
Liu F, Chen DL, Zhou RZ et al. Self-supervised music motion synchronization learning for music-driven conducting

motion generation. JOURNAL OF COMPUTER SCIENCE AND TECHNOLOGY 37(3): 539–558 May 2022. DOI

10.1007/s11390-022-2030-z

Self-Supervised Music Motion Synchronization Learning for
Music-Driven Conducting Motion Generation

Fan Liu1 (4 �), Member, CCF, IEEE, De-Long Chen1,∗ (��9), Rui-Zhi Zhou1 (±H�)
Sai Yang2 (
 m), and Feng Xu1 (N ¸), Member, CCF

1College of Computer and Information, Hohai University, Nanjing 211100, China
2School of Electrical Engineering, Nantong University, Nantong 226019, China

E-mail: {fanliu, chendelong, zhouruizhi}@hhu.edu.cn; yangsai@ntu.edu.cn; xufeng@hhu.edu.cn

Received November 19, 2021; accepted March 10, 2022.

Abstract The correlation between music and human motion has attracted widespread research attention. Although

recent studies have successfully generated motion for singers, dancers, and musicians, few have explored motion generation

for orchestral conductors. The generation of music-driven conducting motion should consider not only the basic music beats,

but also mid-level music structures, high-level music semantic expressions, and hints for different parts of orchestras (strings,

woodwind, etc.). However, most existing conducting motion generation methods rely heavily on human-designed rules, which

significantly limits the quality of generated motion. Therefore, we propose a novel Music Motion Synchronized Generative

Adversarial Network (M2S-GAN), which generates motions according to the automatically learned music representations.

More specifically, M2S-GAN is a cross-modal generative network comprising four components: 1) a music encoder that

encodes the music signal; 2) a generator that generates conducting motion from the music codes; 3) a motion encoder

that encodes the motion; 4) a discriminator that differentiates the real and generated motions. These four components

respectively imitate four key aspects of human conductors: understanding music, interpreting music, precision and elegance.

The music and motion encoders are first jointly trained by a self-supervised contrastive loss, and can thus help to facilitate

the music motion synchronization during the following adversarial learning process. To verify the effectiveness of our method,

we construct a large-scale dataset, named ConductorMotion100, which consists of unprecedented 100 hours of conducting

motion data. Extensive experiments on ConductorMotion100 demonstrate the effectiveness of M2S-GAN. Our proposed

approach outperforms various comparison methods both quantitatively and qualitatively. Through visualization, we show

that our approach can generate plausible, diverse, and music-synchronized conducting motion.

Keywords self-supervised learning, generative adversarial network, human motion generation

1 Introduction

Music and human motions are inherently correlated.

When singing, playing musical instruments, or dancing

to music, humans naturally follow the rhythmic dynam-

ics and the emotions conveyed by the music. Although

computational analysis of music has been investigated

for decades, the relationship between music and motion

is an interdisciplinary research area that has emerged

only relatively recently. With the development of gen-

erative techniques, methods capable of automatically

generating musical motion have been widely explored.

Recently, researchers have successfully generated dance

motions [1, 2] or instrument-playing motions [3, 4] from

music. However, only a few prior studies have focused

on the generation of conductors’ motions.

Conductors, the soul of an orchestra, perform el-

egantly and charmingly in every concert. Their mo-

tions are extensively planned and rehearsed before

Regular Paper

Special Section on Self-Learning with Deep Neural Networks

This work was partially funded by the Natural Science Foundation of Jiangsu Province of China under Grant No. BK20191298
and the National Natural Science Foundation of China under Grant No. 61902110.

∗Corresponding Author

©Institute of Computing Technology, Chinese Academy of Sciences 2022

http://dx.doi.org/10.1007/s11390-022-2030-z

540 J. Comput. Sci. & Technol., May 2022, Vol.37, No.3

each performance. However, music-driven conducting

motion generation has attracted less research atten-

tion than the generation of dancing, instrument play-

ing, and singing motions. Moreover, most existing

approaches [5–11] are based on predefined rules, which

limits the diversity and realism of the results. Wang et

al. [12] proposed a kernel-based hidden Markov model

(KHMM) to predict conducting motion, but its rhythm

adaptability and computational efficiency are poor. To

the best of our knowledge, thus far, no other learning-

based conducting motion generation models have been

developed.

The scarcity of learning-based conducting motion

generation research can be attributed to the significant

associated challenges. Unlike other cross-modal gene-

ration tasks [13–16], conducting motion not only conveys

basic beat information, but also contains articulatory

information (legato, staccato, etc.), hints towards diffe-

rent parts of the orchestra (strings, woodwind, etc.),

and information about the emotion conveyed by the

music. Because the motion of conductors has both low-

level music texture dependencies and high-level music

structure dependencies, the task of music-driven con-

ducting motion generation has a difficulty compara-

ble to generating instrument-playing motion and dance

motion at the same time. Moreover, the generation

is also inherently ill-posed because of the distinctive

styles of different conductors. For the same piece of

music, the motions performed by different conductors

may be highly distinct. As will be shown in our experi-

ments, using standard L1 or L2 loss to regress the mo-

tion will fail to learn the one-to-many mapping and

produce over-smoothed results.

To tackle these challenges, we bring the advances of

recent multimodal self-supervised learning [17] to this

task. As shown in Fig. 1, we integrate two self-

supervised learning approaches, contrastive learning

and generative learning, into a unified two-stage frame-

work. In the contrastive stage, we devise a music mo-

tion synchronization (M2S) learning task and design

a two-branch network, Music Motion Synchronization

Network (M2S-Net), to learn rich and aligned music and

motion representations in a self-supervised manner. In

the subsequent generative stage, the previously learned

music representations provide semantic information for

the motion generator, while the motion representations

are used to calculate a proposed perceptual training

metric named sync loss. Finally, the proposed Music

Motion Synchronization-Based Generative Adversarial

Network (M2S-GAN) is trained jointly with sync loss

and Wasserstein distance based adversarial loss [18, 19],

such that both music motion synchronization and mo-

tion realism are guaranteed.

In addition, we find that existing conducting mo-

tion datasets are too small to train a generative deep

learning model. Thus, we collect and construct a large-

scale conducting motion dataset. Based on advanced

object detection [20] and pose estimation [21] techniques,

we efficiently extract conducting motion data from on-

line video sources. The constructed dataset, named

ConductorMotion100, has 100 hours of conducting mo-

tion data and aligned Mel spectrograms. Its scale

significantly exceeds that of existing conducting mo-

tion datasets. We conduct extensive experiments on

ConductorMotion100, finding that the impressive per-

formance achieved by our proposed approach demon-

strates its effectiveness.

The main contributions of this paper can be sum-

marized as follows.

1) We propose a novel two-stage model for music-

driven conducting motion generation. The model first

learns music and motion feature representations in a

Real
Motion

E

In-Sync/
Out-of-Sync

E

E

D

Sync
Loss

Adversarial
Loss

E G

Generative Learning Stage

(M2S-GAN)

Contrastive Learning Stage

(M2S-Net)Real
Motion

Music

Music Generated
Motion

Motion

z

Motion

Generated

Noise

Fig.1. High-level illustration of the proposed two-stage approach. The contrastive learning and generative learning stages are bridged
by transferring learned music and motion encoders, as indicated by the dotted lines. In-sync/out-of-sync is a binary cross-entropy loss
function used to determine whether music and action are synchronized.

Fan Liu et al.: Self-Supervised Music Motion Synchronization Learning 541

self-supervised manner, and then feeds these learned

representations into adversarial training procedures to

guarantee music motion synchronization.

2) We collect and construct a large-scale conduct-

ing motion dataset, ConductorMotion100, based on

advanced object detection and pose estimation tech-

niques. ConductorMotion100 contains 100 hours of

conducting motion and aligned music data; its scale

significantly exceeds that of existing conducting motion

datasets.

3) We conduct extensive experiments on Conductor-

Motion100, using both standard evaluation metrics and

several newly designed metrics. The competitive exper-

imental results reveal the effectiveness of the proposed

approach.

Both the dataset ConductorMotion100 and the ex-

perimental codes are open-sourced 1○.

2 Related Work

2.1 Music-Driven Conducting Motion
Generation

Music-driven conducting motion generation involves

the generation of skeleton sequences of an orchestral

conductor according to a given piece of music. In 2002,

Wang et al. [12] designed a kernel-based hidden Markov

model (KHMM) and trained it to predict conducting

motion from the three-dimensional pitch, loudness, and

beat features. However, this model cannot automati-

cally adapt to music tempo; during testing, it requires

manual model selection according to the tempo of given

music. In addition, the state observation density of

KHMM is estimated by the entire sample set, the size

of which is set to the scale of the entire training set.

Accordingly, this method is computationally inefficient

when facing a large-scale training set.

From 2003 to 2008, a group from the Netherlands

performed a series of studies with the goal of develop-

ing a virtual conductor system [5–9]. They first tried

to generate conducting motion based on logic program-

ming and gesture dictionaries [5]. However, this pre-

programmed generation cannot be conditioned on mu-

sic. In [6], the authors improved the system to generate

motion from MIDI and enabled it to adjust to tempo

change dynamically. The intention of conducting mo-

tion (the hints as to tempo, loudness, etc.) was also

considered in [7, 8], in which intention generation is

based on a retrieval module. However, the construc-

tion of the intention database is labor-sensitive. Their

project was comprehensively concluded in [9].

The most recent work on this task can be found

in [10, 11], where the authors deployed multiple vir-

tual conductors to support the rehearsal of an amateur

orchestra. Their model generates different conducting

motions for different parts of the orchestra according

to the MIDI data. However, in the same way as most

other music-driven conducting motion generation ap-

proaches, this model is not learning-based. Generally

speaking, the above methods, except for [12], rely heav-

ily on human annotation and explicitly defined rules,

meaning that the realism and the diversity of the gene-

rated motions are greatly limited. By contrast, our

approach has no dependencies on prior knowledge. In-

stead, by learning from massive amounts of training

data, it can discover the music-motion relationships on

its own. Moreover, since our approach does not require

the MIDI data as inputs, it can generate conducting

motion from raw audio files (.wav, .mp3, etc.), creating

a wider range of application scenarios.

In addition, physical conducting robots have been

constructed, with examples including the ASIMO robot

from Honda Corporation 2○, the YuMi robot from ABB

company 3○, and the Conducting Robots project from

[22–24]. However we cannot find any associated publi-

cations that describe the technical details of how these

robots learn to conduct. Dansereau et al. [25] designed

a particle filter based machine learning algorithm to

predict the movement of the conductor’s baton in or-

der to resolve the network delay in the context of dis-

tributed networked performance. Since their experi-

ments show that the model can accurately forecast the

motion for only several seconds, it is not applicable for

music-driven conducting motion generation.

