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Abstract Graph neural networks (GNNs) have achieved significant success in graph representation learning. Never-

theless, the recent work indicates that current GNNs are vulnerable to adversarial perturbations, in particular structural

perturbations. This, therefore, narrows the application of GNN models in real-world scenarios. Such vulnerability can be

attributed to the model’s excessive reliance on incomplete data views (e.g., graph convolutional networks (GCNs) heavily

rely on graph structures to make predictions). By integrating the information from multiple perspectives, this problem can

be effectively addressed, and typical views of graphs include the node feature view and the graph structure view. In this

paper, we propose C2oG, which combines these two typical views to train sub-models and fuses their knowledge through co-

training. Due to the orthogonality of the views, sub-models in the feature view tend to be robust against the perturbations

targeted at sub-models in the structure view. C2oG allows sub-models to correct one another mutually and thus enhance

the robustness of their ensembles. In our evaluations, C2oG significantly improves the robustness of graph models against

adversarial attacks without sacrificing their performance on clean datasets.
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1 Introduction

Graph neural networks (GNNs) achieved remark-

able performance in analyzing graph data, such as ci-

tation networks, biological networks, and social net-

works. The graph convolutional network (GCN) and

its variants [1–4] have attracted considerable attention

due to their high performance and efficiency. How-

ever, recent studies have demonstrated that these

message-passing based models are subject to adversar-

ial perturbations [5–9]. When an adversary conducts un-

noticeable alterations to the graph data, the accuracy

of the learned model drops dramatically. Compared

with feature perturbations, structural perturbations are

more effective in conducting successful attacks [7–9].

To enhance the robustness of GNNs against struc-

tural perturbations, some defense techniques have been

proposed. A general principle is to eliminate the detri-

mental impacts of perturbed edges. For this purpose,

some defense methods [9–12] assume that all the con-

nected vertexes should be similar in the feature space.

Based on this assumption, they calculate the pairwise

similarity scores between connected nodes and then

delete or pay less attention to edges that connect dis-

similar nodes. However, this heuristic is not applica-

ble to heterophilic graphs. Other methods [13, 14] note

that structural perturbations tend to affect the high-

rank portion of the graph. As a result, they replace

the graph topology with its low-rank approximation to

purify the graph. Nevertheless, recent work shows that

such a heuristic is sub-optimal [15]. In summary, heuris-

tic approaches are often model-dependent and they may
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also introduce unexpected bias.

In the literature of adversarial learning in computer

vision, model ensembles are commonly used as defense

methods. Recent work [16–18] points out that output

diversity is the key to the success of these ensemble-

based defense methods. However, applying ensemble

techniques to GNNs straightforwardly can hardly im-

prove the robustness of the ensemble model. To illus-

trate this phenomenon, we evaluate the classification

accuracy of the ensemble of GCNs and GATs under

Metattack [8]. Fig.1 shows that Metattack can trans-

fer between GCNs and GATs well, leading to the poor

robustness of their ensembles.

0.00

0.85

0.80

0.75

0.70

0.65

0.60

0.55

0.50
0.05 0.10

Perturbation Rate

A
c
c
u
ra

c
y

0.15

Ensemble

GAT

GCN

0.20

Fig.1. Classification accuracy of ensemble of GCNs and GATs
under Metattack on Cora [19].

In this paper, we propose that introducing diversi-

fied models that share different views of graph data will

help to improve the overall robustness of the ensem-

ble. Compared with the image data, the graph data

have two complementary views: the node feature view

and the graph structure view. The complementarity

of these two views makes it difficult for adversarial at-

tacks to transfer between them. However, we find the

vanilla ensemble approach achieves sub-optimal results

(see the details in Subsection 5.5.2). This is mainly

due to the fact that the vanilla ensemble only aggre-

gates the final results of trained sub-models but misses

the opportunities to fully exchange knowledge between

the sub-models during training.

Therefore, to fully exploit this property, our

work uses a calibrated co-training framework on

graph (C2oG) to learn an ensemble of sub-models from

both the feature view and the structure view. Specifi-

cally, co-training [20, 21] is a simple yet effective tech-

nique for learning an ensemble of sub-models in mul-

tiple different views under the semi-supervised setting.

It trains a separate classifier for each view and adds

the most confident predictions of each sub-model to

the training dataset. An ensemble obtained from co-

training enables the sub-models to correct each other

during the training stage and can potentially achieve

better results.

Nevertheless, applying the vanilla co-training frame-

work to graph data faces two challenges. 1) Co-training

uses the softmax outputs as the indicators of sub-

models’ confidence. However, this can be inaccurate

since neural networks are often miscalibrated, especially

when sub-models are heterogeneous. 2) Co-training se-

lects unlabeled data simply based on their confidence.

If dominant classes exist, the co-training process will

amplify the imbalance of classes and force the sub-

models to overfit to the dominant class. To address

these issues, we use temperature scaling [22] to calibrate

the outputs, and enforce the consistency of class distri-

bution when adding predictions during the co-training

process.

Our evaluation results show that C2oG could incor-

porate the knowledge of the sub-models trained on the

two views to significantly alleviate the impact of adver-

sarial perturbations. Our contributions are summarized

as follows.

• We propose C2oG, which is a calibrated co-

training framework, to combine the feature informa-

tion and the structure information of graphs in a holis-

tic manner. C2oG is easy-to-implement and model-

agnostic.

• We highlight the incomparable confidence and

imbalanced training set challenges in the co-training

framework and propose to use model calibration and

class balancing mechanisms to address these problems,

which further improve the performance of C2oG.

• Experiments show that C2oG consistently outper-

forms the state-of-the-art baselines under different per-

turbation ratios. Moreover, our defense can still work

well in adaptive attack settings where the defense in-

ternals are exposed to the attackers.

2 Related Work

2.1 Attack and Defense on Graph Data

Despite the great success of GNNs, recent work

shows that these graph-based models are vulnerable to

unnoticeable modifications [5, 6, 8]. Nettack [6] conducts

its attack on a surrogate model and ensures the edge

perturbations and the feature perturbations to be un-

noticeable via considering the degree distribution and

feature co-occurrence. RL-S2V [5] applies reinforcement

learning to generate adversarial examples. Metattack [8]
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addresses the global attack problem. It uses the meta-

gradient to generate a perturbed graph that leads to an

overall decrease in models’ performance. The results of

these attacks suggest that structural attacks are more

effective than feature attacks when applied to the graph

data.

