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Abstract In smart phones, vehicles and wearable devices, GPS sensors are ubiquitous and collect a lot of valuable spatial

data from the real world. Given a set of weighted points and a rectangle r in the space, a maximizing range sum (MaxRS)

query is to find the position of r, so as to maximize the total weight of the points covered by r (i.e., the range sum). It has a

wide spectrum of applications in spatial crowdsourcing, facility location and traffic monitoring. Most of the existing research

focuses on the Euclidean space; however, in real life, the user’s moving route is constrained by the road network, and the

existing MaxRS query algorithms in the road network are inefficient. In this paper, we propose a novel GPU-accelerated

algorithm, namely, GAM, to tackle MaxRS queries in road networks in two phases efficiently. In phase 1, we partition the

entire road network into many small cells by a grid and theoretically prove the correctness of parallel query results by grid

shifting, and then we propose an effective multi-grained pruning technique, by which the majority of cells can be pruned

without further checking. In phase 2, we design a GPU-friendly storage structure, cell-based road network (CRN), and a

two-level parallel framework to compute the final result in the remaining cells. Finally, we conduct extensive experiments

on two real-world road networks, and the experimental results demonstrate that GAM is on average one order faster than

state-of-the-art competitors, and the maximum speedup can achieve about 55 times.

Keywords road network, maximizing range sum, GPU acceleration, pruning strategy

1 Introduction

Driven by the advance in networking and commu-

nications, it has become more and more pervasive to

obtain spatial location data through various sensors,

which has led to a surge in spatial data generated from

every corner around the world [1]. This in turn pro-

motes a variety of location-based services (LBS), such

as tourism planning, urban mobility services [2] and nav-

igation services [3]. The core of these applications is the

efficient management and processing of massive spatial

data. Therefore, a great deal of attention has been

drawn into processing massive spatial data.

As one of the most fundamental operations of the

spatial database, the MaxRS query [4] has caused ex-

tensive research in recent years. In the 2-dimensional

(2D) space, given a set O of weighted points and a

rectangle r with a user-specified size (e.g., a × b), the

MaxRS query is to find the optimal position for the

rectangle r, so that the total weight of all points cov-

ered by r is maximized. This problem is widely used

in many fields (e.g., facility location problems [5], spa-

tial data mining [6], and crowdsourcing [7–9]), and two

classic real-life scenarios are as follows.
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• Scenario 1. When a tourist travels to a city, due to

the limited reachable range of his/her daily activities,

he/she often hopes to book the most representative

hotel in the city in order to maximize the number of

tourist attractions near the hotel.

• Scenario 2. Nowadays, the food delivery industry

is booming, but many shops have limited delivery areas.

Pizza shop managers usually want to find the best store

location to maximize the number of customers that can

be delivered.

Due to the diverse real-life application scenar-

ios, many variants of MaxRS have recently been

proposed and solved in the spatial database com-

munity (e.g., scalability [3], approximate solutions [10],

moving objects [11], probability [12] and class-based

constraints [13]). Although the above methods can ef-

fectively deal with MaxRS queries, they strictly as-

sume that all points are in the Euclidean space; in

other words, the query result is determined based on

the straight-line distance between points, which may be

significantly different from the actual distance between

points. MaxRS queries in the Euclidean space fail to

retrieve all user-satisfied results accurately. However,

in most real-life LBS, almost all facilities (e.g., hotels,

restaurants, and scenic spots) are adjacent to the road

network. No matter whether walking or driving, the

user’s moving route must be constrained by the road

network. Therefore, MaxRS queries in road networks

are required to return more accurate and practical re-

sults, based on the road network distance [14] (i.e., the

length of the shortest path connecting them), instead

of the location.

Fig.1 gives an example of scenario 1 with four scenic

spots (f1, f2, f3, f4) of unit weight 1. Suppose that the

daily activity radius r of tourists is 1.5. In Fig.1(a),

according to the principle of rectangle intersection [15],

the MaxRS query in the Euclidean space will return

s1 (i.e., MaxRS is 4), and hotels in the range s1 will

be recommended to tourists. However, in Fig.1(b), the

MaxRS query in the road network will return s2 (i.e.,

MaxRS is 3), which is more accurate than s1 in real

life. Thus, tourists prefer to book hotels in s2.