2.2 Deep Audio-to-Motion Translation

Music-driven conducting motion generation can be

categorized into a broader type of learning task: audio-

to-motion translation. Since no deep learning based

music-driven conducting motion generation approaches

have been developed to date, in this section, we in-

troduce some recent advances of deep audio-to-motion

translation: specifically, speech gesture generation and

1○https://github.com/ChenDelong1999/VirtualConductor, Mar. 2022.
2○https://hondanews.com/en-US/honda-corporate/releases/release-e2b2bddd0aa73108779fe0004c34bd40-hondas-asimo-robot-to-

conduct-the-detroit-symphony-orchestra, Mar. 2022.
3○https://new.abb.com/news/detail/2069/yumi-taking-the-stage, Mar. 2022.

542 J. Comput. Sci. & Technol., May 2022, Vol.37, No.3

musical gesture (dance and instrument playing) gene-

ration, which share numerous similarities with conduct-

ing motion generation.

The most straightforward design choice for deep

audio-to-motion translation is to regress the ground-

truth motion data using L1 or L2 regression loss.

In [26], Yelta used the convolutional neural network

(CNN) [27] to extract audio features from the spec-

trums, and used a long sort-term memory (LSTM) net-

work to learn the temporal relationship. Later, in [28],

the authors added contrastive loss to enforce synchro-

nization between the motion and the music. How-

ever, this approach resulted in repetitive motion out-

put. Models following a similar CNN-LSTM archi-

tecture design are proposed in [3]; however, these ap-

proaches use MIDI as input, leading to restricted appli-

cation scenarios. Many researchers have also tried using

fully LSTM models to map music features directly to

motion [29–35], but due to the transition of the adopted

music features being non-smooth over time, the jitter-

ing effect of these LSTM-based models is difficult to

eliminate. Moreover, due to error accumulation, LSTM

often outputs frozen motion during test time [2, 36,37].

Comparatively, fully convolutional models yield rela-

tively better results [38, 39]. Recently, Huang et al. [36]

integrated a transformer [40]-based music encoder with

a LSTM motion decoder. Li et al. [41] accomplished an

impressive music-to-dance generation result with their

transformer-based motion decoder. Despite the choice

of the model structure, a shared problem encountered

by the above methods is that they attempt to model a

fixed mapping from audio to motion, which is in fact

inherently one-to-many. Faced with such an ill-posed

problem, these models tend to yield over-smooth mo-

tion.

Therefore, an increasing number of researchers have

begun to apply advanced deep generative models, par-

ticularly generative adversarial nets (GAN) [42]. These

models generally yield better results; however, many

of them still preserve the regression loss [1, 37,43–45]. We

believe that the objective of regression loss is in conflict

with the adversarial loss: the optimal output of the re-

gression loss is over-smoothed, while the discriminator

of GAN can easily learn the over-smooth pattern and

provide conflict gradients to the generator. The excep-

tions are [46] and [47], which develop fully adversarial

learning frameworks. However, the model in [46] is de-

signed for talking head orientation generation, which is

a simpler task (only two-dimensional prosodic feature

inputs and three-dimensional head orientation outputs;

no spatial relationships are learned). In [47], the pro-

posed model introduces the additional supervision of

the gesture phrase, leading to additional annotation re-

quirements. One possible reason for the preservation

of regression loss in other models might be the fact

that it is difficult to find a better way to pose a con-

sistency constraint, which could cause the music and

generated motion to be semantically coherent and tem-

porally aligned.

3 Data Preparation

Due to the scale of existing conducting motion

datasets being insufficient to train a deep genera-

tive model, we construct a large-scale conducting mo-

tion dataset, named ConductorMotion100, by deploy-

ing pose estimation on conductor view videos of con-

cert performance recordings collected from online video

platforms. The construction of ConductorMotion100

removes the need for expensive motion-capture equip-

ment and makes full use of massive online video re-

sources. As a result, the scale of ConductorMotion100

has reached an unprecedented length of 100 hours. As

shown in Table 1, its scale far exceeds that of exist-

ing conducting motion datasets. To facilitate related

research, the dataset is made public 4○.

In the following, we briefly describe the construc-

tion of ConductorMotion100. In many of the collected

Table 1. Comparison on the Scale of Conducting Motion Datasets

Year Dataset Length (min)

2013 Sarasúa et al. [48] 120.0

2013 Dansereau et al. [25] 0.5

2014 Sarasúa and Guaus [49] 250.0

2017 Karipidou et al. [50] 36.0

2019 Huang et al. [51] 180.0

2019 Lemouton et al. [52] (IDEA dataset) 56.0
2021 Ours (ConductorMotion100) 6 000.0

4○https://github.com/ChenDelong1999/VirtualConductor, Mar. 2022.

Fan Liu et al.: Self-Supervised Music Motion Synchronization Learning 543

videos, there are also some players and audience mem-

bers. Therefore, we first annotate a small object detec-

tion dataset, Concert300, and fine-tune a pre-trained

YOLO-V3 [20] to recognize which human is the conduc-

tor. Concert300 consists of 300 concert images with

bounding boxes denoting the conductor, players, and

audiences. Once trained with Concert300, the con-

ductor detection model achieves 0.861 precision and

0.991 recall during testing. On the basis of conduc-

tor detection, we estimate 2D pose key points using

AlphaPose [21]. Since the motion of the conductor’s

lower body contains very little useful information and

is often occluded or outside of the camera’s view, we

only preserve 13 2D keypoints of the upper body. The

preserved key points are identical to the first 13 key

points in the MS COCO format. We normalize the

key points into the range of (0,1) and set the average

distance between the left and the right shoulder to be

0.2. Next, we centralize the keypoint sequence by mov-

ing the midpoint of the left and the right hip to (0.50,

0.75). Finally, all motion data is re-sampled to 30 fps.

The Mel-scaled spectrogram is used to represent the

music. We extract a 128-bin Mel spectrogram with a

hop-length of 256, and then covert the spectrogram to

decibel (dB) units. The sampling rate of the derived

spectrogram is 86.52 Hz, which we interpolate to 90 Hz

to achieve joint music motion encoding.

Formally, the ConductorMotion100 dataset can be

described as D = {(Xi,Yi)}Ni=1, where Xi = {xt}
Tx
i

t=1

and Yi = {yt}
Ty
i

t=1 are the i-th Mel spectrogram and

conducting motion sequence respectively. Each xt is

a 128-dimension vector, corresponding to the 128 fre-

quency bins of the spectrogram. Each yt is a single

frame of conducting motion. Since the motion is repre-

sented as the 2D coordinates of 13 joints, each yt has

26 dimensions. The spectrogram Xi and motion Yi are

sampled at different sample rates (90 Hz and 30 Hz re-

spectively); therefore, T x
i = 3 × T y

i . Going forward,

the subscripts i are omitted for simplicity. In Fig.2,

we present the visualization of a sample (X,Y) in the

ConductorMotion100 dataset; the sample corresponds

to the final part of Tchaikovsky’s 1812 Overture.

4 Approach

4.1 Motivation

What makes a good conductor? First, the conduc-

tor should understand the music, which means knowing

the music tempo, emotion, etc. Then, the conductor

should know how to interpret the music through their

body movement, i.e., translating the musical concepts

into motion. The resulting conducting motion should

be elegant, which means it must avoid looking unnatu-

ral. More importantly, the motion also should be pre-

cise to avoid confusing the orchestra. A good music-

driven conducting motion generation model should also

consider these aspects. To imitate a real conductor, we

set up four neural networks, each of which corresponds

to one specific requirement respectively.

128
Bins

Time

26
Channels

Time

(b)

(a)

1.0
0.8
0.6
0.4
0.2
0.0

1.0
0.8
0.6
0.4
0.2
0.0

Fig.2. Visualization of a sample in the ConductorMotion100
dataset. (a) Mel spectrogram. (b) Conducting motion.

1) Understanding. A music encoder extracts seman-

tic music features from a given piece of music.

2) Interpreting. A generator generates a conducting

motion sequence from the music feature sequence.

3) Elegance. A discriminator looks at the generated

motion and enforces it to be visually similar to the real

motion.

4) Precision. A motion encoder looks at the gene-

rated motion and enforces it to be musically similar to

the real motion.

The next problem is how to obtain the weights of

these four neural networks. The second and the third

requirements are straightforward to realize: the gen-

erator and the discriminator can be jointly trained in

a standard adversarial learning scheme. However, the

first and the fourth requirements are far more diffi-

cult: the music encoder should effectively provide high-

quality music features to bridge the semantic gap be-

tween the music and the motion, while the motion en-

coder should be able to analyze the motion similarity

from a musical perspective (rhythm, emotion, etc.). In

other words, we need a music encoder that extracts

motion-related features and a motion encoder that ex-

tracts music-related features. Here, we find that the

multimodal self-supervised learning technique is par-

ticularly suitable for obtaining the weights of this pair

of encoders. When using them to build up a two-

544 J. Comput. Sci. & Technol., May 2022, Vol.37, No.3

branch network and applying self-supervised learning,

the music encoder and the motion encoder can su-

pervise each other, and subsequently construct a joint

feature space that is simultaneously music-related and

motion-related.

4.2 Overview of Proposed Approach

Formally, given the ConductorMotion100 datasetD,

our goal is to learn a music encoder Emusic and a gener-

ator G to predict a motion sequence from a given Mel

spectrogram X and random z sampled from a normal

distribution, i.e., Ŷ = G(Emusic(X), z). The generated

motion distribution PG should approximate the data

distribution Pdata(Y) and the conditional distribution

Pc(Y |X) simultaneously. To learn Pdata, we deploy a

discriminator D(Y) that is trained to distinguish PG

and Pdata and calculate the adversarial loss. For Pc,

we use a motion encoder Emotion(Y) to compare the

motion features of Y and Ŷ and calculate a proposed

sync loss. G is then trained to satisfy D and Emotion

by minimizing the adversarial loss and the sync loss

respectively.

To obtain the weights of Emusic and Emotion, we de-

sign a preparation stage called the contrastive learning

stage, in which a music motion synchronization net-

work (M2S-Net) is trained with a music motion syn-

chronization (M2S) learning task. The M2S-Net con-

sists of the motion encoder Emotion(Y), the music en-

coder Emusic(X), and fuse layers. In M2S learning,

we sample positive (in-sync) and negative (out-of-sync)

music motion pairs from D, and then train M2S-Net

to predict whether the input pair is positive or nega-

tive. Subsequently, the trained Emusic and Emotion are

transferred to the generative learning stage, where these

two encoders, together with the generator and discrim-

inator, form the Music Motion Synchronized Genera-

tive Adversarial Network (M2S-GAN). We use the word

“synchronized” here to imply that M2S-GAN requires

a preparation stage and that the weights of the trans-

ferred encoders are frozen. An overview of the two-

stage training procedure can be found in Algorithm 1.