Several techniques have been proposed to de-

fend against these topological attacks [9–13,23]. GCN-

Jaccard [9] assumes that connected nodes have simi-

lar features so that edges between dissimilar nodes are

more likely to be the perturbed edges. Based on this

assumption, GCN-Jaccard calculates the Jaccard simi-

larity scores between connected nodes and drop edges

that connect nodes with scores below the preset thresh-

old. Similarly, GNNGuard [10] employs the attention

mechanism to assign higher weights to the edges be-

tween similar nodes and lower weights to the edges be-

tween unrelated nodes. Other work stems from the

observation that structural attacks tend to affect the

high-rank portion of a graph. GCN-SVD [14] was pro-

posed to purify the perturbed graph via replacing it

with its low-rank approximation, while Pro-GNN [13] in-

troduces a regularization term to generate a low-rank

and sparse graph during the training process. How-

ever, these methods rely on the validity of their heuris-

tic knowledge. SimP-GCN [23] attempts to integrate

the structure information and node features by com-

bining the k-NN graph and the original graph. Nev-

ertheless, the scoring function that balances these two

graphs merely depends on the hidden representation so

that the graph used for learning could be unstable, thus

leading to high variance for the results.

The most related defense method to our work is

UM-GNN [24]. UM-GNN was proposed to learn a

feature-based model via distilling knowledge from the

GNN model using an uncertainty matching strategy.

However, its knowledge distillation is one-directional:

only the feature-based model can distill knowledge from

the GNN model. Consequently, the GNN model cannot

get enhanced using the information from the feature-

based model. As the perturbation rate grows, the

knowledge transferred from the GNN model becomes

less effective, which impairs the performance of UM-

GNN.

2.2 Ensemble Training for Enhanced

Robustness

Although ensemble training was initially proposed

to improve models’ performance [25–28], a recent line of

work [16–18] shows that it can be used as the defense

against adversarial attacks. The intuition behind the

defense methods [16–18] is that a small overlap between

adversarial subspaces (Adv-SS) of different sub-models

can prevent adversarial attacks from transferring be-

tween sub-models. Pang et al. [16] employed an adap-

tive diversity-promoting regularizer to encourage diver-

sity among non-maximal predictions. Kariyappa and

Qureshi [17] proposed diversity training to reduce the

correlation of loss functions between sub-models. Yang

et al. [18] distilled the non-robust features from each sub-

model and taught the other sub-models to be robust

against these non-robust features. Although these de-

fense approaches have been well studied in image recog-

nition tasks, their application in graph-based tasks re-

mains to be explored.

2.3 Co-Training

Co-training was first introduced by Blum and

Mitchell [20] as a semi-supervised learning method

to utilize the unlabeled data. The intuition be-

hind the co-training approach is to utilize classi-

fiers from different views to enhance each other via

pseudo labels. Several following studies aim to pro-

vide theoretical support and expand the practical

applications [20, 29–32]. A recent line of work applies co-

training to tasks such as image recognition, object de-

tection and text classification [33–35]. Self-paced multi-

view co-training [33, 34] extends the co-training to multi-

view scenarios and formulates the co-training as a self-

paced learning process. Deep co-training [35] uses ad-

versarial examples to encourage the diversity between

different views. Although being widely used as a semi-

supervised learning technique, applying co-training to

adversarial defense, especially with graph neural net-

works, remains unexplored.

3 Preliminary Study

In this section, we present why two-view co-training

is a desirable defense technique for the graph data. As

discussed in Subsection 2.2, output diversity plays a

crucial role in the robustness of the ensemble model.

Recent work [36] shows that adversarial examples are

more likely to transfer between models that have a large

adversarial subspace (Adv-SS) overlap. Sub-models

with diverse outputs have a smaller Adv-SS overlap,

making it harder for attackers to craft adversarial ex-

amples that fool all sub-models [16–18].
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To minimize the Adv-SS overlap, using different as-

pects of the input data is a promising approach. Graph

data naturally contains two complementary views: a

node feature view and a graph structure view. The

models trained by these two views share little adver-

sarial subspace by definition. An attack on node fea-

tures would barely affect a structure-based model and

vice versa, which implies the potential for improving

robustness via an ensemble of sub-models from these

two views. Furthermore, from an attacker’s perspec-

tive, conducting attacks on the feature view is more

difficult due to the following reasons: 1) in most graph

data, node features are sparse and high-dimensional,

which makes the perturbations on node features de-

tectable; 2) in most cases, node features are discrete

and practically interpretable, which causes restrictions

on feature modifications. If an attacker attempts to

attack a social network via modifying a person’s birth-

day, his/her age should also be changed to ensure the

validity of the data. Such restrictions are difficult to

model in a differentiable manner, which constitutes a

challenge for gradient-based attacks.

Although existing GNN models are designed to in-

tegrate the feature information and the structure infor-

mation of the graph data via message passing, they do

not pay enough attention to the feature information.

In an empirical study, Jin et al. [13] pointed out that

GCNs prefer to preserve structure information rather

than feature information during the message passing

process. This behavior is consistent with the empirical

conclusions in previous work [9]: 1) topological attacks

are more effective than feature attacks when attacking

models like GCNs; 2) attackers tend to connect nodes

with dissimilar node features to achieve a successful

attack. In this paper, such models whose predictions

are more dependent on the graph structure are called

structure-dominant models. Correspondingly, models

that rely mainly on node features for predictions are

called feature-dominant models.

Therefore, to fully exploit the feature information

and achieve better robustness, we propose a two-view

co-training framework, named calibrated co-training on

graph (C2oG), to learn a robust ensemble of the feature-

dominant models and the structure-dominant models.

4 Proposed Approach

In this section, we first formulate the problem and

elaborate on the overall co-training framework. To

further explain how we implement the framework, we

then describe the specific models, which can act as the

structure-dominant and feature-dominant components.

Last but not least, we introduce the model calibration

and the class balancing mechanisms, which play criti-

cal roles in ensuring the effectiveness of the co-training

framework.

4.1 Problem Formulation

In this paper, we focus on the semi-supervised

node classification problem. Let G = (V, E ,X) be

a graph with n nodes, where V is the set of nodes

{v1, · · · , vn} with |V| = n, E is the set of edges, and

X = (x1,x2, · · · ,xn)
T ∈ Rn×m is a feature matrix.

