
Wang E, Wang H, Dong PM et al. Distributed game-theoretical D2D-enabled task offloading in mobile edge computing.

JOURNAL OF COMPUTER SCIENCE AND TECHNOLOGY 37(4): 919–941 July 2022. DOI 10.1007/s11390-022-2063-3

Distributed Game-Theoretical D2D-Enabled Task Offloading in
Mobile Edge Computing

En Wang1(� �), Member, CCF, Han Wang1(� |), Peng-Min Dong2(Â*¬)
Yuan-Bo Xu1,∗(M�Æ), Member, CCF, and Yong-Jian Yang1(
[è), Member, CCF

1Department of Computer Science and Technology, Jilin University, Changchun 130012, China
2Department of Software, Jilin University, Changchun 130012, China

E-mail: wangen@jlu.edu.cn; {wanghan21, dongpm19}@mails.jlu.edu.cn; {yuanbox, yyj}@jlu.edu.cn

Received December 3, 2021; accepted July 8, 2022.

Abstract Mobile edge computing (MEC) has been envisioned as a promising distributed computing paradigm where

mobile users offload their tasks to edge nodes to decrease the cost of energy and computation. However, most of the existing

studies only consider the congestion of wireless channels as a crucial factor affecting the strategy-making process, while

ignoring the impact of offloading among edge nodes. In addition, centralized task offloading strategies result in enormous

computation complexity in center nodes. Along this line, we take both the congestion of wireless channels and the offloading

among multiple edge nodes into consideration to enrich users’ offloading strategies and propose the Parallel User Selection

Algorithm (PUS) and Single User Selection Algorithm (SUS) to substantially accelerate the convergence. More practically,

we extend the users’ offloading strategies to take into account idle devices and cloud services, which considers the potential

computing resources at the edge. Furthermore, we construct a potential game in which each user selfishly seeks an optimal

strategy to minimize its cost of latency and energy based on acceptable latency, and find the potential function to prove the

existence of Nash equilibrium (NE). Additionally, we update PUS to accelerate its convergence and illustrate its performance

through the experimental results of three real datasets, and the updated PUS effectively decreases the total cost and reaches

Nash equilibrium.

Keywords computation offloading, potential game, Nash equilibrium, device-to-device (D2D), acceptable latency

1 Introduction

With the rapid development of 5G [1] and other

network technologies, terminal devices such as face

recognition, natural language processing and inte-

ractive gaming [2–5] have been involved in computing-

intensive and delay-critical applications. Due to hard-

ware limitations, the battery life and computing re-

sources of mobile devices are usually limited. Mobile

edge computing (MEC) is considered as a promising

distributed computing paradigm, which uses the com-

puting capacity [6–8] of edge nodes to decrease comput-

ing cost and improve quality of service (QoS).

In MEC, because the computing capacity and wire-

less channels of edge nodes and the computing capac-

ity of cloud are shared by offloading users, the mobile

users need to decide whether to offload tasks to edge

nodes and the cloud, or to utilize the device-to-device

(D2D) [9] technology or their local devices for process-

ing tasks, which raises fundamental task offloading is-

sues. Recently, some studies only consider the impact of

wireless channel competition regardless of the offload-

ing among edge nodes, which may change the offloading

decision [10]. Moreover, most of the proposed task of-

Regular Paper

Special Section of MASS 2020–2021

A preliminary version of the paper was published in the Proceedings of MASS 2021.

This work was supported by the National Natural Science Foundation of China under Grant No. 62072209, the National Natural
Science Foundation of China Youth Fund under Grant No. 62002123, the Key Research and Development Program of Jilin Province of
China under Grant No. 20210201082GX, the Scientific and Technological Planning Project of Jilin Province of China under Grant No.
JJKH20221010KJ, and the Development and Reform Commission Project of Jilin Province of China under Grant No. 2020C017-2.

∗Corresponding Author

©Institute of Computing Technology, Chinese Academy of Sciences 2022

http://dx.doi.org/10.1007/s11390-022-2063-3

920 J. Comput. Sci. & Technol., July 2022, Vol.37, No.4

floading strategies are centralized [11, 12]. The central

node needs to collect all user information and control

the global task offloading strategies through calcula-

tion, which not only makes the central node have the

enormous computation complexity, but also makes the

user’s privacy leak. From the perspective of mobile

users, when they find a better way to offload tasks,

the centralized strategy may not meet the needs of all

users. For example, a user may be unwilling to de-

viate from the original offloading decision, especially

when the assigned decision costs more than the for-

mer one. Nowadays, many offloading strategies do not

make use of the potential computing resources of edge

nodes, such as D2D technology [13], so that users’ tasks

are offloaded to idle mobile devices without tasks to

be offloaded, which effectively decreases the total cost

of users. End-edge-cloud computing [14] can not only

improve resource utilization, but also enhance the qua-

lity of service. Mobile users can offload tasks to the

cloud for task computing through edge service nodes or

directly to the cloud through the wireless network.

Therefore, we take the offloading among edge nodes,

the competition in wireless channels, cloud computing

and D2D into consideration, which is a more practi-

cal situation. Each mobile user has a home edge node,

which is the nearest edge node to the user, and multiple

neighbor edge nodes, which are connected to the user’s

home edge node via optical fiber cables. There are some

users connected through the D2D links in mobile users.

Therefore, the users who have tasks can offload their

tasks to idle devices which do not have tasks and each

idle device is allowed to offload only one task. The tasks

of mobile users can be offloaded to the cloud through

their home nodes because the cloud is connected to the

home edge nodes with optical fiber cables. As illus-

trated in Fig.1(a), user u1 regards the edge service node

1 as his/her home node and the edge service node 2 as

his/her neighbor edge node. Due to different locations

and the transmission distance of optical fiber cables,

each edge service node has some neighbor connecting

nodes. Obviously, for different mobile users, the di-

vision of edge nodes may also be different. Both edge

service node 1 and edge service node 2 have optical fiber

cables connected to the cloud. Because user u4 connects

with idle mobile user u5 through a D2D link, user u4

can offload his/her task to user u5 for processing. The

wireless channels shown as C2 arrows in Fig.1(a) are

shared by the offloading users. Therefore, the more the

mobile users using the channel to transmit data are,

the lower the transmission rate of mobile users using

the channel is. There are five methods for task com-

puting including processing tasks utilizing their local

devices, offloading to the home edge node, offloading to

the neighbor edge node and cloud via fiber-optical wired

transmission from the home edge node, and offloading

to one idle device via the D2D link. When mobile users

offload their tasks to neighbor edge nodes or cloud, they

must first offload tasks to their home edge nodes, and

then their home edge nodes will offload tasks to corre-

sponding neighbor edge nodes or cloud.

C5/1

C2/2

C7/1

2

C7/1

Edge Service 1 Edge Service 2

Cloud

C4/4

C1/13 C1/12 C1/18 C1/13 C8/5.5

Algorithm Method Cost Equilibrium

No

No

Yes

2
2
2
2

2
2
22
2

42

1
C
2

23

C
1
2
2

24.5

1 Edge Service 1
2 Edge Service 2

Idle Device
Local Device

Cloud We can find an equilibrium state

u4 can choose edge service 2 to decrease cost

1

CCC
1
2
2

1
2

2
CCCC

C1: Local Computing Cost
C2: Offloading Cost
C3: Edge Computing Cost
C4\C5: Transmitting Cost
C6: Cloud Computing Cost
C7: D2D Transmitting Cost
C8: D2D Computing Cost

C3/N Τ 2

 2 + 1 + 4 Τ 2=11

 2 + 1 + 4 Τ 2=11

 2 + 4 Τ 2=10

 2 + 4 Τ 2=10

 2 + 4 Τ 1=6

 2 + 4 + 1 Τ 0.5=6.5

 2 + 1 Τ 2=4

 1 + 5.5=6.5

 2 + 4 + 1 Τ 0.5=6.5

 2 + 4 Τ 1=6

 2 + 2 Τ 2=6

 2 + 2 Τ 2=6

C3/N Τ 4

C6/N Τ 0.5

u1 u2 u3 u4 u5

u5

u1

u2

u3

u4

u1

u2

u3

u4

u1

u2

u3

u4

u1

u2

u3

u4

u1

u2

u3

u4

u1

u2

u3

u4

Minimum

Cost

Centralized

Optimal

Distributed

Equilibrium

u

L
C

(b)(a)

Fig.1. Problem description for task offloading. (a) Task offloading model. (b) Task offloading algorithms. \ represents “and”.

En Wang et al.: D2D-Enabled Task Offloading in Mobile Edge Computing 921

In addition, we consider a distributed algorithm

that allows users to choose an offloading method instead

of uploading users’ information to the center edge ser-

vice node. Some comparing offloading algorithms are

shown in Fig.1(b). An intuitive idea (minimum cost)

assumes that every user thinks that there is only him-

self/herself and no one else in the model, and therefore

every user only needs to choose an offloading scheme

to minimize his/her cost. Obviously, this will lead to

a higher total cost of 42. An ideal approach (central-

ized optimal) achieves the least total cost of 23, but

the needs of all mobile users are not satisfied, i.e., user

u4 can offload his/her task to node 2 to achieve a less

cost value of 6. A trade-off (distributed equilibrium) is

our target method, where a relatively acceptable cost of

24.5 and an equilibrium state are achieved, and no user

has the motivation to change the decision unilaterally.

Therefore, our first challenge is how to construct a

distributed model, which not only gets a better total

cost, but also achieves Nash equilibrium. In the pro-

cess of task offloading, the requirements of user equip-

ment for battery condition and the time urgency of the

task are considered. Therefore, the second challenge is

how to design a unified distributed algorithm to meet

the personal conditions of all mobile users. Moreover,

Fig.1(b) shows that although we can find Nash equilib-

rium, the total cost is not always optimal. The third

challenge is to make the better total cost obtained by

the algorithm have an upper bound relative to the op-

timal solution. In order to meet the above challenges,

we first define the task offloading problem as a multi-

user task offloading game where each user selects a task

offloading method to minimize their own cost. Then,

by constructing a global potential function, it demon-

strates that the constructed game is a potential game,

and thus the algorithm can achieve Nash equilibrium.

The change of each user’s cost can be uniformly mapped

to the change of the global potential function. By con-

stantly approaching the minimum of the global poten-

tial function, we reach an equilibrium state, in which

the cost function of each user reaches a local minimum.

On this basis, a distributed game theory task offloading

algorithm is designed to realize Nash equilibrium. For

the cost function, users can modify the weight parame-

ters according to their specific situations. Finally, the

metric of Price of Anarchy (PoA) is used to ensure the

upper bound of the total cost relative to the centralized

optimal solution.

In this paper, we introduce a mobile edge comput-

ing offload framework supporting D2D. As shown in

Fig.1, a user can offload his/her task to the home edge

server node, neighbor edge nodes, and cloud through

a home base station or an idle mobile user. The main

contributions are summarized as follows.

1) We propose a game theory method to solve the

problem of computing offload by modeling the offload

process as a multi-user task offload game considering

the offload between wireless channels, edge nodes,

cloud, and idle devices and meeting users’ acceptable

latency. We prove that the centralized optimal solution

of the offloading problem is NP-hard.

2) We prove that the multi-user offloading game is

a potential game, and design an algorithm to achieve

Nash equilibrium. At the same time, users can mod-

ify the parameters of the cost function to meet their

respective conditions and acceptable latency.

3) We further prove that our distributed algorithm

can reach Nash equilibrium, and prove the upper bound

of the number of update steps and the lower bound of

the total cost. In addition, in order to speed up the con-

vergence of the distributed algorithm, we update PUS

and get better results in the experiment.

4) We evaluate the proposed algorithms with the

D2D link and cloud on three real widely-used datasets

of edge networks: Melbourne, Shanghai and Darm-

stadt. Experimental results show that our algorithm

can reach NE in limited iterative times, and the total

cost is close to the centralized optimal solution.