4.3 Network Architectures

As shown in Fig.3, four neural networks are involved

in our approach: a music encoder Emusic, a motion en-

coder Emotion, a generator G, and a discriminator D.

In the first contrastive learning stage, Emusic, Emotion,

and three fusing layers form M2S-Net. The outputs of

the two encoders are concatenated and passed to the

three fully-connected fusing layers. A sigmoid activa-

tion is applied in the final layer to output a possibility

in the range of (0,1), indicating the prediction about

whether the given input pair is synchronized. In the

following generative learning stage, all four of these net-

works form M2S-GAN. G generates a motion sequence

according to z and the output of Emusic. The generated

motion is then fed to Emotion and D for the sync loss

and the adversarial loss respectively. In the below, we

provide a detailed description of the network architec-

tures.

4.3.1 Motion Encoder

Emotion should be able to analyze the conducting

motion from both spatial and temporal perspectives.

Algorithm 1. Training Procedure of M2S-Net and M2S-GAN

Input: dataset D = {(Xi,Yi)}Ni=1; loss function weights λadv, λsync, wGP ;
Output: trained music encoder Emusic, generator G;

/* Contrastive learning stage */

1 Initialize Emusic, Emotion, and f ;
2 while not converge do
3 Sample positive/negative pairs (Xi,Yj) and the corresponding label ci,j from D;
4 Predict music motion synchronization: f [Emusic(Xi)⊕ Emotion(Yj)];
5 Update Emusic, Emotion, and f with LM2S-Net; // (1)

6 end

/* Generative learning stage */

7 Initialize G, D, load network weights of Emusic, Emotion;
8 while not converge do
9 Sample music motion pairs (Xi,Yi) from D;

10 Sample z from normal distribution;

11 Generate conducting motion: Ŷ = G(Emusic(X),z)
12 Update G with LG; // (2)
13 Update D with LD; // (3)

14 end

Fan Liu et al.: Self-Supervised Music Motion Synchronization Learning 545

Motion Encoder Emusic Motion Encoder Emotion

Motion Encoder Emotion

(Frozen)
Motion Encoder Emusic

(Frozen)

+

Dense, ReLU

Dense, ReLU

Dense, Sigmoid

In-Sync/Out-of-Sync

Residual Layer

Residual Layer

Residual Layer

Max Pooling

Dense

ST-GCN Layer

ST-GCN Layer

Dense

…

BatchNormBatchNorm

Max Pooling

…

Residual Layer

Residual Layer

Residual Layer

Max Pooling

Fully-Connected Fully-Connected

…

BatchNorm BatchNorm

Max Pooling
…

TCN Layer

TCN Layer

TCN Layer

Dense, ReLU

Dense, Sigmoid

…

Dense, ReLU

Max Pooling

…

Discriminator D Generator G

Sync Loss

Adversarial Loss

Group
Conv

Conv

Max Pooling

Group
Conv

Conv

Dense, ReLU

Dense, Sigmoid

Dense, ReLU

ST-GCN Layer

ST-GCN Layer

ST-GCN-LayerST-GCN Layer

ST-GCN Layer

z

(b)(a)

Fig.3. Network structure of M2S-Net and M2S-GAN. In-sync/out-of-sync is a binary cross-entropy loss function used to determine
whether music and action are synchronized. (a) M2S-Net. (b) M2S-GAN. Conv: convolutional layer.

Therefore, we use the Spatial-Temporal Graph Convo-

lutional Network (ST-GCN) [53], which was originally

designed for human pose recognition. Emotion has 10

ST-GCN layers. In each of these layers, graph con-

volution and temporal convolution extract the spatial

and the temporal information respectively, while a 1×1

convolution helps to build up the residual connection.

No down-sampling is applied; thus, the sampling rate

of the output motion feature is 30 Hz, the same as the

input motion. Each convolution layer has 32 channels.

4.3.2 Music Encoder

Emusic extracts music features from the 2D Mel

spectrogram. It has three groups of layers, where

each group consists of three residual layers and a max-

pooling layer. Each residual layer is composed of a 2D

convolution with a kernel size of 3×3, batch normali-

zation, ReLU activation, and skip connection. The

max-pooling layers down-sample the feature maps on

both the frequency and time axes. Only one downsam-

ple operation with a factor of 3 is performed in the time

axis so that the output music features have the same

sampling rate as the motion features. The 2D con-

volution layers have 16 channels before the ×3 down-

sampling and 32 channels after the ×3 down-sampling.

4.3.3 Generator

G generates the conducting motion according to the

music feature sequence extracted by Emusic and noise

vector sequence sampled from a normal distribution. G

is based on a temporal convolution network (TCN) [54],

which achieves similar performance to standard LSTM

with a much lower computation time. It has six dilated

1D convolution layers with residual connections. Each

546 J. Comput. Sci. & Technol., May 2022, Vol.37, No.3

layer has 64 channels with a kernel size of 5. More-

over, the original TCN is causal because it was orig-

inally designed for a forecasting task; we remove the

causal structure to learn bi-directional dependencies.

The noise z is an 8-dimensional vector in 1 Hz. Several

transpose convolution layers up-sample the noise to 30

fps before feeding it into TCN.

4.3.4 Discriminator

The discriminator D decides whether the motion

sequence is real or fake. Note that several GAN-based

audio-to-motion translation methods also feed the au-

dio into the discriminator [1, 37,43]. Here, however, our

D only observes the motions, since we view learning the

distribution of real motion Pdata(Y) and learning the

conditional distribution Pc(Y |X) as two very different

tasks. D has a two-branch structure, where one branch

learns the dynamics of individual joints by means of

group convolution while the other learns the spatial re-

lationships by means of normal 1D convolutions. The

motion features extracted by the two branches are then

concatenated and passed to the dense layers. We find

that the down-sampling is crucial for improving D. The

final output of D is a single scalar in 2.5 Hz sampling

rate. We also attempted to use an ST-GCN as D, but

found that it leads to a very unstable training proce-

dure during experiments.

4.4 Loss Functions

4.4.1 Loss Function for M2S-Net

In the contrastive learning stage, we adopt binary

cross-entropy loss to train M2S-Net. The definition of

LM2S-Net is shown in (1); here, f [·] represents the fusing

layers of M2S-Net, ⊕ denotes the feature concatenation

operation, and cij is the label indicating whether Xi,Yj

is a positive pair or a negative pair. During training,

the positive and negative pairs are automatically sam-

pled from the dataset. Positive pairs are naturally syn-

chronized music and motion sequences. Negative pairs

are mismatched sequences, of which the details will be

introduced in Subsection 4.5.

LM2S-Net

=

M∑
i,j=1

cij log2

(
f [Emusic(Xi)⊕ Emotion(Yj)]

)
+

(1− cij)log2

(
1− f [Emusic(Xi)⊕ Emotion(Yj)]

)
, (1)

where cij is defined by

cij =

{
1, if i = j,

0, otherwise.

4.4.2 Loss Function for M2S-GAN

In the generative learning stage, the generator gene-

rates the conducting motion by Ŷ = G(Emusic(X), z).

Its loss function is shown in (2). The first and the

second term are the sync loss and the adversarial loss,

respectively, while λsync and λadv are their weights re-

spectively. The loss function of the discriminator is

shown in (3). The third term is the gradient penalty

term of the Wasserstein GAN [19], where Ỹ is obtained

via the random linear interpolation between Ŷ and Y .

Note that, here, G and D minimize LG and LD re-

spectively, but Emusic and Emotion do not participate in

the optimization; their weights are directly transferred

from the trained M2S-Net and frozen in M2S-GAN.

LG =

N∑
i=1

λsync||Emotion(Ŷi)− Emotion(Yi)||22 −

λadvD(Ŷi), (2)

LD =

N∑
i=1

D(Ŷi)−D(Yi) +

wGPEỸ ||∇Ỹ D(Ỹ)− 1||22. (3)

4.5 Negative Pair Sampling

During M2S learning, the M2S-Net is trained by

automatically generated aligned positive pairs, mis-

aligned negative pairs, and their corresponding binary

labels cij . The positive pairs are naturally synchro-

nized music-motion sequences. As noted by Korbar et

al. [17] and illustrated in Fig.4, three types of negative

sampling strategies can be used for negative pairs.

• Easy Negatives. Easy negative pairs are selected

from different samples (i.e., different pieces of music)

within a mini-batch. This strategy is similar to the

negatives used in AVC learning [55].

• Hard Negatives. Hard negative pairs are selected

from the same samples. We force the two sampled pairs

to be at least 10 seconds apart.

• Super-Hard Negatives. Super-hard negative pairs

are also selected from the same samples, but they are

sampled by random temporal shifts within the range of

0.5 s to 5 s, which is similar to [56].

We adopt hard negatives for M2S learning. Com-

pared with the AVC-like learning task on unconstrained

Fan Liu et al.: Self-Supervised Music Motion Synchronization Learning 547

Motion

Music

Mot

Time

Time Time

(b)(a) (c)

Fig.4. Illustration of different negative pair sampling strategies. (a) Easy negative pairs. (b) Hard negative pairs. (c) Super-hard
negative pairs.

web video data, our M2S learning on ConductorMo-

tion100 is a relatively fine-grained task. We find that

the fine-grained nature of this task increases the chance

of false negative sampling 5○ in easy negatives, which

would have an undesirable effect on the M2S learning

process. During training, the easy negatives will enu-

merate all cross-sample combinations of music and mo-

tion, which will encourage the model to isolate different

samples and memorize their identities. Hard and super-

hard negative sampling cuts off the cross-sample access.

However, the super-hard negatives limit the temporal

shifts in a small range, meaning that they cannot pro-

vide any semantic-related information. Hard negatives

have a range of at least 10 seconds, which is able to ac-

commodate semantic differences. In what follows, un-

less explicitly noted, hard negatives are used for M2S

learning.

5 Discussion

5.1 Applying Self-Supervised Learning for

Generative Tasks

There are four previous published studies [57–60] that

adopt self-supervised learning in generative procedures.

Chen et al. [57] added a self-supervised loss to the dis-

criminator of a conditional generative adversarial net-

work (CGAN); afterwards Hao et al. [58] extended the

model to a cross-modal cycle generative adversarial net-

work (CMCGAN). In an audio inpainting study, Zhou

et al. [59] added a self-supervised loss to provide an

audio-visual-related feature. Choi et al. [60] first de-

ployed a cross-modal identity matching task, and then

transferred the learned features to a CGAN. Although

the architectures of these studies [57–60] appear similar

to that of our proposed approach, there are three fun-

damental differences between them.

1) The visual data is represented as a single frame of

image in [57,58,60], and they all use only easy negatives.

Therefore, the model can only learn the semantic cor-

respondence, while no cross-modal temporal synchro-

nization is learned. By contrast, our M2S-Net takes

the sequence of conducting motion as input and learns

the temporal synchronization between the conducting

motion and the music.