Then we can separate G into two views. In the node

feature view, for each node v ∈ V, its feature xv ∈ Rm

is an m-dimensional row vector. In the graph structure

view, the adjacency matrix A ∈ Rn×n can be formu-

lated by setting Aij = 1 if (vi, vj) ∈ E , and Aij = 0,

otherwise. In the semi-supervised node classification

problem, nodes are separated into two sets V = S ∪ U ,

where nodes in S are labeled and nodes in U are not.

Our goal is to learn a high-performance ensemble of a

feature-dominant model ffeat and a structure-dominant

model fstruct, using both the labeled and the unlabeled

data from V.

4.2 Overall Framework

Graph data can be separated into two views [23], i.e.,

the feature view and the structure view. These two

views provide different information about the nodes in

the graph. The feature view describes nodes’ intrinsic

properties, while the structure view tells the relation-

ship between the nodes. The neural networks trained

in either of these two views can classify the nodes effec-

tively. In addition, the information provided by these

two views is complementary so that the knowledge dis-

tilled from the model in one view can promote the per-

formance of the model in the other view. Therefore,

we apply the two-view co-training framework on graph

data (C2oG) and learn an ensemble of sub-models in

these two views.

The overall framework of C2oG is shown in Fig.2

and the corresponding algorithm is demonstrated in

Algorithm 1. For each node v, we separate its infor-

mation into a feature view and a structure view. After

that, two classifiers are trained separately for each

view. The feature-dominant model ffeat primarily uses

node features as its input to classify the nodes, while

the structure-dominant model fstruct usually uses the
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Fig.2. Overall framework of C2oG. Graph data is separated into the feature view and the structure view. During the co-training
process, the feature-dominant model and the structure-dominant model label their most confident nodes and add the selected nodes
into the training set.

Algorithm 1. Two-View Co-Training for Graph Data

Input: graph data G = (X,A), nodes to add per
iteration for class c Nadd

c , labeled dataset S,

unlabel dataset U , the number of classes C,

structure-dominant model fstruct,
feature-dominant model ffeat, the maximum

number of iterations I
Output: fstruct, ffeat

1 while true do
2 Train fstruct under the structure view of S;
3 Train ffeat under the feature view of S;

4 Calculate confidence scores of the structure-dominant
model sstruct on U using fstruct;

5 Calculate confidence scores of the feature-dominant

model sfeat on U using ffeat;
6 for c = 1 to C do
7 Use fstruct to label Nadd

c most confident nodes in
U ;

8 Use ffeat to label Nadd
c most confident nodes in

U ;
9 if the same node is chosen then

10 Comparing sstruct and sfeat and using the
pseudo-label with a higher confidence score;

11 endif

12 endfor

13 Update S&U ;
14 if there is no test data left or achieving maximum

iteration then
15 break
16 endif

17 end

graph structure as its clue for node labels. In each it-

eration, we first train fstruct and ffeat (lines 2 and 3 in

Algorithm 1 respectively). After that, the confidence

scores of each model on all unlabeled nodes sstruct and

sfeat are calculated (lines 4 and 5 respectively), and

the most confident unlabeled nodes from each view are

added to the training set (lines 6–13). After the preset

number of iterations is achieved or there is no test data

left (lines 14–16), we obtain two well-trained models,

ffeat and fstruct, and generate an ensemble of them by

averaging their predictions. In the remaining part of

this subsection, we introduce more details about the

framework, including 1) the structure-dominant mod-

els and the feature-dominant models we use to learn

representation for nodes; 2) the techniques we use to

improve the performance of the co-training framework,

including model calibration and class balancing.

4.3 Structure-Dominant Models

Structure-dominant models are the models which ei-

ther only use the structure or do not fully utilize the

node feature information of the graph by design.

4.3.1 Structure-Dominant GNNs

Graph convolutional networks (GCNs) [1] achieve re-

markable success in learning representation for graph

data. Given a graph G = (X,A), the updates of node

embeddings can be derived by the following formula-

tion:

X(l+1) = σ
(
ÂX(l)W (l)

)
,

where Â is the normalized adjacency matrix. X(l) is

the layer-wise node embedding, W (l) is the layer-wise

parameter and σ(·) denotes the activation function. Al-

though a GCN takes both features and graph struc-

ture as its input, the representation it learns for each

node largely depends on the local graph structure of the
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node. The reasons are the follows. On the one hand,

features are just simply aggregated from neighboring

nodes. On the other hand, no expressive functions are

used to model the features of certain classes.

We also design a more feature-independent GCN

that uses a one-hot feature to replace the original node

features, named GCN1h. Since no meaningful feature

information is provided, the predictions of GCN1h is

determined only by the graph structure.

Besides GCNs, it is worth noting that some other

state-of-the-art GNNs can also be adopted as structure-

dominant models since they share the same message

passing mechanism as GCNs. In this paper, we consider

two representative GNNs, APPNP [37] and GCNII [38].

APPNP enhances the structure information with the

personalized page rank while GCNII uses initial resid-

ual and identity mapping to improve the model’s per-

formance.

4.3.2 Structure-Based Multilayer Perceptron
(S-MLP)

The spectral method is another effective method to

distill the structure information for each node [39, 40].

Given the graph topology A, its eigenvalues and eigen-

vectors of Laplacian are computed by solving:

D−1Ly = λy,

where D−1L = I −D−1A is the normalized laplacian

matrix, y denotes the eigenvector, and λ denotes the

eigenvalue. Let λ0, λ1, · · · , λk be the k smallest eigen-

values of D−1L and y0,y1, · · · ,yk be the respective

eigenvectors. Each node u can be embedded into a k-

dimensional space as au = (y1u,y2u, · · · ,yku).

To enrich the information of au, we also compute

the k-dimension Laplacian eigenmaps of A2, which

reflects the two-hop neighboring information of each

node. By concatenating the spectral embedding gene-

rated from A and A2 together, we get the enhanced

ãu ∈ R2×k. After that, ãu is sent as the input to a

multilayer perceptron model for classification.

4.4 Feature-Dominant Models

Feature-dominant models are the models which ei-

ther only use the node feature information or do not

fully utilize the graph structures by design.