Up to now, there has been very little research on

MaxRS queries in road networks. Although the existing

studies [16, 17] propose general algorithms for processing

MaxRS queries in road networks, the performance of

these algorithms is inefficient due to the lack of con-

sideration of the unique characteristics of the road net-

work. When the data scale or r is large, it takes hun-

dreds or even thousands of seconds to return all query

results, which is not efficient enough to meet the actual

needs of users in daily life. In a nutshell, the exist-

ing algorithms cannot handle MaxRS queries in road

networks well.

MaxRS queries are expensive to compute in road

networks. Therefore, like several other database ope-

rators (e.g., [18–21]), a natural solution is to exploit

GPU to accelerate it. In a city with a grid-shaped road

network, for scenario 2, an important observation is

that the delivery range of most pizza shops only covers

a few blocks nearby. Inspired by this, we can partition

the entire road network into many cells, and then the

MaxRS query can be performed concurrently in many

cells with GPU. However, it is non-trivial to propose an

efficient GPU acceleration algorithm. The challenges

are as follows: 1) how to partition the road network to

ensure the correctness of query results; 2) in general, for

high throughput inevitably faces a multiplied workload,
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Fig.1. Examples of MaxRS queries. (a) MaxRS query in the Euclidean space. (b) MaxRS query in road networks.
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how to safely prune unnecessary computations; 3) how

to design an efficient storage structure and a computing

framework to make full use of GPU resources.

In this paper, we first design a GPU-accelerated

algorithm called GAM (GPU-accelerated MaxRS) to

solve MaxRS queries in road networks efficiently. To

handle above challenges, GAM partitions the entire

road network into small cells by a grid adapted to

r. Then we propose the multi-grained pruning tech-

nique to safely prune unpromising cells that contain

no MaxRS result. For GPU acceleration, a two-level

parallel framework is proposed to compute final results

based on our GPU-friendly storage structure CRN. In

extensive experiments, GAM is able to solve MaxRS

queries in road networks efficiently.

Contributions. The specific contributions of this pa-

per are summarized as follows.

• This paper proposes a novel GPU-accelerated al-

gorithm, namely, GAM. To our knowledge, this is the

first attempt to deal with MaxRS queries in road net-

works utilizing GPU.

• We adopt the grid partitioning technique to par-

tition the entire road network into many small cells,

and then theoretically prove the correctness of parallel

query results by grid shifting.

• We propose an effective multi-grained pruning

technique, by which the majority of cells can be pruned

without further checking.

•We design a GPU-friendly storage structure CRN

to facilitate quick access to the spatial data correspond-

ing to each cell and store intermediate results, based

on which a two-level parallel framework is proposed to

compute final results in the remaining promising cells.

• We conduct extensive experiments on real-life

road network datasets with different data scales, which

shows that the GAM algorithm is significantly superior

to the baseline algorithm.

2 Related Work

2.1 MaxRS Queries in the Euclidean Space

The predecessor of the MaxRS problem is the Max-

enclosing rectangle problem, which is originally pro-

posed in the field of computational geometry [15, 22].

This problem only focuses on maximizing the number

of covered points without considering the weight of the

points. Specifically, Imai and Asano [22] transformed

this problem into finding connected components and a

maximum clique of an intersection graph of rectangles

in the plane, and devised an efficient algorithm with

O(n log n) time complexity. Subsequently, Nandy and

Bhattacharya presented an alternative algorithm with

the same complexity in [15], which utilizes the interval

tree data structure and the plane-sweep technique to

locate the maximum enclosing rectangle over a set of

points.

Although the above two algorithms provide the the-

oretical bound, they have a poor scalability and are not

suitable for processing massive spatial data. Choi et

al. [3] proposed the MaxRS query and provided a scal-

able external-memory algorithm, which is optimal in

terms of the I/O complexity. From the perspective of

probability sampling, Tao et al. [10] designed a (1− ε)-
approximation algorithm with the time complexity of

O(n log 1
ε + n log log n).

