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Abstract There are a wide variety of intelligence accelerators with promising performance and energy efficiency, deployed

in a broad range of applications such as computer vision and speech recognition. However, programming productivity hinders

the deployment of deep learning accelerators. The low-level library invoked in the high-level deep learning framework which

supports the end-to-end execution with a given model, is designed to reduce the programming burden on the intelligence

accelerators. Unfortunately, it is inflexible for developers to build a network model for every deep learning application, which

probably brings unnecessary repetitive implementation. In this paper, a flexible and efficient programming framework for

deep learning accelerators, FlexPDA, is proposed, which provides more optimization opportunities than the low-level library

and realizes quick transplantation of applications to intelligence accelerators for fast upgrades. We evaluate FlexPDA by

using 10 representative operators selected from deep learning algorithms and an end-to-end network. The experimental

results validate the effectiveness of FlexPDA, which achieves an end-to-end performance improvement of 1.620x over the

low-level library.
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1 Introduction

In recent years, deep learning (DL) has emerged

as the state of the art across a broad range of

applications such as image classification [1–3], speech

recognition [4, 5], natural language processing [6, 7], au-

tomatic driving [8, 9], and cancer detection [10, 11]. Tra-

ditionally, DL applications are executed on general-

purpose platforms such as CPUs which are usually inef-

ficient because general-purpose processors put in exces-

sive hardware resources to support various workloads

flexibly. Therefore, a large variety of DL accelerators

as efficient alternatives have emerged.

Along with the rapid increase in the performance

of deep learning accelerators, programming productiv-

ity gradually hinders their deployments. A traditional

DL accelerator often has many heterogeneous parallel

components. It is notoriously difficult to program hete-

rogeneous systems and parallel systems. The low-level

library which provides a series of efficient and versatile

programming interfaces for accelerating various deep

learning algorithms, is developed to reduce the pro-

gramming burden on the intelligence accelerators. A

DL framework, such as Tensorflow [12], Caffe [13], and

Theano [14], is a unified abstraction of the data and ope-

rations involved in the training and inference process
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of the neural network, which improves the efficiency of

development. The DL framework embeds the low-level

library to support the end-to-end execution with a given

model. Unfortunately, it is inflexible for developers to

build a network model for every deep learning appli-

cation, which probably brings unnecessary repeating

implementation. Generally, there are some traditional

modules such as reading input, pre-processing data, and

some intelligent modules containing neural networks

such as classification and object detection in an intel-

ligence application. As shown in Fig.1, an intelligent

system implemented by C language contains three mod-

ules A, B, C, in which A and C are traditional mod-

ules and B is an intelligent module. Currently, the DL

framework is the unique choice when developers want

to accelerate module B with deep learning accelerators.

The network model is implemented by a DL frame-

work, such as Tensorflow [12] and Caffe [13]. The DL

framework employs deep learning accelerators to accel-

erate application modules through the low-level library.

However, it is not flexible or even efficient enough for

developers in some application scenarios. For example,

when developers want to speed up a matrix multipli-

cation calculation, it is very unfriendly to build a net-

work model that probably needs to be tuned. In addi-

tion, in order to improve the programming productivity

on GPGPU (General Purpose Computing on Graphics

Processing Unit) accelerators, both CUDNN (NVIDIA

CUDA Deep Neural Network library) 1○ developed for

various DL frameworks and CUDA (Compute Unified

Device Architecture) 2○ language developed for users

are aimed to promote the development of GPGPU-

accelerated applications. In a nutshell, a programming

framework, which is similar to CUDA, is necessary to

support users for the development of more flexible and

efficient deep learning applications.

In this paper, a flexible and efficient programming

framework for DL accelerators, FlexPDA (Flexible Pro-

gramming On DL Accelerators), is proposed. FlexPDA

is composed of a domain-specific language (frontend)

and a code generator (backend). DL accelerators pro-

gramming with sufficient flexibility and efficiency can

be performed through FlexPDA so that intelligence ap-

plications can be transplanted easily to the DL plat-

form for fast upgrades. Specifically, abstractions of

applications in DL fields and architectures similar to

DaDianNao [15] are summarized firstly. DaDianNao [15]

is a representative DL accelerator that supports vari-

ous vector operations, which has high performance and

low energy consumption. Then, based on the afore-

mentioned abstractions, a domain-specific language for

deep learning computing, FlexPDA C, is proposed as

an extension of C language, which provides a series

of high-performance DL calculation interfaces for pro-

gramming. What is more, a backend code generator

is presented as a fully functional and high-performance

module based on LLVM [16] and Clang 3○.
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Fig.1. Example of the system with DL accelerators.

In summary, our main contributions are the follow-

ings.

• We give abstractions of the applications in DL

fields and architectures similar to DaDianNao, to guide

the language design.

• We present a programming framework, Flex-

PDA, including an easy-to-use domain-specific lan-

guage, FlexPDA C, and a corresponding backend code

generator, which can automatically generate the high-

performance machine code for different DL operations.

• We evaluate FlexPDA by using 10 representative

operators selected from deep learning algorithms and

an end-to-end network. The experimental results show

that FlexPDA can achieve an end-to-end performance

improvement of 1.620x over the low-level library.

The rest of the paper is organized as follows. In

Section 2, abstractions of applications in DL fields and

architectures similar to DaDianNao are presented. Sec-

tion 3 describes the overall language design as well as

1○https://developer.nvidia.com/cuDNN, Sept. 2021.
2○https://developer.nvidia.com/cuda-toolkit, Sept. 2021.
3○http://clang.llvm.org, Sept. 2021.
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example programs that use FlexPDA. The implemen-

tation and optimization for device and host code gen-

erators are depicted in Section 4. Experimental eval-

uations are shown in Section 5, and the discussion is

given in Section 6. The related work is presented in

Section 7. Conclusions are presented in Section 8.

2 Abstractions of Applications and

Architectures

In this section, abstractions of intelligence applica-

tions and DL accelerators similar to DaDianNao [15] are

given. The abstractions of applications that are used

to acquire the characteristics of data and operations of

DL algorithms, can guide the design of a language so

that users are enabled to develop applications flexibly

and efficiently. The abstractions of architectures that

analyze the parallel structure and the storage model

of accelerators can be used to guide the backend code

generator to generate high-performance machine code.

2.1 Abstractions of Applications

Recent trends in technology scaling, the availability

of large amounts of data, and novel algorithmic break-

throughs have spurred the adoption of intelligence ac-

celerators. In this subsection, applications from the

perspective of data structure and operations are ab-

stracted.

2.1.1 Data Structure

In various deep learning algorithms that are exe-

cuted on intelligence accelerators, data is typically in

different computational nodes with the form of vectors

or multi-dimensional arrays. In the field of natural lan-

guage processing, an n-dimensional vector is often used

to characterize a word, and then a model is trained to

learn a word embedding matrix to perform tasks such

as text similarity and sentiment analysis. In addition,

input data, filters, extracted feature maps, etc. are

usually represented by a multi-dimensional array when

performing tasks in the area of computer vision such

as image classification and object detection. Moreover,

in the field of speech recognition, a matrix is usually

required to represent the acoustic signals of a speech;

thereby acoustic and linguistic models are established

which can convert a speech into a piece of text. Multi-

dimensional arrays are kept in a sequence of memory.

The index is used to query elements and traverse the ar-

ray, which is convenient and fast. Furthermore, multidi-

mensional arrays can improve computational efficiency

and provide opportunities for optimization. Therefore,

each data structure is abstracted into a tensor type, an

advanced data structure of an n-dimensional array, in

the DL applications.

2.1.2 Operations

It can be observed that frequently used operations

consist of basic operations such as addition, multipli-

cation by constant, and DL typical operations such as

convolution, pooling, and fully-connected operations.

