
Xu TN, Sun HF, Zhang D et al. NfvInsight: A framework for automatically deploying and benchmarking VNF chains.

JOURNAL OF COMPUTER SCIENCE AND TECHNOLOGY 37(3): 680–698 May 2022. DOI 10.1007/s11390-020-0434-1

NfvInsight: A Framework for Automatically Deploying and
Benchmarking VNF Chains

Tian-Ni Xu1,2 (MUV), Hai-Feng Sun1,2 (�°¹), Di Zhang1,2 (Ü (), Xiao-Ming Zhou1,2 (±�²)
Xiu-Feng Sui3 (�D¸), Sa Wang1,2,4 (� ÷), Member, CCF, ACM
Qun Huang5 (� +), Member, CCF, ACM, IEEE, and
Yun-Gang Bao1,2,4,∗ (��k), Senior Member, CCF, Member, ACM, IEEE

1State Key Laboratory of Computer Architecture, Institute of Computing Technology, Chinese Academy of Sciences
Beijing 100190, China

2University of Chinese Academy of Sciences, Beijing 100049, China
3School of Information and Electronics, Beijing Institute of Technology, Beijing 100081, China
4Peng Cheng Laboratory, Shenzhen 518055, China
5Department of Computer Science and Technology, Peking University, Beijing 100871, China

E-mail: xutianni@ict.ac.cn; sunhaifeng@stu.pku.edu.cn; zhangdi@ict.ac.cn; zhouxiaoming@ict.ac.cn
E-mail: suixiufeng@bit.edu.cn; wangsa@ict.ac.cn; huangqun@pku.edu.cn; baoyg@ict.ac.cn

Received March 10, 2020; accepted October 15, 2020.

Abstract With the advent of virtualization techniques and software-defined networking (SDN), network function virtuali-

zation (NFV) shifts network functions (NFs) from hardware implementations to software appliances, between which exists

a performance gap. How to narrow the gap is an essential issue of current NFV research. However, the cumbersomeness

of deployment, the water pipe effect of virtual network function (VNF) chains, and the complexity of the system software

stack together make it tough to figure out the cause of low performance in the NFV system. To pinpoint the NFV system

performance issues, we propose NfvInsight, a framework for automatic deployment and benchmarking VNF chains. Our

framework tackles the challenges in NFV performance analysis. The framework components include chain graph generation,

automatic deployment, and fine granularity measurement. The design and implementation of each component have their

advantages. To the best of our knowledge, we make the first attempt to collect rules forming a knowledge base for generating

reasonable chain graphs. NfvInsight deploys the generated chain graphs automatically, which frees the network operators

from executing at least 391 lines of bash commands for a single test. To diagnose the performance bottleneck, NfvInsight

collects metrics from multiple layers of the software stack. Specifically, we collect the network stack latency distribution

ingeniously, introducing only less than 2.2% overhead. We showcase the convenience and usability of NfvInsight in finding

bottlenecks for both VNF chains and the underlying system. Leveraging our framework, we find several design flaws of

the network stack, which are unsuitable for packet forwarding inside one single server under the NFV circumstance. Our

optimization for these flaws gains at most 3x performance improvement.

Keywords network function virtualization (NFV), service chain, performance bottleneck, network stack latency

1 Introduction

Modern enterprises or data centers rely on a variety

of data plane appliances to enhance their networking

infrastructures. These appliances, also referred to as

network functions (NFs), offer valuable benefits, rang-

ing from improving security and boosting performance

to reducing resource usage. Traditionally, each type of

Regular Paper

This work was supported by the National Key Research and Development Program of China under Grant No. 2019YFB1802600, the
National Natural Science Foundation of China under Grant Nos. 61420106013, 61702480, 61672499, and 61802365, the Youth Innovation
Promotion Association of Chinese Academy of Sciences under Grant Nos. 2013073 and 2020105, and the Guangdong Province Key
Laboratory of Popular High Performance Computers under Grant No. 2017B030314073.

∗Corresponding Author

©Institute of Computing Technology, Chinese Academy of Sciences 2022

http://dx.doi.org/10.1007/s11390-020-0434-1

Tian-Ni Xu et al.: NfvInsight: Automatically Deploying and Benchmarking VNF Chains 681

NFs is built in proprietary middleboxes with special-

ized hardware, which provides great performance but

falls short in flexibility and also incurs high capital and

management costs. The emergence of network func-

tion virtualization (NFV) breaks down this barrier by

shifting the NFs to the off-the-shelf hardware. NFV

encapsulates NFs into virtualized appliances (e.g., vir-

tual machines or containers) forming virtualized net-

work functions (VNFs), and runs them atop commod-

ity hardware. Thus, NFV significantly alleviates the

investment in hardware and brings great flexibility in

both developing and deploying.

However, NFV inevitably suffers extra performance

penalty (e.g., performance interference and extra I/O

overhead) brought by virtualization techniques. The

state-of-art work puts a lot of effort into improving

the NFV performance. NetVM [1] and OpenNetVM [2]

provide an optimized hypervisor layer utilizing Intel

DPDK for NFV traffic steering, which bypasses the ker-

nel network stack to boost performance. OpenNF [3],

OpenBox [4], Metron [5] and NFP [6] provide new pro-

gramming models of VNFs to shorten user-level packet

processing paths. Other studies leverage GPU [7, 8],

FPGA [9] and SmartNIC [8] to accelerate VNFs. De-

spite all these studies, how to explore and pinpoint

the performance bottleneck or even the root cause of a

performance issue in an NFV system remains an open

and challenging question. It is tough to figure out the

cause of low performance. Several reasons are making

it effort-taken.

1) The deployment of the NFV system is cumber-

some. It involves configurations and setups on multiple

layers, which includes hypervisor, network, kernel, and

VNF specified parameters. When doing performance

debugging, iterative tests and repeated changing of con-

figurations are necessary but tedious, and cumbersome

without high automation.

2) The “water pipe” effect of the forwarding path

makes it even difficult. The forwarding path, which in-

cludes each VNF, virtual switches and the critical func-

tions of the network stack, forms a water pipe. This

effect is particularly prominent when it comes to TCP,

because of its ACK-based flow control mechanism. The

end-to-end bandwidth is determined by the narrowest

point of the path. Thus, it is impossible to locate the

narrowest point if the measurement results contain only

the end-to-end performance. Even the throughput or

latency of each VNF is still not enough. The former

cannot indicate the bottleneck because of the water

pipe effect, and the latter ignores the impact of virtual

switches and the network stack.

3) The shared system is hard to analyze. Under the

light-weighted virtualization environment, system mod-

ules are shared among all virtualized instances. Though

many system modules are not on the packet forwarding

path, they still influence the performance. The perfor-

mance factors include, but are not limited to, softirq,

locks in kernel, and CPU scheduling mechanism.

To efficiently discover the NFV performance bot-

tleneck, we propose a distributed framework named

NfvInsight. It takes the VNFs specified by the network

operator as input and enumerates all possible chain

topologies. The framework then automatically deploys

VNFs and steers the network traffic flowing through the

chain. Meanwhile, the framework collects measurement

metrics in fine granularity, covering the whole packet

forwarding path and multiple levels of the system.

To address the performance issues of NFV

chains, NfvInsight takes a comprehensive benchmark-

ing methodoloy. The performance issues are all re-

flected in the actual tests and measurement results.

Moreover, the comprehensiveness reflects in two ways.

One is the actual testing of all possible chain sequences.

The other one is the fine granularity measurement

which covers multiple metrics for detecting the perfor-

mance bottlenecks.

Leveraging this framework, we analyze five typical

VNFs and the chains they form. We find that there

are differences in the performance of VNFs themselves,

and their scale-out performance is distinct too. For the

typical scenario of the NFV system, in which multi-

ple VNFs communicate inside a physical machine, we

analyze the fine-grained measurement results obtained

by NfvInsight and find that several designs in the net-

work stack are not highly efficient for internal packet

transferring. 1) SR-IOV does not have a NIC bypass

mechanism. 2) UDP slicing is time-consuming and un-

necessary. 3) Softirq is CPU-consuming and not bal-

anced on cores. We make simple optimizations of the

above three problems. Each modification involves less

than 200 lines of code, and we obtain at most three

times performance gaining.

To summarize, we make contributions in the follow-

ing three aspects.

• We implement a prototype that automatically

generates chain graphs and configurations, deploys

VNFs and evaluates performance with little human in-

volvement, exactly, one-click deployment and bench-

marking.

682 J. Comput. Sci. & Technol., May 2022, Vol.37, No.3

• We perform case studies to showcase the conve-

nience and usability of NfvInsight in finding bottlenecks

for both VNF chains and the system.

• NfvInsight helps find several design flaws inside

the network stack for packets forwarding inside one sin-

gle server in the NFV circumstance. Our optimization

of the network stack gains at most 3x performance im-

provement.

2 Challenges

Network operators chain VNFs into a directed

acyclic graph (DAG), which is referred to as a “service

chain”. Nodes in the DAG represent VNFs, and the

directional edges represent the data path between two

VNFs. The network traffic is steered to travel along the

DAG and processed by the VNFs in the path based on

their specific purposes. There are at least three chal-

lenges to build a framework for automatically deploying

and benchmarking VNF service chains.

1) Chain Graph Generation. The sequences of

the chain mostly are determined based on experiences.