Furthermore, there are many interesting variants of

the MaxRS problem. Considering that objects will ap-

pear or disappear dynamically, Amagata and Hara [23]

first solved the problem of monitoring MaxRS in spatial

data streams, and designed an index-based algorithm to

update the result in real time when the data changes.

As a supplement to [23], Chen et al. [24] defined the ro-

tating MaxRS problem, which allows non axis-parallel

rectangles.

Driven by the widespread popularity of GPS-

enabled mobile devices such as smart watches and vehi-

cles, Hussain et al. [11] focused on the trajectory of the

moving object, and investigated the Co-MaxRS (Con-

tinuous MaxRS) query problem. They utilized the ki-

netic data structures to solve this problem. Afterwards,

Hussain et al. [13] defined a novel query, the C-MaxRS

(Conditional MaxRS), for spatial data and devised ef-

ficient pruning strategies and updating strategies to

quickly return results. Due to the inaccuracy of the lo-

cation acquisition, Liu et al. [12] defined the probability

MaxRS query for uncertain objects to find the rect-

angle solution with a probability higher than the user-

specified threshold, which is proved to be #P-complete.

And the PMaxRS framework based on pruning and re-

finement strategies was developed.

2.2 MaxRS Queries in Road Networks

In real life, users cannot move freely in a straight

line in the space. Considering this point, Phan et al. [17]

defined MaxRS queries in road networks for the first

time and proposed the BTSF (B+-Tree Seg-File) algo-

rithm. This algorithm consists of the following three

main steps: 1) recursively generating segments for each

facility according to the depth-first search strategy; 2)
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inserting the generated segment into the Seg-File, and

merging the segments of the same facility (three spe-

cific cases); 3) scanning the Seg-File data once, and

using the line sweep method to calculate the optimal

result on each edge.

In order to effectively support online search, Zhou

and Wang [16] proposed an index (IND) algorithm based

on a pre-computing index to efficiently calculate online

MaxRS queries in road networks. The time comple-

xity of this method is O(log |F |), and the index size is

O(|F |), linearly with the number of facilities |F |.
Feng et al. [25] studied the best region search (BRS)

problem for the submodular monotonic aggregate scor-

ing function, which is more flexible than the weight sum

function. Considering the movement of objects, Chen et

al. [26] concentrated on efficiently maintaining the BRS

solutions in the road network space, and proposed a

branch-and-bound algorithm based on preprocessing to

dynamically monitor a fixed-size optimal region at diffe-

rent times.

2.3 GPU and CUDA Computing

Initially, GPU was designed for high-speed parallel

graphics rendering on computers and mobile devices.

Due to its huge parallelism, it is suitable for highly

parallel computing tasks with simple logic control (e.g.,

reinforcement learning [27–29]). In order to simplify the

development of GPU programs, NVIDIA has developed

a parallel programming model CUDA [30].

From the hardware perspective, a GPU is usually

composed of dozens of SMs (streaming multiproces-

sors), each of which contains multiple cores that run

threads concurrently. All SMs share the global memory

of the GPU, and each SM has its own shared memory.

All threads execute the same instruction set for different

data according to the SIMD (single instruction multiple

data) model.

From the software perspective, the CUDA program-

ming model is divided into two parts: host and de-

vice. The host program is executed on the CPU, and

the device program (kernel function) is executed on the

GPU. In order to facilitate GPU thread management,

all threads are organized into a hierarchical structure,

from top to bottom as grids, blocks, and threads respec-

tively. A block is composed of a group of threads, and

further, multiple blocks are combined to form a grid.

Combining software with hardware, SM is composed

of multiple SPs [31]. When the program is executed on

the GPU, CUDA blocks are distributed among GPU

SMs, and CUDA threads in a block are run on SPs

concurrently. The CUDA model puts 32 threads in a

block into a warp to execute the same instruction syn-

chronously, and an SM can only execute one wrap at a

time.