From the perspective of computational patterns, these

operations are abstracted into region operations and el-

ementwise operations.

Region Operations. Each operation such as a con-

volution operation and a fully-connected operation, is

based on a region and produces a value. Region ope-

rations are usually used to extract image features, com-

press image sizes, etc. They are often used in fields such

as image classification and object detection.

Elementwise Operations. Elementwise operations

are the most widely used in plentiful deep learning sce-

narios, in which each input produces a result. This kind

of operations contains not only basic operations such as

vector addition and vector multiplication, but also acti-

vation operations such as sigmoid and relu operations.

2.2 Abstractions of Architectures

In this subsection, abstractions of architectures are

summarized, including characteristics for multi-chip or-

ganization and storage model.

2.2.1 Multi-Chip Organization

The multi-chip system is commonly used in the DL

accelerators similar to DaDianNao [15, 17], as shown in

Fig.2(a). Fig.2(a) is a 4-node system. Every four nodes

are connected to a DDR controller which is represented

as ∗. A node adopts a tile-based organization which

consists of 16 leaf tiles and one central tile. A tile

mainly contains a neural functional unit (NFU) and

a cache bank, as shown in Fig.2(b). NFU is largely a

pipelined version of the typical computations required

to evaluate an output. The cache bank is used to

cache data and instructions. All the tiles are connected

through an on-chip network which serves to broadcast

the input values to each tile and to collect the output

values from each tile.

As can be found, each node of intelligence acceler-

ators (IAC) is relatively “heavy” and fully functional.

The calculation and the data access are independent
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Fig.2. Architecture of DL accelerators. (a) Multi-chip organization. (b) Storage model of each tile.

between nodes. In this article, a larger granularity, the

job is used to represent the computations on the nodes

of accelerators. When the multi-node mode is enabled,

the intelligence accelerator splits the computation into

multiple jobs. Each node performs a batch of jobs, and

each job contains a set of calculations. For example,

when acting a multiplication of a matrix of 32×16 and

a matrix of 16× 8, and simultaneously specifying that

four nodes are used for parallel execution, the jobs on

each node may be assigned as a multiplication of an

8 × 16 matrix and a 16 × 8 matrix. The jobs between

nodes are independent of each other and can communi-

cate with each other.

To this end, a two-tuple

IACparallel = (job scale, job parallelism)

is employed as the programming abstraction of parallel

of multi-chip. Among them, job scale represents the

amount of computation, and job parallelism indicates

how many nodes the jobs want to be decomposed to

execute on.

2.2.2 Storage Model

It can be seen from Fig.2(b) that each tile has a local

on-chip memory, and all tiles can access off-chip DRAM

as shown in Fig.2(a). As shown in Fig.2(b), on-chip

memory is typically split into three structures: an input

buffer (NBin), an output buffer (NBout), and a synap-

tic weights buffer (SB). The splitting structure can tai-

lor the appropriate read/write width of the SRAMs and

avoid conflicts that probably occur in a cache. The on-

chip memory that caches instructions is not visible to

the user; therefore it will not be mentioned here.

In this paper, M = {m1,m2, ...} is used as the sto-

rage model, where M is the on-chip memory and mi

represents the buffers with different functions in the on-

chip memory. The on-chip memory of the architectures

mentioned above is divided into three types. Therefore,

IACmemory = {MI,MO,MW} is used to represent the

hierarchical memory model of intelligence accelerators

similar to DaDianNao. MI, MO, and MW are used to

store input data, output data, and weight parameters,

corresponding to NBin, NBout and SB, respectively.

3 Frontend Language Design

3.1 Device Programming

FlexPDA C, a domain-specific language, is deve-

loped for intelligence accelerators programming. Based

on the characteristics of DL applications and acceler-

ators, FlexPDA C is implemented as an extension of

C programming language. The aim of the language is

to allow developers to program DL accelerators with

sufficient flexibility. In this subsection, the C language

is extended from three aspects which are data struc-

ture and operations, hierarchical memory model, and

multi-chip parallelism.

3.1.1 Data Structure and Operations

The words in the natural language processing, fil-

ters in the computer vision, and acoustic signals in the

speech recognition are all represented by n-dimensional

arrays. Based on the characteristic, a tensor data struc-

ture, DLCollect, is introduced to help users express

their DL programs.

Fig. 3 shows the grammar rules for the new data

structure, DLCollect, and some of the operations as-

sociated with DLCollect in FlexPDA C, including the

declaration, access, and calculation of DLCollect vari-

ables. DLCollect encapsulates the dimension and type
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digit ::= [0-9]

letter ::= [a-zA-Z]

DLCollect-id ::= (letter | [ ]) (letter | digit | [ $.])*
DLCollect-id-list ::= DLCollect-id | DLCollect-id, DLCollect-id-list decimal-literal ::= digit+

float-type ::= ’f16’ | ’f32’
interger-type ::= ’i8’ | ’i16’ | ’i32’
DLCollect-element-type ::= float-type | interger-type
static-dimention-list ::= (’,’ decimal-literal)+

DLCollect-type ::= ’DLCollect’ ’<’ DLCollect-element-type static-dimention-list ’>’

MLCollec-def ::= DLCollect-type DLCollect-id-list

DLCollect-decl ::= DLCollect-def ’;’ | DLCollect-def ’;’ DLCollect-decl

DLCollect-operator ::= operator-elementwise | operator-region
DLCollect-expr ::= DLCollect-operator | DLCollect-id | DLCollect-slice
DLCollect-index ::= DLCollect-id (’[’ letter ’]’)+ // elementwise access

DLCollect-slice ::= DLCollect-id (’[’ letter ’:’ digit ’:’ digit ’]’)+ // region access

DLCollect-operator-params ::= (DLCollect-expr)+

// elementwise operators such as add, sub and mul

DLCollect-operator-elementwise ::= ’flexpda::add(’ DLCollect-operator-params ’)’

| ’flexpda::sub(’ DLCollect-operator-params ’)’

| ’flexpda::mul(’ DLCollect-operator-params ’)’

// region operators such as conv and maxpool

DLCollect-operator-region ::= ’flexpda::conv(’ DLCollect-operator-params ’)’

| ’flexpda::maxpool(’ DLCollect-operator-params ’)’

Fig.3. Grammar rules of the new extended data type within FlexPDA C.

for data, which is similar to ndarray in numpy 4○. When

declaring DLCollect variables, the length of each di-

mension needs to be explicitly specified.

In terms of data access, the access to individual el-

ements through subscripts for elementwise operations

and the access to multiple elements of adjacent regions

by hash expression for region operations are offered.

For example, map[x][y] represents the access to the ele-

ment at coordinates (x, y), and the hash expression

map[x : 3 : 1][y : 3 : 1] represents a region with the

coordinates (x, y) as the starting point, a length of 3 in

the X/Y direction, and an adjacent element interval of

1.

The elementwise and region operations of DLCol-

lect are implemented by built-in functions. For exam-

ple, Fig.4 lists the interface of convolution operation

of DLCollect. The input data input and convolution

kernels filter with the DLCollect type, and the length

of the vertical or horizontal translation after each con-

volution stride height and stride width, are transferred

to the flexpda::conv interface. The convolution results

with the DLCollect type will be kept in output.

3.1.2 Memory Hierarchy

Unlike CPUs which present their memory as a uni-

formly accessible address space, it can be found that the

storage model of intelligence accelerators, IACmemory,

consists of three types of memory hierarchy: MI, MO,

MW, from Section 2. Fatahalian et al. [18] demonstrated

that we can benefit from the design of exposing the no-

tion of the hierarchical memory to language. In this pa-

per, the division of the memory hierarchy is also taken

into consideration in the design of FlexPDA C.