4.4.1 Feature-Based Multilayer Perceptron

The multilayer perceptron (MLP) model is the sim-

plest but effective method when we consider the node

features alone. The layerwise forwarding process of

MLP can be formulated as,

x(l+1)
v = σ(xl

vΘ(l) + bl),

where xv ∈ Rm is an m-dimensional row vector denot-

ing the features of node v, Θ(l) and bl are the layer-

wise parameters, and σ(·) denotes the activation func-

tion. Given the fact that no structure information is

provided, MLP is structure-independent.

4.4.2 k-NN Based GCN (k-NN-GCN)

The k-nearest-neighbor based (k-NN based) model

first constructs a graph from feature matrix X by us-

ing a k-nearest-neighbor algorithm based on the cosine

similarity. For each node pair (vi, vj), we calculate its

feature similarity as:

sij =
xT
i xj

‖xi‖ ‖xj‖
.

After that, the k-NN graph Ak = kNN(X) can be

constructed by connecting the top-k similar node pairs.

Finally, the whole graph data G = (X,Ak) is sent to

a GCN model to classify the nodes. The structure

information here is generated from the node features;

therefore the original graph structure is not used in this

model.

4.5 Model Calibration

Models’ confidence is the most critical indicator dur-

ing the co-training process. On the one hand, the co-

training framework picks up the most confident predic-

tions in each sub-model. When sub-models attempt to

add the same node to the training set, the co-training

framework decides which pseudo label to use based on

sub-models’ confidence. On the other hand, in the infer-

ence stage, C2oG averages each sub-model’s confidence

to obtain the predictions of their ensembles.

Generally, the softmax output of each sub-model

is used to measure the confidence. However,

modern neural networks, including GNN, can be

miscalibrated [22, 41]. Since the sub-models are hete-

rogeneous in C2oG, this miscalibration can impair

the performance of the co-training method. To al-

leviate this problem, we use the temperature scaling

method [22] to calibrate the output of each sub-model.

Given the logits z, the calibrated prediction is obtained

as:

q = softmax(z/T ),
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where the temperature T is learned by optimization

with respect to the negative log likelihood on the vali-

dation set.

4.6 Class Balancing

In C2oG, the most confident unlabelled nodes from

each view are added to the training set during the co-

training process. The confidence of each node is mea-

sured by the softmax outputs of the sub-models. How-

ever, this strategy can lead to class imbalance if sub-

models perform better in one particular class. Further-

more, an imbalanced class distribution will cause the

overfitting problem as the co-training process moves on

and finally impair the sub-models’ performance.

To keep a balanced training dataset, the added data

should follow the class distribution of the initial train-

ing dataset. Formally, supposing we haveN inputs with

an initial distribution (N1, N2, · · · , NC), the number of

added proposals for each class c is:

Nadd
c =

Nc

N
×Nadd,

where Nadd denotes the number of nodes we add to the

training data in each iteration.

The co-training process will stop when reaching the

preset number of iterations or there is no more data

in the test set. In the inference phase, we average sub-

models’ output to get the predictions of their ensembles.

Compared with other defense methods, the advantages

of C2oG can be summarized as follows.

• Instead of relying on prior knowledge to purify

the perturbed graph, C2oG enhances the robustness of

GNNs via knowledge distillation. Compared with the

human-designed prior knowledge, the distilled know-

ledge is more adaptable to different types of the graph

data. As a result, C2oG could be applied to more sce-

narios.

• Compared with existing ensemble approaches,

where the knowledge of the graph only flows from GNN

to MLP in a one-direction manner or model diversity

is not considered [24], C2oG enables the bi-directional

knowledge distillation between GNN and MLP, and

takes the complementarity of different types of mod-

els into consideration. This enhances the robustness of

C2oG when the graph structure is heavily perturbed.

Furthermore, the distillation process of C2oG is dy-

namic and non-differentiable, making it more difficult

for attackers to conduct adaptive attacks.

5 Experimental Results

In this section, we evaluate the performance of C2oG

on the clean data and its robustness against adversar-

ial attacks. In particular, we focus on answering the

following questions.

Q1. How does C2oG perform on clean data?

Q2. How does C2oG perform under adversarial

attacks compared with other state-of-the-art defense

methods?

Q3. How do model calibration, the class balanc-

ing technique and the hyper-parameters affect C2oG’s

performance?

Q4. How does C2oG perform against adaptive at-

tacks?

5.1 Experimental Setup

5.1.1 Datasets

To obtain comparable results, we use three popu-

lar citation graphs, i.e., Cora [19], Citeseer [42] and

Pubmed [42] to evaluate our model. The basic infor-

mation of these three graphs is shown in Table 1. In

these three datasets, each node represents a document

and edges are the citations between documents. In

terms of data splits, we randomly pick 10% of nodes

for training, 10% for validation and 80% for testing,

following [6, 8, 13].

5.1.2 Baselines

We compare our model with the following baselines.

• GCN-SVD [14]. GCN-SVD is a defense method

based on low-rank approximation.

• GCN-Jaccard [9]. GCN-Jaccard is also a preproc-

essing-based defense, which removes the edges between

most dissimilar nodes to purify the graph.

• SimP-GCN [23]. SimP-GCN adaptively combines

the original graph and the k-NN graph to capture the

similarity between nodes.

Table 1. Statistics of the Datasets

Dataset Number of Nodes Number of Edges Number of Classes Number of Features

Cora [19] 2 485 5 069 7 1 433

Citeseer [42] 2 110 3 668 6 3 703

Pubmed [42] 19 717 44 338 3 500
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• Pro-GNN [13]. Pro-GNN is a defense method that

exploits three properties of real-world graphs: low-rank,

sparsity, and feature smoothness.

• UM-GNN [24]. UM-GNN trains a feature-based

model based on knowledge transferred from GNN mod-

els.

• GNNGuard [10]. GNNGuard reweighs each edge

based on the similarity of connected node pairs.

• Soft Median [43]. Soft Median uses the distance

between nodes and the median of the neighbours to

reweigh each edge.

5.1.3 Parameter Settings

We implement C2oG under the framework of

DeepRobust [44], which is a well-known adversarial

learning framework for GNNs. Similar to previous

work [11, 13], we run each experiment 10 times and re-

port the average performance. For GCN, we use the

settings of the original GCN [1], i.e., a two-layer struc-

ture with 16 hidden units. We use a two-layer structure

with 32 hidden units for the MLP model. The number

of nearest neighbors k we set in k-NN-GCN is 50. As

for S-MLP, we use the eigenvectors corresponding to

the lowest 50 eigenvalues to distill the structure infor-

mation. In the co-training process, each model adds

250 pieces of most confident unlabeled data with their

pseudo-labels in one iteration. For the baseline mod-

els, we take the same experimental settings as in [13].