2.4 Discussion

For massive spatial data, none of the existing al-

gorithms can efficiently return MaxRS results in road

networks. As the query radius r increases, the time

cost of the segment generation based algorithm grows

super-linearly. The index-based algorithm [16] requires

expensive pre-computing cost, and no update operation

is provided. Once the location of the facility is up-

dated, the pre-computed index will become invalid. At

this time, it is necessary to perform pre-computing from

scratch again, and therefore it is not suitable for real-

life interactive scenes where facilities are frequently up-

dated.

For the segment generation based algorithm, an im-

portant observation is that both the segment generation

step and the line sweep step involve executing the same

procedure over different spatial data. For instance, we

need to generate segments for each facility along the

road network, and then sweep all edges to compute the

final result. This possibility of data-level parallelism

inspires us to leverage GPU techniques to speed up

MaxRS queries in road networks. As such, this pa-

per aims to devise a novel algorithm, which can utilize

GPU to accelerate MaxRS queries in road networks ef-

ficiently.

3 Problem Formulation

In this section, we follow the definition in [17] to

formally describe the problem. Table 1 summarizes the

symbols used throughout this paper.

Definition 1 (Road Network). A road network is

represented as an undirected graph G = (V,E), where

V is a set of nodes (i.e., vertices), and E is a set of

edges given as pairs of nodes. A node v ∈ V has 2D

coordinates: loc(v) = (v.x, v.y). Nodes and edges are

assigned unique identifiers. F is used to denote the set

of facilities, of which each, denoted by f , is located on

an edge and is associated with a positive weight w(f).

Definition 2 (Network Range and Query Radius).

Given a road network G = (V,E) and a point p in G,

the network range p(r) of p contains any point whose

network distance to p is no greater than r, where r is
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called the query radius. Formal representation of the

network range is as follows.

p(r) = {p′|dist(p, p′) 6 r, p′ ∈ P},

where P is the set of all points on nodes or edges of

the road network G, and dist(p, p′) is the shortest path

length from p to p′.

Table 1. Summary of Symbols

Symbol Meaning

G = (V,E) Road network G with nodes V and edges E

dist(p1, p2) Shortest network distance from location p1 to
location p2

distε(p1, p2) Euclidean distance between locations p1 and
p2

P Set of all points on nodes or edges of G

P ∗ Set of optimal results

(α, β, r)-Grid Grid partitioning with seed (α, β) and query
radius r

G0, G1, G2, G3 Grid with seed (0, 0), (2r, 0), (2r, 2r), (0, 2r)

Ci,j Cell in a grid partitioning

p(r) p(r) = {p′|dist(p, p′) 6 r, p′ ∈ P}
r(p) r(p) = {p′|distε(p, p′) 6 r, p′ ∈ P}
R(p) R(p) = {p′||p.x − p′.x| 6 r and |p.y − p′.y| 6

r, p′ ∈ P}
Fp(r) Set of facilities covered by p(r) in the road net-

work G

Fr(p) Set of facilities covered by r(p) in the road net-
work G

FR(p) Set of facilities covered by R(p) in the road
network G

m̂axrs Upper bound of the optimal result

MaxRSct Current MaxRS result

H Cell-based header table in CRN

L Array-based adjacency list in CRN

Definition 3 (MaxRS Query in Road Network).

Given a road network G = (V,E), a set of positive-

weighted facilities F , and a user-specified query radius

r, the MaxRS query in road networks is to find all points

p∗ in G such that the total weight of all facilities covered

by p∗(r) is maximized, namely,

p∗ = arg max
p∈G

∑
f∈Fp(r)

w(f),

where Fp(r) represents the set of facilities covered by

p(r) in the road network, which is described formally as

follows.

Fp(r) = {f |f ∈ p(r) ∧ f ∈ F}.

An example is given to illustrate the MaxRS query

in the road network. Specifically, Fig.1(b) shows a road

network with five nodes, six edges, and four facilities.

The edge and the facility information are shown in Ta-

ble 2 and Table 3, respectively. Given a query radius

r = 1.5, any position within s2 = f1(r) ∩ f2(r) ∩ f3(r)

can be the answer of this query, since the total weight

of facilities that can reach these positions within the

distance of 1.5 is the maximum (i.e., 3). Therefore, for

scenario 1, the tourist can book any hotel within s to

maximize the number of nearby attractions.