2) In [57, 58, 60], the self-supervision requires pre-

defined labels denoting instrument type [57, 58] or face

identity [60]. However, our approach is fully self-supe-

rvised: it requires no manual annotation, and instead

relies only on the natural synchronization of the motion

and the music.

3) The methods in [57–59] have only a single

learning stage, where the self-supervised loss is part

of the joint loss of the feature encoder [59] or the

discriminator [57, 58]. At the beginning of training, these

methods are non-optimal in terms of the self-supervised

task, which could introduce a certain degree of ran-

domness. For its part, our proposed approach has two

learning stages: we first obtain an optimal M2S-Net,

and then apply it to M2S-GAN.

5.2 Sync Loss vs Perceptual Loss

Perceptual loss [61] is a popular choice in many ill-

posed image manipulation tasks. It refers to using a

pre-trained neural network (as the perceptual loss net-

work) to extract features from generated and ground

truth samples, then measuring the distance between

those deep features. The effectiveness of perceptual loss

in solving the over-smoothing problem has been widely

5○False negative sampling refers to the case in which, in a given sampled negative pair, the sampled music sequence and motion
sequence have a very similar rhythm and emotion, but the label indicates they are not synchronized.

548 J. Comput. Sci. & Technol., May 2022, Vol.37, No.3

validated in the field of computer vision, but it is rarely

used in motion generation tasks.

There are three main types of pre-training tasks for

the perceptual loss network: classification, reconstruc-

tion, and discrimination. The ImageNet pre-trained

VGG has become a standard choice of the percep-

tual loss network. In a study of music-driven dance

generation, Ren et al. [1] proposed pose perceptual loss,

where a motion encoder pre-trained on dance genre

classification (distinguishing ballet, pop, and hip-hop

dance) was used as the perceptual loss network. How-

ever, no such genre labels exist for conducting motion,

meaning that classification-based perceptual loss net-

works are inapplicable. A reconstruction task refers to

training an AutoEncoder [62] as a perceptual loss net-

work; however, the features obtained from such a net-

work are not selective, which introduces the problem

of regression loss. The third type involves using the

feature of a GAN’s discriminator to calculate percep-

tual loss [63]. This discriminator only pays attention to

realism-related features; accordingly, it does not mea-

sure semantic similarity.

Our proposed sync loss is conceptually similar to

perceptual loss. However, there are two important diffe-

rences between them.

1) The perceptual loss measures the feature distance

from multiple layers, but the sync loss only uses the fea-

ture of the final layer. We skip this aggregation process,

since the training loss of M2S-Net produces an aligned

feature space at the end of the two encoders.

2) The relationship between the perceptual loss’s

pre-training tasks (classification, reconstruction, dis-

crimination) and applied tasks (e.g., neural style trans-

fer) is weak. By contrast, the pre-training task of sync

loss (i.e., M2S learning) is strongly related to the gen-

erative task. This self-supervised pre-training task en-

ables the sync loss to extract the most music-related

motion features, in contrast to category-related features

(classification task), information-retained features (re-

construction task), or realism-related features (discrim-

ination task).

6 Experiments

6.1 Implementation Details

All models are implemented in Pytorch 6○ with a

single NVIDIA 2080Ti GPU. As suggested in [19], our

M2S-GAN is trained by the RMSprop optimizer [64]

with a learning rate of 0.000 5. M2S-Net and other com-

parable models are trained by the Adam optimizer [65]

with a learning rate of 0.001. The batch size of the

contrastive and generative learning stage is 10 and 3 re-

spectively. Overall, the training of our approach (M2S-

Net + M2S-GAN) takes approximately 48 hours. The

two stages require a similar training time. The train-

ing, validation, and testing sets are split in proportions

of 9 : 0.5 : 0.5, resulting in 90 hours of the training set,

5 hours of the validation set, and 5 hours of the testing

set.

Contrastive Learning Stage. The positive and neg-

ative pairs are sampled from 30 s music-motion pairs.

The length of each pair is 10 seconds. Since we deter-

mine that the models under hard or super-hard nega-

tives are difficult to train from scratch, the easy nega-

tives are used for pre-training in the first epoch of each

model.

Generative Learning Stage. To facilitate the learn-

ing of long-term dependencies, the sample length is

set to 60 seconds. For hyper-parameters of loss func-

tions, we empirically set wGP = 10. Following WGAN-

GP [19], in each step, we train the discriminator five

times and train the generator once.

6.2 Evaluation Metrics

Since learning music-driven conducting motion

generation is a very new task, there are few existing

metrics available for measuring the outcomes. In re-

cent years, the objective evaluation of deep generative

models has usually been based on the inception score

(IS) or the frechet inception distance (FID). Notably

these metrics require a feature encoder, which is typ-

ically obtained by classification pre-training; however,

there are no available class labels for the conducting

motions. Therefore, to evaluate the quality of conduct-

ing motions more effectively, we propose several new

metrics in addition to the existing metrics, as detailed

in the below. To provide a better understanding of

the characteristics of these metrics, we illustrate the

changes in metric values under spatial-temporal pertur-

bation in Fig.5. Spatial perturbation is performed by

amplifying the motion by an amplitude scaling factor.

Since our motion data is represented by coordinates, to

preserve the spatial relationships during perturbation,

we first subtract the mean pose before multiplying by

the amplitude scaling factor, and then add the mean

pose back to the scaled motion. Temporal perturba-

6○https://pytorch.org, Apr. 2022.

Fan Liu et al.: Self-Supervised Music Motion Synchronization Learning 549

0.040

M
e
tr

ic
 V

a
lu

e

0.030

0.020

0.010

0.000

0.8
0.9

1.0
1.1

1.2

A
m
pl
it
ud

e
Sc

al
in
g
Fa

ct
or

Time Stretch Factor

2.00

1.50

1.00

0.50

0.00

M
e
tr

ic
 V

a
lu

e3.0

2.0

1.0

0.0

0.8
0.9

1.0
1.1

1.2

A
m
pl
it
ud

e
Sc

al
in
g
Fa

ct
or

Time Stretch Factor

2.00

1.50

1.00

0.50

0.00

M
e
tr

ic
 V

a
lu

e

0.8
0.9

1.0
1.1

1.2

A
m
pl
it
ud

e
Sc

al
in
g
Fa

ct
or

Time Stretch Factor

2.00

2.00

1.50

1.50

1.00

1.00

0.50

0.50

0.00

0.00

M
e
tr

ic
 V

a
lu

e1.4

1.0

0.6

0.2

0.8
0.9

1.0
1.1

1.2

A
m
pl
it
ud

e
Sc

al
in
g
Fa

ct
or

Time Stretch Factor

2.00

1.50

1.00

0.50

0.00

M
e
tr

ic
 V

a
lu

e0.150

0.100

0.050

0.000

0.8
0.9

1.0
1.1

1.2

A
m
pl
it
ud

e
Sc

al
in
g
Fa

ct
or

Time Stretch Factor

2.00

1.50

1.00

0.50

0.00

Τ10-1

Τ10-1

0.8
0.9

1.0
1.1

1.2

A
m
pl
it
ud

e
Sc

al
in
g
Fa

ct
or

Time Stretch Factor

2.00

1.50

1.00

0.50

0.00

M
e
tr

ic
 V

a
lu

e

4

3

2

1

0

(b)(a)

(d)(c)

(f)(e)

Fig.5. Changes in metric values under spatial-temporal perturbation. (a) Mean squared error. (b) Sync error. (c) Wasserstein distance.
(d) Rhythm density error. (e) Strength contour error. (f) Standard deviation percentage.

550 J. Comput. Sci. & Technol., May 2022, Vol.37, No.3

tion is performed by stretching the motion data along

the time axis. We perform the perturbation on 100

random motions and obtain the averaged results.

6.2.1 Mean Squared Error

Mean squared error (MSE) is the most straight-

forward way to measure how close the generated mo-

tion is to the ground truth, and has thus been widely

used as an evaluation metric by existing audio-to-

motion translation work [3, 4, 29,30,32,43]. The only ex-

isting learning-based music-driven conducting motion

generation method, KHMM [12], also adopts a mean ab-

solute error (MAE)-like metric. MSE and MAE are

similar despite a small difference in their robustness to

outliers. Here, following the majority of existing work,

we opt to use MSE. However, MSE has a strong prefer-

ence for small-amplitude motions. As shown in Fig.5,

this preference creates the issue of an out-of-sync mo-

tion with a very small amplitude (point A) that has

a lower MSE than a less out-of-sync motion with nor-

mal amplitude (point B). Given ground-truth motion

Y = {yt}T
y

t=1 and generated motion Ŷ = {ŷt}T
y

t=1, MSE

is defined as follows:

MSE(Y , Ŷ) = ||Y − Ŷ ||22. (4)

6.2.2 Sync Error

Sync error (SE) is very similar to sync loss. How-

ever, it would not be suitable to use the sync loss as

an evaluation metric, since our proposed M2S-GAN

directly minimizes it. Instead, we first perform M2S

learning on the testing set, and then use the learned

Emotion to extract the motion features. Note that this

approach does not result in any data leakage, since

Emotion trained on the testing set is not involved in the

training of M2S-GAN. Compared with MSE, SE does

not exhibit preference for over-smoothed motions, as

shown in Fig.5. A less out-of-sync motion always has

a lower SE, regardless of the motion amplitude. SE is

defined as the MSE of motion features:

SE(Y , Ŷ) = ||Emotion(Y)− Emotion(Ŷ)||22. (5)

6.2.3 Wasserstein Distance

Wasserstein distance (W-dis) is the Earth-mover

distance between the distribution of real motion Pdata

and the generated distribution PG. A discriminator D

is trained with LD ((3)) parallel with the generator,

even if the generator is not trained with the GAN loss.

In Fig.5, we cancel the spatial relationship preservation

during spatial perturbation to create variations in mo-

tion realism. We can observe that W-dis can recognize

the unnaturalness of motion, but it does not change

with time perturbation. This demonstrates that W-dis

only measures realism and does not pay attention to

consistency. W-dis is computed as follows:

W -dis(Y , Ŷ) = D(Y)−D(Ŷ). (6)

6.2.4 Rhythm Density Error

We propose rhythm density error (RDE) to measure

the frequency-domain similarity between two motions.

In Fig.6(a) and Fig.6(b) we plot the spectrogram and

power spectral density (PSD) of motions respectively.

These motions correspond to the three movements of

Mozart’s Piano Concerto No.17 in G major, K.453.

The three movements are in different tempos, mean-

ing that we can clearly observe the differences between

their PSD. However, very low-frequency motions (cor-

responding to body swing and turning, shown as gray

bars) usually have much larger amplitude, which af-

fects the comparison of rhythm components (red bars).