FlexPDA C presents a variety of memory keywords

that allow the user to explicitly control the allocation of

data. The code generator is aware of all of these mem-

void flexpda::conv(DLCollect output, DLCollect input, DLCollect filter, int stride height, int stride width)

A convolutional operation, which identify characteristic elements of the input data

output: The result of convolution with < datatype, Co, Ho,Wo > shape.

input: The input of convolution with < datatype, Ci, Hi,Wi > shape.

filter: The weight parameters of convolution with < datatype, Co, Ci, Hf ,Wf > shape.

stride height: Length of translation in the vertical direction after each convolution operation.

stride width: Length of translation in the horizontal direction after each convolution operation.

Fig.4. Convolution operation of DLCollect.

4○http://www.numpy.org, Sept. 2021.
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ory hierarchies and is able to automatically optimize

each of them. Table 1 is a list of memory hierarchies in

the language. Variables with “ icache ”, “ ocache ”

and “ wcache ” represent the creation of the statically

sized space on MI, MO, and MW, respectively.

Table 1. Memory Hierarchies of FlexPDA C

Memory Hierarchy Description

icache FlexPDA C memory hierarchy,
corresponding to MI

ocache FlexPDA C memory hierarchy,
corresponding to MO

wcache FlexPDA C memory hierarchy,
corresponding to MW

MI, MO, and MW memories are always allocated by

using on-chip resources of the accelerators. By default,

they are not accessible by the host. Each memory hier-

archy is guaranteed to appear coherently to the develo-

per. The resources used to implement each memory

hierarchy are restricted. The developers need to ensure

that the data stored at each memory hierarchy cannot

exceed the size allocated in on-chip.

The design of memory hierarchy gives users the right

to manage the memory of accelerators so that the ac-

cess latency can be decreased by exactly controlling

the memory hierarchy of data. Moreover, the backend

code generator will perform architecture-related opti-

mizations based on the information of the memory hi-

erarchy passed by FlexPDA C.

3.1.3 Parallelism

The architectures of DL accelerators similar to

DaDianNao [15] are based on the multi-chip organiza-

tion. A two-tuple is employed as the abstraction of

parallel programming (refer to Section 2). When per-

forming programs in multi-node mode, IACparallel must

be specified on the host. When the computation is im-

plemented with one node, the job parallelism and the

job scale are set to 1 respectively.

For example, IACparallel = (64, 8) indicates that the

job scale is 64, and eight nodes are selected to execute

jobs parallelly. In the program, chipId is used to index

the node where the current job is located. It should be

noted that the job parallelism cannot exceed the num-

ber of nodes of accelerators. It can be seen that the

parallelism of job granularity makes the parallel mana-

gement hierarchy more distinct, and easier for users to

carry out parallel computing.

3.2 Host Programming

In the FlexPDA programming framework, the cor-

responding host interface needs to be called if the appli-

cation developer wants to speed up a certain part of the

system with DL accelerators. The parameters required

by the kernel function, the function pointer of the ker-

nel function, and the parallel parameters will be passed

to the host interface. Fig.5 shows the interface specifi-

cation of flexpda::executeKernel. As can be found, the

programming on the host is efficient for users.

1 flexpda :: executeKernel(param1 ,
2 param2 ,
3 ...
4 the function pointer of
5 kernel ,
6 IACP);

Fig.5. Host interface.

3.3 Flexibility of FlexPDA

FlexPDA is a flexible programming framework for

DL accelerators. DL accelerators programming with

sufficient flexibility and efficiency can be performed

through FlexPDA so that intelligence applications can

be transplanted easily to the DL platform for fast up-

grades. In this subsection, we discuss the flexibility of

FlexPDA from two aspects.

Performing Low-Level Optimizations. The low-level

library such as DLPlib [19] is commonly used in deep

learning frameworks such as Caffe 5○, Tensorflow 6○.

The computational-graph level optimizations such as

channel pruning, operator fusion can be performed, but

optimizations of code generation are challenging for

developers because the low-level information of deep

learning accelerators is hidden in the deep learning

frameworks. FlexPDA, which exposes the notion of hi-

erarchical memory to programming language and pro-

vides a parallel mechanism for users, is complement

with these deep learning frameworks. The developers

can decrease the access latency of algorithms through

exactly controlling the memory hierarchy of variables.

Besides, low-level optimizations can be performed ac-

cording to the computation pattern of a specific algo-

rithm. For example, the data transmission can be cov-

ered by the elaborate-designed double buffer. The reg-

ister overflow can be trimmed down by reducing the

5○https://github.com/BVLC/caffe, Aug. 2022.
6○https://github.com/tensorflow/tensorflow, Aug. 2022.
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use of local variables. Moreover, it is convenient to

vectorize scalar calculations and design efficient para-

llel methods with FlexPDA. The low-level optimization

of FlexPDA greatly contributes to the performance im-

provement of deep learning algorithms. The experimen-

tal results demonstrate the effectiveness of low-level op-

timization (refer to Subsection 5.3 and Subsection 5.4).

Customizing Functional Module. With the outbreak

of the artificial intelligence revolution again, various

efficient neural network models for different compu-

tational complexity and memory access budgets have

sprung up. The new network architectures reduce com-

putational and memory overhead while maintaining the

accuracy by introducing new operations. However, the

infrastructures of deep learning accelerators such as

high-performance libraries are ignorant to users, which

makes it difficult to add new modules of specific func-

tions to the framework. For example, if the library of

a dedicated accelerator does not provide Convolution-

Depthwise operation, then many advanced networks

such as ShuffleNet [20] cannot directly use the accelera-

tor to enhance performance. In this case, users have to

implement the operation by themselves. In FlexPDA,

the data structure of DLCollect and the operation of

flexpda::conv can be used to customize the depthwise

separable convolution. FlexPDA can help users to add

specific functional layers for new network architectures.

3.4 Usage and Samples

In this subsection, FlexPDA C is discussed with two

samples. One sample displays the realization of convo-

lution, and the other sample presents the application of

multi-chip parallelism.

Fig.6 and Fig.7 show how the convolution is im-

plemented within FlexPDA C on device and host re-

spectively. As shown in Fig.6, on the device, the entry

function ConvKernel can only be called by the host

program which is identified by global . In ConvK-

ernel, first of all, three variables with DLCollect type

which are initialized by the input of the entry function

(output is initialized to 0) are constructed. Then, the

flexpda::conv interface is called to make the convolu-

tion operation. Finally, the first address of the result

of convolution output is passed back to out data. The

interfaces such as flexpda::add and flexpda::conv which

are provided by FlexPDA C, can help users flexibly

and efficiently implement various deep learning algo-

rithms. As shown in Fig.7, on the host, the parallel

parameter IACP (IACparallel) is set to (1, 1) since the

multi-chip parallelism is not used. Then, the interface

flexpda::executeKernel is called.