We set the learning rate for all sub-models to 0.01, the

weight decay to 5× 10−4, and the dropout rate to 0.5,

and train for 200 epochs.

As for adversarial attacks, we use Metattack [8]

which is an effective poisoning attack method on

graphs. It treats the graph as a hyperparameter

and modifies the graph to increase learning loss via

meta-gradient. The edge perturbation rate is set as

{5%, 10%, 15%, 20%}. We use the same random seed

as [13] to make fair comparisons with their reported

results.

5.2 Node Classification Accuracy on Clean

Graphs

The performance of the ensemble models on clean

graphs is shown in the 3rd column of Table 2. From

the results, we have the following observations.

• Our ensemble models outperform the baselines

on clean graphs on the three datasets. Specifically,

the classification accuracy of the GCN+F-MLP model

is 0.59%, 3.18%, and 0.43% higher than the vanilla

GCN on the three datasets respectively. As a compa-

rison, in most cases, the classification accuracy values of

the best-performed baselines are just marginally better

than that of the GCN model.

• Our ensemble models perform better than any sin-

gle sub-model from the ensemble. For instance, the

ensemble of GCN and k-NN-GCN (GCN+k-NN-GCN)

achieves an accuracy of 84.27% on Cora, while the ac-

curacy is 83.50% for GCN and 71.06% for k-NN-GCN.

• It is worth noting that although GCN1h has rela-

tively weak performance on clean data, it achieves com-

parable performance after being co-trained with MLP,

indicating that C2oG enables GCN1h to effectively dis-

till the knowledge from the feature view.

Results show that our method achieves competitive

performance on clean data, thus making it applicable

in realistic settings where we have no idea if the graphs

are perturbed.

5.3 Node Classification Accuracy Under

Attacks

Results under attacks are shown in the 4th–7th

columns in Table 2 and Table 3. As we can see, the

co-training framework effectively enhances the model’s

robustness against adversarial attacks. For example,

the accuracy of the GCN model decreases drastically

from 83.5% to 59.56% as the perturbation rate increases

from 0% to 20% on Cora. In comparison, GCN+k-NN-

GCN still achieves the accuracy of 76.86% even in the

worst-perturbed case. Similar results are obtained on

the other two datasets.

Our method outperforms the other state-of-the-

art defenses, especially on the Cora and the Citeseer

dataset. Pro-GNN [13] is the most robust model among

the baselines. Therefore, we mainly compare our results

with those of Pro-GNN. Our ensemble models outper-

form Pro-GNN by a large margin on Cora and Cite-

seer. Results in Table 2 show that our method outper-

forms ProGNN when adopting GCN as the structure-

dominant model, while the results in Table 3 demon-

strate the performance improvement when using F-

MLP as the feature-dominant model. In addition, other

instantiations of our C2oG framework can also achieve

good performance. Specifically, the combination of

S-MLP and k-NN-GCN gains 0.61%, 2.01%, 4.49%,

and 7.43% improvements as the perturbation rate in-

creases from 5% to 20% on Cora respectively. Corre-

spondingly, the improvements on Citeseer are 1.86%,

2.65%, 2.02% and 2.78%. On Pubmed, we also achieve
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Table 2. Node Classification Accuracy (%) on Clean Graphs and Perturbed Graphs

Dataset Model Perturbation Rate (%)

0 5 10 15 20

Cora GCN 83.50 ± 0.44 76.55 ± 0.79 70.39 ± 1.28 65.10 ± 0.71 59.56 ± 2.72

GCN-SVD 80.63 ± 0.45 78.39 ± 0.54 71.47 ± 0.83 66.69 ± 1.18 58.94 ± 1.13

GCN-Jaccard 82.05 ± 0.51 79.13 ± 0.59 75.16 ± 0.76 71.03 ± 0.64 65.71 ± 0.89

SimP-GCN 81.81 ± 0.62 76.43 ± 1.98 73.27 ± 1.93 70.75 ± 3.98 66.63 ± 6.87

Pro-GNN 82.98 ± 0.23 82.27 ± 0.45 79.03 ± 0.59 76.40 ± 1.27 73.32 ± 1.56

GNNGuard 77.33 ± 1.01 75.78 ± 1.23 72.59 ± 1.46 72.56 ± 1.53 72.22 ± 0.99

Soft Median 84.02 ± 0.50 79.88 ± 0.75 73.41 ± 2.34 70.50 ± 1.13 60.50 ± 0.36

GCN+F-MLP (ours) 84.09 ± 0.59 83.48 ± 0.43 82.88 ± 0.83 81.01 ± 0.57 76.70 ± 0.63

GCN+k-NN-GCN (ours) 84.27 ± 0.31 83.16 ± 0.28 82.54 ± 0.29 80.57 ± 0.40 76.86 ± 0.75

GCN1h 69.68 ± 0.55 65.31 ± 0.50 59.02 ± 0.37 52.60 ± 0.72 45.66 ± 0.34

GCN1h+F-MLP (ours) 83.05 ± 0.71 81.78 ± 0.47 81.50 ± 0.35 79.91 ± 0.42 78.92 ± 0.54

GCN1h+k-NN-GCN (ours) 83.13 ± 0.38 80.89 ± 0.36 80.06 ± 0.56 79.38 ± 0.44 78.63 ± 0.84

Citeseer GCN 71.96 ± 0.55 70.88 ± 0.62 67.55 ± 0.89 64.52 ± 1.11 62.03 ± 3.49

GCN-SVD 70.65 ± 0.32 68.84 ± 0.72 68.87 ± 0.63 63.26 ± 0.96 58.55 ± 1.09

GCN-Jaccard 72.10 ± 0.63 70.51 ± 0.97 69.54 ± 0.56 65.95 ± 0.94 59.30 ± 1.40

SimP-GCN 73.76 ± 0.78 73.12 ± 0.85 72.38 ± 0.67 71.75 ± 1.54 69.37 ± 1.50

Pro-GNN 73.28 ± 0.69 72.93 ± 0.57 72.51 ± 0.75 72.03 ± 1.11 70.02 ± 2.28

GNNGuard 68.73 ± 1.75 69.15 ± 1.25 69.95 ± 1.00 65.86 ± 1.16 68.21 ± 1.47

Soft Median 71.33 ± 0.75 69.57 ± 2.22 67.89 ± 1.91 66.03 ± 2.94 56.08 ± 1.34

GCN+F-MLP (ours) 75.14 ± 0.54 74.83 ± 0.58 73.70 ± 0.60 73.68 ± 0.83 71.91 ± 0.93