There are not any must-obey rules, but only case sug-

gestions in white paper documents [10]. However, ac-

cording to our knowledge, the sequence influences the

chain performance in at least two ways. One intui-

tive case is that some VNFs change the traffic vol-

ume of flows [11]. For example, the WAN Optimizer re-

duces traffic volume, while the BCH encoder increases

it. Thus, the VNFs’ position influences the traffic vol-

ume processed by the subsequent VNFs, and further

influences the performance of the entire chain. Another

non-intuitive case is presented in Probius [12]. Though

irrelative to traffic volume, locating the slowest VNF

at the beginning controls the I/O contentions of the

subsequent VNFs, and it results in the highest perfor-

mance among all possible chain graphs. Thus, possible

sequences of VNFs in a chain should all be considered.

The sequence of different types of VNF needs to

be taken into account. Counting multiple software im-

plementations, naively enumerating all possible chains

encounters the problem of graph explosion.

2) Automatic Deployment. The deployment of

VNFs in enterprise networks ranges from tens to hun-

dreds in scale [13]. Setting up an experimental envi-

ronment at this scale is not easy. Our survey of top

conference authors who have done NFV research work,

shows that: despite the differences in proficiency, the

deployment work requires at least two weeks of labor,

and one month on average. According to our own prac-

tice, 391 lines of bash commands have to be executed

to deploy and benchmark a chain, which is composed of

five VNFs, on a distributed cluster having three servers.

Even for an experienced network operator, we sup-

pose it time-consuming and error-prone. Though there

are industrial open projects for NFV management and

orchestration 1○ 2○, they lack the flexibility to do ite-

rative measurements, which includes changing network

configurations, allocating different resources for each

VNF and trying multiple VNF configurations. Thus,

flexible configuration and automation are needed.

However, automation does not mean merely putting

all the bash commands together, and several issues need

to be solved, which include transferring chain topology

representation to deployment commands, defining prac-

tical configuration interfaces, and enabling iterative

measurement of multiple graphs and multiple config-

urations.

3) Fine Granularity Measurement. NFV is pro-

posed to reduce costs by utilizing commodity hard-

ware. Therefore, it is common to consolidate mul-

tiple heterogeneous VNFs on one single physical ma-

chine for resource efficiency. It leads to a typical sce-

nario that packets transferring inside a server. Only

a fine-grained tracking of the packet forwarding path

achieves in-depth analysis. Existing profiling tools are

too general to track a packet’s latency on the forward-

ing path, and show the disadvantage of unacceptable

overhead delay. Moreover, multi-dimensional metrics

of each layer of the system are also important to profile

the system shared by multiple VNFs.

Collecting as many metrics as possible is the ba-

sic requirement, and on this basis, achieving both fine

granularity and low overhead is challenging.

3 NfvInsight Framework

To efficiently discover the performance bottleneck of

an NFV system, we propose the framework NfvInsight.

The working process of NfvInsight is depicted in Fig.1.

NfvInsight has quite a simple interface for network ope-

rators. The network operator only needs to specify the

VNFs to be tested, and then check and modify the con-

figuration file. With a one-click running, the specified

chain will run and performance reports will be gene-

rated. There are three main phases of NfvInsight. Each

1○https://www.opnfv.org/, Aug. 2020.
2○https://osm.etsi.org/, Aug. 2020.

Tian-Ni Xu et al.: NfvInsight: Automatically Deploying and Benchmarking VNF Chains 683

Configuration
Files

(Subsection 3.2)Knowledge
Base

(Subsection 3.1)

VNFs Needed
G

ra
p
h
 G

e
n
e
ra

ti
o
n

A
lg

o
ri
th

m
(S

u
b
se

c
ti
o
n
 3

.1
)

C
o
n
fi
g
u
ra

ti
o
n
 G

e
n
e
ra

to
r

(S
u
b
se

c
ti
o
n
 3

.2
.1

)

For Iterative Tests

P
e
rf

o
rm

a
n
c
e
 M

o
n
it
o
r

(S
u
b
se

c
ti
o
n
 3

.3
)

Measurement
Report

(Subsection 3.3)

VNF Allocator
(Subsection 3.2.2)

Network Controller
(Subsection 3.2.3)

OVS Rules

 Measurement Automatic Deployment Graph Generation

Fig.1. NfvInsight working process.

of them tackles one challenge elaborated in Section 2.

1) Graph Generation. In this phase, the graph gene-

ration algorithm enumerates service chains composed of

the VNFs demanded by network operators. The know-

ledge base contains external information that can be

used to optimize the enumeration. (Subsection 3.1)

2) Automatic Deployment. The configuration gener-

ator converts the chain graphs expressions into configu-

ration files, which are utilized by the VNF allocator and

network controller to automatically deploy the service

chains. (Subsection 3.2)

3) Fine Granularity Measurement. The perfor-

mance monitor collects multiple performance metrics

and forms measurement report as output. The bench-

mark results are returned to network operators for ite-

rative tests. Network operators examine the results to

diagnose performance bottlenecks or further extend for

their own purposes. (Subsection 3.3)

3.1 Graph Generation

Recall that a service chain is a directed acyclic

graph, where a node is a VNF and an edge indicates

a connection directed from one VNF to another. The

graph generation algorithm is to construct all valid

graphs composed of VNFs demanded by network ope-

rators. The algorithm outputs a set of expressions

which indicate different sequences the given VNFs can

form.

Logically, the algorithm is composed of two parts:

one for generating graphs and the other for filtering

invalid ones. However, the naive generate-and-filter

design will cause the graph explosion problem, which

means that the huge number of candidate graphs ex-

hausts computational resources. This motivates us to

integrate the two logical parts.

Graph Explosion Problem. We examine the graph

explosion problem with an example of four VNFs. We

first consider the number of possible topologies regard-

less of the mapping from VNFs to nodes. Fig.2 shows

that there are four non-isomorphic topologies. Then, if

we associate specific VNFs with the nodes, the resulting

number further increases. Specifically, there are 4!=24

possible mappings in Figs.2(a) and 2(b). Fig.2(c) has

12 possible mappings, while Fig.2(d) has 4. Thus, the

total number is 64.

(a) (b) (c) (d)

Fig.2. Four non-isomorphic topologies with four nodes.

In general, the number of resulting graphs dramati-

cally increases with the number of VNFs n. To estimate

the number, we start with a scenario that allows isomor-

phism. For the number of topologies, we consider a sim-

plified case in which all graphs are binary trees. In this

case, the number of the binary tree can be calculated as

Catalan number [14], which is (2n)!
(n+1)!n! . Since a node has

an arbitrary degree, the actual number of topologies is

much larger than (2n)!
(n+1)!n! . When n VNFs are associ-

ated with the nodes, there are n! possible mappings.

Thus, the total number of resulting graphs is at least
(2n)!
(n+1)! . Even though only non-isomorphism graphs are

reserved, the number remains the same magnitude of
(2n)!
(n+1)! .

Pruning Rules. To deal with graph explosion, we

need to prune invalid service chains in the process of

graph enumeration. This implies that the pruning rules

highly hinge on the enumeration approach. To this end,

we construct a graph by incrementally adding VNFs.

When a new VNF is added, we examine whether it

can be connected to any existing VNFs. Therefore, all

pruning rules have the same form in our design. Specifi-

684 J. Comput. Sci. & Technol., May 2022, Vol.37, No.3

cally, each rule takes two VNFs (denoted by V NF1 and

V NF2, respectively) and indicates whether the traffic

can go from V NF1 to V NF2.

Algorithms. Algorithm 1 elaborates on how to inte-

grate the topology enumeration and pruning rules. The

algorithm takes a set of VNFs as input and produces

all possible graphs denoted by G. It maintains two sets

picked and remain. In particular, picked represents

the VNFs added to the current graph, and remain rep-

resents the VNFs left.

Algorithm 1. VNF Chain Graph Generation

Input: VNFs in demand
Output: possible graphs G

1: G = ∅
2: picked = ∅
3: remain = a set of all the VNFs

4: function graphGen(picked, remain,G)

5: if remain == NULL then
6: Add this chain graph to G

7: return

8: for child in remain do
9: for parent in picked do

10: if parentJudge(parent, child) then
11: Add child after parent

12: picked := picked + child

13: remain := remain − child
14: graphGen(picked, remain,G)

15: function parentJudge(parent, child)
16: for rule in ruleList do

17: if not obey rule then

18: return False
19: return True

The function graphGen generates the graph recur-

sively. When remain is NULL, the iteration ends. In

this case, a new graph is generated and added to the

set G (lines 5–7). Otherwise, if remain is not NULL,

we enumerate all possible connections between VNFs

in picked and VNFs in remain (lines 8 and 9). The

function parentJudge is called to judge whether each

pair of VNFs can be connected (line 10). If this pair of

VNFs obeys every pruning rule (lines 15–19), the sub-

routine parentJudge returns True. In this case, the

new VNF in remain will be added to the current graph

(lines 11–13). Then the next recursion is performed

(line 14).

Knowledge Base. The knowledge base provides two

types of information for pruning rules. First, it asso-

ciates each VNF demanded by network operators with a

category. Second, for any pair of categories, the know-

ledge base indicates whether they can be connected.