Fig.8 and Fig.9 display how to achieve multi-chip

matrix multiplication within FlexPDA C on device and

host respectively. As shown in Fig.8, on the device, in

the MultiNodeMatrixMUL entry function, firstly, three

DLCollect instances input1, input2, output are con-

structed and initialized with the data of the entry func-

tion (output is initialized to 0). Then, all nodes are

synchronized. Secondly, the nested loop is employed

to implement the multiplication of an M × P matrix

and a P × N matrix with multi-chip mode. Finally,

the address of the calculation result output is passed

back to dst. As shown in Fig.9, on the host, IACP

(IACparallel) is set to (M, 8). The multiplication calcu-

1 __global__ void ConvKernel(half *out_data ,
2 half *in_data ,
3 half *filter_data) {
4 // Construct and initialize DLCollect instances
5 __icache__ DLCollect <half ,
6 IN_CHANNEL ,
7 IN_HEIGHT ,
8 IN_WIDH > input(in_data);
9 __wcache__ DLCollect <half ,

10 OUT_CHANNEL ,
11 IN_CHANNEL ,
12 FILTER_HEIGHT ,
13 FILTER_WIDH > fileter(filter_data);
14 __ocache__ DLCollect <half ,
15 OUT_CHANNEL ,
16 OUT_HEIGHT ,
17 OUT_WIDH > output (0);
18 // Call the interface to perform convolution calculation
19 flexpda ::conv(output , input , filter ,
20 STRIDE_HEIGHT , STRIDE_WIDTH);
21 // Store output
22 out_data = output.data();
23 }

Fig.6. Implementation of convolution on device within FlexPDA C.
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lation is divided into eight jobs, and each node performs

the multiplication of a matrix of M
8 × P and a matrix

of P ×N . Then, the interface flexpda::executeKernel is

called.

1 flexpda :: parallel IACP (1,1);
2 flexpda :: executeKernel(output , input , weight ,
3 &ConvKernel , IACP);

Fig.7. Implementation of convolution on host within FlexPDA
C.

1 __global__ void MultiNodeMatrixMUL(half *dst ,
2 half *src1 ,
3 half *src2) {
4 // Construct and initialize DLCollect instances
5 __icache__ DLCollect <half , M, P> input1(src1);
6 __icache__ DLCollect <half , P, N> input2(src2);
7 __ocache__ DLCollect <half , M, N> output (0);
8 // Synchronize all nodes
9 flexpda :: sync_chips ();

10 // Perform matrix multiplication calculation with
multi -chip parallel

11 int everyChipJob = ceil(M/chipDim);
12 for (int i = everyChipJob * chipId;
13 i < min(M, everyChipJob * (chipId + 1));
14 i++) {
15 for (int j = 0; j < N; j++) {
16 for (int k = 0; k < P; k++) {
17 output[i][j] += input1[i][k] * input2[k][j];
18 }
19 }
20 }
21 // Store output
22 dst = output.data();
23 }

Fig.8. Implementation of multi-chip matrix multiplication on
device within FlexPDA C.

1 flexpda :: parallel IACP(M,8);
2 flexpda :: executeKernel(result , src1 , src2 ,
3 &MultiNodeMatrixMUL , IACP);

Fig.9. Implementation of multi-chip matrix multiplication on
host within FlexPDA C.

4 Backend Code Generator

In this section, the backend code generator of Flex-

PDA based on LLVM compiler infrastructure [16] is pre-

sented, as shown in Fig.10. The input contains the fol-

lowings: 1) a kernel program in which an algorithm is

implemented by users using FlexPDA C, whose name

is suffixed with .iac, for example, kernel.iac; 2) a host

program that runs on the CPU, whose name is suffixed

with .cpp, for example, host.cpp.

On the device, the features of syntax including vari-

ous memory hierarchies, built-in parallel variables, and

the implementation of various DL interfaces, will be

supported by the device code generator. Next, the fron-

tend of FlexPDA will perform memory management

such as the mapping of memory hierarchies and the

data transmission between different memory hierar-

chies. Moreover, the device code generator will achieve

pointer address space inference based on a data flow

analysis, and data layout optimization based on pointer

address space inference. The code generator generates

object files for the device program.

kernel.iac

FlexPDA C Frontend

Grammar
Feature Support

Memory
Management

Pointer Address
Space Inference

Data Layout
Optimization

IR Optimization

Code Generation

Runtime Library Host Compiler

host.cpp

Translation

Fat Binary

Input
Output

Work Flow

Fig.10. Overview of the backend code generator of FlexPDA based on LLVM compiler infrastructure [16].
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On the host, the host program is translated firstly.

Secondly the translated host program is compiled using

the host compiler. The runtime library of DL accelera-

tors provides a set of APIs for the communications be-

tween the host and the device. Finally, the executable

file, fat binary, is built by the host compiler through

linking the object files generated by the device and the

host, and the runtime library.

4.1 Device Code Generator

4.1.1 Grammar Feature Support

FlexPDA C extends the C language in terms of

the data structure and operations, hierarchical memory

model, and multi-chip parallelism. In this subsection,

the grammar features are introduced from the following

perspectives.

Tensor Data Structure. There are two solutions for

implementing the tensor data structure: 1) an exter-

nal library with tensor type and various relevant ope-

rations; 2) a built-in type in which operations are ful-

filled as built-in functions. The hardware character-

istics of accelerators, such as the pattern of memory

access and SIMD instructions, cannot be utilized by

external libraries effectively. FlexPDA adopts the sec-

ond solution which has built-in DLCollect type, and all

the operations have corresponding built-in functions.

Multi-Chip Parallel. Multi-chip parallel in which

each node processes a subset of task has shown promis-

ing results for computationally intensive algorithms [21].

The parallel parameters corresponding to the job scale

and the job parallelism are built into the code genera-

tor of FlexPDA. It is flexible and simple to manipulate

programs in parallel through built-in variables. When

the multi-chip mode is enabled to achieve operations in

the algorithms, the device code generator will control

the synchronization of the multi-chip by inserting the

synchronization instructions to ensure data consistency.

Architecture Distinction. New language features

will be added by different architectures of accelerators,

such as new operations and new data types. A distinc-

tion between architectures is required. The option of

the command line, –flexpda-arch, is put to the fron-

tend of the FlexPDA by the code generator to specify

the specific architecture version. The parameters of the

command line can be used for checking the new features

at the frontend and lowering instructions at the back-

end.

4.1.2 Memory Management

The device code generator of FlexPDA provides

memory management for IACmemory. In this way, on-

chip resources can be efficiently utilized, which greatly

reduces the number of off-chip memory accesses and

improves throughput. The device code generator of

FlexPDA assigns an identifier for each memory hierar-

chy and binds it to the corresponding storage qualifier.

When a variable is declared with a storage keyword, the

device code generator will bind the attribute of mem-

ory to the variable type in the declaration. Depending

on the type, the optimal access IR associated with the

variable will be generated, so that the access latency

can be decreased and resource utilization can be im-

proved.

In addition, the device code generator manages the

transmission of the data between different memory hier-

archies. For example, when a variable with the storage

qualifier “ icache ” is initialized by the data in DDR,

a copy of data from DDR to MI will be performed. For

various vector operations, if the attribute of memory of

output is not given, the code generator of device will

transfer the result to DDR. Otherwise, the code gen-

erator of device will copy the operation result to the

corresponding memory hierarchy.

The device code generator of FlexPDA which sup-

ports the memory hierarchy, allows the user to explic-

itly control the storage without considering the trans-

mission of data. The device code generator will help the

user transfer data according to the attributes of mem-

ory of variables, which trims down the burden on the

user and improves the performance of the operations.

4.1.3 Pointer Address Space Inference

The device code generator of FlexPDA makes use

of storage keywords to specify the memory space in

which the variable is located. Based on the storage

qualifier, the code generator will generate faster ld/st

instructions. It is well known that accessing data from

on-chip is faster than from DDR. However, the varia-

ble with the pointer type has no storage qualifier, and

its attribute of memory is related to the attribute of

memory of the space it points to. For example, pointer

p is an MI pointer when p points to an MI space in

line 7 of Fig.11, and p is a DDR pointer when p points

to the DDR space in line 10 of Fig.11. The memory

space of the pointer expression needs to be determined

so that the optimal ld/st instruction can be selected for

the subsequent access to the pointer. To this end, an
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optimization of pointer address space inference that an-

alyzes the attributes of memory of pointers is proposed.