This paper is a journal version extended from the

conference paper [15]. 1) Based on the multi-user task

offload game considering the offload between wireless

channels and edge nodes [15], we further extend the task

offloading game to a D2D-enabled multi-user task of-

fload game (Fig.1(a)) considering the offload including

wireless channels, edge nodes, the cloud and idle de-

vices, which takes the potential computing resources at

the edge and cloud computing into consideration and

is proved to be a weighted potential game in Subsec-

tion 3.8. 2) In this paper, we meet the acceptable la-

tency of all users, that is, the completion time of a task

should be within the user’s acceptable latency (Sec-

tion 3). 3) To decrease the convergence time and apply

to the model including wireless channels, edge nodes,

the cloud and idle devices, we update Distributed

Game-Theoretical Task Offloading algorithm [15], Infor-

mation Update algorithm [15], and PUS algorithm [15] to

Algorithms 1–3 in this paper respectively. 4) We add

experiments to explore the impact of the number of

D2D links on total cost and offloading ratio in Subsec-

tion 5.3.3.

922 J. Comput. Sci. & Technol., July 2022, Vol.37, No.4

The remainder of the paper is organized as follows.

After reviewing the related work in Section 2, we in-

troduce the system model, the NP-hardness of the cen-

tralized problem and the potential game formulation

in Section 3. Then, we propose the distributed task

offloading algorithm and analyze its performance the-

oretically in Section 4. Finally, we conduct extensive

simulations to evaluate the proposed algorithm in Sec-

tion 5 and conclude the paper in Section 6.

2 Related Work

2.1 Task Offloading

The research of task offloading in MEC can be di-

vided into centralized task offloading and distributed

task offloading. For the former, Baron et al. [16] pro-

posed a method of offloading multi-user tasks between

multiple edges to achieve the maximum task comple-

tion rate. Jiang et al. [17] proposed a centralized task

offloading method based on deep learning and MEC to

minimize the total energy consumption. The disadvan-

tage of the centralized task offloading method is that

it cannot consider whether users are satisfied with the

offloading strategy, and the computational complexity

of the central node is enormous. For the latter, Hong

et al. [18] proposed a multi-hop collaborative comput-

ing offload scheme in the edge cloud computing en-

vironment of industrial Internet of Things. Wang et

al. [19] investigated the offloading problem and resource

allocation using deep reinforcement learning. Ding et

al. [14] proposed two types of computing architectures

according to the visibility and accessibility of cloud to

users: hierarchical end-edge-cloud computing and hori-

zontal end-edge-cloud computing. Yu et al. [20] designed

a D2D multicast computing offload framework to min-

imize the overall energy consumption. However, most

of the existing studies do not consider the impact of of-

floading between edge nodes and wireless channel con-

gestion and do not make use of the potential computing

resources of edge nodes. Furthermore, we consider the

impact of offloading between edge nodes, wireless chan-

nel congestion, cloud, and idle user devices, and users’

acceptable latency, which is actually a more realistic

scenario.

2.2 Potential Game

In recent years, many researches have used the po-

tential game theory to make distributed game theories

decisions and achieve Nash equilibrium. Fabiani and

Grammatico [21] expressed the multi-vehicle driving co-

ordination problem as a mixed-integer potential game,

and obtained its equilibrium solution. Liu et al. [22] de-

scribed the offloading problem of multi-user computing

as a potential game in which mobile devices make of-

floading decisions in a distributed manner. Raschellá

et al. [23] proposed an access point selection method for

potential games based on the software-defined network.

He et al. [24] studied an application user computing of-

fload problem in mobile edge computing and proposed a

potential game theory method to achieve effective com-

putational offload. Wu et al. [25] defined the edge user

assignment problem as a potential game and proposed a

decentralized algorithm to serve the maximum number

of users with the minimum total system cost. How-

ever, most studies design fixed and unified cost func-

tions for all users. Therefore, the corresponding po-

tential games do not take into account the diversified

needs of users. In this paper, we propose a distributed

game theory method, in which mobile users can achieve

different preferences by adjusting the parameters of the

cost function.

3 Multi-User Task Offloading Game

3.1 System Model

In this subsection, we introduce the MEC offload-

ing framework as shown in Fig.1. In our system, there

are N users denoted as U = {u1, u2, ..., uN} and S

edge nodes embedded in base stations are denoted as

B = {b1, b2, ..., bS}. Let L = {l1, l2, ..., lM}(L ⊂ U) de-

note the set of M idle devices which provide computa-

tion support to other users who have tasks. Our model

investigates the stable offloading of users’ locations and

edge nodes in quasi-static scenarios. Each mobile user

is connected to zero or more idle devices through the

D2D link, and thus the mobile user can offload his/her

task to an idle device if there is a D2D link between

them. Note that only one task of a mobile user is al-

lowed to be offloaded to an idle device, i.e., if user u4

has offloaded his/her task to user l5, and even if there is

a D2D link between user u6 and user l5, user u6 cannot

offload his/her task to user l5. Each edge node is in-

terconnected to each other through optical fiber cables,

not all nodes. Moreover, all edge nodes and cloud are

also connected with one another through optical fiber

cables. Each user has his/her own nearest edge node

called the home edge node and the edge nodes which

are connected with his/her home edge node through

optical fiber cables are called the user’s neighbor edge

En Wang et al.: D2D-Enabled Task Offloading in Mobile Edge Computing 923

nodes. As will be readily seen, the home edge nodes

and the neighbor edge nodes of different users may be

different. Therefore, each user can offload his/her task

to cloud or the neighbor nodes through his/her home

edge node. We assume that users’ tasks are generated

by their daily mobile devices, such as mobile phones

or tablets. According to Fig. 1, there are five ways

for computing the tasks of mobile users: 1) utilizing

mobile users’ local computing, 2) utilizing their home

edge nodes through wireless channels, 3) utilizing their

neighbor edge nodes, 4) utilizing cloud computing, and

5) utilizing idle devices through the D2D link.

3.2 Local Device Computing Model

For every user ui ∈ U , we use ci (i = 1, 2, ..., N) to

denote the computing capacity of user ui’s local device.

Therefore, C = {c1, c2, ..., cN} denotes the set of the

computing capacities of N users’ local devices. We use

Ti, Pi, Ei to denote ui’s task, the energy consumption

per CPU cycle, and the energy consumption per bite

for offloading tasks respectively. Ti = {Ri, Di, Oi, Li}
denotes user ui’s task where Ri denotes the number of

CPU cycles required to complete tasks Ti, Di denotes

user ui’s offloading data size, Oi denotes the output

data size and Li denotes user ui’s acceptable latency.

If user ui determines to compute task Ti in the local

device, the computing time will be formulated as fol-

lows:

tlocal
i =

Ri
ci
. (1)

Then the energy consumption for computing task Ti
will be given as:

elocal
i = PiRi. (2)

In order to adjust users’ individual conditions, we as-

sociate two positive parameters, αi and βi (αi + βi =

1, αi > 0, βi > 0), with the time cost and the energy

cost of user ui, respectively, when calculating the total

cost for a user. If there is little energy left in the user

ui’s battery, the user can increase the value of βi to in-

crease the cost of energy consumption. Equally, if ui’s

time is valuable, they can increase αi to emphasize the

impact of time costs. As described above, according to

(1) and (2), the total cost of ui’s local device computing

can be formulated as:

Qlocal
i = αit

local
i + βie

local
i . (3)

3.3 Home Edge Node Computing Model

We utilize C̃ = {c̃1, c̃2, ..., c̃S} to denote the set

of the computing capacities of all edge nodes. Let

h(ui)(ui ∈ U) denote the home edge node of user ui
and Nh(ui)(ui ∈ U) denote the number of users who of-

fload the task to ui’s home edge node. If ui chooses the

home edge node to compute the task, the computing

time consists of task computing time and task offload-

ing time. The task computing time will be formulated

as follows:

texe
h(ui)

=
Ri

(
c̃h(ui)

Nh(ui)
)

=
RiNh(ui)

c̃h(ui)
.

The computing power of home edge service nodes is

equally shared. Meanwhile, the task offloading time is

as follows:

toff
i =

Di

ri
+ADiU(i),

where ri denotes the transmission rate, U(i) denotes

the number of users that share user ui selected chan-

nel, and A is a congestion parameter. Considering that

the high transmission power of the edge service nodes

makes the downlink data rate high enough, we omit

the downlink transmission time. As mentioned earlier,

we also need to take energy consumption into consid-

eration. The transmission energy consumption can be

given as:

eoff
i = EiDi.

The total cost of ui’s home edge node computing can

be formulated as:

Qh(i) = αi(t
exe
h(ui)

+ toff
i) + βiEiDi. (4)

As same as (3), αi and βi (αi + βi = 1, αi > 0, βi > 0)

denote the weight of the time cost and the energy cost

of user ui respectively.

3.4 Neighbor Edge Node Computing Model

If user ui offloads his/her task to a neighbor edge

node for execution, his/her task is transmitted to the

home edge node through a wireless channel in the first

place, and then the home edge node transmits the task

to the corresponding neighbor edge node. Obviously,

compared with the home edge node computing model,

the transmission time of the neighbor edge node com-

puting model is different from the latency from the

home edge node to the neighbor edge node. Therefore,

we utilize Bab to denote the transmission time between

home edge node a and neighbor edge node b. Simi-

larly, let n(ui)(ui ∈ U) denote the neighbor edge node

924 J. Comput. Sci. & Technol., July 2022, Vol.37, No.4

selected by user ui and Nn(ui)(ui ∈ U) denote the num-

ber of users who offload the tasks to the neighbor edge

node selected by user ui. The task computing time will

be formulated as follows:

texe
n(ui)

=
Ri

(
c̃n(ui)

Nn(ui)
)

=
RiNn(ui)

c̃n(ui)
.

The computing power of every neighbor edge service

node is equally shared. We might as well assume that

user ui chooses to offload task Ti to neighbor edge node

b through home edge node a. Meanwhile, the task of-

floading time is as follows:

tnei off
i =

Di

ri
+ADiU(i) +Bab.

Similarly, the transmission energy consumption can be

given as:

enei off
i = EiDi.

The total cost of ui’s neighbor edge node computing

can be formulated as:

Qn(i) = αi(t
exe
n(ui)

+ tnei off
i) + βie

nei off
i . (5)

αi and βi (αi + βi = 1, αi > 0, βi > 0) denote the

weight of the time cost and the energy cost of user ui
respectively.

3.5 Cloud Computing Model

In the case of cloud computing, the operation mech-

anism is that the user firstly transmits a task to his/her

home edge node, and then the home edge node trans-

mits it to the cloud. The computing capacity of cloud

is denoted as ĉ. Obviously, compared with the home

edge node computing model, the transmission time of

the cloud computing model is different from the la-

tency from the home edge node to the cloud. We utilize

Bcloud
a to denote the transmission time between home

edge node a and the cloud. The cloud computing ca-

pacity also decreases with the increasing of the number

of users selecting the cloud computing. The number

of users who select the cloud computing is denoted as

Ncloud. The task computing time will be formulated as

follows:

tcloud exe
i =

Ri

(ĉ
Ncloud

)
=
RiNcloud

ĉ
. (6)

We might as well assume that user ui chooses to of-

fload the task to the cloud through home edge node a.

Meanwhile, the task offloading time is as follows:

tcloud off
i =

Di

ri
+ADiU(i) +Bcloud

a . (7)

The transmission energy consumption can be formu-

lated as:

ecloud off
i = EiDi. (8)

Following (6), (7) and (8), the total cost of ui’s cloud

computing can be formulated as:

Qcloud
i = αi(t

cloud exe
i + tcloud off

i) + βie
cloud off
i . (9)

3.6 D2D Computing Model

In D2D offloading, one D2D link is established be-

tween the user who has a task and one idle user’s de-

vice. It is possible for every mobile user to connect to

zero or more idle devices through the D2D links. We

assume that only one task of a mobile user is allowed

to be offloaded to an idle device, and thus one idle de-

vice can only compute one task at most. Because the

data rates of the D2D communication are not equal and

the transmission power of terminal equipment is lower

than that of edge service nodes, the output latency in

the transmission time is considered. We might as well

assume that user ui chooses to offload his/her task to

idle device uj . The transmitting rate from user ui to

idle device uj is ri,j . On the contrary, the transmitting

rate from idle device uj to user ui is rj,i. Obviously,

ri,j 6= rj,i. Therefore, if user ui offloads his/her task to

idle device uj , the transmission time is shown as:

td2d off
i,j =

Di

ri,j
+
Oi
rj,i

.