Thus, when we judge whether there can be an edge be-

tween two specific VNFs, we first infer their categories

and then judge the connection between the two corre-

sponding categories.

We build the knowledge base based on well-

recognized existing studies (e.g., [6, 15]) and our prac-

tical deployment experiences. Currently, we define four

categories. The VNF types of each category and the

typical appliances are summarized in Table 1.

Table 1. Commonly Used VNFs

Category VNF Appliance

Leave-node IDS Snort 3○

Monitor NetFlow 4○

DNS BIND 5○

Network-oriented NAT iptables 6○

Gateway Cisco MGX 7○

WAN Opt. Wanos 8○

Host-oriented L4 Load Balancer HAProxy 9○

General L7 Cache Squid 10○

VPN OpenVPN 11○

Proxy envoy 12○

Compression Cisco IOS 13○

Traffic Shaper Linux TC [16]

IP Firewall iptables 6○

Anti-virus McAfee 14○

3○https://www.snort.org/, Aug. 2020.
4○https://www.manageengine.com/products/netflow/, Aug. 2020.
5○https://www.isc.org/bind/, Aug. 2020.
6○https://netfilter.org/projects/iptables/, Aug. 2020.
7○https://www.cisco.com/c/en/us/products/switches/mgx-8800-series-switches/index.html, Aug. 2020.
8○http://wanos.co/wan-optimization/, Aug. 2020.
9○https://www.haproxy.org/, Aug. 2020.
10○http://www.squid-cache.org/, Aug. 2020.
11○https://openvpn.net/, Aug. 2020.
12○https://www.envoyproxy.io/, Aug. 2020.
13○https://www.cisco.com/c/en/us/products/ios-nx-os-software/ios-technologies/index.html, Aug. 2020.
14○https://www.mcafee.com/en-us/index.html, Aug. 2020.

Tian-Ni Xu et al.: NfvInsight: Automatically Deploying and Benchmarking VNF Chains 685

• Network-oriented VNFs indicate those at the en-

trance of a data center network (e.g., NAT).

• Host-oriented VNFs are those located right near

the host. Taking load balance as an example, to re-

duce repeated processes, the actions of other VNFs are

better done before dispatching requests to end hosts.

• Leave-node VNFs are those without transferring

packets to the next hop such as IDS and monitor.

• General VNFs’ positions can be changed freely.

Based on the four categories, we define three prun-

ing rules.

1) A network-oriented VNF is the entrance of a

graph.

2) A host-oriented VNF should locate the nearest

to the server.

3) A leave VNF can be paralleled with other VNFs.

We take five VNFs in Table 1 as an example to

elaborate the pruning rules. The result of our graph

generation algorithm is shown in Fig.3.

The VNFs are IDS, NAT, L4 Load Balancer, L7

Cache and IP Firewall, which cover all the four cate-

gories we defined. To chain these five VNFs, pruning

rules 1 and 2 stipulate that NAT locates at the begin-

ning as the entrance of the chain, and L4 Load Bal-

ancer is the last in the chain connecting to the server

directly. L7 Cache and IP Firewall locate between NAT

and L4 Load Balancer, and the sequence of them can

be changed. The leave VNF IDS can be connected to

any other VNF. Thus, we get eight graphs as a result,

instead of (2×5)!
(5+1)! = 5 040 without pruning rules.

We use the above four categories and pruning rules

as default information in the knowledge base. In ad-

dition, we leave interfaces to add more sophisticated

categories and rules. Enhancing the knowledge base is

one of the most important future work of NfvInsight.

3.2 Automatic Deployment

Our framework helps to transmit the cumbersome

procedure of NFV deployment and measurement into

a one-click action. The architecture of our system is

shown in Fig.4. Our design for automatic deployment

and measurement on multiple servers is composed of

four modules (the shadowed part). We will introduce

the function of each module respectively, the configu-

ration generator, VNF allocator and network controller

in Subsection 3.2, and the performance monitor in Sub-

section 3.3.

The framework runs upon a particular infrastruc-

ture. To leverage the container’s lightweight isolation,

fast deploying feature, and its convenience of packing

runtime environment, VNFs are wrapped in dockers

and managed by the hypervisor. The hypervisor takes

charge of managing hardware resources of the whole

cluster (e.g., computation, storage and network) and

does docker allocation. The data path is set up on the

designated networking. NfvInsight supports three kinds

of networking configurations, which are OVS, Linux

bridge, and SR-IOV.

3.2.1 Configuration Generator

The chain graphs generated by the graph generation

algorithm are taken as this module’s input. The genera-

tor transforms the graphs into configuration file expres-

sions, which not only indicate the VNF sequences but

also contain necessary parameters for VNF deploying

and running. Fig.5 shows an example snippet.

First of all, the configuration file generator changes

the option parent (line 12), which indicates the chain

graph topology. The expression “parent = root” means

that this VNF is the first node of the chain. For other

subsequent VNFs, the parent option should be the name

of its previous VNF. This information of sequences is

used by the module VNF allocator for network alloca-

tion and the module network controller for traffic steer-

ing respectively.

Apart from the parent option, other options all have

default values and can be customized for each round of

iterative measurements. The content of the configura-

Firewall NAT IDS Cache Load Balance HostWorkload Generator

1 2 3 4 5 6 7 8

Fig.3. Eight chain graphs.

686 J. Comput. Sci. & Technol., May 2022, Vol.37, No.3

tion file can be divided into two parts (above and below

the dash line in Fig.5). The above includes VNF spe-

cific parameters, and the below includes infrastructure-

related parameters. The VNF specific parameters are

used for VNF launching. NfvInsight provides these op-

tions as interfaces for customers to finely tune VNFs.

Taking the configuration snippet of weighttp (an HTTP

request generator) as an example, the numbers of total

requests, TCP connections, working threads, and re-

peat rate requests are all configurable in our configura-

tion file (lines 2–5 in Fig.5). The infrastructure-related

parameters are used by the VNF allocator module for

VNF deployment.

Hardware

Hypervisor Networking

Perform-
ance

Monitor

VNF
Allocator

Network
Controller

Conf.
Generator

Pkt-
Gen

VNF RecvVNF

Chain

Graphs

Performance

Report

VNF

Images

Infrastructure

Framework

Fig.4. Framework architecture.

Fig.5. Example of the configuration file format.

3.2.2 VNF Allocator

VNF allocation involves hardware resource allo-

cation and VNF launching. In the phase of hard-

ware resource allocation, NfvInsight reads in the

infrastructure-related parameters (lines 6–10 in Fig.5)

and sends them to the hypervisor when calling the APIs

for docker deployment.

These parameters include resources reserved for

docker instances (e.g., CPU, memory) and the loca-

tion information of each VNF. The parameter of the

running node and the instance number can be specified

and modified in iterative tests. Also, the image of VNF

can be specified, and this leaves flexibility to measure

different appliances for each type of VNF.

3.2.3 Network Controller

This module is responsible for network resource allo-

cation, network adaptation, and traffic stirring among

multiple servers.

When doing network resource allocation, NfvInsight

arranges IP address for each docker container, and

records the usage of IP resource of each round of mea-

surement. For VNFs such as NAT, the chain has to

be divided into two LANs. The network controller al-

locates IPs for two LANs according to VNF sequence

information indicated in the configuration file.

NfvInsight currently supports three kinds of net-

work configurations, which are Linux bridge, OVS and

SR-IOV. NfvInsight switches among the three accord-

ing to user demands. For Linux bridge and OVS, dock-

ers are connected to the bridge through Veth pairs, and

the physical NIC is also connected to the bridge form-

ing an overlay network. For SR-IOV, virtual functions

(VFs), which are identical instantiations of the phys-

ical functions (PFs), are directly plugged into docker

containers. VF provides line rate network bandwidth

through hardware virtualization bypassing the software

stack.

When setting up the forwarding path for Linux

bridge and SR-IOV, the subsequent VNF IP is specified

in the configuration of the previous VNF. For OVS, the

communication channels are established by installing

OpenFlow rules on the virtual switches. OVS rules

are installed by the centralized OpenFlow controller.

To provide it with the information needed, this mod-

ule also records the mapping of (IP , MAC, ofport) of

each docker and dpid of the virtual switch.

3.3 Fine Granularity Measurement

The performance monitor module collects metrics

of multiple levels on each server, and synthesizes them

on the master to generate final reports for further ana-

lysis. In this subsection, we will introduce the metrics

NfvInsight supports, how we obtain the fine granularity

forwarding the path latency in a low overhead way, and

the measurement overhead.

3.3.1 Multiple-Layer Metrics

The multiple dimensions of performance metrics are

listed in Table 2. NfvInsight currently supports 13

metrics on five layers. The five layers are composed

Tian-Ni Xu et al.: NfvInsight: Automatically Deploying and Benchmarking VNF Chains 687

of application, virtualization, virtual switch, OS, and

hardware. The application latency and the application

bandwidth are obtained from the reports of packet gen-

erators. The bandwidth recorded at the virtualization

layer indicates more information than the end-to-end

application performance reports. The two metrics of

virtual switch reflects its utilization and can be used

to judge whether the virtual switch is the bottleneck.

Metrics on the OS layer offers a possibility to under-

stand what is happening in the shared system and on

the forwarding path in the network stack. The hard-

ware metrics reflect not only CPU distribution, but also

the utilization of each core. The architecture-related

hardware metrics indicate the information of micro ar-

chitecture.