Taking 40 BPM as a reasonable lower bound of music

tempo, we assume that the motion rhythm component

(as indicated by the red arrow) should always have a

frequency higher than 0.7 Hz. The definition of RDE

is shown in (7). Y [:, j] represents the j-th dimension of

Y across time. We use log and a constant k = 107 to

scale RDE to a proper range:

RDE(Y , Ŷ) = log

(
k

∥∥∥∥ 26∑
j

PSD
f > 0.7Hz

(Y [:, j])−

26∑
j

PSD
f > 0.7Hz

(Ŷ [:, j])

∥∥∥∥2
2

+ 1

)
. (7)

6.2.5 Strength Contour Error

Motion speed information is widely adopted by ap-

proaches aiming to computationally analyze conduction

motion [49, 66–68]. Here, we propose strength contour er-

ror (SCE) as a measurement of the similarity in in-

tensity of conducting motions. We first calculate the

first-order temporal differences of each motion dimen-

sion and then sum them up, resulting in a series of

summed motion speeds. However, directly comparing

the summed motion speed is not robust to local slight

misalignment; therefore, we add an average pooling (de-

noted by “Pool”) to down-sample the summed motion

speed. The kernel size and stride of the pooling are

empirically set to 60 (2 seconds) and 30 (1 second) re-

spectively. The result after pooling is referred to as the

Fan Liu et al.: Self-Supervised Music Motion Synchronization Learning 551

1.06 Hz, 63.6 BPM

Mvt. Tempo: ~130 BPM

0.0010.000 0.002 0.003 0.004 0.005 0.006

P
ia

n
o
 s

o
lo

100 200 300 400 500 600 700

2.5

2.0

1.5

1.0

0.5

0.0F
re

q
u
e
n
c
y
 (

H
z
) 2.5

2.0

1.5

1.0

0.5

0.0F
re

q
u
e
n
c
y
 (

H
z
)

P
ia

n
o
 s

o
lo

100 200 300 400 500

0.82 Hz, 49.2 BPM

Mvt. Tempo: ~100 BPM

0.0010.000 0.002 0.003 0.004

2.5

2.0

1.5

1.0

0.5

0.0F
re

q
u
e
n
c
y
 (

H
z
) 2.5

2.0

1.5

1.0

0.5

0.0F
re

q
u
e
n
c
y
 (

H
z
)

1.40 Hz, 84.0 BPM

Mvt. Tempo: ~170 BPM

0.000 0.002 0.004 0.006 0.008100 200 300 40050 150 250 350

2.5

2.0

1.5

1.0

0.5

0.0

F
re

q
u
e
n
c
y
 (

H
z
)

2.5

2.0

1.5

1.0

0.5

0.0F
re

q
u
e
n
c
y
 (

H
z
)

M
o
ti
o
n
 C

o
n
to

u
r

M
o
ti
o
n
 C

o
n
to

u
r

M
o
ti
o
n
 C

o
n
to

u
r

P
ia

n
o
 S

o
lo

1000 200 300 400 500 600 700

P
ia

n
o
 S

o
lo

0.0 0.5 1.0 1.5 2.0
Τ104

0.010

0.008

0.006

0.004

0.002

0.000

0.004

0.003

0.002

0.001

0.000

P
ia

n
o
 S

o
lo

1000 200 300 400 500

P
ia

n
o
 S

o
lo

0.2 0.6 1.0 1.40.0 0.4 0.8 1.2 1.6 1.8

Τ104

0.010

0.008

0.006

0.004

0.002

0.000

0.003

0.002

0.001

0.000

1000 200 300 40050 150 250 3500.2 0.6 1.00.0 0.4 0.8 1.2
Τ104

0.010

0.008

0.006

0.004

0.002

0.000

0.004

0.003

0.002

0.001

0.000

Time (s)

Time (s)

Time (s)

Time StepTime Step

PSD

(a) (b)

(c) (d)

M
o
ti
o
n
 S

p
e
e
d

M
o
ti
o
n
 S

p
e
e
d

M
o
ti
o
n
 S

p
e
e
d

Fig.6. Three movements (Mvt.) of Mozart’s Piano Concerto No.17 in G major, K.453. (a) Motion spectrogram. (b) Motion PSD.
The red bars in PSD show the frequency bins above the threshold (0.7 Hz). RDE is the difference between those red bars. Red arrows
indicate the rhythm component of the conducting motion. We annotate the corresponding motion frequencies, which are very close
to half the value of the music tempo. (c) Summed motion speed. (d) Strength contour. SCE is the difference between these strength
contours. Both strength contour and summed motion speed can recognize the piano solo section in Mvt.1 and Mvt.2.

552 J. Comput. Sci. & Technol., May 2022, Vol.37, No.3

strength contour, and SCE is used to compare strength

contours. Fig.6(c) and Fig.6(d) present the examples

of summed motion speed and strength contour, respec-

tively, from which the piano solo sections can be clearly

identified. The definition of SCE is shown in (8); here,∑26
j ∆Y [:, j] is the summed motion speed of Y . In

the same way as for RDE, we add log and a constant

k = 107 to SCE:

SCE(Y , Ŷ) = log

(
k

∥∥∥∥Pool(26∑
j

∆Y [:, j]

)
−

Pool

(26∑
j

∆Ŷ [:, j]

)∥∥∥∥2
2

+ 1

)
. (8)

6.2.6 Standard Deviation Percentage

The standard deviation (SD) measures the averaged

intensity of motion change over time. We can compare

the SD of the generated motion and ground truth mo-

tion to see whether the model has an over-smoothness

problem. As shown in Fig.5, standard deviation per-

centage (SDP) linearly corresponds to the motion am-

plitude. SDP is defined in (9); here, yt is the i-th mo-

tion frame, T y is the total number of frames, and y

is the averaged keypoints position over time. An ideal

conducting motion generation model should achieve an

SDP of around 100%, while the static motion should

have an SDP of 0%.

SDP (Y) =
SD(Ŷ)

SD(Y)
× 100%,

where SD(Y) =

√∑Ty

t=1 ||yt − y||22
T y − 1

. (9)

6.3 Balancing Sync Loss and Adversarial Loss

We first use the validation set to determine the op-

timal settings of λsync and λadv. Fixing λadv = 1, we

test λsync = {0.001, 0.01, 0.02, 0.05, 0.1, 1} and com-

pare the performance on RDE and SCE. The results

are shown in Fig.7. We find that λsync = 0.05, λadv = 1

achieve the best performance on both RDE and SCE.

According to the change of training sync loss and W-

dis, a position either further to the left (larger λadv,

more emphasis on realism) or further to the right (larger

λsync, more emphasis on consistency) would cause one

loss term to dominate the other, leading to increase in

RDE and SCE. Therefore, we determine that the op-

timal settings are λsync = 0.05 and λadv = 1. We will

use these settings in the following experiments.

6.4 Performance Comparison

Next, we compare the performance of music-driven

conducting motion generation on the testing set. As in-

troduced in Subsection 2.1, most existing music-driven

conducting motion generation methods [5–11] require the

MIDI data as input; by contrast, our approach aims

at generating motions from audio input. Moreover, it

is difficult to design a fair comparison between these

rule-based methods and our learning-based methods.

The only learning-based music-driven conducting mo-

tion generation model is KHMM [12], first proposed in

2003. However, this method requires manually selecting

the appropriate model for the piece of music in question.

In addition, their method is computationally inefficient,

especially when facing our large-scale ConductorMo-

tion100 dataset. Since none of the existing music-driven

conducting motion generation methods are suitable for

comparison, we instead select three deep models that

0.7

0.9

1.1

0.00 0.01 0.02 0.05 0.10 1.00

S
y
n
c
 L

o
ss

Sync Loss W-dis

W
-
d
is

1.95

2.00

2.05

2.10

2.15

0.45

0.55

0.65

0.001 0.010 0.020 0.050 0.100 1.000

S
C

E

R
D

E

RDE SCE

λsync λsync

100

10-1

10-2

10-3

10-4

(b)(a)

Fig.7. Training sync loss, W-dis, RDE, and SCE under different hyper-parameters. λadv is fixed to 1. We find that λsync = 0.05 yields
the best performance on RDE and SCE. (a) Sync loss and W-dis. (b) RDE and SCE.

Fan Liu et al.: Self-Supervised Music Motion Synchronization Learning 553

are originally designed for other audio-motion transla-

tion tasks: music-driven dance generation [28], speech

gesture generation [43], and instrument-playing motion

generation [32]. As none of these models require any

specific prior knowledge, they can be directly trained

to generate conducting motion.

1) Shlizerman et al. (LSTM) [32]. This is an LSTM-

based model originally designed for translating music

to instrument-playing motions (violin and piano). Fol-

lowing the design in [32], this model consists of a single-

layer uni-directional LSTM with 200 hidden units and

several fully-connected layers. It takes MFCC as the

input. The model is trained with MSE loss.

2) Yalta et al. (CNN-LSTM) [28]. This model is

designed for music-driven dance generation. It uses

a CNN to extract music features from the Mel spec-

trogram, and then uses an LSTM encoder-decoder to

learn temporal dependencies and predict motions. A

contrastive loss is applied to enforce the feature from

the LSTM encoder to be aligned with the motion. This

model is trained with MSE loss and contrastive loss.

3) Ginosar et al. (GAN) [43]. This comparison is a

hybrid method that combines the loss function of [43]

and the music feature used by KHMM [12]. Specifically,

the loss function is a joint loss composed of an adver-

sarial loss and L1 loss. We add a gradient penalty term

to the adversarial loss to improve the training stability.

The music feature comprises three-dimensional pitch,

loudness, and beat features. The beat data is modified

to sawtooth the wave-like data, as in [12].

The performances of the above comparison meth-

ods and our proposed M2S-GAN are listed in Table 2.

Bolded ones indicate the best results. As the ta-

ble shows, our M2S-GAN outperforms all comparison

methods on SE, RDE, SCE, and W-dis. The superior

results on SE, RDE, and SCE indicate that M2S-GAN

can model the music-motion relationships the most ac-

curately. M2S-GAN’s advantages on SDP and W-dis

indicate that it generates the most realistic conducting

motion. Notably, M2S-GAN does not achieve the low-

est MSE. Since MSE has a preference for over-smoothed

motion, it cannot accurately reflect the motion realism

or consistency. The low MSE of MSE loss-based com-

parisons LSTM [32] and CNN-LSTM [28] is caused by low

SDP rather than high motion realism or consistency.