The execution time in idle device uj is:

texe
i,j =

Ri
cj
.

The transmission energy consumption can be given as:

ed2d off
i,j = EiDi.

Then the total cost in the D2D offloading model is given

as:

Qd2d
i,j = αi(t

exe
i,j + td2d off

i,j) + βie
d2d off
i,j . (10)

In addition, for the convenience of readers, we sum-

marize the symbols commonly used in this paper in

Table 1.

En Wang et al.: D2D-Enabled Task Offloading in Mobile Edge Computing 925

Table 1. Description of Major Notations

Variable Description

N , U , ui Number of all users, set of all users, and index of user i, respectively

S, B, bs Number of all edge nodes, set of all edge nodes, and index of edge node s, respectively

M , L, lm Number of all idle devices, set of all idle devices, and index of idle device, respectively

ci, C Computing capacity of user ui’s local device and set of users’ computing capacity, respectively

Ti, Pi, Ei ui’s task, energy consumption per CPU cycle and energy consumption per bite for offloading task respectively

Ri, Di Number of CPU cycles required to complete tasks Ti and offloading data size of Ti, respectively

Oi, Li Output data size of Ti and acceptable latency of ui, respectively

tlocal
i , elocal

i , Qlocal
i Computing time, energy consumption, and total cost of ui’s local device computing respectively

αi, βi Weight parameters of time cost and energy cost respectively

c̃s, C̃ Computing capacity of edge node bs and set of edge nodes’ computing capacities, respectively

h(ui) Home edge node of user ui

Nh(ui)
Number of users who offload the task to h(ui)

ri, U(i) Transmission rate of ui, and number of users that share the channel selected by user ui, respectively

texe
h(ui)

, toff
i Computing time and task offloading time for home edge node computing of ui, respectively

eoff
i Transmission energy consumption for home edge node computing of ui

Qh(i) Total cost for home edge node computing of ui

Bab Transmission time between home edge node a and neighbor edge node b

n(ui) Neighbor edge node of user ui

Nn(ui)
Number of users who offload the task to n(ui)

texe
n(ui)

Computing time for neighbor edge node computing of ui

tnei off
i Task offloading time for neighbor edge node computing of ui

enei off
i , Qn(i) Transmission energy consumption and total cost for neighbor edge node computing of ui, respectively

ĉ, Ncloud Computing capacity of cloud and number of users who select cloud computing, respectively

Bcloud
a Transmission time between home edge node a and the cloud

tcloud exe
i Computing time for cloud computing of ui

tcloud off
i Task offloading time for cloud computing of ui

ecloud off
i , Qcloud

i Transmission energy consumption and total cost for cloud computing of ui, respectively

ri,j Transmitting rate from user ui to idle device uj

texe
i,j Computing time when user ui offloads the task to idle device uj

td2d off
i,j Task offloading time when user ui offloads the task to idle device uj

ed2d off
i,j , Qd2d

i,j Transmission energy consumption and total cost when user ui offloads the task to idle device uj , respectively

A Congestion parameter

û Set of users who send requests to update offloading strategies

s, si, s−i s = (si, s−i), user ui’s strategy, and others’ strategies, respectively

3.7 NP-Hardness of the Centralized Problem

First, we consider the centralized optimization prob-

lem of minimizing the total costs of all users. Mathe-

matically, given all users’ strategies s = (si, s−i) (i.e.,

si denotes user ui’s strategy and s−i denotes others’

strategies), the problem can be formulated as follows:

min
s

∑
ui∈U Qi(s)

subject to si ∈ Si,∀ui ∈ U,
ttotal
i < Li,

where Si means the optional strategies of user ui, Qi is

user ui’s total cost when user ui chooses the strategy

si, and ttotal
i means that the total real time when the

task is completed cannot exceed user ui’s acceptable

latency Li. Then, we try to prove that finding the opti-

mal solution of the formulated centralized optimization

problem is quite difficult, as shown in Theorem 1.

Theorem 1. The problem of finding the optimal so-

lution to minimize the total cost in a centralized manner

is NP-hard.

Proof. The main idea is to change the perspective

of the problem in order to tally with the maximization

version of Generalized Assignment Problem (GAP) [26]

which is NP-hard. The problem of GAP is defined as

follows.

Input. There are n items and m knapsacks, where

every item has a different profit and size when assigned

to different knapsacks and each knapsack has its own

capacity. For example, assigning item i to knapsack j,

its size and profit will be si,j and pi,j , respectively.

Output. The assignment of items to knapsacks

which will reach the optimal total profits without ex-

926 J. Comput. Sci. & Technol., July 2022, Vol.37, No.4

ceeding the capacity limit of the knapsacks.

In our problem, the worst situation is processing

tasks at local devices. Thus, we regard the cost saving

utilizing edge nodes compared with local computation

as the task’s profit. In that way, the profit of item i

is defined as ci − ei, where ci denotes the cost of local

device computation, cloud computing or D2D offload-

ing and ei denotes the cost of edge node computation,

cloud computing or D2D offloading. When the user

number of a wireless channel is large enough so that

ei = ci, the number of users at this time is the task’s

striction of item i. The size of task i is regarded as the

size of item, and the capacity of each channel is tasks’

striction. Now that the maximization version of GAP

is NP-hard, our problem is also NP-hard. �

3.8 Potential Game Formulation

In this section, we first introduce some definitions,

and then utilize the distributed task offloading method

to express our model as a potential game [27, 28].

Definition 1 (Nash Equilibrium). A strategy pro-

file ŝ = {ŝ1, ŝ2, ..., ŝN} is a Nash equilibrium for our

multi-user task offloading game if and only if

Qi(ŝi, ŝ−i) = min Qi(si, ŝ−i) ∀ui ∈ U,∀si ∈ Si.

Obviously, in a Nash equilibrium state, when a user

changes to any other strategy, the user’s cost will in-

crease, and therefore the user has no motivation to re-

duce the task completion cost by unilaterally changing

the strategy.

Definition 2 (Weighted Potential Game). A game

is a weighted potential game if and only if there exists

a potential function δ(s) for ∀i ∈ U satisfying:

Qi(si, s−i)−Qi(śi, s−i)
= µi(δ(si, s−i)− δ(śi, s−i))∀si,∀śi ∈ Si, ∀s−i ∈ S−i,

where µi (i = 1, ..., N) constitutes a vector of positive

numbers.

Now we introduce the two significant properties of

a potential game: 1) the existence of Nash equilibrium:

there is always at least one Nash equilibrium in the po-

tential game, and 2) finite improvement property: the

potential game always converges to a Nash equilibrium

in a finite number of decision steps which can decrease

their costs, irrespective of the initial strategy profile or

the users’ updating order.

Next, in Theorem 2, we will prove that our multi-

user task offloading game is a weighted potential game.

Theorem 2. The multi-user task offloading game

is a weighted potential game and has at least one Nash

equilibrium and the finite improvement property.

Proof. We first construct the potential function as

follows:

δ(s)

=
∑
n∈γ

C(n)∑
j=0

Aj +
∑
b∈B

|Nb|∑
j=0

q
j

c̃b
+

|Nc|∑
j=0

q
j

ĉ
+

∑
i∈U

XiI(ai, 0) +
∑
i∈U

YiI(ai, 1) +
∑
i∈U

ZiI(ai, 2) +∑
i∈U

WiI(ai, 3) +
∑
i∈U

ViI(ai, 4), (11)

where γ is the wireless channel set, q = Ri/Di de-

notes the CPU cycles required to process per data size,

Xi = q(1
ci

+ βiPi

αi
), Yi = βiEi

αi
+ 1
ri

, Zi = βiEi

αi
+ 1
ri

+ Bcd

Di
,

Wi = 1
ri,j

+ Oi

Dirj,i
+ q

cj
+ βiEi

αi
, Vi = 1

ri
+ βiEi

αi
+

Bcloud
e

Di

and I(ai,m) is an indicator function defined as:

I(ai,m) =

{
0, if ai 6= m,

1, otherwise.

Here, m = 0 means that users process tasks locally,

m = 1 means that users choose to offload their tasks

to home edge nodes, m = 2 means that users choose

to offload their tasks to neighbor edge nodes, m = 3

means that users choose to offload their tasks to idle

devices through the D2D link and m = 4 means that

users choose to offload their tasks to the cloud through

home edge nodes. Moreover, ai denotes user ui’s strat-

egy assigned from the set {0, 1, 2, 3, 4}.
We define the original strategy profile of user ui and

the other users as s = (si, s−i). When user ui changes

the strategy into śi while the others keep stable, the

strategy profile becomes s = (śi, s−i). Considering all

the user ui’s strategy changing situations, we will dis-

cuss the following 13 cases: 1) from the local device to

the home edge node; 2) from the local device to the

neighbor edge node; 3) from the home edge node to a

neighbor edge node; 4) from channel a to channel b of

the home edge node; 5) from neighbor edge node a to

neighbor edge node b; 6) from the local device to D2D

offloading; 7) from D2D offloading to the home edge

node; 8) from D2D offloading to a neighbor edge node;

9) from D2D offloading i to D2D offloading j; 10) from

D2D offloading to the cloud; 11) from the local device

to the cloud; 12) from a home edge node to the cloud;

and 13) from a neighbor edge node to the cloud. Ob-

viously, reversing the order of each case does not affect

the result.

En Wang et al.: D2D-Enabled Task Offloading in Mobile Edge Computing 927

For case 1, we assume that user ui offloads his/her

task to home edge node h(ui). According to (3) and (4),

we have:

Qi(śi)−Qi(si)

= Qh(i) −Qlocal
i

=

(
αi

(
Di

ri
+
RiNh(ui)

c̃h(ui)
+ADiU(i)

)
+ βiEiDi

)
−(

αi
Ri
ci

+ βiPiRi

)
= αiDi

(
1

ri
+ q

Nh(ui)

c̃h(ui)
+
βiEi
αi

+AU(i)−

q

(
1

ci
+
βiPi
αi

))
= αiDi(δ(śi)− δ(si)) = µ(δ(śi)− δ(si)).

For case 2, we might as well suppose user ui’s home

edge node is c and his/her offloading neighbor edge node

is d. Then we have:

Qi(śi)−Qi(si)
= Qn(i) −Qlocal

i

=

(
αi

(
Di

ri
+
RiNn(ui)

c̃n(ui)
+Bcd +ADiU(i)

)
+

βiEiDi

)
−
(
αi
Ri
ci

+ βiPiRi

)
= αiDi

(
1

ri
+ q

Nn(ui)

c̃n(ui)
+
βiEi
αi

+
Bcd
Di

+

AU(i)− q
(

1

ci
+
βiPi
αi

))
= αiDi(δ(śi)− δ(si)) = µ(δ(śi)− δ(si)).

For case 3, as mentioned above, we also suppose

that edge nodes c and d are user ui’s home node and

selected neighbor edge node respectively.

Qi(śi)−Qi(si)
= Qn(i) −Qh(i)

=

(
αi

(
Di

ri
+
RiNn(ui)

c̃n(ui)
+Bcd +ADiU(i)

)
+

βiEiDi

)
−
(
αi

(
Di

ri
+
RiNh(ui)

c̃h(ui)
+ADiU(i)

)
+

βiEiDi

)
= αiDi

(
1

ri
+ q

Nn(ui)

c̃n(ui)
+
βiEi
αi

+
Bcd
Di
−(

1

ri
+ q

Nh(ui)

c̃h(ui)
+
βiEi
αi

))

= αiki(δ(śi)− δ(si)) = µ(δ(śi)− δ(si)).

For case 4, since the number of mobile users among

different wireless channels is different, the user number

is different. We use U(ia) and U(ib) to denote the user

number before and after the strategy is changed.