1 half *p;
2 half vi;
3 // Apply for a 256-byte on-chip buffer
4 __icache__ half array_icache [128];
5 // Apply for a 256-byte off -chip buffer
6 half array [128];
7 p = array_icache;
8 // Load data from on -chip buffer
9 vi = *p;

10 p = array;
11 // Load data from off -chip buffer
12 vi = *p;

Fig.11. FlexPDA C example of address space inference.

The pointer address space inference is implemented

through a data flow analysis based on a recursive traver-

sal syntax tree (Algorithm 1). The device code genera-

tor performs the optimization of pointer address space

inference on each function. The algorithm recursively

traverses subexpressions for each pointer expression of

a function. For a pointer expression of the declarative

reference type such as the variable p in statement “half

*p = array”, if the defined expression is a non-pointer

expression, then PASI obtains the address space of the

defined expression as the address space of the pointer;

otherwise the definition expression is traversed recur-

sively. For a unary or conversion expression, its subex-

pressions will be recursively traversed. For a binary or

conditional expression, its left or right child will be re-

cursively traversed. Finally, a non-pointer expression

that is initialized or assigned is found. The address

space of the non-pointer expression is the address space

of the pointer.

As shown in Fig.11, a general instruction ld.lddr.f16

will be generated in line 12. The faster instruction

ld.icache.f16 will be generated in line 9.

4.1.4 Data Layout Optimization

The DL accelerators usually provide corresponding

vector instructions for region operations and elemen-

twise operations in the DL. However, the operands of

these vector instructions must be stored in on-chip, and

are restricted in terms of data precision, data storage,

and data alignment. For example, in order to improve

the efficiency of memory access, data needs to be stored

in a low-precision type. When the input data or weight

parameters of the operation are stored in the DDR, the

accelerators perform a series of scalar instructions to

complete the operation by accessing the off-chip data.

When the data layout of operands stored in on-chip

does not meet the requirements of memory access of

vector instructions, the scalar instructions will be em-

ployed to implement calculations.

Algorithm 1. Pointer Address Space Inference (PASI)

Input: a function F
Output: a set of pointers with AS
GAS ← ∅;
for pointer EP used in F do

if EP is a declarative reference then
if EP.getDefineExpr() without a pointer type
then

AS ←
getAddressSpace(EP.getDefineExpr());

else
AS ← PASI(EP.getDefineExpr());

end

else if EP is a unary operator or a conversion
operator then

// e.g., &a, p++, ++p;
// e.g., convert an array type to a pointer type;
AS ← PASI(EP.getSubExpr());

else if EP is a binary operator or a conditional
operator then

if the left operand of EP without void type then
AS ← PASI(EP.getLHS());

else
AS ← PASI(EP.getRHS());

end

else
AS ← AddressSpace::DDR;

end
GAS ← GAS ∪ (EP,AS)

end
return GAS;

To take full advantage of the DL accelerators, when

the DDR data is passed to the interfaces in FlexPDA

C, the device code generator will lower LLVM-IR to a

series of scalar instructions to complete the operation.

When the interface parameters are stored in on-chip,

the code generator will deal with the data layout prob-

lem, and generate corresponding legal vector instruc-

tions to achieve the operation.

The optimization of the data layout is performed

based on the LLVM-IR instructions (Algorithm 2).

This optimization depends on the address space infer-

ence algorithm mentioned above. For each IR instruc-

tion in each function, the code generator of device will

check whether the operation belongs to the set of vec-

tor instructions supported by the DL accelerators. The

legality of memory hierarchies of operands will also be

checked based on the address space inference algorithm.

For example, the input data must be stored in MI,

and the weight parameters must be stored in MW for

convolution and fully-connected instructions. Then, a

series of conversions consisting of data precision con-

versions, storage layout conversions and data alignment

operations are performed on the operands of legal IR in-

structions. For example, the precision conversions from
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f32 to f16 type are performed firstly for weight para-

meters. In addition, it is necessary to transpose the

weight matrix from the row-first storage to the column-

first storage. Last but not least, the size of operands

has aligned constraints on DL accelerators. Therefore,

padding operations are performed by the code genera-

tor of the device to satisfy the requirements of align-

ment of operands.

Algorithm 2. Data Layout Optimization (DLO)

Input: a function F and basic operation set BOS
Output: a function F ′ with DLO
GAS ← ∅;
for IR instruction I in F do

if I ∈ BOS and
checkOperandsMemoryHierarchy(I) then

for operand O in getOperands(I) do
O1← dataPrecisionConversion(O);
O2← transposeOperation(O1);
O3← alignOperation(O2);
replaceOperands(I,O,O3);

end
insertInstruction(F ′, I);

else
insertInstruction(F ′, I)

end

end

4.1.5 Code Generation

The object code generation is a vital part in the

device code generator. The resources used to imple-

ment each memory hierarchy are restricted; therefore

the border checks on access to different memory hier-

archies will be performed during the generation of the

object code. Besides, synchronization instructions are

inserted in front of the data transfer instructions to en-

sure the consistency of data.

4.2 Host Code Generator

In this paper, we use the API of DLPlib [19] to

achieve the management of memory and the call of ker-

nel of computation on the host. DLPlib, a low-level

library, provides a series of efficient and versatile pro-

gramming interfaces for accelerating various deep learn-

ing algorithms on the DL accelerators similar to Da-

DianNao. Specifically, the invoked host interface flex-

pda::executeKernel is translated into a series of host-

called API of DLPlib. For example, the interface dlp-

Malloc allocates space to parameters on the device side,

the interface dlpMemcpy completes the data transmis-

sion between the host and the device, the interface

dlpConvolutionForward performs the kernel of convo-

lution, and the interface dlpFree releases the memory

of device allocated for parameters.

4.3 Runtime Library

The runtime library of DL accelerators provides a

set of APIs for communications between the host and

the device. Services such as the management of de-

vices, memory, and execution contexts are offered by

APIs. The interfaces of the management of devices are

provided by device management, such as the initial-

ization of device and the designation of device. The

interfaces of management of memory are provided by

memory management, such as memory allocation and

memory release. The execution contexts are responsible

for the asynchronism, synchronization, and scheduling

of task queues. In addition, interfaces are provided by

the runtime library to enable the reuse of instructions

and data for offline models that support the separation

of instruction data.

5 Evaluation

Hardware Platform. In this paper, we use the

DaDianNao [15] architecture to evaluate our proposed

framework. The Verilog [22] and VCS (Synopsys Ver-

ilog Compiler Simulator) are used to implement, com-

pile, and simulate the DaDianNao architecture. The

architecture has 16 PEs. Each PE has 16 multipliers

and one 16-in adder tree, which are used for the vector

inner product of 16 half-precision floating-point num-

bers. In addition, in the on-chip memory, the SB of

2 KB is sustained in each PE, and the NBout of 8 KB

and the NBin of 8 KB are shared by all PEs. Besides,

we achieve the frequency of 1 GHz for the simulator.

The CPU is Intel Xeon CPU with 3 GHz, and the ope-

rating system is Ubuntu Linux (version 16.04.4 LTS).