Table 2. Edge Information of Road Network in Fig.1(b)

Edge Start Node End Node Edge Length

e1 v1 v2 1.5

e2 v1 v3 1.5

e3 v2 v3 2.0

e4 v2 v5 3.0

e5 v3 v4 3.0

e6 v4 v5 2.0

Table 3. Facility Information of Road Network in Fig.1(b)

Facility Edge Position in Edge Facility Weight

f1 e3 0.5 1

f2 e4 1.5 1

f3 e4 2.0 1

f4 e5 0.5 1

4 GAM Algorithm

4.1 Overview of GAM

In this subsection, we provide an overview of our

solution, as depicted in Fig.2. Our algorithm, called

GAM, solves the problem in two phases. The first phase

partitions the road network into cells by a grid and

selects the promising cells for further checking. The

second phase computes optimal results in the promis-

ing cells based on a two-level parallel query framework.

We highlight data transfer between the two phases with

the red solid lines in Fig.2.

4.1.1 Partitioning and Pruning

There are two main steps in this phase.

• Grid Partitioning. To achieve parallel queries, an

intuitive way is to partition the road network into many

sub-regions and independently conduct the MaxRS

query within each sub-region. Then, we integrate all

the local results in each sub-region to get the global

optimal result. The key challenge lies in how to par-

tition the road network to ensure the correctness and

completeness of query results. According to the query

radius r, we use grids to partition the road network.
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Fig.2. Overview of GAM.

Specifically, we select one seedpoint in the road net-

work G, and then divide G into dl/4re×dw/4re disjoint

cells of the same size along the two geospatial coordi-

nates, where l and w are the latitude and the longitude

range of the road network respectively. We map each

facility, node and edge to the corresponding cell. After

grid partitioning, we independently conduct the MaxRS

query within cells in parallel, which ensures that para-

llel results are consistent with original results, as to be

demonstrated in Subsection 4.2.1.

• Multi-Grained Pruning. There are a lot of cells

that do not contain the optimal result in the grid, and

therefore we do not need to further check them. Thus,

pruning strategies are necessary to significantly reduce

the computation of unpromising cells. For this pur-

pose, we first compute the upper bound of the optimal

result within each cell C, denoted as ub(C). Suppos-

ing MaxRSct is the optimal result found so far, we

can compare ub(C) with MaxRSct. As to be proved

in Subsection 4.2.2, any unpromising cell with ub(C)

less than MaxRSct can be safely pruned without fur-

ther consideration, and the remaining promising cells

are utilized for subsequent MaxRS queries in phase 2.

Intuitively, we use the total weight of the facilities in C

as the upper bound of C’s optimal result. Furthermore,

we divide each cell into fine-grained squares evenly to

get a more accurate upper bound, as to be specifically

introduced in Subsection 4.2.2.

4.1.2 Storage and Parallel Computing

Based on the promising cells returned by phase 1,

the second phase of GAM constructs optimal results

in a two-level parallel query framework using GPU.

Considering the GPU hardware architecture, the sec-

ond phase consists of a GPU-friendly storage structure

and a two-level parallel framework.

• GPU-Friendly Storage Structure. In order to

quickly access the road network data in each cell, we

design the GPU-friendly storage structure CRN (Cell-

based Road Network). It consists of three major com-

ponents: the cell-based header table, the array-based

adjacency list and the facility list. The cell-based

header table stores the concise information of the road

network data in each cell, and the array-based adja-

cency list is used to reconstruct the road network in a

cell from the cell-based header table. Thus, we can asso-

ciate the header table with the adjacency list to access

any edge or node in each cell efficiently. The facility list

stores the position and weight of facilities in each cell.

The GPU-friendly CRN facilitates efficient processing

of MaxRS queries in cells, as to be described in detail

in Subsection 4.3.1.

• Two-Level Parallel Framework. Due to the special

hardware architecture of GPU, we design a two-level

parallel framework to compute optimal results based

on CRN. Specifically, our two-level parallel framework

consists of cell-level parallelism and facility-level paral-

lelism. 1) Cell-Level Parallelism. After the road net-

work is partitioned into cells, we distribute the com-

putation of cells among CUDA blocks, and then the

processing between cells is in parallel. 2) Facility-Level

Parallelism. There are many facilities within each cell.