Qi(śi)−Qi(si)

=

(
αi

(
Di

ri
+
RiNh(ui)

c̃h(ui)
+ADiU(ib)

)
+ βiEiDi

)
−(

αi

(
Di

ri
+
RiNh(ui)

c̃h(ui)
+AkiU(ia)

)
+ βiEiDi

)
= αiDi

(
1

ri
+ q

Nh(ui)

c̃h(ui)
+
βiEi
αi

+AU(ib)−(
1

ri
+ q

Nh(ui)

c̃h(ui)
+
βiEi
αi

+AU(ia)

))
= αiDi(δ(śi)− δ(si)) = µ(δ(śi)− δ(si)).

For case 5, by the similar argument in case 4, the

formula also easily holds in the situation of neighbor

edge nodes.

For case 6, we might as well suppose that user ui
chooses to offload his/her task to idle user uj . Then we

have:

Qi(śi)−Qi(si)
= Qd2d

i,j −Qlocal
i

=

(
αi

(
Ri
cj

+
Di

ri,j
+
Oi
rj,i

)
+ βiEiDi

)
−(

αi
Ri
ci

+ βiPiRi

)
= αiDi

((
q

cj
+

1

ri,j
+

Oi
Dirj,i

+
βiEi
α

)
−

q

(
1

ci
+
βiPi
αi

))
= αiDi(δ(śi)− δ(si)) = µ(δ(śi)− δ(si)).

For case 7, we assume that user ui’s offloading ob-

ject changes from idle device uj to ui’s home edge node.

Then we have:

Qi(śi)−Qi(si)
= Qh(i) −Qd2d

i,j

=

(
αi

(
Di

ri
+
RiNh(ui)

c̃h(ui)
+ADiU(i)

)
+ βiEiDi

)
−(

αi

(
Ri
cj

+
Di

ri,j
+
Oi
rj,i

)
+ βiEiDi

)
= αiDi

((
1

ri
+ q

Nh(ui)

c̃h(ui)
+
βiEi
αi

)
−
(
q

cj
+

1

ri,j
+

Oi
Dirj,i

+
βiEi
α

))

928 J. Comput. Sci. & Technol., July 2022, Vol.37, No.4

= αiDi(δ(śi)− δ(si)) = µ(δ(śi)− δ(si)).

For case 8, we assume that user ui’s offloading ob-

ject changes from idle device uj to ui’s neighbor edge

node b and ui’s home edge node is a. Then we have:

Qi(śi)−Qi(si)

= Qn(i) −Qd2d
i,j

=

(
αi

(
Di

ri
+
RiNn(ui)

c̃n(ui)
+Bab +ADiU(i)

)
+

βiEiDi

)
−
(
αi

(
Ri
cj

+
Di

ri,j
+
Oi
rj,i

)
+ βiEiDi

)
= αiDi

((
1

ri
+ q

Nn(ui)

c̃n(ui)
+
βiEi
αi

+
Bcd
Di

)
−(

q

cj
+

1

ri,j
+

Oi
Dirj,i

+
βiEi
α

))
= αiDi(δ(śi)− δ(si))

= µ(δ(śi)− δ(si)).

For case 9, we assume that user ui’s offloading ob-

ject changes from idle device uj to another idle device

uk. Then we have:

Qi(śi)−Qi(si)

= Qd2d
i,k −Qd2d

i,j

=

((
αi

(
Ri
ck

+
Di

ri,k
+

Oi
rk,i

)
+ βiEiDi

)
+ βiEiDi

)
−(

αi

(
Ri
cj

+
Di

ri,j
+
Oi
rj,i

)
+ βiEiDi

)
= αiDi

((
q

ck
+

1

ri,k
+

Oi
Dirk,i

+
βiEi
α

)
−(

q

cj
+

1

ri,j
+

Oi
Dirj,i

+
βiEi
α

))
= αiDi(δ(śi)− δ(si))

= µ(δ(śi)− δ(si)).

For case 10, we assume that user ui’s offloading ob-

ject changes from idle device uj to cloud. Then we

have:

Qi(śi)−Qi(si)

= Qcloud
i −Qd2d

i,j

=

(
αi

(
RiNcloud

ĉ
+
Di

ri
+ADiU(i) +Bcloud

a

)
+

βiEiDi

)
−
(
αi

(
Ri
cj

+
Di

ri,j
+
Oi
rj,i

)
+ βiEiDi

)
= αiDi

((
qNcloud

ĉ
+

1

ri
+AU(i) +

Bcloud
a

Di

)
−

(
q

cj
+

1

ri,j
+

Oi
Dirj,i

+
βiEi
α

))
= αiDi(δ(śi)− δ(si))

= µ(δ(śi)− δ(si)).

For case 11,

Qi(śi)−Qi(si)

= Qcloud
i −Qlocal

i

=

(
αi

(
RiNcloud

ĉ
+
Di

ri
+ADiU(i) +Bcloud

a

)
+

βiEiDi

)
−
(
αi
Ri
ci

+ βiPiRi

)
= αiDi

((
qNcloud

ĉ
+

1

ri
+AU(i) +

Bcloud
a

Di

)
−

q

(
1

ci
+
βiPi
αi

))
= αiDi(δ(śi)− δ(si))

= µ(δ(śi)− δ(si)).

For case 12, we assume that user ui’s offloading ob-

ject changes from ui’s home edge node a to cloud. Then

we have:

Qi(śi)−Qi(si)

= Qcloud
i −Qh(i)

=

(
αi

(
RiNcloud

ĉ
+
Di

ri
+ADiU(i) +Bcloud

a

)
+

βiEiDi

)
−
(
αi

(
Di

ri
+
RiNh(ui)

c̃h(ui)
+

ADiU(i)) + βiEiDi

))
= αiDi

((
qNcloud

ĉ
+

1

ri
+AU(i) +

Bcloud
a

Di

)
−(

1

ri
+ q

Nh(ui)

c̃h(ui)
+
βiEi
αi

))
= αiDi(δ(śi)− δ(si))

= µ(δ(śi)− δ(si)).

For case 13, we assume that user ui’s offloading ob-

ject changes from neighbor edge node b to the cloud

and ui’s home edge node is a. Then we have:

Qi(śi)−Qi(si)

= Qcloud
i −Qn(i)

=

(
αi

(
RiNcloud

ĉ
+
Di

ri
+ADiU(i) +Bcloud

a

)
+

En Wang et al.: D2D-Enabled Task Offloading in Mobile Edge Computing 929

βiEiDi

)
−
(
αi

(
Di

ri
+
RiNn(ui)

c̃n(ui)
+

Bcd +ADiU(i)

)
+ βiEiDi

)
= αiDi

((
qNcloud

ĉ
+

1

ri
+AU(i) +

Bcloud
a

Di

)
−(

1

ri
+ q

Nn(ui)

c̃n(ui)
+
βiEi
αi

+
Bcd
Di

))
= αiDi(δ(śi)− δ(si))

= µ(δ(śi)− δ(si)). �

4 Algorithm Design

In this section, we will update our original algo-

rithms (Distributed Game-Theoretical Task Offloading

algorithm [15], Information Update algorithm [15], and

PUS [15]) to take D2D offloading and cloud comput-

ing into consideration. In order to get a better total

cost and meet all mobile users, Algorithm 1 is a dis-

tributed game-theoretical D2D-enabled task offloading

algorithm for mobile users; Algorithm 2 is an infor-

mation update algorithm for edge nodes. When Algo-

rithm 2 terminates, a Nash equilibrium will be reached

and we can get a better total cost. Because there are

local computing, home edge nodes, neighbor edges, idle

devices and the cloud in our current model, we update

Algorithm 3 (PUS) to accelerate the convergence of Al-

gorithm 2.

Algorithm 1. Distributed Game-Theoretical D2D-Enabled Ta-
sk Offloading Algorithm for User i ∈ U
1: Input αi, βi, Li

2: Set si(0) = local

3: Report si(0)(ui ∈ U) to hui

4: Receive Nbs (bs ∈ B), Ncloud, U(i)(ui ∈ U) and L from hui

5: Calculate Qlocal
i , Qh(i), Qn(i), Q

cloud
i , Qd2d

i,j based on (3),

(4), (5), (9), (10) respectively

6: repeat for each decision slot t

7: Obtain Nbs (bs ∈ B), Ncloud, U(i) and L

8: Compute the better strategy 4i(t) under ttotal
i < Li

based on (3), (4), (5), (9), (10)

9: if 4i(t) 6= ∅ and 4i(t) 6= si(t− 1) then

10: Send update request to hui

11: if Win the opportunity then

12: Update si(t) = 4i(t)

13: Report si(t) to the edge node

14: else

15: Maintain si(t) = si(t− 1)

16: until the termination message is received

Algorithm 2. Information Update Algorithm for Edge Nodes

1: Receive si(0) (ui ∈ U)

2: Exchange Nbs (bs ∈ B), Ncloud, U(i)(ui ∈ U) and L between

edge nodes and cloud

3: repeat for each decision slot t

4: Receive û

5: if û 6= ∅ then

6: Select a user ui randomly from û

7: Inform the user ui to update the decision

8: Receive si(t)(ui ∈ U) and update Nbs (bs ∈ B), Ncloud

and U(i)(ui ∈ U)

9: until û = ∅
10: Send the termination message to all users

Algorithm 3. Parallel User Selection Algorithm

Input: U ′, B

1: Initialize µ = ∅
2: for all j ∈ B do

3: l′ = ∅, e′ = ∅
4: for all i ∈ U ′ do
5: if si(t) = local and i ∈ j then l′ ← l′ ∪ i
6: else if si(t) = idle device and si(t− 1) = home edge

node, neighbor edge node or cloud then l′ ← l′ ∪ i
7: else if si(t) = j then e′ ← e′ ∪ i
8: else if si(t) = cloud and h(i) = j then e′ ← e′ ∪ i
9: Randomly select a user m ∈ l′ and µ← µ ∪m

10: Randomly select a user n ∈ e′ and µ← µ ∪ n
11: U ′ ← U ′ −m− n
12: for all k ∈ L do

13: I′ = ∅
14: for all i ∈ U ′ do
15: if si(t) = uk and si(t− 1)= local or idle device then

I′ ← I′ ∪ i
16: Randomly select a user p ∈ I′ and µ← µ ∪ p
17: U ′ ← U ′ − p
18: return µ

4.1 Distributed Task D2D-Enabled Offloading
Algorithm

Theorem 2 guarantees that the multi-user task of-

floading game will converge to a Nash equilibrium

within a finite number of decision slots. The main idea

of Algorithm 1 is to select a group of mobile users by

updating the task offloading decision in each decision

slot to reduce their cost and adjusting their strategy to

meet their acceptable latency.

In the initialization phase (line 1) of Algorithm 1,

mobile users first input two weighted parameters of the

battery condition and the time urgency of the tasks and

their acceptable latency, and then they initialize their

strategies of computing at their local devices (line 2).

si(t) denotes the offloading strategy of user ui in the

slot t. In the information exchange stage (lines 3–5),

930 J. Comput. Sci. & Technol., July 2022, Vol.37, No.4

each user reports his/her offloading strategy (si(0)) to

his/her home edge node, and gets the number of tasks

offloaded to each edge and the cloud (Nbs and Ncloud re-

spectively), the number of users that share the channel

selected by each user(U(i)(ui ∈ U)) and the messages

of idle devices (L). In the calculation phase (lines 6–

16), each user receives the number of tasks offloaded

to each edge node and the cloud, the number of users

that share the channel selected by each user, and the

messages of idle devices. In this way, every user can

calculate a better response strategy under the condi-

tion that the total time does not exceed the acceptable

latency (lines 7 and 8). Because some users change their

offloading strategies to offload their tasks to some edge

service nodes or the cloud, the execution time of other

users’ tasks may exceed their own acceptable latency.

The timeout users can find the other offloading strategy

of the minimum cost under the condition of meeting the

acceptable latency. Obviously, users will always find a

strategy to complete tasks in their acceptable time and

the worst-case scenario is when the user chooses local

computing, because a user’s acceptable time will not be

less than the time of local computing. If a user finds

a better offloading strategy which is different from the

chosen offloading strategy, the user sends a request to

the home edge node applying for updating the decision

(lines 9–15). If a user is selected, he/she updates the

decision in the next slot (lines 11–13). Other users will

keep the decision in the previous decision slot (lines 14

and 15). The process repeats until users receive the ter-

mination message (line 16) (i.e., no user sends the up-

dating request to nodes). Then the algorithm converges

to a Nash equilibrium. Please note that our algorithm

is a task offloading algorithm, and thus idle devices do

not need to execute it.