Table 2. Performance Metrics

Layer Feature

Application Request latency

Request bandwidth

CPU utilization

Memory usage

Virtualization Virtual device bandwidth

Virtual switch Number of flow entries

OVS CPU utilization

OS Number of syscalls

Process context switch

Network stack latency distribution

Hardware CPU distribution

Instructions per cycle

Cache miss

Performance Report. Our framework refines the raw

data of measurement results and summarizes them into

several entries of the reports. The results are divided

into three categories according to the methodology of

obtaining the data. The first includes bandwidth, la-

tency or other information reported by workload gen-

erators or VNFs. The second is composed of the data

from system tools such as docker API and top. The

third entry contains metrics retrieved by profiling tools

(e.g., perf and ftrace), which bring larger performance

degradation than the system tools. The first three cat-

egories of report entries are generated by default, while

entries of the last two categories can be turned on and

off in the configuration file (line 11 in Fig.5). We will

showcase how to utilize the reports in Section 5.

3.3.2 Network Stack Latency Distribution

Network stack latency distribution helps to under-

stand the entire life cycle of packets in a server, which

is critical for diagnosing and optimizing the network

stack. To obtain this information, two difficulties need

to be solved. The first one is tracking a unique packet

through the network stack, and the second one is to do

instrumentation and timing in a low-overhead way.

Packet Tracing. Tracing a single packet throughout

the network stack is the first step to get the fine gran-

ularity network stack latency. Profiling tools such as

Perf can obtain the proportion of the function execution

time by sampling the kernel call stack. This method

cannot get an accurate function latency. It can only

point out the relatively hot function, which is coarse-

grained. Additionally, in the scenario of NFV, packets

go in and out of the network stack several times. The

call stack sampling results superimpose the repeated

calls. Thus, only by tracing the packets through the

network stack functions can we get the latency of the

tortuous forwarding path.

Identifying a unique packet inside a server is chal-

lenging. There are mainly two ways to solve the prob-

lem. The first one is to add a unique token field in

the IP packet header. But it needs to modify the net-

work protocol, making this method customized for a

controlled network environment. The second one is to

leverage existing fields in sk buff, for example the fields

tstamp and rxhash [17], the gray blocks in Fig.6. How-

ever, along with the kernel updating, these two vari-

ables have different usages. tstamp has been occupied

by some special network interface cards filling in a time

stamp. rxhash has been used to mark different names-

paces, and even been deleted since the kernel version

3.15.

Ethernet

IP

TCP

buffer

frags[]

skb_shared_info

U
n
iq

u
e
 P

a
c
k
e
t

Id

e
n
ti
fi
e
r

head

data

tail

end

prev

next

sk_buff

tstamp

rxhash

Fig.6. sk buff structure in Linux kernel.

In order to solve the problem of packet unique iden-

tification, we innovatively adopt a third way: using the

head address of sk buff as a unique identifier.

The structure sk buff, as shown in Fig.6, is formed

once a packet enters the kernel. The variables in the

688 J. Comput. Sci. & Technol., May 2022, Vol.37, No.3

first column are metadata of a packet, and among them,

the pointers (head, data, tail and end) point to the

memory location of the real packet. This method has

three benefits. 1) The kernel address, which head points

to, is unique for each packet inside one server. 2) The

value of this address is hardly changed, only when mem-

ory copy happens. Modifying the packets’ metadata

does not affect identifying the packet. 3) We only read

the address value without any modification of the kernel

code.

Instrumentation. To calculate the network stack la-

tency distribution, we need timing at the beginning of

each function for each packet. Solving the problem of

identifying each packet, the next problem is to insert

the “magic code” into kernel functions in a low over-

head way.

The traditional instrumentation and profiling tool

SystemTap uses Kprobe 15○ to perform customized in-

strumentation in the kernel, but the method is expen-

sive. According to our experiences, the overhead is at

least 20%, even probing only one frequently-used kernel

function. The root cause is that kprobe first registers

the handler function of the instrumentation, and then

it replaces the instruction at the instrumentation point

to int3. When the program executes int3, it will break

into an interruption and jump to the int3 handler. If

the interrupt handler detects that the source of the in-

terruption is from kprobe, it will look up the previously

registered kprobe handler for the next instruction. The

int3-based mechanism makes kprobe powerful and flex-

ible, but it changes the code execution to the single-step

mode, which is slow and expensive.

Our framework uses the mcount mechanism pro-

vided by ftrace 16○ to do instrumentation. When the

Linux kernel is compiled with ftrace on, the compiler

adds a call mcount instruction at the first line of each

kernel function, as illustrated in Fig.7. To prevent the

inserted instruction from bringing overhead, ftrace sets

the call mcount to NOP, which is a multi-byte non ope-

ration instruction. Thus, when there is no ftrace in-

strumentation, the performance overhead of NOP can

be ignored. When the instrumentation is needed, we

only need to modify the NOP of interested functions

into a CALL, which invokes the “magic code” to record

time stamps. Moreover, because the CALL instruction

is the first instruction of the probed function, all para-

meters of this function can be directly accessed by the

“magic code”, including the unique identifier.

Compared with kprobe, although the call mcount

mechanism is functionally weaker, since it can only in-

ject statistical code at the beginning of each function,

not anywhere in the code, the overhead is much lower.

It satisfies the requirement of our framework’s network

stack latency measurement.

< mcount>:

record timestamp

retq

<schedule>:

call <mcount>

push %rsp

mov %rsp, %rbp

pop %rbp

NOP

Fig.7. mcount mechanism illustration.

3.3.3 Low Overhead Measurement

In order to further reduce the overhead of collecting

the network stack latency, we add a sampling method,

which means only an appointed ratio of packets is

marked to be tracked. The filtering happens at the

first network stack function so that the concerned pac-

kets are still tracked throughout the whole stack. The

overhead of the network stack latency tracking is shown

in Fig.8. Along with the decreasing of the sampling ra-

tio, the performance degradation drops from 28% to

15.6% for UDP, and 41.6% to 2.2% for TCP. There is

no need to track every packet, and according to our ex-

periences, 1% sampling is enough for getting a sufficient

number of packets and observing the trend of latency.

Meanwhile, the overhead of 1% is acceptable, especially

compared with at least 20% overhead of SystemTap.

102 101 100 10-1 10-2

Sample Percent (%)

O
v
e
rh

e
a
d
 (

%
)

50

25

0

TCP UDP

Fig.8. Overhead of the network stack latency tracking tool.

Besides the overhead of the network stack tracing

tool, we also evaluate the overhead generated by collect-

ing other performance metrics. The user-level metrics

are collected from the reports of the packet generator,

15○https://www.kernel.org/doc/Documentation/kprobes.txt, Aug. 2020.
16○https://www.kernel.org/doc/Documentation/trace/ftrace.txt, Aug. 2020.

Tian-Ni Xu et al.: NfvInsight: Automatically Deploying and Benchmarking VNF Chains 689

which does not influence the chain performance. The

system tools our framework uses, for example docker

API and top, only bring in 0.6% performance degrada-

tion for the chains.

4 Implementation

We implement the prototype system NfvInsight in

Python3. The prototype uses the rules described in the

knowledge base as the system’s default pruning rules.

These rules are embedded into the code as an imple-

mentation of the knowledge base. To realize automa-

tion in the testbed module, NfvInsight generates a se-

ries of scripts to allocate VNFs, starts tests, and does

performance profiling.

NfvInsight leverages Kubernetes (v1.11) as the hy-

pervisor to manage the physical cluster and docker

(v17.03), and do resource allocation and docker place-

ment. To integrate NfvInsight’s data plane with Kuber-

netes’ network management, our cluster has two sets of

networks: one for cluster management, and the other

one for data path. The management network is under

the control of Kubernetes, which connects each docker

with a Linux bridge via 1 Gb ethernet. The data path

of VNFs is set on 40 Gb ethernet. Docker stats is used

to collect performance data, as well as Perf. Our ftrace-

based network latency tracking tool requires the kernel

version 4.19.

5 Case Study

In this section, cases are conducted to illustrate the

convenience and usability of NfvInsight in finding bot-

tlenecks for both VNF chains and the system. As sum-

marized in Fig.9, the first case shows that NfvInsight

has the ability to identify the bottleneck VNF in a spe-

cified chain through a series of iterative tests. The sec-

ond case shows that several NfvInsight designs in the

network stack are not highly efficient for internal packet

transferring. We further provide solutions to optimize

the system and gain performance improvement. Before

elaborating on the cases in detail, the network func-

tions, workloads and the hardware platform used to do

the experiments are introduced.

Network Functions. Five typical NFs commonly

used in enterprise networks or data centers are picked

to accomplish the case study.

• IDS. Snort 17○ is used for intrusion prevention, real-

time traffic analysis, and packet logging. To feed traffic

to Snort, OVS rules are installed to duplicate and redi-

rect out coming flows of the previous VNF.

• NAT. iptables 18○ is set with particular rules as

DNAT and SNAT. Two virtual network interfaces are

plugged into the docker of NAT to simulate two LANs.

• FW. The firewall is also implemented by

iptables 18○. Carefully-crafted rules are configured to fil-

ter the traffic.