GCN+k-NN-GCN (ours) 74.80 ± 0.58 74.76 ± 0.56 73.79 ± 0.48 73.86 ± 0.79 71.74 ± 1.34

GCN1h 69.31 ± 0.34 68.90 ± 0.40 62.41 ± 0.65 62.11 ± 0.38 54.99 ± 0.31

GCN1h+F-MLP (ours) 74.31 ± 0.47 74.12 ± 0.38 74.82 ± 0.22 74.60 ± 0.58 69.30 ± 0.69

GCN1h+k-NN-GCN (ours) 74.94 ± 0.41 75.04 ± 0.23 74.53 ± 0.24 75.01 ± 0.22 72.80 ± 0.74

Pubmed GCN 87.19 ± 0.09 83.09 ± 0.13 81.21 ± 0.09 78.66 ± 0.12 77.35 ± 0.19

GCN-SVD 83.44 ± 0.21 83.41 ± 0.15 83.27 ± 0.21 83.10 ± 0.18 83.01 ± 0.22

GCN-Jaccard 87.06 ± 0.06 86.39 ± 0.06 85.70 ± 0.07 84.76 ± 0.08 83.88 ± 0.05

SimP-GCN 87.59 ± 0.10 86.79 ± 0.12 86.01 ± 0.10 85.49 ± 0.11 85.37 ± 0.12

Pro-GNN 87.26 ± 0.23 87.23 ± 0.13 87.21 ± 0.13 87.20 ± 0.15 87.15 ± 0.15

GNNGuard 85.25 ± 0.14 85.13 ± 0.15 84.65 ± 0.25 84.51 ± 0.17 84.12 ± 0.24

Soft Median 87.70 ± 0.07 86.34 ± 0.05 85.50 ± 0.08 84.43 ± 0.05 83.67 ± 0.03

GCN+F-MLP (ours) 87.62 ± 0.05 87.25 ± 0.09 87.20 ± 0.09 87.05 ± 0.08 87.04 ± 0.04

GCN+k-NN-CCN (ours) 84.92 ± 0.14 83.74 ± 0.15 82.97 ± 0.15 81.79 ± 0.16 81.35 ± 0.08

GCN1h 74.58 ± 0.81 70.70 ± 0.33 67.11 ± 0.35 63.82 ± 0.33 61.54 ± 0.46

GCN1h+F-MLP (ours) 87.19 ± 0.04 86.95 ± 0.11 86.85 ± 0.09 86.44 ± 0.15 86.42 ± 0.10

GCN1h+k-NN-GCN (ours) 85.94 ± 0.36 85.32 ± 0.31 84.78 ± 0.79 82.38 ± 0.65 81.88 ± 0.73

Note: Since all the compared baselines are GCN-based, for fair comparison, in this table we demonstrate the performance of C2oG with
GCNs (GCN+k-NN-CCN (ours)) as the structure-dominant model. The results of C2oG with other models are displayed in Table 3.
GCN1h denotes the model in which we replace the nodes’ feature matrix with an identity matrix. Bold fonts highlight the highest
accuracy.

comparable results. Moreover, it is worth noting that

Pro-GNN trains slowly (over 100x longer than GCN),

and requires lots of the GPU memory (10x larger

than GCN). Compared with Pro-GNN, our approach is

much faster (about 25x faster than Pro-GNN) and less

memory-demanding (10x less than Pro-GNN), making

it more feasible in practical use. We also compare

C2oG with SimP-GCN [23], which also focuses on ex-

ploiting the feature information. Results show that

C2oG achieves better performance on all three graphs

under different perturbation rates. Furthermore, the

performance of SimP-GCN possesses high variance, es-

pecially on Cora. One possible reason is that SimP-

GCN has an unstable graph structure in its training

stage.

UM-GNN [24] uses different data splits from the

above methods. It follows the original split in [1] and

uses the perturbation rate from 0% to 10%. Results

in Fig.3 show the accuracy improvement of C2oG and

UM-GNN over GCN. It shows that although UM-GNN

performs slightly better than C2oG when the pertur-

bation rate is small, it is outperformed by a large mar-

gin as the perturbation rate increases. This is caused

by the one-directional knowledge transferring scheme

in UM-GNN. When the predictions of GNN is highly

inaccurate, it will mislead the MLP model. This defect

is avoided in C2oG since C2oG can transfer useful in-

formation in both directions. The performance of both
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Table 3. Node Classification Accuracy (%) on Clean Graphs and Perturbed Graphs with More Structure-Dominant Models

Dataset Model Perturbation Rate (%)

0 5 10 15 20

Cora S-MLP 78.30 ± 0.17 76.25 ± 0.23 72.95 ± 0.36 67.31 ± 0.40 54.56 ± 0.25

S-MLP+F-MLP (ours) 83.59 ± 0.30 84.25 ± 0.33 83.52 ± 0.31 82.95 ± 0.59 80.75 ± 0.59

APPNP 86.00 ± 0.34 81.44 ± 0.66 76.55 ± 0.36 72.87 ± 0.83 61.43 ± 0.90

APPNP+F-MLP (ours) 85.61 ± 0.31 83.26 ± 0.30 80.39 ± 0.31 77.65 ± 0.35 70.10 ± 0.47

GCNII 85.59 ± 0.32 80.95 ± 0.56 75.36 ± 1.67 70.76 ± 0.93 58.77 ± 1.11

GCNII+F-MLP (ours) 85.27 ± 0.27 82.37 ± 0.40 79.08 ± 0.37 76.82 ± 0.34 68.46 ± 0.28

Citeseer S-MLP 69.31 ± 0.34 68.90 ± 0.40 62.41 ± 0.65 62.11 ± 0.38 54.99 ± 0.31

S-MLP+F-MLP (ours) 74.31 ± 0.47 74.12 ± 0.38 74.82 ± 0.22 74.60 ± 0.58 69.30 ± 0.69