4.2 Information Update Algorithm

As shown in Algorithm 2, after receiving the initial

decision from all users (line 1), we update the infor-

mation of the algorithm to update the number of tasks

offloaded to each edge node and the cloud, the number

of users that share the channel selected by each user,

and the messages idle devices (i.e., whether other users

have chosen to offload the task to the idle device) (line

2). In the initialization phase, after receiving the initial

decisions from all users (line 3), the algorithm updates

the number of tasks offloaded to each edge node and

the cloud, the number of users that share the channel

selected by each user, and the state of each idle de-

vice (i.e., whether the task of another user has been

offloaded to this idle device), and then sends them to

users, because an idle device only can be offloaded one

task. Next, when receiving users’ updating requests,

we let û denote the set of users who send the request

(line 4) and the algorithm will choose one user to up-

date his/her strategy (lines 5–8). Every user will not

choose a non-idle device to offload his/her task. The

algorithm terminates until no request is received (line

9), and then it sends the termination messages to all

users (line 10).

Furthermore, we introduce the following two user

selection algorithms, Parallel User Selection Algorithm

(PUS) and Single User Selection Algorithm (SUS) [15].

SUS randomly selects only one user from the set of

users who send the updating requests and allows the

user to update the decision in next decision slot. To

decrease the convergence time, we propose PUS which

only takes all local devices, edge nodes and channels

into consideration [15]. The performance of PUS can

be shown in our experiments. In this paper, we update

PUS to take all local devices, edge nodes, the cloud, idle

devices and channels into consideration based on the

same theory that some users whose strategies cover no

overlapping channels, edge nodes, and the cloud could

simultaneously update offloading strategy in the same

decision slot.

The detailed description of Algorithm is as follows.

As shown in Algorithm 3, the inputs are U ′ and B.

Specifically, U ′ is the set of users sending the updat-

ing requests. In the initialization phase (line 1), we

make set µ composed of users who are allowed to up-

date their offloading strategies an empty set. Then we

traverse each edge node to find if there exist users whose

updating strategies involve this node (lines 2–15). If a

user’s strategy is local device and his/her home node

is the traversing node, then the user is added to set l′

(line 5). If a user changes the strategy to an idle de-

vice and the user’s original strategy is the home edge

node, a neighbor edge node, or the cloud, the user also

is added to set l′ (line 6). Meanwhile, if the user’s up-

dating strategy is the traversing edge node no matter

whether the edge node is his/her home edge node or

not, he/she will be added to set e′ (line 7). However, if

the edge node is his/her home edge and the user’s up-

dating strategy is the cloud, he/she will also be added

to set e′ (line 8). We will randomly select two users be-

longing to set l′ and e′ respectively and add them to set

µ (lines 9 and 10), deleting the chosen users from the

set U ′ by the way. Then if the user’s original strategy is

local computing or idle device and the updating strat-

En Wang et al.: D2D-Enabled Task Offloading in Mobile Edge Computing 931

egy is another idle device, the strategies are bound to

cover no overlapping channels, but one idle device can

only be offloaded one task. Therefore, he/she will be

added to set I ′ (line 15). Similarly, we will randomly

select a user belonging to set I ′ and add him/her to set

µ (lines 9 and 10) for every idle device. Finally, when

all the edge nodes and idle devices are traversed, the

algorithm will return the selected users set µ. As men-

tioned above, Algorithm 3 considers all kinds of update

requests.

4.3 Convergence Analysis

According to Theorem 2, the proposed distributed

game-theoretical D2D-enabled task offloading algo-

rithm (Algorithm 1) will converge to a Nash equilibrium

within a finite number of update iterations. We then

analyze the upper bound of the number of iterations for

convergence.

Theorem 3. The number of decision slots D for

the convergence of the distributed task offloading algo-

rithm satisfies the following equation.

D <
NαmaxDmax

4Pmin

(
q

(
1

cmin
local

+
βmaxPmax

αmin

)
−

Aj

2

(
N

|γ|
+ 1

)
− q

2ĉ

(
N

S + 1
+ 1

)
−(

βminEmin + αmax

αmax

))
.

Proof. We consider the situation where only a user

ui ∈ U changes the strategy from si to śi. When a

user changes the strategy, the value of potential func-

tion will decrease correspondingly. According to (11),

Yi < Zi and Yi < Vi are obvious. Because ri,j < ri, we

can get Yi < Wi. When an equilibrium state is reached,

the best case is that the capacity of edge nodes is large

enough for all the users to offload their tasks to edge

nodes. Then according to (11), we have the following

equation:

δ(s) > Aj
N

2

(
N

|γ|
+ 1

)
+
qN

2ĉ

(
N

S + 1
+ 1

)
+

N

(
βminEmin + αmax

αmaxrmax

)
. (12)

αmax and βmin denote the maximum weight of time

latency and the minimum weight of energy for all users

respectively. Emin is the minimum energy consumption

of all users’ transmission tasks and rmax represents the

maximum data transmission rate of the channels of the

home edge nodes. On the contrary, the worst case is

that mobile users can only choose to process locally.

Therefore, we have:

δ(s) 6 qN

(
1

cmin
local

+
βmaxPmax

αmin

)
, (13)

where cmin
local denotes the minimum computing capac-

ity of all local devices. Accordingly, Pmax denotes the

maximum energy consumption per bite of local com-

puting in all users.

According to (12) and (13), when user ui changes

the strategy from si to śi, we have:

δ(s)− δ(ś)

<

(
qN

(
1

cmin
local

+
βmaxPmax

αmin

))
−
(
Aj

N

2

(
N

|γ|
+ 1

)
+

qN

2ĉ

(
N

S + 1
+ 1

)
+ |U |

(
βminEmin + αmax

αmaxrmax

))
.

Then, we have the following equation:

D <
NαmaxDmax

4Pmin

(
q

(
1

cmin
local

+
βmaxPmax

αmin

)
−

Aj

2
(
N

|γ|
+ 1)− q

2ĉ

(
N

S + 1
+ 1

)
−(

βminEmin + αmax

αmax

))
. �

4.4 Theoretical Analysis

We then analyze the performance of the proposed

distributed D2D-enabled task offloading algorithm by

analyzing Price of Anarchy (PoA). PoA is a metric mea-

sured by the ratio of the total cost of all users in the

worst case of Nash equilibrium to the minimum total

cost of the optimal strategy. Let S′ be the set of strat-

egy profiles that can achieve Nash equilibrium of the

multi-user task offloading game and s∗ denote the cen-

tralized optimal strategy. PoA is defined as follows:

PoA = max
s∈S′

∑
ui∈U

Qi(s)/
∑

ui∈U
Qi(s

∗).

Theorem 4. For the multi-user task offloading

game, the PoA of the overall costs satisfies

1 6 PoA 6
tmax
local + emax

local

αmin(tmin
e + tmin

off) + βminEmin
,

where tmax
local and emax

local mean the maximum time and the

energy cost among all users’ local devices, respectively,

and tmin
e and tmin

off denote the minimum computing time

and the minimum task offloading time among all edge

nodes, respectively.

Proof. In our multi-edge conditions, for any user,

the worst strategy is the computing task at their lo-

cal devices. Therefore, when our model reaches a Nash

932 J. Comput. Sci. & Technol., July 2022, Vol.37, No.4

equilibrium, the total cost of our model is always less

than the total cost when all the mobile users choose

local computing, which will be derived as:

max
s∈S′

∑
ui∈U

Qi(s) = N(tmax
local + emax

local).

On the other hand, if all home nodes can afford the

time and energy cost of mobile users, according to (4),

the total cost will be minimum which means:∑
ui∈U

Qi(s
∗) > N(αmin(tmin

e + tmin
off) + βminEmin).

In conclusion, according to the above description,

the following equation holds:

tmax
local + emax

local

αmin(tmin
e + tmin

off) + βminEmin
> PoA > 1. �

5 Performance Evaluation

5.1 Datasets & Settings

The following three real-world datasets are used for

the evaluation.

• Melbourne [29, 30]. It contains all cellular base sta-

tions GPS data and all unique user locations in Aus-

tralia. Fig.2(a) shows the distribution of edge nodes

and users.

• Shanghai [31, 32]. It contains more than 7.2 million

records of accessing the Internet through 3 233 base sta-

tions from 9 481 mobile phones for six months. Each

base station denotes an edge node in Shanghai, China.

Fig.2(b) shows the distribution of base stations.

• Darmstadt [33]. It contains the GPS data of the

base stations in Darmstadt, Germany, whose distribu-

tions are shown as blue dots in Fig.2(c).

We let users’ mobile devices process natural lan-

guage processing applications whose input data size Di

distributes in [100, 200] KB and output data size be a

half of the input data [34]. The computing capacities of

users’ local devices and edge nodes are a Poisson distri-

bution in the ranges of [1, 2.5] GHz and [10, 12] GHz,

respectively, and the computing capacity of the cloud is

15 GHz. The number of idle devices accounts for 30%

of the total number of mobile users. The energy con-

sumption per CPU cycle Pi is 1. As for the offloading

model, we define users’ transmission rate ri as:

ri = w log2

(
1 +

λiPi
σ2D2

(i,j)

)
, (14)

where D(i,j) denotes the distance between user ui and

edge node j or the distance between user ui and idle de-

vice uj , σ means the path loss factor which is set as 2,

and λ denotes the background noise. And the channel

bandwidth w is 15 MHz. The transmission rate between

edge nodes is set 15 MB/s so that the delay of them will

draw from a uniform distribution across [0.1, 0.2]. The

transmission rate from the home edge node to the cloud

is set 10 MB/s. Ultimately, every user’s acceptable la-

tency is determined by the local execution time.

5.2 Comparison Algorithms & Metrics

In this subsection, in order to compare the impact of

different ways for users to select new offloading strate-

gies and different ways for edge nodes to select users

from users who send the updating requests on task of-

floading algorithms, we also utilize the following algo-

rithms to experiment with the two task offloading mod-

els with and without D2D and cloud offloading.

• Distributed Game-Theoretical D2D-Enable Task

Offloading (DGTO). It is the proposed algorithm that

utilizes the SUS [15] to randomly select a user from the

users who send the updating requests and allows the

user to select a better offloading method to minimize

his/her cost.

• Multi-User Update Offloading (MUUO). It is the

proposed algorithm that utilizes the PUS algorithm to

(b)(a) (c)

Fig.2. Presentation on real-world datasets. (a) Melbourne. (b) Shanghai. (c) Darmstadt.

En Wang et al.: D2D-Enabled Task Offloading in Mobile Edge Computing 933

select a set of users from the users who send the up-

dating requests and allows the selected users to update

the offloading decisions in the next decision slot.

• Better Response Update Offloading (BRUO) [35].

BRUO randomly selects a user from the users who send

the update requests and allows the user to randomly

select a strategy which is better than the current of-

floading method.

• Best Update of All Users (BUAU) [35]. BUAU in-

spects all users and selects the user who minimizes the

value of the potential function to update the strategy

and allows the user to select a better offloading method

to minimize his/her cost in the next decision slot.

• Centralized Optimal Task Offloading (COTO) [35].

It is a centralized optimal approach to minimizing the

total cost of all users. Specifically, we conduct 100

experiments to obtain the best parameters set and use

the simulated annealing algorithm for each experiment.

• Random Task Offloading (RTO) [35]. Each mobile

user randomly selects an offloading method from the

available policy set and RTO randomly selects a user

from the users who send the update request.

5.3 Numerical Results

5.3.1 Convergence for Nash Equilibrium

We first verify the convergence for PUS [15] and up-

dated PUS (Algorithm 3 in this paper), as shown in

Fig.3 and Fig.4 respectively. Specifically we randomly

select 20 users in each real dataset respectively and

observe the dynamics of the costs in 20 decision slots

without D2D and cloud offloading, as shown in Fig.3.