TCP/UDP Send TCP/UDP Receive

ip_deliver

ip_out

netif_recvdev_xmit

VethVeth

VFDriver VF

Bridge

NIC

NIC Bypass

Hardware

Kernel

App

L4

L3

L2 Softirq

Balance

UDP Slice

Docker 1

VNF 1

Docker 2

VNF 2
P2P BW/Latency

ip_recv

Fig.9. Summary of the case study.

17○https://www.snort.org/, Aug. 2020.
18○https://netfilter.org/projects/iptables/, Aug. 2020.

690 J. Comput. Sci. & Technol., May 2022, Vol.37, No.3

• LB. HAProxy 19○ performs as an L4 load bal-

ancer. Two sets of connections are maintained for the

front-ends and back-ends respectively. The load bal-

anced mappings between connections are recorded by

the proxy.

• Cache. Squid 20○ is an L7 content caching. It is

configured to work as a reverse proxy, which reduces

response time by caching and reusing frequently-visited

web pages.

Workloads. To feed the chain with packet flows,

three types of workloads are used. The first two are

TCP and UDP traffic generated by netperf 21○, and the

third one is HTTP requests generated by weighttp 22○.

Compared with HTTP requests, TCP and UDP traffic

do not have the procedure of user layer packets pro-

cessing. In the experiments, netperf is run for two min-

utes, which is long enough to obtain the stable network

bandwidth. Meanwhile, HTTP requests are more ap-

propriate to simulate enterprise or data center work-

loads. The client weighttp gets static pages from the

Apache server. Additionally, weighttp is modified to

send requests with a given repetitive rate. The propor-

tion of repeated requests reflects the locality of HTTP

workloads.

When doing measurements, both the workload gen-

erator and the workload receiver should work under

maximum performance. Our testbed prototype emu-

lates the workloads from enterprise networks accessing

to data center servers. The series of VNFs on this path

in front of the servers brings down the bandwidth or ex-

tend latency. To do pressure tests, the workload genera-

tors should guarantee the maximum performance when

there is no VNF on the path. To achieve the line rate as

the baseline bandwidth in TCP workload tests, multiple

pairs of netperf clients and servers are used. For HTTP

workloads, experiments show that four threads and 64

connections (eight connections per thread) achieve the

maximum bandwidth. We also find that one single

Apache server cannot fully fill the bandwidth of a 40 Gb

NIC, because the utilization of the CPU resource limits

the performance. Thus, four Apache servers are used.

For each test, we run the experiment five times and

calculate the average.

Hardware Platform. Our experiments are conducted

on three physical servers with dual sockets Intel Xeon

E5-2650 v4 2.2 GHz, 24 cores with SMT turned on,

32 GB DRAM, 40 Gb NIC, and the servers are con-

nected by 40 Gb Mellanox switch. The servers run

Ubuntu 16.04 with kernel 4.19 and VNFs are encap-

sulated in dockers running Ubuntu 14.04. For more

realistic simulation, all VNFs run on a single physical

server, while load generators and receivers run on the

other two servers respectively.

5.1 Bottleneck VNF Identification

This case intends to present the process of NfvIn-

sight identifying the bottleneck VNF which limits the

performance of the entire chain. In addition, VNF in-

stance scale-out schemes are utilized to obtain a better

performance.

Performance of the Specified VNFs. We first mea-

sure the maximum bandwidth of the eight chain graphs

generated according to our graph generation algorithm.

In Fig.10, the chain index is in consistency with that in

Fig.3. For each chain, along with the rising of requests

repeat ratio (rrr) of HTTP, the maximum bandwidth

rises, and even doubles when all the requests are asking

for the same page. The increasing of the repeat ratio

only accelerates Cache’s processing time. According to

system acceleration ratio rules, Cache can be inferred

as the bottleneck VNF, though we need more proof.

1

100

50

0
2 3 4 5

Chain Index

M
a
x
im

u
m

B
a
n
d
w

id
th

 (
M

b
p
s)

6 7 8

rrr/0% rrr/20% rrr/50% rrr/100%

Fig.10. Bandwidth of eight chain graphs when the workload
locality of HTTP requests varies.

In addition, the sequence of VNFs in the chain re-

sults in performance difference. Though being very

slight, the last four graphs perform better than the first

four. It is because of Cache locating in front of FW and

reducing the workload volume.

Single VNF Performance. To find out the perfor-

mance impact of each VNF, chain graphs with only

one VNF are measured. In Fig. 11, the bar “None”,

as the baseline performance, is measured in the case

where there is no VNF between the load generator and

19○https://www.haproxy.org/, Aug. 2020.
20○http://www.squid-cache.org/, Aug. 2020.
21○https://hewlettpackard.github.io/netperf/, Aug. 2020.
22○https://github.com/lighttpd/weighttp, Aug. 2020.

Tian-Ni Xu et al.: NfvInsight: Automatically Deploying and Benchmarking VNF Chains 691

None NAT FW LB Cache IDS None NAT FW LB IDS

15

10

5

0

40

30

20

10

0

B
a
n
d
w

id
th

 (
G

b
p
s)

B
a
n
d
w

id
th

 (
G

b
p
s)

(b)(a)

Fig.11. Bandwidth of single VNF. (a) HTTP workload. (b) TCP workload.

the receiver. The bandwidth results show that Cache

degrades the performance most by 93.92%. A simple

and straightforward idea is to expand the number of

instances of each single VNF to understand the upper

bound of performance gain through scaling out. There-

fore, the next round of measurement is single VNF

scale-out.

Single VNF Scale-out. The numbers of instances

of NAT, FW, LB and Cache are expanded as shown

in Fig.12 driven by the HTTP workload. For further

confirmation, TCP workload is also used for this experi-

ment shown in Fig.13, though without Cache. For the

TCP workload, when scaling out NAT, FW and LB, it

reaches near baseline bandwidth (37.8 Gbps, the same

as “None” of Fig.11(b)). For both HTTP and TCP

workloads, these three VNFs reach the near baseline

bandwidth, roughly 40 Gbps for TCP and 15 Gbps for

HTTP. Thus, a conclusion can be made that NAT, FW

and LB limit the entire chain bandwidth, but they will

not be the bottleneck VNF after scaling-out.

However, when it comes to Cache, even scaling-out

cannot make the bandwidth equal to the baseline. In

Fig.12(b), the bandwidth stops scaling when the num-

ber of Cache instances reaches 8.

Bottleneck Scale-out. Cache has greater perfor-

mance influence than the other VNFs. Thus, it is cho-

sen to be scaled out in the chain graph in the first

place. We take chain graph 1○ in Fig.3 as an exam-

ple. As shown in Fig.14, the bandwidth grows until

the instance number of Cache reaches 10. The perfor-

mance with 10 Cache instances is 3.59 times better,

compared with only one Cache instance in the chain.

When the instance scales to 12, the entire chain suffers

sharp degradation and fluctuation. Thus, scaling to 10

reaches the upper bound.

Summary. Experiments in this case reveal that

VNFs in a service chain are chained like tubes of diffe-

rent thickness connected up. Since the VNFs used in

our case are socket-based, the number of flows a sin-

gle VNF can process at one time can be analogized to

the thickness of the tube. The input workloads are like

water flowing through a pipe. The flow of the entire

pipe is limited by the thinnest point. The thickening

of other none bottleneck points does not bring changes

in performance. For the service chain, the entire chain

performance is limited by the slowest VNF, which is

Cache in this case. Scaling it out at most gains a per-

formance 4x better.

5.2 System Bottleneck

To find internal packet transferring bottlenecks, we

perform all the experiments by sending packets di-

rectly between the sender and the receiver, and we call

0 2 4

10

0

Number of VNF Instances

6

FW

LB Cache

NAT

8 0 4 8

Number of Cache Instances

12 16 20 24

B
a
n
d
w

id
th

 (
G

b
p
s)

3

2

1

0

B
a
n
d
w

id
th

 (
G

b
p
s)

Fig.12. Bandwidth of VNF scale-out under HTTP workloads.

692 J. Comput. Sci. & Technol., May 2022, Vol.37, No.3

this point-to-point measurement (P2P). We use netperf

sending TCP/UDP packets of the same size (64 KB) to

simulate the flow inside a physical machine. We bound

the sender thread and the receiver thread to two sepa-

rated CPU cores for two reasons. One is that the migra-

tion of threads on CPU cores causes unstable network

performance. The other one is that VNFs are usually

bound to CPU cores in the production environment.

0 2 4

40

20

0

Number of VNF Instances

6 8 10 12

B
a
n
d
w

id
th

 (
G

b
p
s)

FW

LB

NAT

Fig.13. Bandwidth of scaling out each VNF under TCP.

0 4 8

Number of Cache Instances

12 16 20

1.0

0.5

0.0

B
a
n
d
w

id
th

 (
G

b
p
s)

Fig.14. Bandwidth of scale-out cache in chain.

The bandwidth and softirq core distribution un-

der three kinds of network configurations (OVS, Linux

bridge (Br), and SR-IOV) driven by two kinds of work-

loads are showed in Fig.15 and Table 3 respectively. By

analyzing and comparing this data, we find three prob-

lems in the network stack. We analyze the root cause

and optimize them separately.

20

10

0

B
a
n
d
w

id
th

 (
G

b
p
s)

OVS

TCP UDP

Br SR-IOV

Fig.15. Bandwidth of three network configurations under two
workloads.