Benchmarks. In order to evaluate the system of

FlexPDA, we select two categories of benchmarks based

on the application scenarios: one is the low-level ele-

mentwise operations such as addition commonly used in

various general algorithms, and the other is representa-

tive region operators such as convolution typically used

in deep learning applications. In addition, we select

a representative DNN model, AlexNet [23], to evaluate

the end-to-end performance. Three low-level element-

wise operators, which contain ADDITION, MULTIPLI-

CATION, and MULCONST, have 2M input. Besides,

seven deep learning region operators are described in

Table 2. Moreover, it is found that the performances

of the ADDITION, MULTIPLICATION, and MUL-

CONST operators are very similar; therefore their ave-

rage is taken in the experiment. Furthermore, we com-
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Table 2. Configurations of Seven Deep Learning Region Operators

Operator O c I c I h I w Kernel Stride Pad O h O w Layer Neural Network

Conv1 256 128 14 14 3 1 1 14 14 res4a 2a ResNet-18

Conv2 64 192 28 28 1 1 0 28 28 conv4 3 MobileNet v2

Conv3 128 64 15 15 3 1 1 15 15 conv2.1 ConvNet

Pool1 128 128 15 15 3 2 - 8 8 pool2 ConvNet

Pool2 128 128 112 112 2 2 - 56 56 pool2 Vgg-16

FC1 1 000 4 096 - - - - - - - fc8 Vgg-16

FC2 4 096 4 096 - - - - - - - fc7 Vgg-16

Note: O c/I c: input channel/output channel; I h/I w: input height/input width; O h/O w: output height/output width; Kernel:
kernel height/width; Stride: stride height/width; Pad: padding height/width.

pare FlexPDA over low-level library using AlexNet [23]

as the benchmark.

In this section, the performance improvements of

data layout optimization are evaluated firstly through

the representative 10 DL operators. Secondly, the per-

formances of serial C and FlexPDA are compared by

the representative 10 DL operators. We also compare

the performances of FlexPDA and parallel C which em-

ploys OpenMP [24]. Finally, we present the end-to-end

performance speedup of FlexPDA over the low-level li-

brary.

5.1 Data Layout Optimization Evaluation

In order to utilize the characteristics of the archi-

tectures of DL accelerators, the on-chip operands of

operations in FlexPDA are adjusted in the data lay-

out optimization in terms of data precision, data sto-

rage, and data alignment. In this subsection, the per-

formance benefits of data layout optimization are eval-

uated through the selected 10 DL operators.

The storage space of each memory hierarchy is re-

stricted on DL accelerators. The performance improve-

ments of three elementwise operators with data lay-

out optimization are evaluated, and the tiling sizes are

128 B, 256 B, 512 B, 1 KB, 2 KB, 4 KB, 8 KB, 16 KB,

32 KB, 64 KB, respectively. The average speedups of

the three elementwise operators with data layout opti-

mization under different tiling sizes are shown in Fig.12.

On average, the FlexPDA with data layout optimiza-

tion is able to achieve a speedup of 1.790x, 3.481x,

6.305x, 8.333x, 11.479x, 12.377x, 16.992x, 23.054x,

27.496x, 33.048x for the tiling size of 128 B, 256 B,

512 B, 1 KB, 2 KB, 4 KB, 8 KB, 16 KB, 32 KB, 64 KB,

respectively. The experimental results show that the

overheads of data transmission decrease, so that bet-

ter performance is realized as the tiling size gradually

increases.

In Fig.13, the speedups of the seven region operators

with data layout optimization are presented. As can

be seen, FlexPDA can achieve a speedup of 43.173x–

66.131x, 42.971x–46.186x, and 63.284x–77.634x for con-
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Fig.12. Average speedups of three elementwise operators with data layout optimization under different tiling sizes.
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Fig.13. Speedups of seven region operators with data layout optimization.

volution, pooling, and fully-connected operations, re-

spectively.

It can be seen that the performance of 10 DL ope-

rators is significantly improved after data layout op-

timization. In addition, the computing-intensive ope-

rations can achieve amazing performance improvement,

such as convolution and fully-connected operators.

5.2 Performance Comparison with Serial C

Nested loops are commonly used in C to implement

region and elementwise operations in DL. FlexPDA can

implement these operations with just one statement.

In addition, developers using C can quickly get started

with FlexPDA and use DL accelerators to speed up

their algorithms. In this subsection, the performances

of serial C and FlexPDA are compared. We use “serial

C” to represent the serial implementation of the pro-

gram using C language running on the CPU platform.

When the operands of operators are in on-chip,

FlexPDA will perform data layout optimization, so that

the vector instructions can be used to perform the ope-

rations. In this subsection, the performance improve-

ments of FlexPDA with on-chip input over serial C im-

plementation are presented for the 10 DL operators.

Fig. 14 shows the average performance benefits of

three elementwise operators with on-chip input under

different tiling sizes, compared with serial C implemen-

tation. On average, compared with serial C program,

FlexPDA with tiling sizes of 128 B, 256 B, 512 B, 1 KB,

2 KB, 4 KB, 8 KB, 16 KB, 32 KB, 64 KB can achieve

a speedup of 0.923x, 1.869x, 3.409x, 5.898x, 10.964x,

20.436x, 34.982x, 55.369x, 76.981x, 95.441x, respec-

tively.

It can be observed that when the tiling size is 128 B,

the performance of the FlexPDA is not so good as se-

rial C, because the overheads of data transmission are

greater than the computational benefits on DL accel-

erators. The performance benefits of the FlexPDA are

better as the tiling size becomes larger.

Fig.15 shows the performance improvements of the

seven region operators. As can be seen, FlexPDA

can achieve a speedup of 157.392x–208.686x, 60.669x–

66.755x, and 106.110x–125.465x for convolution, pool-

ing, and fully-connected operations, respectively. For

operations with large input, output or weight, there is

no enough on-chip memory to load all data used by

operators. The data blocking scheme is used to com-

plete the operations. The operations with higher com-

putational intensity, such as convolution, will overlap

more overheads of memory access which can achieve

better performance improvements. Overall, the larger

the data scale, the greater the overhead of memory ac-

cess, and the lower the performance, when the on-chip

resources are insufficient.

5.3 Performance Comparison with OpenMP

OpenMP [24] is an efficient programming framework

on general-purpose processors. It can employ C to

implement parallel applications of the shared memory,

which takes full advantage of the characteristic of flex-
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Fig.14. Average speedups of three elementwise operators with on-chip input under different tiling sizes (FlexPDA vs serial C).
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Fig.15. Speedups of seven region operators with on-chip input (FlexPDA vs serial C).

ible support of general-purpose processors for various

workloads. The proposed approach in this paper, Flex-

PDA, is a programming framework for dedicated deep

learning accelerators such as DaDianNao. It is imple-

mented as an extension of C, which makes full use of

the instruction set and storage characteristics of the

deep learning accelerators. In this subsection, we com-

pare FlexPDA with OpenMP using serial C as a base-

line. OpenMP implementations are running on the In-

tel Xeon CPU. Besides, for the OpenMP, the perfor-

mances of OpenMP programs with different numbers

of threads are shown. For FlexPDA, performances in

Fig.15 and the performance of the 64 KB tiling size in

Fig.14, are selected as the performances of operators

with on-chip input.

Fig.16 shows the performance improvements of 10

operators implemented by FlexPDA and OpenMP,

compared with serial C. The elementwise speedup is the

average speedup of ADDITION, MULTIPLICATION,

and MULCONST operators. OpenMP can achieve

a speedup of 1.37x–12.13x, 0.12x–1.01x, 0.98x–1.14x,

and 0.91x–4.03x over serial C for convolution, pooling,

fully-connected and elementwise operators respectively.

However, FlexPDA can improve the performances by

157.39x–208.69x, 60.67x–66.76x, 106.11x–125.47x, and

95.44x over serial C for convolution, pooling, fully-

connected and elementwise operators respectively, as

shown in Fig.16.
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respectively. FlexPDA represents the performance speedups of the FlexPDA program with on-chip input compared with serial C.