Then we randomly select 30 users in each real dataset

and there are 10 idle devices. The convergence for the

proposed distributed algorithm with D2D and cloud of-

floading is shown in Fig.4. Obviously, after the algo-

rithm starts, the cost of all mobile users changes with

the decision update and can converge to a stable point.

At this time, it reaches a Nash equilibrium state.

Then we investigate the number of decision slots

for convergence with respect to the number of users

as shown in Fig.5 [15] and Fig.6. No matter whether

there are D2D and cloud or not, these algorithms rank

as follows: MUUO < BUAU < DGTO < BRUO. The

reason is that MUUO selects multiple users to update

0 5 10

(a)

Decision Slot

15 20 0 5 10

(b)

Decision Slot

15 20 0 5 10

(c)

Decision Slot

15 20

30

25

20

15

10

5

U
se

rs
'
C

o
st

30

25

20

15

10

5

0

U
se

rs
'
C

o
st

50

40

30

20

10

0

U
se

rs
'
C

o
st

User 10User 1 User 2 User 3 User 4 User 5 User 6 User 7 User 8 User 9

User 20User 11 User 12 User 13 User 14 User 15 User 16 User 17 User 18 User 19

Fig.3. User cost vs decision slot without D2D and cloud offloading. (a) Melbourne. (b) Shanghai. (c) Darmstadt.

0 5 10 15 20

5

10

15

20

25

30

0 5 10 15 20

5

10

15

20

25

30

35

0 5 10 15 20

5

10

15

20

25

30

35

Decision Slot

(a)

Decision Slot Decision Slot

(b) (c)

U
se

rs
'
C

o
st

U
se

rs
'
C

o
st

U
se

rs
'
C

o
st

User 10User 1 User 2 User 3 User 4 User 5 User 6 User 7 User 8 User 9

User 20User 11 User 12 User 13 User 14 User 15 User 16 User 17 User 18 User 19

Fig.4. User cost vs decision slot with D2D and cloud offloading. (a) Melbourne. (b) Shanghai. (c) Darmstadt.

934 J. Comput. Sci. & Technol., July 2022, Vol.37, No.4

0 20 40 60 80 100
0

20

40

60

80

100

120

140

N
u
m

b
e
r

o
f
It

e
ra

ti
o
n
s

Number of Users

 BUAU
 MUUO
 DGTO
 BRUO

0 20 40 60 80 100
0

20

40

60

80

100

120

140

160

N
u
m

b
e
r

o
f
It

e
ra

ti
o
n
s

Number of Users

 BUAU
 MUUO
 DGTO
 BRUO

0 20 40 60 80 100
0

20

40

60

80

100

120

N
u
m

b
e
r

o
f
It

e
ra

ti
o
n
s

Number of Users

 BUAU
 MUUO
 DGTO
 BRUO

(b)(a) (c)

Fig.5. Decision slot vs number of users without D2D and cloud offloading [15]. (a) Melbourne. (b) Shanghai. (c) Darmstadt.

0 10 20 30 40 50
0

10

20

30

40

50

60

70

N
u
m

b
e
r

o
f
It

e
ra

ti
o
n
s

Number of Users

 BUAU
 MUUO
 DGTO
 BRUO

0 10 20 30 40 50
0

10

20

30

40

50

60

70

N
u
m

b
e
r

o
f
It

e
ra

ti
o
n
s

Number of Users

 BUAU
 MUUO
 DGTO
 BRUO

0 10 20 30 40 50
0

10

20

30

40

50

60

70

N
u
m

b
e
r

o
f
It

e
ra

ti
o
n
s

Number of Users

 BUAU
 MUUO
 DGTO
 BRUO

(b)(a) (c)

Fig.6. Decision slot vs number of users with D2D and cloud offloading. (a) Melbourne. (b) Shanghai. (c) Darmstadt.

their decisions in parallel, while BUAU selects only one

user who minimizes the potential function in each deci-

sion slot. What is more, DGTO and BRUO randomly

select a user to update the decision, but allow users

to choose the best and better offloading strategies to

minimize users’ costs respectively. Obviously, MUUO

will converge the fastest. On the contrary, BRUO will

be the slowest to converge. We know that COTO and

RTO do not necessarily reach Nash equilibrium in the

end, and thus it is meaningless to explore COTO and

RTO here.

5.3.2 Total Cost

As shown in Fig.7 [15] and Fig.8, we investigate the

trend of the total cost with respect to the number of

users. As shown in Fig.9 [15] and Fig.10, we evaluate

the influence of the number of CPU cycles per data size

on total cost without and with D2D and cloud offload-

ing respectively. In Fig.11 [15] and Fig.12, we investi-

gate the trend of total cost with respect to the channel

bandwidth without and with D2D and cloud offloading

respectively. We repeat the three simulations 500 times

respectively which all rank as follows: COTO < BUAU

< MUUO < DGTO < BRUO < RTO.

According to (5) and (14), we know that the total

cost has a positive correlation with the number of users

and with the number of CPU cycles per data size, and

has a negative correlation with the channel bandwidth.

In addition, the simulations indicate that our algorithm

is acceptable compared with the optimal solution no

matter whether there are cloud computing and D2D

offloading or not. COTO is the centralized optimal ap-

proach to minimize the total cost of all users, and thus

it gets the minimum. BUAU, MUUO and DGTO allow

the user to select a better offloading method to mini-

mize his/her cost. Compared with MUUO and DGTO,

BUAU selects the user who minimizes the value of the

potential function. MUUO utilizes the Parallel User Se-

lection algorithm (Algorithm 3) but DGTO randomly

selects a user from the users who send the updating re-

quests. Although BRUO also randomly selects a user

from the users who send the updating requests, BRUO

allows the user to randomly select a strategy which is

better than the current offloading method compared

with DGTO. Therefore, the total cost value of BRUO

is greater than that of DGTO. Because RTO allows

users to select an offloading method from the available

policy set completely randomly and also selects a user

from the users who send the update request completely

randomly, RTO gets the maximum total cost value. Af-

En Wang et al.: D2D-Enabled Task Offloading in Mobile Edge Computing 935

0 50 100 150 200
0

1

2

3

4

5

6

T
o
ta

l
C

o
st

 (
Τ
1
0

3
)

Number of Users

 RTO
 COTO
 BRUO

0 50 100 150 200
0

1

2

3

4

5

6

T
o
ta

l
C

o
st

 (
Τ
1
0

3
)

Number of Users

 RTO
 COTO
 BRUO

0 50 100 150 200
0

1

2

3

4

5

6

T
o
ta

l
C

o
st

 (
Τ
1
0

3
)

Number of Users

 RTO
 COTO
 BRUO

(b)(a) (c)

Fig.7. Total cost vs number of users without D2D and cloud offloading. (a) Melbourne. (b) Shanghai. (c) Darmstadt.

20 40 60 80 100

T
o
ta

l
C

o
st

 (
Τ
1
0

3
)

Number of Users

 COTO

 BUAU

 MUUO

 DGTO

 BRUO

 RTO

20 40 60 80 100
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

T
o
ta

l
C

o
st

 (
Τ
1
0

3
)

Number of Users

 COTO

 BUAU

 MUUO

 DGTO

 BRUO

 RTO

20 40 60 80 100

 COTO

 BUAU

 MUUO

 DGTO

 BRUO

 RTO

T
o
ta

l
C

o
st

 (
Τ
1
0

3
)

Number of Users

(b)(a) (c)

Fig.8. Total cost vs number of users with D2D and cloud offloading. (a) Melbourne. (b) Shanghai. (c) Darmstadt.

0.0 0.2 0.4 0.6 0.8 1.0

3

4

5

6

7

8

9

T
o
ta

l
C

o
st

(Τ

1
0

2
)

Number of CPU Cycles
per Data Size

Number of CPU Cycles
per Data Size

Number of CPU Cycles
per Data Size

 COTO
 RTO
 BRUO

0.0 0.2 0.4 0.6 0.8 1.0

3

4

5

6

7

8

9

T
o
ta

l
C

o
st

(Τ

1
0

2
)

 COTO
 RTO
 BRUO

0.0 0.2 0.4 0.6 0.8 1.0

3

4

5

6

7

8

9

T
o
ta

l
C

o
st

(Τ

1
0

2
)

 COTO
 RTO
 BRUO

(b)(a) (c)

Fig.9. Total cost vs number of CPU cycles per data size without D2D and cloud offloading. (a) Melbourne. (b) Shanghai. (c)
Darmstadt.

0.4 0.8 1.2 1.6 2.0

 COTO
 BUAU
 MUUO
 DGTO
 BRUO
 RTO

0.4 0.8 1.2 1.6 2.0

 COTO

 BUAU

 MUUO

 DGTO

 BRUO

 RTO

0.4 0.8 1.2 1.6 2.0
0

2

4

6

8

10

12

14

16

0

2

4

6

8

10

12

14

0

2

4

6

8

10

12

14 16
 COTO

 BUAU

 MUUO

 DGTO

 BRUO

 RTO

Number of CPU Cycles
per Data Size

Number of CPU Cycles
per Data Size

Number of CPU Cycles
per Data Size

(b)(a) (c)

T
o
ta

l
C

o
st

 (
Τ
1
0

2
)

T
o
ta

l
C

o
st

 (
Τ
1
0

2
)

T
o
ta

l
C

o
st

 (
Τ
1
0

2
)

Fig.10. Total cost vs number of CPU cycles per data size with D2D and cloud offloading. (a) Melbourne. (b) Shanghai. (c) Darmstadt.

936 J. Comput. Sci. & Technol., July 2022, Vol.37, No.4

0 2 4 6 8 10

Channel Bandwidth (MHz)

 COTO
 RTO
 BRUO

0 2 4 6 8 10

Channel Bandwidth (MHz)

 COTO
 RTO
 BRUO

0 2 4 6 8 10

Channel Bandwidth (MHz)

 COTO
 RTO
 BRUO

10

9

8

7

6

5

4

3

T
o
ta

l
C

o
st

 (
Τ
1
0

2
)

10

9

8

7

6

5

4

3

T
o
ta

l
C

o
st

 (
Τ
1
0

2
)

10

9

8

7

6

5

4

3

T
o
ta

l
C

o
st

 (
Τ
1
0

2
)

(b)(a) (c)

Fig.11. Total cost vs channel bandwidth without D2D and cloud offloading. (a) Melbourne. (b) Shanghai. (c) Darmstadt.

2 4 6 8 10

T
o
ta

l
C

o
st

 (
Τ
1
0

2
)

Channel Bandwidth (MHz)

 RTO

 BRUO

 DGTO

 MUUO

 BUAU

 COTO

2 4 6 8 10

Channel Bandwidth (MHz)

 RTO

 BRUO

 DGTO

 MUUO

 BUAU

 COTO

2 4 6 8 10

Channel Bandwidth (MHz)

 RTO

 BRUO

 DGTO

 MUUO

 BUAU

 COTO

10

8

6

4

2

0

T
o
ta

l
C

o
st

 (
Τ
1
0

2
)

10

8

6

4

2

0

T
o
ta

l
C

o
st

 (
Τ
1
0

2
)

10

8

6

4

2

0

(b)(a) (c)

Fig.12. Total cost vs channel bandwidth with D2D and cloud offloading. (a) Melbourne. (b) Shanghai. (c) Darmstadt.

ter the above analysis, the rank of total cost (COTO

< BUAU < MUUO < DGTO < BRUO < RTO) is

reasonable.

Fig.13 shows the dynamics of Jain’s fairness index

with the growth of the number of users [15]. We repeat

the simulations 500 times. Jain’s fairness index [36] is

used to measure the fairness of the user’s costs, which

is defined as
(
∑

i∈U Qi(s))2

|U |
∑

i∈U Qi(s)2 . Most notably, Jain’s fair-

ness depends on how evenly distributed the cost of

each user is. The simulation results show that the pro-

posed DGTO achieves a higher Jain’s fairness index

than COTO and RTO, as DGTO can reach a Nash

equilibrium of the multi-user game.