Table 3. CPU Usage Distribution of Softirq

Network Application Clinet Server

Configuration Node (%) Node (%)

Linux bridge TCP 35.6 34.3

UDP 63.9 0.0

OVS TCP 25.5 23.3

UDP 56.0 0.0

SR-IOV TCP 0.0 0.0

UDP 50.3 0.0

5.2.1 SR-IOV Internal Forwarding

In Fig. 15, for the TCP workload, the forwarding

bandwidth of SR-IOV is 32.5% lower than that of Linux

bridge, and 46.3% lower than that of OVS. SR-IOV is

different from the other two network configurations in

that the virtual functions (VF) are created by virtual-

izing the hardware NIC. Therefore, we conduct an in-

depth analysis of SR-IOV’s internal forwarding mecha-

nism. The tracked network stack functions are listed in

Table 4. The sampling ratio is set to 1%.

Table 4. Tracked Network Stack Functions

Function Name Index

ip local out F1

dev queue xmit F2

veth xmit F3

netif receive skb F4

ip rcv F5

ip local deliver F6

tcp transmit skb F7

tcp v4 rcv F8

i40evf xmit frame F9

napi gro receive F10

udp send skb F11

udp rcv F12

The network stack tracking results in Fig.16(a) show

that packets have been transferred to the physical NIC

between F9 and F10. Receiving and reconstructing pac-

kets (between F10 and F4) results in an extremely long

latency, because in this process, memory space is allo-

cated for new packets, and memory copy happens to

construct skb in kernel, which is time consuming. We

further analyze the implementation of SR-IOV device

driver, which is Intel i40evf for the NIC card we use.

We find out that SR-IOV does not have a mechanism

bypassing NIC for intra server packets forwarding.

Thus, we modify the NIC driver by adding a judg-

ment of whether the destination MAC address of the

packet is a VF inside the same machine. If so, the

packet is forwarded directly back to the network stack,

Tian-Ni Xu et al.: NfvInsight: Automatically Deploying and Benchmarking VNF Chains 693

(b)(a)

NIC

F7 F1 F2 F9 F10 F4

Process Order

L
a
te

n
c
y
 (
m
s)

F5 F6 F8

25

20

15

10

5

0

L
a
te

n
c
y
 (
m
s)

25

20

15

10

5

0
F7 F1 F2 F4

Process Order

F5 F6 F8

Fig.16. Network stack latency distribution of SR-IOV. (a) Original forwarding. (b) Modified forwarding.

bypassing the NIC. The network stack latency distribu-

tion after this optimization is shown in Fig.16(b). The

functions of exiting and entering NIC are replaced by

forwarding inside the software network stack, and the

extremely long latency is reduced. The bandwidth after

modification, compared with original SR-IOV, increases

by 100% and 37% for TCP and UDP respectively. The

performance improves because the forwarding function

we use in replacement deals with the skb without any

memory operation.

5.2.2 Softirq Core Affinity Imbalance

Observing the data in Table 3, CPU usages of softirq

(si) of UDP are all concentrated on the sender core

(shown in red, meaning si imbalanced), where the client

thread locates. But for TCP, it is different. In compa-

rison, the CPU usages of softirq for the TCP traffic are

distributed on the sender core and the receiver core

(shown in green, meaning si balanced). The softirq

CPU usages of the TCP traffic of SR-IOV are ex-

ceptional, which are both zero, but they are still si-

balanced. When using SR-IOV, softirq is triggered by

NIC but not the software stack. Softirq triggered by

NIC appears on an arbitrary core, which can be the

sender core or the receiver core or any other. We ob-

serve the bandwidth fluctuation of SR-IOV TCP when

the softirq thread migrates from core to core. Com-

bined with the bandwidth data of UDP workloads, we

conclude that softirq threads are CPU-intensive, and

interfere the performance of the service. Therefore, we

try to change the softirq imbalance of UDP on the Linux

bridge.

The original UDP softirq locates on the sender core

as shown in Fig. 17(a). We look into the code of

Linux bridge and find that softirq appears twice at both

the sending and the receiving processes. We modify

the code to split the two softirq threads. There are

three optimization schemes to allocate the split softirq

threads, as shown in Figs.17(b)–17(d). We choose the

plan in Fig.17(b) to balance the send softirq on the

sender core (S) and the receive softirq on the receiver

core (R), because in this case softirq does not occupy

any other CPU cores. We suppose that VNFs should

not occupy more resources than allocated unless it is

authorized.

S

(a) (b)

(c) (d)

App Thread Softirq

ReceiveSend Mix Core

R RS

RS si S R si si

Fig.17. UDP softirq distribution on core.

We write a dynamically loadable kernel module.

The module can extract the topology information of

the chain from the configuration file of the framework,

and determine the core binding scheme before the chain

is deployed and run. The method we use avoids check-

ing the owner of a softirq thread and reconfiguring the

kernel after the VNF startup. As Fig.17 shows, softirq

is balanced by our approach. The CPU usage in Table 5

proves it. The resulting bandwidth is shown in Fig.18

(Br-LB) which increases by 22%. In this situation, the

client core’s CPU idle is zero, which means the client

reaches the CPU resource limitation. Thus, softirq

core affinity imbalance limits the internal packet trans-

fer. We also test the bandwidth of plans in Fig.17(c)

and Fig.17(d). The bandwidth increases by 61.2% and

694 J. Comput. Sci. & Technol., May 2022, Vol.37, No.3

135.3% respectively compared with the original plan in

Fig.17(a), so that allocating more CPU resources for

softirq can gain performance improvement.

Table 5. CPU Usage Distribution of Softirq After Being Bal-
anced

Network Application Client Server

Configuration Node (%) Node (%)

Linux bridge UDP 51.2 34.3

Br-LB-SLCBr-LBBr Br-SLC

15

10

5

0

B
a
n
d
w

id
th

 (
G

b
p
s)

Fig.18. Bandwidth of UDP after optimizations.

5.2.3 UDP Slicing

Though sending packets of the same size, the band-

width of UDP is 71.5% lower than that of TCP, even af-

ter the UDP softirq imbalance optimization. Therefore,

we perform a delay analysis on the forwarding process

of UDP packets on Linux bridge, as shown in Fig.19.

F11 F1 F2 F2

82%

94%
68%

Process Order

F3 F3F4

60

40

20

0
F4 F5 F6 F12

L
a
te

n
c
y
 (
m
s)

Original
Optimized

Fig.19. Network stack latency distribution of UDP before and
after slicing optimization.

The latency distribution has three spikes. We an-

alyze the code of network stack to figure out the root

cause. From F11 to F3, the packet is sent from the

sender to the bridge. The packet is sliced by the L3

protocol because NIC does not support UFO (UDP

fragmentation offload). Then the bridge receives the

packet after F4 and sends it out in F2. In this phase,

the packet has been merged once for Netfilters PRE-

ROUTING and sliced again for further forwarding. The

receiver receives the packet in the second F4, and pro-

cesses it afterwards. Between F5 and F6, the packet is

merged again on L3. Thus, UDP packets’ slicing and

merging for internal transmitting happen several times,

resulting in long latencies. There is no need to slice and

merge the packets if they do not go out of the physical

NIC.

We modify the network stack to avoid slicing in both

L3 and L2, and the three latency spikes are eliminated

as shown in Fig.19. The bandwidth of Br-SLC increases

by 143.3% shown in Fig.18. We apply softirq optimiza-

tion together with UDP slicing and gain 216.1% perfor-

mance improvement as shown in Br-LB-SLC.

6 Related Work

We survey the related studies on the performance of

the NFV system, and we summarize them from three

aspects, which include monitoring and analyzing the

performance, accelerating the infrastructure, and opti-

mizing the programming model.

Performance Analysis. We list and compare the

frameworks focusing on monitoring and analyzing the

NFV performance in Table 6.

ConMon [18] and NFVPerf [19] utilize the OVS mir-

roring mechanism and packet capturing libraries to

record packets passively, forming packets logs. The logs

are parsed and analyzed online in a specified interval.

The information includes the user-level bandwidth and

latency, and even packet loss and jitter are obtained.

These two frameworks have similar features, and they

Table 6. Performance Analysis Frameworks

Related VNF Instance Instance CPU Memory Network Virtualization Online Offline

Work Topology Scale-out Scale-up Schedule Access Stack Docker KVM Analysis Performance

ConMon [18] √ √

NFVPerf [19]
√ √

MeDICINE [20] √ √ √

SCC [21] √ √ √ √

Probius [12] √ √ √ √ √

NfvInsight
√ √ √ √ √ √ √ √

Tian-Ni Xu et al.: NfvInsight: Automatically Deploying and Benchmarking VNF Chains 695

only differ in the virtualization platform. NfvInsight

does not use the high-overhead method of packets cap-

turing to collect metrics, but leverages the user-level re-

ports of the packet generator. Another framework [20],

which is built on MeDICINE, considers the performance

change when the CPU resource of a single VNF scales

up. However, it still leaves many other factors to be

concerned.

In addition, SCC [21] and Probius [12] conduct the

in-depth analysis of the cache and memory system, as

well as CPU scheduling. Under the container environ-

ment, CPU scheduling happens with context switching

between processes wrapped in containers. For virtual

machines, VM state transition results in CPU schedul-

ing. SCC and Probius analyze these two virtualization

platforms separately. Probius does anomaly detection

in NFV systems. The online data is monitored and

compared with offline performance metrics to discover

abnormal issues. It also takes the topology of VNF

chains as a factor which influences the performance.