In Fig.8, we present the motion distribution gene-

rated from the first movement of Beethoven’s Sym-

phony No. 5 in C minor, Op. 67 for qualitative compa-

rison. The motions are plotted in 0.1 fps, and the

length of the hand trajectory is 30 time steps, i.e., 1 sec-

ond. We also show the distribution of the ground truth

motion. It can be seen that the first two MSE loss-

based comparison methods suffer greatly from over-

smoothing problems. Comparatively, the motion distri-

butions generated by GAN-based approaches (GAN [43]

and Our M2S-GAN) look much closer to the real mo-

tion. Their SD and SDP also reflect this point. Com-

paring these two GAN-based approaches, we find that

the motion generated by our M2S-GAN conforms far

more closely with the music. However, it is difficult to

Table 2. Performances of Music-Driven Conducting Motion Generation

Model MSE (×103) SE W-dis (×103) RDE SCE SDP (%)

Shlizerman et al., LSTM [32] 3.50 1.301 87.470 0 0.973 9 2.511 38.98

Yelta et al., CNN-LSTM [28] 3.08 0.911 50.850 0 0.991 1 2.482 27.11

Ginosar et al., GAN [43] 6.60 1.371 29.980 0 0.943 7 2.864 97.93

Ours, M2S-GAN 5.40 0.883 1.426 4 0.049 0 2.046 99.62

(b)(a) (c) (d) (e)

Fig.8. Conducting motion distribution of Beethoven’s Symphony No.5. (a) LSTM [32], SD = 0.017 32, SDP = 36.98%. (b) CNN-
LSTM [28], SD = 0.011 06, SDP = 27.11%. (c) GAN [43], SD = 0.043 51, SDP = 97.93%. (d) M2S-GAN, SD = 0.043 51, SDP = 99.62%.
(e) Real, SD = 0.044 43, SDP = 100%.

554 J. Comput. Sci. & Technol., May 2022, Vol.37, No.3

demonstrate this point in figures. Therefore, we create

a demo video comparing the motion generated by these

approaches. We also include a Turing test in the video.

The video can be found online 7○.

6.5 Impact of Different Negative Pairs

As addressed in Subsection 4.5, hard negatives

should have the advantage over easy and super-hard

negatives for M2S learning. Here, we demonstrate this

point by experiment: specifically, we train M2S-Net

using different types of negatives and compare their

testing accuracies. The results are shown in Table 3.

Bolded ones indicate the best results. Impressively, the

model trained with hard negatives achieves the best

performance on all three testing negatives. This in-

dicates that hard negatives enable M2S-Net to learn

both semantic correlation (easy negatives) and tempo-

ral synchronization (super-hard negatives). Moreover,

as shown in Fig.9, the training of easy negatives is very

unstable compared with hard and super-hard negatives.

We speculate that the most likely scenario is as follows:

under easy negatives, M2S-Net sometimes seeks to learn

the semantic correspondence, and sometimes seeks to

isolate the identity of each sample. In many other mul-

timodal self-supervised learning tasks, the easy nega-

tives can be used as a strong baseline. Herein, how-

ever, the experiments demonstrate that easy negatives

are not suitable for M2S learning. Moreover, in [17],

Korbar et al. found that super-hard negatives were

very difficult to optimize. In our experiment, although

the super-hard negatives under-perform hard negatives

in M2S learning, the training process under super-hard

negatives is reasonably smooth, as shown in Fig.9.

6.6 Impact of Training Set Scale

We next conduct another experiment to demon-

strate the necessity of discarding the MSE loss: we

train the MSE model and our proposed M2S-GAN us-

ing different scales of the training set. Specifically, the

full training set of ConductorMotion100 is 90 hours;

here, we train these two models with {1, 4, 8, 16, 32,

64, 90} hours, and compare their performances. The

results are shown in Fig.10. From the training of the

MSE model (blue dotted line) we can see that under a

very small training set, the MSE model can fit the data

very well. As the training set scale increases, however,

the capacity of the MSE model becomes incapable of

memorizing so much data, meaning that the MSE be-

gins to rise. At the same time, SDP drops dramatically,

showing that the model is shrinking the motion ampli-

tude. Comparatively, the SDP of our M2S-GAN (red

lines) does not change with the training set scale, re-

maining stable at around 100%. Since M2S-GAN does

not seek to regress the ground truth motion, it has a

much higher MSE than the MSE model.

Table 3. Performance of M2S Learning with Different Types of
Negatives

Negative Training Testing Accuracy
Pair Accuracy (%)

Easy (%) Hard (%) Super-Hard (%)

Easy 75.14 67.56 57.90 53.01
Hard 68.79 72.60 67.83 62.03
Super-hard 61.79 65.71 63.53 61.27

7 Discussions

Unlike most previously published rule-based music-

driven conducting motion methods, our approach re-

quires no prior knowledge of orchestra conducting. The

StepStep
50

60

70

80

90

100

y
 (

%
)

c
ar

uc c
A

50

60

70

80

90

100

y
 (

%
)

c
ar

uc c
A

50

60

70

80

90

100

y
 (

%
)

c
ar

uc c
A

Step

(c)(b)(a)

Easy Negative
Hard Negative
Super-Hard Negative

Easy Negative
Hard Negative
Super-Hard Negative

Easy Negative
Hard Negative
Super-Hard Negative

Fig.9. Change of testing accuracy during the training under (a) easy, (b) hard and (c) super-hard negative sampling.

7○https://github.com/ChenDelong1999/VirtualConductor, Mar. 2022.

Fan Liu et al.: Self-Supervised Music Motion Synchronization Learning 555

0 20

120

100

80

60

40

20

0
 40 60 80 1000 20 40 60 80 100

S
D

P
 (

%
)

Training Set Scale (h)

M
S
E

Training Set Scale (h)

Τ10-3

7

6

5

4

3

2

1

0

Ours, MSE (Testing Set)

Ours, M2S-GAN (Testing Set)

Ours, MSE (Training Set)

M2S-GAN (Training Set)

Ours, MSE (Testing Set)

Ours, M2S-GAN (Testing Set)

Ours, MSE (Training Set)

M2S-GAN (Training Set)

Fig.10. Change of MSE and SDP across different training set scales.

knowledge of the music motion relationship is learned

from the large dataset by the model itself. As a result,

our approach is highly extendable. We will continue

to explore the potential of applying our approach to

other tasks (e.g., dance generation, instrument playing

motion generation, and talking head generation) in the

future.

We further note that our proposed M2S learning

task in the contrastive learning stage is the first at-

tempt to apply multimodal self-supervised learning to

music and motion. Importantly, we discover that the

“easy negatives” that work well in the video domain

are not suitable for learning music motion synchroniza-

tion. During our experiments, we find that the “easy

negatives” make the model training process unstable,

a finding that we attribute to the increased chance of

false negative sampling. However, the exact boundary

between the “easy negatives” that hinder model conver-

gence and the “hard negatives” that do not have this

problem remains unclear. We leave the investigation of

this point to future work.

In addition, we construct a large-scale conducting

motion dataset, ConductorMotion100, which contains

an unprecedented 100 hours of conducting motion and

corresponding music data. The ConductorMotion100

dataset enables M2S-GAN to learn rich music seman-

tics. Since the scale of ConductorMotion100 is also

larger than many datasets for music information re-

trieval (MIR) tasks, in future, we will also validate the

effectiveness of using it as a pretraining dataset for MIR

tasks, such as beat tracking and tempo estimation.

8 Conclusions

In this paper, we revisited the task of music-driven

conducting motion generation, which has received min-

imal research attention over the years. In a depar-

ture from most previous methods, we proposed a deep

learning based method that can automatically learn

the temporal relationship between the music and the

motion, removing the need to rely on human-designed

rules. To avoid using regression loss, which leads to

over-smoothed results, we designed a two-stage frame-

work consisting of a contrastive learning stage and a

generative learning stage. An M2S-Net is first trained

with a self-supervised loss, and then an M2S-GAN

is trained with adversarial loss and a proposed sync

loss, which measure the realism and the perceptual

similarity between the real motion and the generated

motion respectively. On our collected ConductorMo-

tion100 dataset, the proposed method achieved 0.049

RDE and 2.046 SCE, outperforming all the compared

methods. Through the visualization of generated mo-

tion, we demonstrated that our method can generate

plausible, diverse, and music-synchronized conducting

motion.

References

[1] Ren X, Li H, Huang Z, Chen Q. Self-supervised dance video

synthesis conditioned on music. In Proc. the 28th ACM

International Conference on Multimedia, October 2020,

pp.46-54. DOI: 10.1145/3394171.3413932.

[2] Lee H, Yang X, Liu M, Wang T, Lu Y, Yang M, Kautz

J. Dancing to music. In Proc. the Annual Conference on

Neural Information Processing Systems, December 2019,

pp.3581-3591.

[3] Li B, Maezawa A, Duan Z. Skeleton plays piano: Online

generation of pianist body movements from MIDI perfor-

mance. In Proc. the 19th International Society for Music

Information Retrieval Conference, September 2018, pp.218-

224.

[4] Kao H, Su L. Temporally guided music-to-body-movement

generation. In Proc. the 28th ACM International Confe-

https://doi.org/10.1145/3394171.3413932

556 J. Comput. Sci. & Technol., May 2022, Vol.37, No.3

rence on Multimedia, October 2020, pp.147-155. DOI:

10.1145/3394171.3413848.

[5] Ruttkay Z, Huang Z, Eliens A. The conductor: Gestures

for embodied agents with logic programming. In Proc. the

Joint Annual ERCIM/CoLogNet International Workshop

on Constraint and Logic Programming, June 30-July 2,

2003, pp.9-16. DOI: 10.1007/978-3-540-24662-6 15.

[6] Bos P, Reidsma D, Ruttkay Z, Nijholt A. Interacting

with a virtual conductor. In Proc. the 5th International

Conference on Entertainment Computing, September 2006,

pp.25-30. DOI: 10.1007/11872320 3.

[7] Nijholt A, Reidsma D, Ebbers R, Maat M. The virtual

conductor: Learning and teaching about music, perform-

ing, and conducting. In Proc. the 8th IEEE International

Conference on Advanced Learning Technologies, July 2008,

pp.897-899. DOI: 10.1109/ICALT.2008.43.

[8] Maat M, Ebbers R, Reidsma D, Nijholt A. Beyond the beat:

Modelling intentions in a virtual conductor. In Proc. the

2nd International Conference on Intelligent Technologies

for Interactive Entertainment, January 2008, Article No.

12. DOI: 10.4108/ICST.INTETAIN2008.2489.

[9] Reidsma D, Nijholt A, Bos P. Temporal interaction be-

tween an artificial orchestra conductor and human musi-

cians. Comput. Entertain., 2008, 6(4): Article No. 53. DOI:

10.1145/1461999.1462005.

[10] Takatsu R, Maki Y, Inoue T, Okada K, Shigeno H. Mul-

tiple virtual conductors allow amateur orchestra players

to perform better and more easily. In Proc. the 20th

IEEE International Conference on Computer Supported

Cooperative Work in Design, May 2016, pp.486-491. DOI:

10.1109/CSCWD.2016.7566038.