5.3.3 Algorithm Parameters

In Fig.14 and Fig.15 [15], we evaluate the influence of

the channel bandwidth and the number of CPU cycles

per data size on the tasks offloading ratio without D2D

and cloud offloading. Accordingly, the influence of the

channel bandwidth and the number of CPU cycles per

data size on the tasks offloading ratio with D2D and

cloud offloading is shown in Fig.16 and Fig.17 respec-

tively. We repeat each simulation 500 times which is

conducted among 60 mobile users. Interestingly, the of-

floading ratio increases with the increase of the channel

bandwidth and the number of CPU cycles per data size.

When the channel bandwidth gets wider, the transmis-

sion costs between edge nodes and users are lower so

that more users choose to offload tasks. And when tasks

are more complex, users are more likely to offload tasks

to edge nodes and cloud.

In Fig.18, we show the impact of users’ data size

distribution on the total cost without D2D and cloud

offloading. We take normal distribution, poisson distri-

bution and uniform distribution into consideration. As

we predicted, the simulation results show that the costs

of these data distributions are in this order: uniform

distribution > normal distribution > poisson distribu-

tion, which is the same as the rank of their users’ total

data size.

In Fig.19 and Fig.20, we evaluate the influence of

the number of D2D links. The D2D rate denotes the

ratio of the number of D2D links to the number of all

users. Because the increase of the D2D rate enhances

the users’ chance to choose a better strategy with less

cost, the total cost decreases with the increase of the

D2D rate, which is easily detected. Therefore, the num-

ber of users offloading tasks to idle devices will increase

with the increase of D2D rate.

En Wang et al.: D2D-Enabled Task Offloading in Mobile Edge Computing 937

20 40 60 80 100

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

J
a
in
's
 F

a
ir
n
e
ss

 I
n
d
e
x

Number of Users

 RTO
 COTO
 DGTO

20 40 60 80 100

0.7

0.8

0.9

1.0

J
a
in
's
 F

a
ir
n
e
ss

 I
n
d
e
x

Number of Users

 RTO
 COTO
 DGTO

20 40 60 80 100

0.5

0.6

0.7

0.8

0.9

1.0

J
a
in
's
 F

a
ir
n
e
ss

 I
n
d
e
x

Number of Users

 RTO
 COTO
 DGTO

(b)(a) (c)

Fig.13. Jain’s fairness index vs number of users. (a) Melbourne. (b) Shanghai. (c) Darmstadt.

1 2 3 4 5 6 7 8 9 10
0.0

0.2

0.4

0.6

0.8

1.0

O
ff
lo

a
d
in

g
 R

a
ti
o

Channel Bandwidth (MHz)

 Home Node

 Local Device

 Neighbor Node

1 2 3 4 5 6 7 8 9 10
0.0

0.2

0.4

0.6

0.8

1.0

O
ff
lo

a
d
in

g
 R

a
ti
o

Channel Bandwidth (MHz)

 Home Node

 Local Device

 Neighbor Node

1 2 3 4 5 6 7 8 9 10
0.0

0.2

0.4

0.6

0.8

1.0

O
ff
lo

a
d
in

g
 R

a
ti
o

Channel Bandwidth (MHz)

 Home Node

 Local Device

 Neighbor Node

(b)(a) (c)

Fig.14. Offloading ratio vs channel bandwidth without D2D and cloud offloading. (a) Melbourne. (b) Shanghai. (c) Darmstadt.

0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

O
ff
lo

a
d
in

g
 R

a
ti
o

Number of CPU Cycles
per Data Size

Number of CPU Cycles
per Data Size

Number of CPU Cycles
per Data Size

 Home Node

 Local Device

 Neighbor Node

0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

O
ff
lo

a
d
in

g
 R

a
ti
o

 Home Node

 Local Device

 Neighbor Node

0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

O
ff
lo

a
d
in

g
 R

a
ti
o

 Home Node

 Local Device

 Neighbor Node

(b)(a) (c)

Fig.15. Offloading ratio vs number of CPU cycles per data size without D2D and cloud offloading [15]. (a) Melbourne. (b) Shanghai.
(c) Darmstadt.

1 2 3 4 5 6 7 8 9 10
0.0

0.2

0.4

0.6

0.8

1.0

O
ff
lo

a
d
in

g
 R

a
ti
o

Channel Bandwidth (MHz)

1 2 3 4 5 6 7 8 9 10
0.0

0.2

0.4

0.6

0.8

1.0

O
ff
lo

a
d
in

g
 R

a
ti
o

Channel Bandwidth (MHz)

1 2 3 4 5 6 7 8 9 10
0.0

0.2

0.4

0.6

0.8

1.0

O
ff
lo

a
d
in

g
 R

a
ti
o

Channel Bandwidth (MHz)

 Local Home Cloud
 D2D Neighbor

 Local Home Cloud
 D2D Neighbor

 Local Home Cloud
 D2D Neighbor

(b)(a) (c)

Fig.16. Offloading ratio vs channel bandwidth with D2D and cloud offloading. (a) Melbourne. (b) Shanghai. (c) Darmstadt.

938 J. Comput. Sci. & Technol., July 2022, Vol.37, No.4

0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

O
ff
lo

a
d
in

g
 R

a
ti
o

Number of CPU Cycles
per Data Size

Number of CPU Cycles
per Data Size

Number of CPU Cycles
per Data Size

0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

O
ff
lo

a
d
in

g
 R

a
ti
o

0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

O
ff
lo

a
d
in

g
 R

a
ti
o

 Local Home Cloud
 D2D Neighbor

 Local Home Cloud
 D2D Neighbor

 Local Home Cloud
 D2D Neighbor

(b)(a) (c)

Fig.17. Offloading ratio vs number of CPU cycles per data size with D2D and cloud offloading. (a) Melbourne. (b) Shanghai. (c)
Darmstadt.

20 40 60 80 100
0

2

4

6

8

10

12

T
o
ta

l
C

o
st

 (
Τ
1
0

2
)

0

2

4

6

8

10

12

T
o
ta

l
C

o
st

 (
Τ
1
0

2
)

0

2

4

6

8

10

12

T
o
ta

l
C

o
st

 (
Τ
1
0

2
)

Number of Users

 Normal Distribution
 Possion Distribution
 Uniform Distribution

20 40 60 80 100

Number of Users

 Normal Distribution
 Possion Distribution
 Uniform Distribution

20 40 60 80 100

Number of Users

 Normal Distribution
 Possion Distribution
 Uniform Distribution

(b)(a) (c)

Fig.18. Total cost vs data distribution without D2D and cloud offloading. (a) Melbourne. (b) Shanghai. (c) Darmstadt.

0.2 0.4 0.6 0.8 1.0
0

2

4

6

8

10

T
o
ta

l
C

o
st

 (
Τ
1
0

2
)

0

2

4

6

8

10

T
o
ta

l
C

o
st

 (
Τ
1
0

2
)

0

2

4

6

8

10

T
o
ta

l
C

o
st

 (
Τ
1
0

2
)

D2D Rate

 RTO
 BRUO

 DGTO
 MUUO
 BUAU
 COTO

0.2 0.4 0.6 0.8 1.0

D2D Rate

 RTO
 BRUO

 DGTO
 MUUO
 BUAU
 COTO

0.2 0.4 0.6 0.8 1.0

D2D Rate

 RTO
 BRUO
 DGTO
 MUUO
 BUAU
 COTO

(b)(a) (c)

Fig.19. Total cost vs D2D rate with D2D and cloud offloading. (a) Melbourne. (b) Shanghai. (c) Darmstadt.

0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

O
ff
lo

a
d
in

g
 R

a
ti
o

D2D Rate

0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

O
ff
lo

a
d
in

g
 R

a
ti
o

D2D Rate

0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

O
ff
lo

a
d
in

g
 R

a
ti
o

D2D Rate

 Local
Home

 Cloud
 D2D

Neighbor Local
Home

 Cloud
 D2D

Neighbor Local
Home

 Cloud
 D2D

Neighbor

(b)(a) (c)

Fig.20. Offloading ratio vs D2D rate with D2D and cloud offloading. (a) Melbourne. (b) Shanghai. (c) Darmstadt.

En Wang et al.: D2D-Enabled Task Offloading in Mobile Edge Computing 939

6 Conlusions

In this paper, we extended the multi-user task of-

floading problem to consider the task offloading includ-

ing home and neighbor edge nodes, local devices, the

potential computing resources at the edge with D2D

offloading and cloud computing. Simultaneously, we

took into account the competition in wireless channels

and users’ acceptable latency. We proposed the Para-

llel User Selection algorithm (PUS) to accelerate the

convergence of the offloading method that can achieve

Nash equilibrium. Based on three real datasets, we

found that among all methods in Subsection 5.2, our

proposed Multi-User Update Offloading (MUUO) algo-

rithm, which utilized PUS (Algorithm 3 in this paper)

to select a set of users from the users who send the

updating requests, could reach Nash equilibrium the

fastest while achieving the users’ total cost close to that

of the optimal solution.

In the future, we will explore an incentive mecha-

nism to ensure that all mobile users can energetically

furnish their idle devices to help other users to offload

their tasks. Since scalability also is a significant focus,

we will also explore more potential computing resources

to decrease the offloading cost in Mobile Edge Comput-

ing.

References

[1] Kim S, Visotsky E, Moorut P, Bechta K, Ghosh A, Di-

etrich C. Coexistence of 5G with the incumbents in the

28 and 70 GHz bands. IEEE Journal on Selected Ar-

eas in Communications, 2017, 35(6): 1254-1268. DOI:

10.1109/JSAC.2017.2687238.

[2] Ding C, Tao D. Trunk-branch ensemble convolu-

tional neural networks for video-based face recogni-

tion. IEEE Transactions on Pattern Analysis and

Machine Intelligence, 2017, 40(4): 1002-1014. DOI:

10.1109/TPAMI.2017.2700390.

[3] Zong Z, Hong C. On application of natural language pro-

cessing in machine translation. In Proc. the 3rd Interna-

tional Conference on Mechanical, Control and Computer

Engineering, Sept. 2018, pp.506-510. DOI: 10.1109/ICM-

CCE.2018.00112.

[4] Meng H J, Wang D C. Robust design for game-based in-

struction using interactive whiteboards. In Proc. the 4th

IEEE International Conference on Digital Game and In-

telligent Toy Enhanced Learning, Mar. 2012, pp.250-253.

DOI: 10.1109/DIGITEL.2012.66.

[5] Zhang Z, Weng D, Jiang H, Liu Y, Wang Y. In-

verse augmented reality: A virtual agent’s perspective.

arXiv:1808.03413, 2018. https://arxiv.org/abs/1808.03413-

v1, Aug. 2021.

[6] Abbas N, Yan Z, Taherkordi A, Skeie T. Mobile edge com-

puting: A survey. IEEE Internet of Things Journal, 2017,

5(1): 450-465. DOI: 10.1109/JIOT.2017.2750180.

[7] Satyanarayanan M. The emergence of edge computing.

Computer, 2017, 50(1): 30-39. DOI: 10.1109/MC.2017.9.

[8] Niu Z, Wu Y, Gong J, Yang Z. Cell zooming for cost-efficient

green cellular networks. IEEE Communications Magazine,

2010, 48(11): 74-79. DOI: 10.1109/MCOM.2010.5621970.

[9] Asadi A, Wang Q, Mancuso V. A survey on device-to-

device communication in cellular networks. IEEE Commu-

nications Surveys and Tutorials, 2014, 16(4): 1801-1819.

DOI: 10.1109/COMST.2014.2319555.

[10] Kumar K, Lu Y H. Cloud computing for mobile users:

Can offloading computation save energy? Computer, 2010,

43(4): 51-56. DOI: 10.1109/MC.2010.98.

[11] Chen Y, Li Z, Yang B, Nai K, Li K. A Stackel-

berg game approach to multiple resources allocation

and pricing in mobile edge computing. Future Gene-

ration Computer Systems, 2020, 108: 273-287. DOI:

10.1016/j.future.2020.02.045.

[12] Zhou A, Wang S, Wan S, Qi L. LMM: Latency-aware mi-

croservice mashup in mobile edge computing environment.

Neural Computing and Applications, 2020, 32(19): 15411-

15425. DOI: 10.1007/s00521-019-04693-w.

[13] Yang Y, Long C, Wu J, Peng S, Li B. D2D-enabled mobile-

edge computation offloading for multi-user IoT network.