NfvInsight aims to cover all these performance-

related factors. Apart from the aspects concerned in

other frameworks, NfvInsight takes into account the in-

stance scale-out situation and latency breakdown of the

network stack. Besides, for the VNF topology, NfvIn-

sight collects rules to form a knowledge base and gene-

rates reasonable chain graphs. To the best of our know-

ledge, this is a first attempt.

Programmable Optimization. Some studies follow

the idea of SDN to expose programming interfaces for

service chain optimization. For example, FreeFlow [22]

proposes a new abstraction for transparent and bal-

anced migration of virtual middleboxes, and enables

dynamic and stateful traffic scheduling. OpenNF [3] de-

couples VNF states from their processing logic and pro-

poses APIs for state management and optimizations.

PGA [15] checks user-specified policies and composes

conflict-free chains accordingly. OpenBox [4] tears down

VNFs into several primitive functions and removes du-

plicated parts for the resource efficiency. NFP [6] lets

users specify processing orders of VNFs and identify the

feasibility of parallelism. These studies rely on domain

knowledge from network operators. NfvInsight differs

from them by benchmarking enumerated graphs, which

minimizes the requirement for the domain knowledge.

Infrastructure Acceleration. Some studies address to

accelerating the underlying NFV infrastructures. For

example, NetVM [1] and OpenNetVM [2] leverage the

DPDK library 23○ to speed up the packet delivery for

KVM and Docker, respectively. Metron [5] takes the

advantages of smart NICs to offload stateless VNFs

processing to hardware. Our work NfvInsight is or-

thogonal, and its testbed component can adopt these

techniques to boost the service chain benchmarking.

Graph-Related Acceleration. NFP [6] and Parab-

ox [23] have a similar idea and provide methods to judge

whether two NFs can be paralleled. According to the

actions NFs done to packets (e.g., reading or writing the

5-tuple, adding or deleting the header, and dropping

packets), their algorithms give out parallelism identi-

fication results. In the future, we can add their algo-

rithms into the knowledge base of NfvInsight to deter-

mine which NF can be paralleled.

Model-Based Optimization. Some studies lever-

age the methodology of formalization to quantify

the factors influencing the performance of the NFV

platform [24]. Models are built for various perfor-

mance issues including resource requirement [25], traf-

fic changing effects (VNF sequence effects) [11], CPU

allocation [26], latency constraint [27], virtual switch

cost [28], and operational costs and utilization [29]. How-

ever, existing models lack the generality because each

model only addresses one issue. Further, it remains an

open issue to model performance uncertainties such as

performance interference. NfvInsight covers all perfor-

mance issues because it performs comprehensive bench-

marks, and the performance issues are all reflected in

the measurement results.

7 Conclusions

We designed and implemented NfvInsight, a dis-

tributed testing system automatically deploying VNFs

and steering the network traffic to simplify the bench-

marking procedure. Through iterative measurement,

NfvInsight is able to pinpoint the performance bottle-

neck of NFV systems. Our framework aids network

operators in the cumbersome and error-prone routine of

benchmarking the NFV system, and helps them figure

out performance issues. We conducted two case studies

to prove the effectiveness of NfvInsight and make the

following conclusions.

• The VNFs can be chained with different se-

quences. NfvInsight provides rules for selecting chains

with reasonable sequences. The measurement results

provided evidence for the claim that the order of VNFs

in chain influences chain performance.

23○https://www.intel.com/content/www/us/en/developer/topic-technology/networking/dpdk.html, May 2022.

696 J. Comput. Sci. & Technol., May 2022, Vol.37, No.3

• Chained VNFs and the forwarding path form a

water pipe, especially for the services setting up the

L3 connection. The input workload is like water flow-

ing through the tube and limited by the thinnest point.

In our case, the VNF Cache throttles the end-to-end

performance.

• It is a typical scenario that several VNFs are al-

located on one single server. NfvInsight can detect the

narrowness of the packet forwarding path. The mea-

surement results helped locate and analyze the design

flaws in the system.

Acknowledgements We thank all the anonymous

shepherd and reviewers for their valuable comments.

We are especially grateful to Zhi-Cheng Yao (Institute

of Computing Technology, Chinese Academy of Sci-

ences, Beijing) for his generous help.

References

[1] Hwang J, Ramakrishnan K K, Wood T. NetVM: High

performance and flexible networking using virtualization

on commodity platforms. IEEE Transactions on Net-

work and Service Management, 2015, 12(1): 34-47. DOI:

10.1109/TNSM.2015.2401568.

[2] Zhang W, Liu G, Zhang W, Shah N, Lopreiato P, Todeschi

G, Ramakrishnan K, Wood T. OpenNetVM: A platform for

high performance network service chains. In Proc. the 2016

ACM SIGCOMM Workshop on Hot Topics in Middleboxes

and Network Function Virtualization, August 2016, pp.26-

31. DOI: 10.1145/2940147.2940155.

[3] Gember-Jacobson A, Viswanathan R, Prakash C, Grandl

R, Khalid J, Das S, Akella A. OpenNF: Enabling innova-

tion in network function control. ACM SIGCOMM Com-

puter Communication Review, 2014, 44(4): 163-174. DOI:

10.1145/2740070.2626313.

[4] Bremler-Barr A, Harchol Y, Hay D. Openbox: A

software-defined framework for developing, deploying, and

managing network functions. In Proc. the 2016 ACM

SIGCOMM Conference, August 2016, pp.511-524. DOI:

10.1145/2934872.2934875.

[5] Katsikas G P, Barbette T, Kostic D, Steinert R, Maguire G

Q. Metron: NFV service chains at the true speed of the un-

derlying hardware. In Proc. the 15th USENIX Symposium

on Networked Systems Design and Implementation, April

2018, pp.171-186.

[6] Sun C, Bi J, Zheng Z, Yu H, Hu H. NFP: Enabling network

function parallelism in NFV. In Proc. the Conference of

the ACM Special Interest Group on Data Communication,

August 2017, pp.43-56. DOI: 10.1145/3098822.3098826.

[7] Yi X, Duan J, Wu C. GPUNFV: A GPU-accelerated

NFV system. In Proc. the 1st Asia-Pacific Work-

shop on Networking, August 2017, pp.85-91. DOI:

10.1145/3106989.3106990.

[8] Bronstein Z, Roch E, Xia J, Molkho A. Uniform

handling and abstraction of NFV hardware accel-

erators. IEEE Network, 2015, 29(3): 22-29. DOI:

10.1109/MNET.2015.7113221.

[9] Kachris C, Sirakoulis G, Soudris D. Network function

virtualization based on FPGAs: A framework for all-

programmable network devices. arXiv:1406.0309, 2014.

https://arxiv.org/ftp/arxiv/papers/1406/1406. 0309.pdf,

Dec. 2021.

[10] Ersue M. ETSI NFV management and orchestration—

An overview. https://www.ietf.org/proceedings/88/

slides/slides-88-opsawg-6.pdf, Dec. 2021.

[11] Ma W, Sandoval O, Beltran J, Pan D, Pissinou N. Traffic

aware placement of interdependent NFV middleboxes. In

Proc. the 2017 IEEE Conference on Computer Communi-

cations, May 2017. DOI: 10.1109/INFOCOM.2017.8056993.

[12] Nam J, Seo J, Shin S. Probius: Automated approach for

VNF and service chain analysis in software-defined NFV.

In Proc. the Symposium on SDN Research, March 2018,

Article No. 14. DOI: 10.1145/3185467.3185495.

[13] Sherry J, Hasan S, Scott C, Krishnamurthy A, Ratnasamy

S, Sekar V. Making middleboxes someone else’s problem:

Network processing as a cloud service. ACM SIGCOMM

Computer Communication Review, 2012, 42(4): 13-24.

DOI: 10.1145/2377677.2377680.

[14] Koshy T. Catalan Numbers with Applications. Oxford Uni-

versity Press, 2008.

[15] Prakash C, Lee J, Turner Y, Kang J M, Akella A, Baner-

jee S, Clark C, Ma Y, Sharma P, Zhang Y. PGA: Using

graphs to express and automatically reconcile network poli-

cies. ACM SIGCOMM Computer Communication Review,

2015, 45(4): 29-42. DOI: 10.1145/2829988.2787506.

[16] Hubert B, Maxwell G, Van Mook R et al. Linux ad-

vanced routing & traffic control HOWTO. https://tldp.

org/HOWTO/pdf/Adv-Routing-HOWTO.pdf, Dec. 2021.

[17] Blake G, Saidi A G. Where does the time go? Characte-

rizing tail latency in memcached. In Proc. the 2015 IEEE

International Symposium on Performance Analysis of Sys-

tems and Software, March 2015, pp.21-31. DOI: 10.1109/IS-

PASS.2015.7095781.

[18] Moradi F, Flinta C, Johnsson A, Meirosu C. ConMon: An

automated container based network performance monitor-

ing system. In Proc. the 2017 IFIP/IEEE Symposium on

Integrated Network and Service Management, May 2017,

pp.54-62. DOI: 10.23919/INM.2017.7987264.