[11] Katayama N, Takatsu R, Inoue T, Shigeno H, Okada K.

Efficient generation of conductor avatars for the concert

by multiple virtual conductors. In Proc. the 8th Interna-

tional Conference on Collaboration Technologies and Social

Computing, Sept. 2016, pp.45-57. DOI: 10.1007/978-981-10-

2618-8 4.

[12] Wang T, Zheng N, Li Y, Xu Y, Shum H. Learn-

ing kernel-based HMMs for dynamic sequence synthesis.

Graph. Model., 2003, 65(4): 206-221. DOI: 10.1016/S1524-

0703(03)00040-7.

[13] Shu X, Qi G, Tang J, Wang J. Weakly-shared deep transfer

networks for heterogeneous-domain knowledge propagation.

In Proc. the 23rd Annual ACM Conference on Multimedia,

October 2015, pp.35-44. DOI: 10.1145/2733373.2806216.

[14] Tang J, Shu X, Qi G, Li Z, Wang M, Yan S, Jain R C.

Tri-clustered tensor completion for social-aware image tag

refinement. IEEE Trans. Pattern Anal. Mach. Intell., 2017,

39(8): 1662-1674. DOI: 10.1109/TPAMI.2016.2608882.

[15] Tang J, Shu X, Li Z, Jiang Y, Tian Q. Social anchor-unit

graph regularized tensor completion for large-scale image

retagging. IEEE Trans. Pattern Anal. Mach. Intell., 2019,

41(8): 2027-2034. DOI: 10.1109/TPAMI.2019.2906603.

[16] Du X, Yang Y, Yang L, Shen F, Qin Z, Tang J. Caption-

ing videos using large-scale image corpus. J. Comput. Sci.

Technol., 2017, 32(3): 480-493. DOI: 10.1007/s11390-017-

1738-7.

[17] Korbar B, Tran D, Torresani L. Cooperative learning of

audio and video models from self-supervised synchroniza-

tion. In Proc. the Annual Conference on Neural Informa-

tion Processing Systems, December 2018, pp.7774-7785.

[18] Arjovsky M, Chintala S, Bottou L. Wasserstein GAN.

arXiv:1701.07875, 2017. https://arxiv.org/pdf/1701.078

75.pdf, Dec. 2021.

[19] Gulrajani I, Ahmed F, Arjovsky M, Dumoulin V, Courville

A C. Improved training of Wasserstein GANs. In Proc. the

Annual Conference on Neural Information Processing Sys-

tems, December 2017, pp.5767-5777.

[20] Redmon J, Farhadi A. YOLOv3: An incremental im-

provement. arXiv:1804.02767, 2018. https://arxiv.org/abs/

1804.02767, Dec. 2021.

[21] Fang H, Xie S, Tai Y, Lu C. RMPE: Regional multi-person

pose estimation. In Proc. the 2017 IEEE International

Conference on Computer Vision, October 2017, pp.2353-

2362. DOI: 10.1109/ICCV.2017.256.

[22] Geuther B, Breese A, Wang Y. A study on musical conduct-

ing robots and their users. In Proc. the 10th IEEE-RAS

International Conference on Humanoid Robots, December

2010, pp.124-129. DOI: 10.1109/ICHR.2010.5686302.

[23] Salgian A, Ault C, Nakra T M, Wang Y, Stone M. Multi-

disciplinary computer science through conducting robots.

In Proc. the 42nd ACM Technical Symposium on Com-

puter Science Education, March 2011, pp.219-224. DOI:

10.1145/1953163.1953229.

[24] Salgian A, Ault C, Nakra T M, Wang Y, Stone M. A theory

of ‘multiple creativities’: Outcomes from an undergraduate

seminar in conducting robots. In Proc. the Music, Mind,

and Invention Workshop, March 2012.

[25] Dansereau D G, Brock N, Cooperstock J R. Predicting

an orchestral conductor’s baton movements using machine

learning. Comput. Music. J., 2013, 37(2): 28-45. DOI:

10.1162/COMJ a 00173.

[26] Yalta N. Sequential deep learning for dancing motion

generation. In Proc. the 46th AI Challenge Study Group,

November 2016, pp.43-49.

[27] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of con-

volutional neural networks: Analysis, applications, and

prospects. IEEE Transactions on Neural Networks and

Learning Systems. DOI: 10.1109/TNNLS.2021.3084827.

[28] Yalta N, Watanabe S, Nakadai K, Ogata T. Weakly-

supervised deep recurrent neural networks for basic da-

nce step generation. In Proc. the 2019 International Jo-

int Conference on Neural Networks, July 2019. DOI:

10.1109/IJCNN.2019.8851872.

[29] Tang T, Jia J, Mao H. Dance with melody: An

LSTM-autoencoder approach to music-oriented dance

synthesis. In Proc. the 2018 ACM Multimedia Confe-

rence on Multimedia, October 2018, pp.1598-1606. DOI:

10.1145/3240508.3240526.

[30] Bogaers A, Yumak Z, Volk A. Music-driven animation gene-

ration of expressive musical gestures. In Proc. the 2020 In-

ternational Conference on Multimodal Interaction, October

2020, pp.22-26. DOI: 10.1145/3395035.3425244.

[31] Qi Y, Liu Y, Sun Q. Music-driven dance generation.

IEEE Access, 2019, 7: 166540-166550. DOI: 10.1109/AC-

CESS.2019.2953698.

[32] Shlizerman E, Dery L M, Schoen H, Kemelmacher-

Shlizerman I. Audio to body dynamics. In Proc. the

2018 IEEE/CVF Conference on Computer Vision and

Pattern Recognition, June 2018, pp.7574-7583. DOI:

10.1109/CVPR.2018.00790.

https://doi.org/10.1145/3394171.3413848
https://doi.org/10.1007/978-3-540-24662-6_15
https://doi.org/10.1007/11872320_3
https://doi.org/10.1109/ICALT.2008.43
https://doi.org/10.4108/ICST.INTETAIN2008.2489
https://doi.org/10.1145/1461999.1462005
https://doi.org/10.1109/CSCWD.2016.7566038
https://doi.org/10.1007/978-981-10-2618-8_4
https://doi.org/10.1007/978-981-10-2618-8_4
https://doi.org/10.1016/S1524-0703(03)00040-7
https://doi.org/10.1016/S1524-0703(03)00040-7
https://doi.org/10.1145/2733373.2806216
https://doi.org/10.1109/TPAMI.2016.2608882
https://doi.org/10.1109/TPAMI.2019.2906603
https://doi.org/10.1007/s11390-017-1738-7
https://doi.org/10.1007/s11390-017-1738-7
https://doi.org/10.1109/ICCV.2017.256
https://doi.org/10.1109/ICHR.2010.5686302
https://doi.org/10.1145/1953163.1953229
https://doi.org/10.1162/COMJ_a_00173
https://doi.org/10.1109/TNNLS.2021.3084827
https://doi.org/10.1109/IJCNN.2019.8851872
https://doi.org/10.1145/3240508.3240526
https://doi.org/10.1145/3395035.3425244
https://doi.org/10.1109/ACCESS.2019.2953698
https://doi.org/10.1109/ACCESS.2019.2953698
https://doi.org/10.1109/CVPR.2018.00790

Fan Liu et al.: Self-Supervised Music Motion Synchronization Learning 557

[33] Haag K, Shimodaira H. Bidirectional LSTM networks em-

ploying stacked bottleneck features for expressive speech-

driven head motion synthesis. In Proc. the 16th Interna-

tional Conference on Intelligent Virtual Agents, September

2016, pp.198-207. DOI: 10.1007/978-3-319-47665-0 18.

[34] Ferstl Y, McDonnell R. Investigating the use of re-

current motion modelling for speech gesture generation.

In Proc. the 18th International Conference on Intelli-

gent Virtual Agents, November 2018, pp.93-98. DOI:

10.1145/3267851.3267898.

[35] Sadoughi N, Busso C. Joint learning of speech-driven fa-

cial motion with bidirectional long-short term memory. In

Proc. the 17th International Conference on Intelligent Vir-

tual Agents, August 2017, pp.389-402. DOI: 10.1007/978-3-

319-67401-8 49.

[36] Huang R, Hu H, Wu W, Sawada K, Zhang M, Jiang D.

Dance revolution: Long-term dance generation with mu-

sic via curriculum learning. In Proc. the 9th International

Conference on Learning Representations, May 2021.

[37] Sun G, Wong Y, Cheng Z, Kankanhalli M S, Geng W, Li X.

DeepDance: Music-to-dance motion choreography with ad-

versarial learning. IEEE Trans. Multim., 2020, 23: 497-509.

DOI: 10.1109/TMM.2020.2981989.

[38] Ahn H, Kim J, Kim K, Oh S. Generative autoregressive

networks for 3D dancing move synthesis from music. IEEE

Robotics and Automation Letters, 2020, 5(2): 3501-3508.

DOI: 10.1109/LRA.2020.2977333.

[39] Lee J, Kim S, Lee K. Automatic choreography gene-

ration with convolutional encoder-decoder network. In

Proc. the 20th International Society for Music Information

Retrieval Conference, November 2019, pp.894-899. DOI:

10.5281/zenodo.3527958.

[40] Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L,

Gomez A N, Kaiser L, Polosukhin I. Attention is all you

need. In Proc. the Annual Conference on Neural Informa-

tion Processing Systems, December 2017, pp.5998-6008.

[41] Li R, Yang S, Ross D A, Kanazawa A. Learn to dance

with AIST++: Music conditioned 3D dance generation.

arXiv:2101.08779, 2021. https://arxiv.org/abs/2101.08779,

Dec. 2021.

[42] Goodfellow I J, Pouget-Abadie J, Mirza M, Xu B, Warde-

Farley D, Ozair S, Courville A C, Bengio Y. Generative ad-

versarial nets. In Proc. the Annual Conference on Neural

Information Processing Systems, December 2014, pp.2672-

2680.

[43] Ginosar S, Bar A, Kohavi G, Chan C, Owens A, Malik

J. Learning individual styles of conversational gesture. In

Proc. the 2019 IEEE/CVF Conference on Computer Vi-

sion and Pattern Recognition, June 2019, pp.3497-3506.

DOI: 10.1109/CVPR.2019.00361.

[44] Eskimez S E, Maddox R K, Xu C, Duan Z. End-to-end

generation of talking faces from noisy speech. In Proc.

the 2020 IEEE International Conference on Acoustics,

Speech and Signal Processing, May 2020, pp.1948-1952.

DOI: 10.1109/ICASSP40776.2020.9054103.

[45] Song Y, Zhu J, Li D, Wang A, Qi H. Talking face generation

by conditional recurrent adversarial network. In Proc. the

28th International Joint Conference on Artificial Intelli-

gence, August 2019, pp.919-925.