APPNP 73.36 ± 0.45 72.71 ± 0.54 72.04 ± 0.42 69.44 ± 0.43 60.15 ± 0.73

APPNP+F-MLP (ours) 74.93 ± 0.16 74.62 ± 0.71 73.64 ± 0.65 72.57 ± 0.31 68.26 ± 0.60

GCNII 73.76 ± 0.38 73.85 ± 0.24 71.64 ± 0.65 70.50 ± 0.37 61.56 ± 1.20

GCNII+F-MLP (ours) 75.05 ± 0.19 74.92 ± 0.44 73.84 ± 0.30 72.78 ± 0.43 68.61 ± 0.45

Pubmed S-MLP 77.23 ± 0.17 73.29 ± 0.19 70.36 ± 0.42 66.99 ± 0.75 64.68 ± 0.66

S-MLP+F-MLP (ours) 86.57 ± 0.11 86.58 ± 0.10 86.51 ± 0.10 86.31 ± 0.11 86.26 ± 0.08

APPNP 85.89 ± 0.11 83.31 ± 0.12 81.31 ± 0.12 78.88 ± 0.20 76.55 ± 0.28

APPNP+F-MLP (ours) 87.10 ± 0.12 86.54 ± 0.13 86.48 ± 0.37 86.30 ± 0.12 85.86 ± 0.18

GCNII 85.67 ± 0.18 83.53 ± 0.45 82.41 ± 0.19 80.76 ± 0.96 80.59 ± 0.28

GCNII+F-MLP (ours) 86.50 ± 0.49 86.44 ± 0.03 86.45 ± 0.27 86.46 ± 0.94 86.34 ± 0.38

Note: Bold fonts highlight the higher accuracy.
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Fig.3. Accuracy improvement over GCN. (a) Results on Cora. (b) Results on Citeseer.

GNN and MLP improves during the co-training pro-

cess.

In Table 3, results show that state-of-the-art GNNs

like APPNP and GCNII are also vulnerable to edge

perturbations, while C2oG could consistently improve

the accuracy of the structure-dominant models via co-

training with an F-MLP model. Specifically, on Cora,

C2oG brings up to 8.67% and 9.69% performance gains

for APPNP and GCNII, respectively. The performance

improvements over APPNP and GCNII are up to 8.11%

and 7.05% on Citeseer respectively and the improve-

ments on Pubmed are 9.31% and 5.75% respectively.

This demonstrates the applicability of C2oG on GNNs

beyond classic GCNs.

5.4 Complexity Analysis and

Node Classification Accuracy on

Larger Graphs

The computational complexity of C2oG is bounded

by the complexity of its sub-models. Specifically, as-

suming that the number of iterations is k and the worst

computational complexity among sub-models is O(Tc),

the computational complexity of the co-training process

is O(kTc). There exist trade-offs between the accuracy

and the selection of k, which will be elaborated in Sub-

section 5.5.2. Moreover, even though C2oG requires to

train the sub-models for k times, its sub-models are sim-

ple and quick convergent. In contrast, GNNGuard re-

quires to compute the attention of each connected node
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pair at each layer and Soft Median needs to compute the

distance for nodes to their medians. Accordingly, the

following empirical results show that C2oG has a simi-

lar efficiency to Soft Median and beats GNNGuard. In

terms of memory complexity, since co-training does not

require storing intermediate results or additional para-

meters, the memory complexity of C2oG is bounded by

the maximum memory complexity of the sub-models

O(Tm).

To further verify the effectiveness of C2oG, we eva-

luate it on five larger graphs [45]. As shown in Table 4,

the five new datasets have more nodes and edges than

the three datasets we show in Table 1. As baselines, we

select the state-of-the-art defense approaches including

GNNGuard [10] and Soft Median [43]. Since Metattack

fails to attack graphs at such a scale, we adopt the PR-

BCD attack [43] with the CW loss as the attack method.

We keep the number of co-training iterations as 10 for

simplicity. After 10 iterations, 80% of the unlabeled

nodes are added into the training set. For each case,

we repeat the test for five runs. As illustrated in Ta-

ble 5, C2oG outperforms both GNNGuard and Soft Me-

dian in most cases, especially under higher perturbation

rates. In terms of efficiency, C2oG is comparable with

Soft Median and is around 10 times faster than GNN-

Guard, which validates that the proposed co-training

Table 4. Statistics of the Larger Datasets

Dataset Number of Nodes Number of Edges Number of Classes Number of Features

Cora-Full 19 793 63 421 70 8 710

Coauthor-CS 34 493 247 962 5 8 415

Coauthor-Physics 18 333 81 894 15 6 805

Amazon-computers 13 752 245 861 10 767

Amazon-photo 7 650 119 081 8 745

Table 5. Node Classification Accuracy (%) on Clean Graphs and Perturbed Graphs at a Larger Scale

Dataset Model Perturbation Rate (%)

0 5 10 15 20

Cora-Full GCN 64.47 ± 0.19 57.91 ± 0.34 55.87 ± 0.38 56.69 ± 0.23 55.07 ± 0.25

GNNGuard 1○ 59.14 ± 0.17 58.34 ± 0.57 57.99 ± 0.25 57.74 ± 0.60 57.89 ± 0.18

Soft Median 2○ 61.71 ± 0.24 55.90 ± 1.42 54.92 ± 0.08 54.25 ± 0.32 52.66 ± 0.06

C2oG 66.37 ± 0.20 64.60 ± 0.25 64.33 ± 0.13 64.03 ± 0.20 63.62 ± 0.21

Coauhour-CS GCN 92.46 ± 0.06 85.82 ± 0.24 83.39 ± 0.21 82.78 ± 0.55 80.26 ± 0.15

GNNGuard 92.36 ± 0.09 91.93 ± 0.19 91.67 ± 0.05 91.58 ± 0.09 91.95 ± 0.10

Soft Median 92.99 ± 0.03 91.31 ± 0.08 90.36 ± 0.10 89.66 ± 0.09 87.87 ± 0.17

C2oG 94.40 ± 0.14 93.91 ± 0.09 93.81 ± 0.13 93.60 ± 0.10 93.50 ± 0.14

Coauhour-Physics GCN 95.63 ± 0.05 89.69 ± 0.03 87.16 ± 0.27 85.14 ± 0.23 86.77 ± 0.11