The experimental results show that the comput-

ing and storage resources of the deep learning accel-

erator can be utilized by FlexPDA. In addition, as

can be observed, as the number of threads increases,

the performance of convolution operators implemented

by OpenMP improves, the OpenMP performance of

the Pool1 operator with a smaller input scale de-

creases significantly, the OpenMP performance of the

Pool2 operator with a larger input scale is slightly im-

proved, the OpenMP performance of fully-connected

operators does not fluctuate much, and the perfor-

mance of OpenMP of elementwise operators improves

first and then decreases with 16 threads as the demarca-

tion point. It can be seen that the performance benefits

obtained by enabling multi-thread of OpenMP are un-

stable with the impact of the specific algorithm and the

input scale of the algorithm, and there are additional

overheads when using OpenMP, such as the overhead

of creation of threads.

5.4 Performance Comparison with Low-Level
Library

We compare FlexPDA with DLPlib [19] using

AlexNet [23] as a benchmark in this subsection. DLPlib

is commonly used in deep learning frameworks such as

Caffe, Tensorflow. Therefore, we use Caffe [13], a repre-

sentative open-source deep learning framework, to eva-

luate the performance of DLPlib. An important ob-

servation about deep neural networks (DNNs) is that

the convolution layers and fully-connected layers oc-

cupy most of the time during the inference of the entire

network. Therefore, we replace the convolution and

fully-connected layers achieved by DLPlib with convo-

lution and fully-connected layers achieved by FlexPDA

to evaluate FlexPDA and DLPlib.

Fig.17 presents the end-to-end performance speedup

of FlexPDA over DLPlib through AlexNet. The net

contains eight learned layers: five convolutional and

three fully-connected layers. The convolution and the

fully-connected layers account for 67% of the execution

time of AlexNet with DLPlib. FlexPDA achieves a

performance improvement of 1.620x over DLPlib after

replacement. Moreover, the library of DLPlib is 4.1x

faster than GPU according to [19]. Therefore, FlexPDA

achieves a performance speedup of 6.6x over GPU. The

convolution and the fully-connected layers performed

by FlexPDA achieve a performance improvement of

4.152x and 1.727x on average over DLPlib respectively.

In addition, the performance of the conv1 of AlexNet

is improved significantly. However, FlexPDA performs

worse on FC8 of AlexNet than DLPlib. On the whole,

the convolution layers contribute more to the overall

performance gain of the network than fully-connected

layers.

As we can observe, FlexPDA is comparable to the

DLPlib library on the entire network. The performance
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DLPlib

FlexPDA

Conv1 Relu1 Norm1 Pool1 Conv2 Relu2 Norm2 Pool2 Conv3 Relu3 Conv4 Relu4

Conv5 Relu5 Pool5 FC6 Relu6 Drop6 FC7 Relu7 Drop7 FC8 Prob

Conv1 (14.948x) 
Conv2 (1.815x) 

End-to-End Speedup: 1.620x  

Conv3 (1.946x) 

Conv4 (1.012x) 
Conv5 (1.035x) 

FC6 (2.323x) 
FC7 (2.127x) 

FC8 (0.730x) 

Fig.17. Layerwise performance speedups of AlexNet with FlexPDA over DLPlib.

improvement substantially comes from the optimization

of pointer address space inference and data layout, and

the low-level tuning in the implementation of operators

and the detailed explanations are presented in Subsec-

tion 5.5.

5.5 Performance Analysis

In this subsection, we conduct an in-depth analysis

of the performance of FlexPDA. The experimental eval-

uations show that FlexPDA is comparable to OpenMP

and DLPlib. The performance improvement substan-

tially comes from the following three aspects.

Optimization of Pointer Address Space Inference

(PASI). Deep learning accelerators are characterized by

multiple memory hierarchies for operands. PASI deter-

mines the memory hierarchy for each operand through

a data flow analysis based on a recursive traversal syn-

tax tree. According to the attributes of memory of

operands, the optimal ld/st instructions can be con-

ducted for the requirement of low memory latency. As

shown in Fig.11, the pointer p is an MI pointer when

p points to an MI space in line 7, and p is a DDR

pointer when p points to the DDR space in line 10.

After the optimization of PASI, a general instruction

ld.lddr.f16 will be generated in line 12. The faster in-

struction ld.icache.f16 will be generated in line 9.

Data Layout Optimization (DLO). Deep learning

accelerators also are characterized by vector instruc-

tions for operations. However, the operands of vec-

tor instructions must be stored in on-chip, and are re-

stricted in terms of data precision, data storage, and

data alignment based on the hardware characteristics.

As shown in Fig.18, according to the specific computa-

tion pattern of the operator, the precision conversions

from float 32 to float 16 are performed for weight para-

meters. Besides, the weight parameters are transposed

from the row-first storage to the column-first storage,

and they are tiled and placed according to the distri-

12

64

12

64

8

64

Float 32

Float 16

AlignRow-First

Column-First

Tiling

12

64

8

4

8

64

Fig.18. Weight parameters with data layout optimization.
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bution characteristics of MW. Furthermore, in keep-

ing with the calculation characteristics of the hard-

ware functional components, it is necessary to align the

operand size of operators by padding. Finally, the in-

struction conv.icache.f16 will be performed to complete

the convolution operations after data layout optimiza-

tion. The experimental results show the data layout

optimization can achieve a speedup of 77.634x (refer to

Subsection 5.1).

Low-Level Tuning. Based on the computation pat-

tern of a specific algorithm, the developers can perform

low-level optimizations with FlexPDA. For example, an

elaborately designed double buffer can cover the time

cost of data transmission by the time cost of computa-

tion. Besides, we can lessen the pressure on registers

by reducing the use of local variables. Moreover, more

optimization opportunities, such as parallel computa-

tion and vectorizing scalar computation, can be found

in FlexPDA. The program can benefit from these low-

level optimizations.

6 Discussion

Dynamic Memory Allocation. Some DL applica-

tions do not naturally hold a fixed length data struc-

ture, such as image captioning, in which the outputs

are sentences consisting of different numbers of words.

It is not suitable for the DLCollect structure to deal

with these DL applications. The dynamic allocation of

memory is selected when we do not know how much

amount of memory would be needed for the program

beforehand. Allocating memory dynamically is flexible

for programming and efficient for resource utilization.

Saini and Simon [25] eliminated the undesirable effects of

paging-in empty data arrays from the service nodes to

the compute nodes by the dynamic allocation of mem-

ory. Udayakumaran and Barua [26] presented a highly

predictable, low-overhead, and dynamic memory allo-

cation strategy for embedded systems with scratch-pad

memory. We implement static memory allocation for

variables. The dynamic allocation of memory will be

supported in the future to allow DL applications such

as picture captioning.

Compatibility of Optimizations. We mainly focus

on the optimization of program parallelism and mem-

ory alias analysis, which are compatible with other pro-

gram optimizations. Compilation optimizations based

on the polyhedron model [27] are an effective method

to solve the automatic parallel of programs on multi-

core architectures. The polyhedron model can deal with

loop transformation such as loop tiling and distribution,

which greatly improves the parallelism of the program.

In addition, the dependency analysis in the polyhedron

model provides the basis for the analysis and optimiza-

tion of other parallel models. For example, Pellegrini

et al. [28] used the analysis of the dependence of the

polyhedron model to optimize the communication of

MPI programs. More importantly, loop tiling and data

compression in the polyhedron model play a key role

in the research of data locality. Besides, the optimiza-

tions such as instruction scheduling, redundant expres-

sion deletion, and so on are inseparable from memory

alias analysis. Wu et al. [29] performed the memory-

space alias analysis for GPGPU. It is exciting to im-

prove the performance of FlexPDA by combining these

optimizations into FlexPDA; which is our future work.