[46] Sadoughi N, Busso C. Novel realizations of speech-driven

head movements with generative adversarial networks. In

Proc. the 2018 IEEE International Conference on Acous-

tics, Speech and Signal Processing, April 2018, pp.6169-

6173. DOI: 10.1109/ICASSP.2018.8461967.

[47] Ferstl Y, Neff M, McDonnell R. Multi-objective adver-

sarial gesture generation. In Proc. the Motion, Inte-

raction and Games, October 2019, Article No. 3. DOI:

10.1145/3359566.3360053.

[48] Sarasúa Á. Context-aware gesture recognition in classical

music conducting. In Proc. the 21st ACM International

Conference on Multimedia, October 2013, pp.1059-1062.

DOI: 10.1145/2502081.2502216.

[49] Sarasúa Á, Guaus E. Beat tracking from conducting ges-

tural data: A multi-subject study. In Proc. the Interna-

tional Workshop on Movement and Computing, June 2014,

pp.118-123. DOI: 10.1145/2617995.2618016.

[50] Karipidou K, Ahnlund J, Friberg A, Alexanderson S, Kjell-

ström H. Computer analysis of sentiment interpretation in

musical conducting. In Proc. the 12th IEEE International

Conference on Automatic Face & Gesture Recognition, May

30-June 3, 2017, pp.400-405. DOI: 10.1109/FG.2017.57.

[51] Huang Y, Chen T, Moran N, Coleman S, Su L. Identifying

expressive semantics in orchestral conducting kinematics.

In Proc. the 20th International Society for Music Infor-

mation Retrieval Conference, November 2019, pp.115-122.

DOI: 10.5281/zenodo.3527753.

[52] Lemouton S, Borghesi R, Haapamäki S, Bevilacqua F, Fléty

E. Following orchestra conductors: The IDEA open move-

ment dataset. In Proc. the 6th International Conference on

Movement and Computing, October 2019, Article No. 25.

DOI: 10.1145/3347122.3359599.

[53] Yan S, Xiong Y, Lin D. Spatial temporal graph convolu-

tional networks for skeleton-based action recognition. In

Proc. the 32nd AAAI Conference on Artificial Intelligence,

February 2018, pp.7444-7452.

[54] Bai S, Kolter J Z, Koltun V. Convolutional sequence mod-

eling revisited. In Proc. the 6th International Conference

on Learning Representations, April 30-May 3, 2018.

[55] Arandjelovic R, Zisserman A. Look, listen and learn.

In Proc. the 2017 IEEE International Conference on

Computer Vision, October 2017, pp.609-617. DOI:

10.1109/ICCV.2017.73.

[56] Chung J S, Zisserman A. Out of time: Automated lip sync

in the wild. In Proc. the 2016 ACCV International Work-

shops on Computer Vision, November 2016, pp.251-263.

DOI: 10.1007/978-3-319-54427-4 19.

[57] Chen L, Srivastava S, Duan Z, Xu C. Deep cross-modal

audio-visual generation. In Proc. the Thematic Workshops

of the 2017 ACM Multimedia, October 2017, pp.349-357.

DOI: 10.1145/3126686.3126723.

[58] Hao W, Zhang Z, Guan H. CMCGAN: A uniform frame-

work for cross-modal visual-audio mutual generation. In

Proc. the 32nd AAAI Conference on Artificial Intelligence,

February 2018, pp.6886-6893.

[59] Zhou H, Liu Z, Xu X, Luo P, Wang X. Vision-

infused deep audio inpainting. In Proc. the 2019

IEEE/CVF International Conference on Computer Vi-

sion, October 27-November 2, 2019, pp.283-292. DOI:

10.1109/ICCV.2019.00037.

https://doi.org/10.1007/978-3-319-47665-0_18.
https://doi.org/10.1145/3267851.3267898
https://doi.org/10.1007/978-3-319-67401-8_49
https://doi.org/10.1007/978-3-319-67401-8_49
https://doi.org/10.1109/TMM.2020.2981989
https://doi.org/10.1109/LRA.2020.2977333
https://doi.org/10.5281/zenodo.3527958
https://doi.org/10.1109/CVPR.2019.00361
https://doi.org/10.1109/ICASSP40776.2020.9054103
https://doi.org/10.1109/ICASSP.2018.8461967
https://doi.org/10.1145/3359566.3360053
https://doi.org/10.1145/2502081.2502216
https://doi.org/10.1145/2617995.2618016
https://doi.org/10.1109/FG.2017.57
https://doi.org/10.5281/zenodo.3527753
https://doi.org/10.1145/3347122.3359599
https://doi.org/10.1109/ICCV.2017.73
https://doi.org/10.1007/978-3-319-54427-4_19.
https://doi.org/10.1145/3126686.3126723
https://doi.org/10.1109/ICCV.2019.00037

558 J. Comput. Sci. & Technol., May 2022, Vol.37, No.3

[60] Choi H, Park C, Lee K. From inference to generation: End-

to-end fully self-supervised generation of human face from

speech. In Proc. the 8th International Conference on Learn-

ing Representations, April 2020.

[61] Johnson J, Alahi A, Li F F. Perceptual losses for real-

time style transfer and super-resolution. In Proc. the 14th

European Conference on Computer Vision, October 2016,

pp.694-711. DOI: 10.1007/978-3-319-46475-6 43.

[62] Li M, Hsu W, Xie X, Cong J, Gao W. SACNN: Self-

attention convolutional neural network for low-dose CT de-

noising with self-supervised perceptual loss network. IEEE

Trans. Medical Imaging, 2020, 39(7): 2289-2301. DOI:

10.1109/TMI.2020.2968472.

[63] Akella R T, Halder S S, Shandeelya A P, Pankajakshan V.

Enhancing perceptual loss with adversarial feature match-

ing for super-resolution. In Proc. the 2020 International

Joint Conference on Neural Networks, July 2020. DOI:

10.1109/IJCNN48605.2020.9207102.

[64] Tieleman T, Hinton G. Lecture 6.5-rmsprop, COURSERA:

Neural networks for machine learning. Technical Report,

University of Toronto, 2012.

[65] Diederik P K, Jimmy B. Adam: A method for stochastic

optimization. In Proc. the 3rd International Conference on

Learning Representations, May 2015.

[66] Sarasúa Á, Caramiaux B, Tanaka A. Machine learn-

ing of personal gesture variation in music conducting.

In Proc. the 2016 CHI Conference on Human Factors

in Computing Systems, May 2016, pp.3428-3432. DOI:

10.1145/2858036.2858328.

[67] Cosentino S, Petersen K, Lin Z, Bartolomeo L, Sessa

S, Zecca M, Takanishi A. Natural human-robot mu-

sical interaction: Understanding the music conduc-

tor gestures by using the WB-4 inertial measurement

system. Adv. Robotics, 2014, 28(11): 781-792. DOI:

10.1080/01691864.2014.889577.

[68] Lee K, Junokas M J, Amanzadeh M, Garnett G E. An ana-

lysis of basic expressive qualities in instrumental conduct-

ing. In Proc. the 2nd International Workshop on Move-

ment and Computing, August 2015, pp.148-155. DOI:

10.1145/2790994.2791005.

Fan Liu is currently a professor of

Hohai University, Nanjing. He received

his B.S. degree in networking and Ph.D.

degree in technology for computer

applications from Nanjing University

of Science and Technology (NUST),

Nanjing, in 2009 and 2015, respectively.

From September 2008 to December 2008, he studied at

Ajou University, Suwon City. From February 2014 to

May 2014, he worked at Microsoft Research Asia, Beijing.

His research interests include computer vision, pattern

recognition, and machine learning. Dr. Liu also serves as

a reviewer of IEEE TNNLS, IEEE TKDE, ACM TIST,

Information Sciences, Neurocomputing, Pattern Analysis

and Application.

De-Long Chen received his B.S.

degree in computer science in Hohai

University, Nanjing, in 2021. He is

currently a research assistant in Hohai

University, Nanjing, and a research

intern at MEGVII Technology, Beijing.

His research includes computer vision,

music information retrieval, multimodal

learning, unsupervised learning and self-supervised learn-

ing.

Rui-Zhi Zhou is currently pur-

suing his B.S. degree in computer

science in Hohai University, Nan-

jing. His current research interests

include deep learning, pattern recog-

nition, music information retrieval,

human motion analysis and gene-

ration.

Sai Yang is currently a lecturer

of Nantong University, Nantong. She

received her M.S. degree in control

theory and control engineering from

School of Mechanical and Electrical

Engineering, Jiangxi University of

Science and Technology, Nanchang,

in 2010, and her Ph.D. degree in

pattern recognition and intelligent system from School of

Computer Science and Engineering, Nanjing University of

Science and Technology, Nanjing, in 2015. Her research

interests include computer vision, image processing,

pattern recognition and machine learning.

Feng Xu is currently a professor at

Hohai University, Nanjing. He received

his Ph.D. degree in software theory

from Nanjing University, Nanjing, in

2008. He received his B.S. and M.S.

degrees in technology for computer

applications from Hohai University,

Nanjing, in 1998 and 2001, respectively.

His research interests include cloud computing, network

information security, domain software engineering, etc. He

has authored over 100 journal and conference papers in

these areas.

https://doi.org/10.1007/978-3-319-46475-6_43
https://doi.org/10.1109/TMI.2020.2968472
https://doi.org/10.1109/IJCNN48605.2020.9207102
https://doi.org/10.1145/2858036.2858328
https://doi.org/10.1080/01691864.2014.889577
https://doi.org/10.1145/2790994.2791005

	1 Introduction
	2 Related Work
	2.1 Music-Driven Conducting Motion Generation
	2.2 Deep Audio-to-Motion Translation

	3 Data Preparation
	4 Approach
	4.1 Motivation
	4.2 Overview of Proposed Approach
	4.3 Network Architectures
	4.3.1 Motion Encoder
	4.3.2 Music Encoder
	4.3.3 Generator
	4.3.4 Discriminator

	4.4 Loss Functions
	4.4.1 Loss Function for M2S-Net
	4.4.2 Loss Function for M2S-GAN

	4.5 Negative Pair Sampling

	5 Discussion
	5.1 Applying Self-Supervised Learning for Generative Tasks
	5.2 Sync Loss vs Perceptual Loss

	6 Experiments
	6.1 Implementation Details
	6.2 Evaluation Metrics
	6.2.1 Mean Squared Error
	6.2.2 Sync Error
	6.2.3 Wasserstein Distance
	6.2.4 Rhythm Density Error
	6.2.5 Strength Contour Error
	6.2.6 Standard Deviation Percentage

	6.3 Balancing Sync Loss and Adversarial Loss
	6.4 Performance Comparison
	6.5 Impact of Different Negative Pairs
	6.6 Impact of Training Set Scale

	7 Discussions
	8 Conclusions