GNNGuard 95.78 ± 0.08 95.43 ± 0.10 95.06 ± 0.07 94.98 ± 0.06 95.10 ± 0.10

Soft Median 95.83 ± 0.14 93.67 ± 0.17 88.84 ± 0.45 85.76 ± 0.26 87.06 ± 0.12

C2oG 96.18 ± 0.04 95.71 ± 0.03 95.19 ± 0.06 94.87 ± 0.09 95.10 ± 0.04

Amazon-computers GCN 88.77 ± 0.51 81.20 ± 0.68 72.54 ± 1.47 71.46 ± 1.01 73.31 ± 1.52

GNNGuard 87.85 ± 0.59 80.60 ± 1.26 69.69 ± 2.61 64.78 ± 2.85 72.13 ± 1.98

Soft Median 88.66 ± 0.57 82.54 ± 0.25 76.53 ± 0.56 73.02 ± 0.37 76.86 ± 0.49

C2oG 87.72 ± 0.24 85.80 ± 0.83 83.70 ± 1.76 82.82 ± 2.05 77.77 ± 5.76

Amazon-photo GCN 93.27 ± 0.15 86.22 ± 0.34 79.22 ± 1.34 78.31 ± 2.15 72.98 ± 1.72

GNNGuard 93.19 ± 0.25 86.40 ± 1.01 79.92 ± 1.80 75.27 ± 2.83 70.17 ± 1.50

Soft Median 92.13 ± 0.75 87.74 ± 0.56 86.40 ± 0.30 83.00 ± 0.47 77.67 ± 0.46

C2oG 94.57 ± 0.50 92.00 ± 1.09 90.72 ± 2.38 89.92 ± 0.31 89.37 ± 1.69

1○https://github.com/mims-harvard/GNNGuard, Sept. 2022.
2○https://github.com/sigeisler/robustness of gnns at scale, Sept. 2022.
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approach is quickly convergent.

5.5 Ablation Study

In this subsection, we conduct an ablation study on

the model calibration and label balancing techniques.

We also evaluate how the number of iterations and the

number of nodes to be added in each iteration affect

the performance.

5.5.1 Model Calibration and Class Balancing

Fig. 4 shows the reliability diagram of the GCN

with/without model calibration. The reliability di-

agram demonstrates that the vanilla GCN is under-

confident. After temperature scaling, the model’s out-

puts can reflect the correctness likelihood more accu-

rately. To validate the benefit of the class balanc-

ing technique, we train an ensemble of GCN+MLP

with/without class balancing on Cora and present the

results in Fig. 5. We report the confusion matrix of

the ensemble model in each iteration. Results show

that without class balancing, the co-training process

will overfit to the dominant class. As the co-training

process continues, more and more test data are labeled

as the dominant class, thus impairing the performance

of the ensemble model.

5.5.2 Number of Iterations and Added Nodes

There are two hyper-parameters to set in C2oG,

which are the number of iterations and the number

of nodes to add in each iteration. In our experi-

ments, we add 100, 250 and 500 nodes in each itera-

tion and evaluate C2oG’s performance from zero iter-

ation (the ensemble without co-training) to maximum

iterations (until no test data left). Results are shown

in Fig.6. As the co-training process continues, the per-
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Fig.5. Confusion matrix (M) during the co-training process (GCN+MLP on Cora). Mij denotes how many instances with an actual
class i is predicted as class j. Without class balancing (CB), the co-training process will overfit to the dominant class (class 2 in this
case), thus leading to the decrease of the accuracy as the co-training continues.
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formance of C2oG is improved quickly in the beginning

and stabilizes in the later iterations. Adding less nodes

per iteration can slightly improve the performance of

C2oG. However, it also takes longer to train C2oG,

which indicates a trade-off between effectiveness and

efficiency. Furthermore, compared with the ensemble

of sub-models without co-training (the starting points),

C2oG can improve the performance by a large margin,

especially on the perturbed data.
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Fig. 6. Node classification accuracy using different hyper-
parameters. Different shapes denote the results under different
perturbation rates. (a) 100 nodes are added per iteration. (b)
250 nodes are added per iteration. (c) 500 nodes are added per
iteration.

5.6 Adaptive Attacks

Evaluating C2oG against adaptive attacks is nece-

ssary since attackers may attack C2oG by conduct-

ing both structure and feature perturbations in prac-

tice. However, adaptive attacks on C2oG are non-trivial

since the co-training process works in a non-differential

manner. Therefore, the attacker cannot find the opti-

mal ratio to split the perturbation budget among diffe-

rent views via automatic optimizations. To evaluate

C2oG against adaptive attackers, we assume that the

attacker will explore the effectiveness of different bud-

get splits to find the optimal one. Specifically, we adapt

the Metattack [8] to attack the MLP model, keep the

total perturbation budget as 20% of the total number

of edges, and evaluate C2oG’s performance under diffe-

rent ratios between feature and structure perturbations.

Results are shown in Fig.7. We observe that the clas-

sification accuracy of C2oG is higher than that of both

the GCN model and the MLP model regardless of diffe-

rent budget splits, which validates the effectiveness of

C2oG under adaptive attacks.
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Fig.7. Node classification accuracy of GCN, MLP and C2oG
under different ratios of feature and structure perturbations on
Cora.

6 Conclusions

In this paper, we presented a calibrated co-training

framework, named C2oG, to learn a robust model that

integrates the feature information and the structure

information of the graph data. C2oG is simple-to-

implement but effective in improving the robustness

for various models against adversarial attacks. The

complementarity of the feature view and the structure

view of the graph data diversifies the outputs of sub-

models and weakens the transferability of adversarial

attacks between sub-models. Evaluation results vali-

dated the effectiveness of C2oG on both clean and per-
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turbed graphs. C2oG is generic and can be applied to

various types of models beyond classic GCNs. In addi-

tion, C2oG can still achieve good robustness under the

adaptive attack setting where the defense internals are

known to the attackers.
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[36] Tramèr F, Papernot N, Goodfellow I, Boneh D, Mc-

Daniel P. The space of transferable adversarial examples.

arXiv:1704.03453, 2017. http://arxiv.org/abs/1704.03453,

Oct. 2021.

[37] Klicpera J, Bojchevski A, Günnemann S. Predict then
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