New Operations. The basic operations of DNNs

such as convolution and fully-connected operations are

implemented in the form of interface in FlexPDA. Some

new operations cannot be directly allowed on DL accel-

erators currently such as Top-K. We can achieve these

operations through basic operations, which greatly re-

duce the burden of programming for users. For exam-

ple, the implementation of Top-K is as follows: 1) the

flexpda::max interface is called to find the maximum

value of n-dimension vector src and the index of maxi-

mum value in src; 2) the found maximum value is kept

in the result vector dst ; 3) the value of according po-

sition in src is set to an infinitely small value; 4) the

previous three steps are repeated until the first K maxi-

mum value dst is derived. It is effortless for users to

achieve Top-K by the flexpda::max interface. Further

work includes providing more programming interfaces

for deep learning algorithms.

Application to Other Accelerators. The architec-

tures of DianNao [17], DaDianNao [15], ShiDianNao [30],

and Cambricon-X [31] all belong to the DianNao fam-

ily and are based on the same design concept as shown

in Fig.2. For the memory, the on-chip memory is di-

vided into NBin, NBout, and SB according to functions

to store input data, output data, and weights respec-

tively. For the computation module, point multipli-

ers are used to implement operations such as convolu-

tion and matrix multiplication in deep learning. The

computation unit NFU is divided into three stages:

NFU-1 for multiplication, NFU-2 for accumulation, and

NFU-3 for activation. FlexPDA presents an easy-to-use

domain-specific language and the corresponding back-

end code generator based on the abstraction of the ar-

chitecture of the DianNao family. The deep learning
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accelerators are characterized by multiple memory hi-

erarchies for operands; therefore we perform the opti-

mization of pointer address space inference to generate

the faster memory access instructions. In addition, the

deep learning accelerators also are characterized by vec-

tor instructions for operations; thus the data layout op-

timization is conducted to fully utilize the resource of

computation. In summary, FlexPDA provides a flex-

ible programming framework for users and can auto-

matically generate the high-performance machine code

for different deep learning algorithms, which has good

adaptability to be easily migrated to other accelerators

including DianNao, ShiDianNao, and Cambricon-X.

7 Related Work

7.1 Abstractions of Architectures

The abstractions of architectures have proved to be

valuable for increasing portability and simplifying the

development of applications by hiding the hardware in-

tricacies. Each abstraction has different focuses due

to different goals. Fahmy and Holt [32, 33] modeled the

architecture as a graph. Graph rewriting is used to

transform the architectures in a variety of situations.

Moriconi et al. [34] modeled the architecture as mathe-

matical theories using predicates. Chen et al. [35] pro-

posed a general model which consists of series of func-

tion units and interconnected data transfer paths for

neural network accelerators. Mishra et al. [36] proposed

a functional abstraction based on the design space ex-

ploration methodology which is capable of capturing a

wide variety of programmable architectures. Peterson

and Athanas [37] introduced resource pools as an ab-

straction of general computing devices which provides

a homogeneous description of FPGAs, ASICs, CPUs,

or even an entire network of workstations. Handziski et

al. [38] provided a powerful set of abstractions that en-

able timing, alarms, communication, sampling, storage,

and low power operation across different hardware plat-

forms. Our abstractions of architectures are based on

DL accelerators similar to DaDianNao [15], which guide

the design and optimization of FlexPDA.

7.2 Neural Network Programming

Du et al. proposed ZhuQue [39], a neural network

programming model based on the labeled data layout

for Cambricon-X [31] hardware platform. Song et al. [40]

proposed a novel programming style called stage level

parallel (SLP) with layer fusion optimization and in-

tralayer pipelining optimization for neural network al-

gorithms on DianNao [17], which takes advantage of the

parallel execution of instructions on different types of

on-chip resources. Chen et al. [41] proposed TVM, an

end-to-end compiler stack, which can deploy deep learn-

ing workloads across diversiform hardware backends.

TVM automatically generates optimized codes of di-

versiform hardware backends for the models trained

by different front-end deep learning frameworks. Flex-

PDA is a programming model similar to CUDA, which

helps users implement the high-performance code on

deep learning accelerators. FlexPDA can be con-

nected to TVM as a back-end. The users can combine

the optimization techniques of TVM to generate high-

performance FlexPDA code for accelerators. Truong

et al. [42] presented Latte, which contains a domain-

specific language that provides a high-level abstraction

for describing new layers, and a compiler with general

optimization for deep learning networks on CPU. Vasi-

lache et al. [43] presented a domain-specific language,

named Tensor Comprehensions (TC), and an end-to-

end compilation flow for engines of computation graph

on GPU, which can generate highly-optimized kernels

for tensor expressions. RainBuilder 7○ is an end-to-end

toolchain for CAISA architecture, which provides the

rapid deployment of DL algorithms on FPGA-based

accelerators and supports most DL frameworks such

as Caffe, Tensorflow. Mind Studio 8○ is a full-stack

development toolchain based on the IntelliJ frame-

work for Huawei Ascend DL processors, which pro-

vides development, debugging, tuning of operators, and

porting, optimization, analysis of networks for users.

BANG C 9○ is a low-level programming language for

MLU (machine learning unit) hardware. In this paper,

we proposed FlexPDA, a domain-specific language for

intelligence accelerators similar to DaDianNao. Flex-

PDA gives abstractions of the applications in DL fields

and abstractions of architectures. The abstractions of

applications, which are used to acquire the characteris-

tics of data and operations of DL algorithms, guide the

design of the data types and interfaces, thereby helping

users program applications flexibly and efficiently. The

architectures are abstracted from the parallel structure

and the storage model of accelerators. The abstractions

7○http://www.corerain.com/RainBuilder/en, Sept. 2021.
8○https://support.huaweicloud.com/usermanual-mindstudioc32/atlasonh 02 c32 0004.html, Sept. 2021.
9○http://www.cambricon.com/docs/bangc/developer guide html, Sept. 2021.
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of architectures bring the opportunity of the optimiza-

tion of data layout and the flexible parallel mechanism

of tasks, thereby leading the backend code generator to

generate high-performance machine code.

7.3 Optimizations for DL Accelerators

The optimization approaches such as layer fusion

and data reuse are commonly used in the inference of

DNNs on intelligent accelerators. Song et al. [41] intro-

duced a series of layer-based compile optimizations for

DL accelerators. Du et al. [39] added the optimization

of data layout to the neural network development kit

(NDK) for neural network accelerators. Kim et al. [44]

proposed an automated optimization framework includ-

ing a flexible buffer structure, effective dataflow for fus-

ing operations, and programmable data-access control

for DL accelerators. In addition, Li et al. [45] presented

an optimization and inference engine, namely XDN, for

accelerating deep neural networks on MLUs. Liu et

al. [46] proposed an auto-tuning algorithm to jointly op-

timize the model parallelism and layer fusion scheme

on MLUs for a given DNN model. Zhao and Di [47]

designed a novel composition of tiling and fusion in

the polyhedral optimizers to maximize the utilization of

the memory hierarchy on DL accelerators like Huawei

Ascend 910. Zheng et al. [48] leveraged the polyhe-

dral model to eliminate unnecessary data movements

in the workload and maximize the utilization of on-chip

memory by maintaining data locality in the scratchpad

for DL accelerators such as AWS Inferentia. FlexPDA

presents an optimization of the data layout to use the

powerful compute units and limited on-chip memory of

DL accelerators like DaDianNao [15].

8 Conclusions

In this paper, a flexible and efficient programming

framework on DL accelerators, FlexPDA, was pro-

posed. FlexPDA utilizes pointer address space infer-

ence, data layout optimization and low-level tuning to

accelerate the performance of deep learning algorithms.

We evaluated FlexPDA by using 10 representative ope-

rators selected from deep learning algorithms and an

end-to-end network. The experimental results validated

the effectiveness of FlexPDA, which achieves an end-to-

end performance improvement of 1.620x over the low-

level library. In future work, it is exciting to study more

compilation optimization techniques, such as polyhe-

dron models.
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