[19] Naik P, Shaw D K, Vutukuru M. NFVPerf: Online per-

formance monitoring and bottleneck detection for NFV.

In Proc. the 2016 IEEE Conference on Network Function

Virtualization and Software Defined Networks, November

2016, pp.154-160. DOI: 10.1109/NFV-SDN.2016.7919491.

[20] Peuster M, Karl H. Understand your chains: To-

wards performance profile-based network service mana-

gement. In Proc. the 5th European Workshop on

Software-Defined Networks, October 2016, pp.7-12. DOI:

10.1109/EWSDN.2016.9.

[21] Katsikas G P, Maguire G Q, Kostić D. Profiling and accel-

erating commodity NFV service chains with SCC. Jour-

nal of Systems and Software, 2017, 127: 12-27. DOI:

10.1016/j.jss.2017.01.005.

https://doi.org/10.1109/TNSM.2015.2401568
https://doi.org/10.1145/2940147.2940155
https://doi.org/10.1145/2740070.2626313
https://doi.org/10.1145/2934872.2934875
https://doi.org/10.1145/3098822.3098826
https://doi.org/10.1145/3106989.3106990
https://doi.org/10.1109/MNET.2015.7113221
https://doi.org/10.1109/INFOCOM.2017.8056993
https://doi.org/10.1145/3185467.3185495
https://doi.org/10.1145/2377677.2377680
https://doi.org/10.1145/2829988.2787506
https://doi.org/10.1109/ISPASS.2015.7095781
https://doi.org/10.1109/ISPASS.2015.7095781
https://doi.org/10.23919/INM.2017.7987264
https://doi.org/10.1109/NFV-SDN.2016.7919491
https://doi.org/10.1109/EWSDN.2016.9
https://doi.org/10.1016/j.jss.2017.01.005

Tian-Ni Xu et al.: NfvInsight: Automatically Deploying and Benchmarking VNF Chains 697

[22] Rajagopalan S, Williams D, Jamjoom H, Warfield A.

Split/merge: System support for elastic execution in vir-

tual middleboxes. In Proc. the 10th USENIX Symposium

on Networked Systems Design and Implementation, April

2013, pp.227-240.

[23] Zhang Y, Anwer B, Gopalakrishnan V, Han B, Reich J,

Shaikh A, Zhang Z L. ParaBox: Exploiting parallelism for

virtual network functions in service chaining. In Proc. the

Symposium on SDN Research, April 2017, pp.143-149. DOI:

10.1145/3050220.3050236.

[24] Duan Q. Cloud service performance evaluation: Sta-

tus, challenges, and opportunities—A survey from

the system modeling perspective. Digital Communi-

cations and Networks, 2017, 3(2): 101-111. DOI:

10.1016/j.dcan.2016.12.002.

[25] Feng H, Llorca J, Tulino A M, Raz D, Molisch A F. Ap-

proximation algorithms for the NFV service distribution

problem. In Proc. the 2017 IEEE Conference on Com-

puter Communications, May 2017. DOI: 10.1109/INFO-

COM.2017.8057039.

[26] Agarwal S, Malandrino F, Chiasserini C F, De S. Joint

VNF placement and CPU allocation in 5G. In Proc.

the 2018 IEEE Conference on Computer Communica-

tions, April 2018, pp.1943-1951. DOI: 10.1109/INFO-

COM.2018.8485943.

[27] Cziva R, Anagnostopoulos C, Pezaros D P. Dynamic,

latency-optimal vNF placement at the network edge. In

Proc. the 2018 IEEE Conference on Computer Commu-

nications, April 2018, pp.693-701. DOI: 10.1109/INFO-

COM.2018.8486021.

[28] Luizelli M C, Raz D, Sa’ar Y. Optimizing NFV chain de-

ployment through minimizing the cost of virtual switching.

In Proc. the 2018 IEEE Conference on Computer Commu-

nications, April 2018, pp.2150-2158. DOI: 10.1109/INFO-

COM.2018.8486315.

[29] Bari M F, Chowdhury S R, Ahmed R, Boutaba R.

On orchestrating virtual network functions. In Proc.

the 11th International Conference on Network and

Service Management, November 2015, pp.50-56. DOI:

10.1109/CNSM.2015.7367338.

Tian-Ni Xu is a Ph.D. candidate

at University of Chinese Academy

of Sciences (UCAS), and Institute of

Computing Technology (ICT), Chinese

Academy of Sciences (CAS), Beijing.

She received her B.S. degree in network

engineering from Beijing University of

Posts and Telecommunications, Beijing,

in 2013. Her research interests include computer network,

network function virtualization, operating system, and

system performance modeling and evaluation.

Hai-Feng Sun received his B.S.

degree in computer science from Beijing

Forestry University, Beijing, in 2017,

and his M.S. degree in computer ar-

chitecture from Institute of Computing

Technology (ICT), Chinese Academy of

Sciences (CAS), Beijing, in 2020. His

research interests include distributed

systems and computer networks.

Di Zhang is a Ph.D. candidate

at University of Chinese Academy

of Sciences (UCAS), and Institute of

Computing Technology (ICT), Chinese

Academy of Sciences (CAS), Beijing.

She received her B.S. degree in com-

puter science from Harbin Institute

of Technology, Harbin, in 2014. Her

research mainly focuses on system performance analysis.

Xiao-Ming Zhou received his B.S.

degree in computer science from Nankai

University, Tianjin, in 2016, and his

M.S. degree in computer architecture

from University of Chinese Academy

of Sciences (UCAS), and Institute of

Computing Technology (ICT), Chinese

Academy of Sciences (CAS), Beijing, in

2019. His research mainly focuses on

computer networks.

Xiu-Feng Sui received his B.S.

degree from Harbin Institute of Techno-

logy, Harbin, in 2005, and his Ph.D.

degree in computer science from Uni-

versity of Science and Technology of

China, Hefei, in 2010. He is currently

an associate professor in the School of

Information and Electronics, Beijing

Institute of Technology (BIT), Beijing. Before joining

BIT, he worked at Institute of Computing Technology

(ICT), Chinese Academy of Sciences (CAS), Beijing, from

March 2011 to December 2018. His research interests

include computer architecture and system performance

modeling and evaluation.

https://doi.org/10.1145/3050220.3050236
https://doi.org/10.1016/j.dcan.2016.12.002
https://doi.org/10.1109/INFOCOM.2017.8057039
https://doi.org/10.1109/INFOCOM.2017.8057039
https://doi.org/10.1109/INFOCOM.2018.8485943
https://doi.org/10.1109/INFOCOM.2018.8485943
https://doi.org/10.1109/INFOCOM.2018.8486021
https://doi.org/10.1109/INFOCOM.2018.8486021
https://doi.org/10.1109/INFOCOM.2018.8486315
https://doi.org/10.1109/INFOCOM.2018.8486315
https://doi.org/10.1109/CNSM.2015.7367338

698 J. Comput. Sci. & Technol., May 2022, Vol.37, No.3

Sa Wang received his B.S. degree

in computer science from University

of Science and Technology of China,

Hefei, in 2009, and his Ph.D. degree

in computer science from the Chi-

nese Academy of Sciences, Beijing, in

2016. He is an associate professor in

Institute of Computing Technology

(ICT), Chinese Academy of Sciences (CAS), Beijing.

His current research interests include operating sys-

tem, system performance evaluation and optimization,

and distributed system. He is a member of CCF and ACM.

Qun Huang received his B.S. degree

in computer science from Peking Uni-

versity, Beijing, in 2011, and his Ph.D.

degree in computer science in 2015 in

Chinese University of Hong Kong, Hong

Kong. He is now an assistant professor

(Tenure-Track) at Department of Com-

puter Science and Technology, Peking

University (PKU), Beijing. Before joining PKU, he worked

at Institute of Computing Technology, Chinese Academy

of Sciences, Beijing, from September 2017 to May 2020,

and at Huawei Future Network Theory Laboratory from

September 2015 to September 2017. His research mainly

focuses on distributed stream processing and network

measurement. He is a member of CCF, ACM, and IEEE.

Yun-Gang Bao received his B.S.

degree from Nanjing University, Nan-

jing, in 2003, and his Ph.D. degree

in computer science from Institute of

Computing Technology (ICT), Chinese

Academy of Sciences (CAS), Beijing, in

2008. He is a professor at ICT, CAS,

Beijing. From 2010 to 2012, he was

a postdoctoral researcher at Department of Computer

Science, Princeton University, New York City. His current

research interests include computer architecture, operating

system, and system performance modeling and evaluation.

He is a senior member of CCF and a member of ACM and

IEEE.

	1 Introduction
	2 Challenges
	3 NfvInsight Framework
	3.1 Graph Generation
	3.2 Automatic Deployment
	3.2.1 Configuration Generator
	3.2.2 VNF Allocator
	3.2.3 Network Controller

	3.3 Fine Granularity Measurement
	3.3.1 Multiple-Layer Metrics
	3.3.2 Network Stack Latency Distribution
	3.3.3 Low Overhead Measurement

	4 Implementation
	5 Case Study
	5.1 Bottleneck VNF Identification
	5.2 System Bottleneck
	5.2.1 SR-IOV Internal Forwarding
	5.2.2 Softirq Core Affinity Imbalance
	5.2.3 UDP Slicing

	6 Related Work
	7 Conclusions

