. We show precision-recall curves under different IoU thresholds. (a) Results
on the ECP dataset. (b) Results on the CMP dataset. The solid lines correspond to the baseline. The dashed lines and the dotted
lines are results of concatenation (concat) and addition (add) fusion respectively.

Table 7. Comparison of Different Backbone Networks on the CMP Dataset

Backbone +EACM AP AP50 AP75

w/o Flip Flip w/o Flip Flip w/o Flip Flip

Hourglass 38.6 39.7 67.1 67.9 38.9 41.0

X 39.2 40.2 67.5 68.4 40.1 42.3

DLA-34 32.4 33.7 62.8 63.7 29.8 31.2

X 33.5 34.6 63.8 65.1 31.7 33.0

ResNet-101 29.9 31.0 60.8 61.9 26.7 27.7

X 30.9 31.9 62.4 63.8 26.8 28.2

means no flip test-time augmentation. From the re-

ported AP, AP50, and AP75 metrics, we can see that

adding our EACM brings performance gains on all

the three backbone networks, demonstrating that our

EACM facilitates the facade parsing task by exploit-

ing the spatial arrangement regularity and appearance

similarity of facade elements.

5 Conclusions

In this paper, we introduced an element-

arrangement context network, EACNet, for facade

parsing by representing facade elements with param-

eterized axis-aligned bounding boxes. Our element-

arrangement context module, EACM, collects spatial
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column-context and row-context, effectively leverag-

ing the spatial arrangement regularity and appearance

similarity. Experimental results on four public datasets

showed that our facade parsing framework outper-

formed the state-of-the-art methods. The structured

box outputs of facade elements would facilitate subse-

quent facade modeling applications. In the future, we

would like to extend our facade parsing approach to

multi-view street images and produce more completed

and structured facade models for large-scale city scenes.
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[22] Koziński M, Gadde R, Zagoruyko S, Obozinski G, Marlet

R. A MRF shape prior for facade parsing with occlusions.

In Proc. the 2015 IEEE Conference on Computer Vision

and Pattern Recognition, June 2015, pp.2820-2828. DOI:

10.1109/CVPR.2015.7298899.

[23] Cohen A, R Oswald M, Liu Y, Pollefeys M. Symmetry-
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