IEEE Internet of Things Journal, 2021, 8(16): 12490-

12504. DOI: 10.1109/JIOT.2021.3068722.

[14] Ding Y, Li K, Liu C, Li K. A potential game theoretic

approach to computation offloading strategy optimization

in end-edge-cloud computing. IEEE Transactions on Para-

llel and Distributed Systems, 2022, 33(6): 1503-1519. DOI:

10.1109/TPDS.2021.3112604.

[15] Wang E, Dong P, Xu Y, Li D, Wang L, Yang Y. Distributed

game-theoretical task offloading for mobile edge computing.

In Proc. the 18th IEEE International Conference on Mobile

Ad Hoc and Smart Systems (MASS), Oct. 2021, pp. 216-

224. DOI: 10.1109/MASS52906.2021.00037.

[16] Baron B, Spathis P, Rivano H, De Amorim M D, Vini-

otis Y, Ammar M H. Centrally controlled mass data of-

floading using vehicular traffic. IEEE Transactions on Net-

work and Service Management, 2017, 14(2): 401-415. DOI:

10.1109/TNSM.2017.2672878.

[17] Jiang F, Ma R, Sun C, Gu Z. Dueling Deep Q-Network

learning based computing offloading scheme for F-RAN. In

Proc. the 31st IEEE Annual International Symposium on

Personal, Indoor and Mobile Radio Communications, Aug.

31-Sept.3, 2020. DOI: 10.1109/PIMRC48278.2020.9217355.

[18] Hong Z, Chen W, Huang H, Guo S, Zheng Z. Multi-

hop cooperative computation offloading for industrial IoT-

edge-cloud computing environments. IEEE Transactions on

Parallel and Distributed Systems, 2019, 30(12): 2759-2774.

DOI: 10.1109/TPDS.2019.2926979.

[19] Wang Y, Ge H, Feng A, Li W, Liu L, Jiang H. Com-

putation offloading strategy based on deep reinforcement

learning in cloud-assisted mobile edge computing. In Proc.

the 5th IEEE International Conference on Cloud Comput-

ing and Big Data Analytics, Apr. 2020, pp.108-113. DOI:

10.1109/ICCCBDA49378.2020.9095689.

https://doi.org/10.1109/JSAC.2017.2687238
https://doi.org/10.1109/TPAMI.2017.2700390
https://doi.org/10.1109/ICMCCE.2018.00112
https://doi.org/10.1109/ICMCCE.2018.00112
https://doi.org/10.1109/DIGITEL.2012.66
https://doi.org/10.1109/JIOT.2017.2750180
https://doi.org/10.1109/MC.2017.9
https://doi.org/10.1109/MCOM.2010.5621970
https://doi.org/10.1109/COMST.2014.2319555
https://doi.org/10.1109/MC.2010.98
https://doi.org/10.1016/j.future.2020.02.045
https://doi.org/10.1007/s00521-019-04693-w
https://doi.org/10.1109/JIOT.2021.3068722
https://doi.org/10.1109/TPDS.2021.3112604
https://doi.org/10.1109/MASS52906.2021.00037
https://doi.org/10.1109/TNSM.2017.2672878
https://doi.org/10.1109/PIMRC48278.2020.9217355
https://doi.org/10.1109/TPDS.2019.2926979
https://doi.org/10.1109/ICCCBDA49378.2020.9095689

940 J. Comput. Sci. & Technol., July 2022, Vol.37, No.4

[20] Yu S, Langar R, Wang X. A D2D-multicast based compu-

tation offloading framework for interactive applications. In

Proc. the 2016 IEEE Global Communications Conference,

Dec. 2016. DOI: 10.1109/GLOCOM.2016.7841490.

[21] Fabiani F, Grammatico S. Multi-vehicle automated driving

as a generalized mixed-integer potential game. IEEE Trans-

actions on Intelligent Transportation Systems, 2019, 21(3):

1064-1073. DOI: 10.1109/TITS.2019.2901505.

[22] Liu H, Jia H, Chen J, Ge X, Li Y, Tian L, Shi J. Comput-

ing resource allocation of mobile edge computing networks

based on potential game theory. arXiv:1901.00233, 2019.

https://arxiv.org/abs/1901.00233, Jan. 2022.

[23] Raschellá A, Bouhafs F, Mackay M, Shi Q, Ortin J, Gallego

J. R, Canales M. AP selection algorithm based on a poten-

tial game for large IEEE 802.11 WLANs. In Proc. the 2018

IEEE/IFIP Network Operations and Management Sympo-

sium, Apr. 2018. DOI: 10.1109/NOMS.2018.8406147.

[24] He Q, Cui G, Zhang X, Chen F, Yang Y. A game-

theoretical approach for user allocation in edge com-

puting environment. IEEE Transactions on Parallel

and Distributed Systems, 2020, 31(3): 515-529. DOI:

10.1109/TPDS.2019.2938944.

[25] Wu B, Zeng J, Ge L, Tang Y, Su X. A game-

theoretical approach for energy-efficient resource alloca-

tion in MEC network. In Proc. the 2019 IEEE Interna-

tional Conference on Communications, May 2019. DOI:

10.1109/ICC.2019.8761727.

[26] Zhu T, Li J, Cai Z, Li Y, Gao H. Computation schedul-

ing for wireless powered mobile edge computing networks.

In Proc. the 2020 IEEE Conference on Computer Com-

munications, Jul. 2020, pp.596-605. DOI: 10.1109/INFO-

COM41043.2020.9155418.

[27] Monderer D, Shapley L. Potential games. Games

and Economic Behavior, 1996, 14(1): 124-143. DOI:

10.1006/game.1996.0044.

[28] Roughgarden T. Algorithmic game theory. Commu-

nications of the ACM, 2010, 53(7): 78-86. DOI:

10.1145/1785414.1785439.

[29] Xia X, Chen F, He Q, Grundy J, Abdelrazek M, Jin H. On-

line collaborative data caching in edge computing. IEEE

Transactions on Parallel and Distributed Systems, 2020,

32(2): 281-294. DOI: 10.1109/TPDS.2020.3016344.

[30] Li B, He Q, Cui G, Xia X, Yang Y. READ: Robustness-

oriented edge application deployment in edge computing

environment. IEEE Transactions on Services Computing,

2022, 15(3): 1746-1759. DOI: 10.1109/TSC.2020.3015316.

[31] Wang S, Zhao Y, Xu J, Yuan J, Hsu C H. Edge server

placement in mobile edge computing. Journal of Para-

llel and Distributed Computing, 2019, 127: 160-168. DOI:

10.1016/j.jpdc.2018.06.008.

[32] Guo Y, Wang S, Zhou A, Xu J, Yuan J, Hsu C. H. User

allocation-aware edge cloud placement in mobile edge com-

puting. Software: Practice and Experience, 2020, 50(5):

489-502. DOI: 10.1002/spe.2685.

[33] Gedeon J, Krisztinkovics J, Meurisch C, Stein M, Wang L,

Mühlhaüser M. A multi-cloudlet infrastructure for future

smart cities: An empirical study. In Proc. the 1st Interna-

tional Workshop on Edge Systems, Analytics and Network-

ing, Jun. 2018, pp.19-24. DOI: 10.1145/3213344.3213348.

[34] Pu L, Chen X, Xu J, Fu X. D2D fogging: An energy-

efficient and incentive-aware task offloading framework via

network-assisted D2D collaboration. IEEE Journal on Se-

lected Areas in Communications, 2016, 34(12): 3887-3901.

DOI: 10.1109/JSAC.2016.2624118.

[35] Wang E, Luan D, Yang Y, Wang Z, Dong P, Li D, Liu

W, Wu J. Distributed game-theoretical route navigation

for vehicular crowdsensing. In Proc. the 50th International

Conference on Parallel Processing, Aug. 2021, pp.1-11.

DOI: 10.1145/3472456.3472498.

[36] Jain R K, Chiu D M W, Hawe W R. A quantitative

measure of fairness and discrimination for resource alloca-

tion in shared computer systems. arXiv:cs/9809099, 1998.

https://arxiv.org/abs/cs/9809099, Sept. 2021.

En Wang received his B.E. degree

in software engineering in 2011, his

M.E. degree in computer science and

technology in 2013, and his Ph.D.

degree in computer science and techno-

logy in 2016, all from Jilin University,

Changchun. He is currently a professor

in the Department of Computer Science

and Technology at Jilin University, Changchun. He was

also a visiting scholar in the Department of Computer and

Information Sciences at Temple University in Philadelphia.

His current research focuses on the efficient utilization of

network resources, scheduling and drop strategy in terms

of buffer management, energy efficient communication

between human-carried devices, and mobile crowdsensing.

Han Wang received his B.E. degree

in software engineering from Jilin

University, Changchun, in 2021. He

is currently a Master student with

the Department of Computer Science

and Technology at Jilin University,

Changchun. His current research fo-

cuses on edge computing, game theory,

and multi-armed bandits.

Peng-Min Dong received his B.E.

degree in software engineering from

Jilin University, Changchun, in 2019.

He is currently a Master student in

the Department of Software at Jilin

University, Changchun. His current

research focuses on edge computing,

cloud computing and game theory.

https://doi.org/10.1109/GLOCOM.2016.7841490
https://doi.org/10.1109/TITS.2019.2901505
https://doi.org/10.1109/NOMS.2018.8406147
https://doi.org/10.1109/TPDS.2019.2938944
https://doi.org/10.1109/ICC.2019.8761727
https://doi.org/10.1109/INFOCOM41043.2020.9155418
https://doi.org/10.1109/INFOCOM41043.2020.9155418
https://doi.org/10.1006/game.1996.0044
https://doi.org/10.1145/1785414.1785439
https://doi.org/10.1109/TPDS.2020.3016344
https://doi.org/10.1109/TSC.2020.3015316
https://doi.org/10.1016/j.jpdc.2018.06.008
https://doi.org/10.1002/spe.2685
https://doi.org/10.1145/3213344.3213348
https://doi.org/10.1109/JSAC.2016.2624118
https://doi.org/10.1145/3472456.3472498

En Wang et al.: D2D-Enabled Task Offloading in Mobile Edge Computing 941

Yuan-Bo Xu received his B.E. de-

gree in computer science and technology

in 2012, his M.E. degree in computer

science and technology in 2015, and

his Ph.D. degree in computer science

and technology in 2019, all from Jilin

University, Changchun. He is currently

a professor in the Department of

Computer Science and Technology at Jilin University,

Changchun. He was a visiting scholar at Rutgers, the State

University of New Jersey from 2017 to 2019. His research

interests include applications of data mining, recommender

system, and mobile computing. He has published some

research results on journals such as TKDE, TMM, and

TNNLS and conferences as INFOCOM, CIKM, and ICDM.

Yong-Jian Yang received his B.E.

degree in automatization from Jilin

University of Technology, Changchun,

in 1983, his M.E. degree in computer

communication from Beijing University

of Post and Telecommunications, Bei-

jing, in 1991, and his Ph.D. degree in

software and theory of computer from

Jilin University, Changchun, in 2005. He is currently

a professor and a Ph.D. supervisor at Jilin University.

His research interests include network intelligence mana-

gement, wireless mobile communication and services, and

wireless mobile communication.

	1 Introduction
	2 Related Work
	2.1 Task Offloading
	2.2 Potential Game

	3 Multi-User Task Offloading Game
	3.1 System Model
	3.2 Local Device Computing Model
	3.3 Home Edge Node Computing Model
	3.4 Neighbor Edge Node Computing Model
	3.5 Cloud Computing Model
	3.6 D2D Computing Model
	3.7 NP-Hardness of the Centralized Problem
	3.8 Potential Game Formulation

	4 Algorithm Design
	4.1 Distributed Task D2D-Enabled Offloading Algorithm
	4.2 Information Update Algorithm
	4.3 Convergence Analysis
	4.4 Theoretical Analysis

	5 Performance Evaluation
	5.1 Datasets & Settings
	5.2 Comparison Algorithms & Metrics
	5.3 Numerical Results
	5.3.1 Convergence for Nash Equilibrium
	5.3.2 Total Cost
	5.3.3 Algorithm Parameters

	6 Conlusions