The MaxRS query in the road network is further de-

composed into two independent components, namely,
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segment generation [17] and line sweep [32]. Thus, the

segment generation for facilities can be performed by

CUDA threads concurrently. Then, we find the local

results in each cell by line sweep and put the result

with the maximal range sum computed so far into set

P ∗. Finally, we return P ∗ as final results.

4.2 Phase 1: Finding the Promising Cells

4.2.1 Grid Partitioning

In this subsection, we first introduce the grid parti-

tioning technique adapted to r, and then theoretically

prove that the parallel results based on this partition

are exactly the same as original results. The grid par-

titioning adapted to r is critical to solving the GPU-

accelerated MaxRS query and defined as follows.

Definition 4 ((α, β, r)-Grid). Given a point (α, β)

in R2 and a user-specified query radius r, (α, β, r)-grid

is the set of vertical and horizontal lines defined by:

x = α+ k × 4r,

y = β + k × 4r,

respectively, where k = −∞, ...,−1, 0, 1, ...,+∞ and 4r

is the distance between two adjacent horizontal or ver-

tical lines. Point (α, β) is the seed of the grid.

From the above definition, (α, β, r)-grid partitions

the road network into
⌈
l
4r

⌉
×
⌈
w
4r

⌉
disjoint cells, where

l and w are the latitude and the longitude range of the

road network respectively. Each cell Ci,j is a 4r × 4r

square surrounded by two consecutive vertical lines and

two successive horizontal lines, where i and j are the

column number and the row number of the cell in the

grid, respectively. For example, the shadow area is the

cell C0,1 of (0, 0, r)-grid in Fig.3. We denote (0, 0, r)-

grid as G0. Shifting the seed point (0, 0) to the right by

2r, and then moving vertically upward by 2r, we get the

seed point (2r, 2r), and denote (2r, 2r, r)-grid as G2. In

the same way, we use G1 and G3 to represent (2r, 0, r)-

grid and (0, 2r, r)-grid, respectively. Considering the

example in Fig.3 again, the solid lines form G0 and the

dotted lines constitute G2.

For the sake of illustration, the maximum reach-

able range of a point p is denoted as r(p) =

{p′|
√

(p.x− p′.x)
2

+ (p.y − p′.y)
2 6 r, p′ in G}, whose

bounding rectangle is denoted as R(p) = {p′||p.x −
p′.x| 6 r and |p.y − p′.y| 6 r, p′ in G}. The posi-

tional relationship between r(p) and R(p) is shown in

Fig.4. Obviously, for ∀p′ ∈ r(p), we can deduce that

p′ must be in the set R(p). Besides, let distε(p, p
′) de-

note the Euclidean distance between locations p and

p′ and dist(p, p′) denote the shortest network distance

from location p to location p′, and then we can derive

Lemma 1.

G  Seed

G  Seed

G: (0, 0, r)-Grid

G: (2r, 2r, r)-Grid

r

r

↼r↪ r↽

↼↪ ↽

r

r

Fig.3. Grid partitioning example.

Lemma 1. Let Fp(r), Fr(p), and FR(p) denote the

set of facilities covered by ranges p(r), r(p), and R(p)

respectively. For any point p in G, they must satisfy:

Fp(r) ⊆ Fr(p) ⊆ FR(p).

Proof. According to the triangle inequality, for any

point p, p′ in G, the following equation always holds:

distε(p, p
′) =

√
(p.x− p′.x)

2
+ (p.y − p′.y)

2

6 dist(p, p′).

Therefore, we have p(r) ⊆ r(p). Furthermore, Fp(r) ⊆
Fr(p). Since r(p) ⊆ R(p) for any point p in G, obviously,

p(r) ⊆ r(p) ⊆ R(p), which leads to:

Fp(r) ⊆ Fr(p) ⊆ FR(p). �
In a similar spirit to [10], an interesting insight is

that the optimal result on any edge e always exists at a

cell C in partition Gi ∈ {G0, G1, G2, G3}, as shown in

the following Lemma 2.

Lemma 2. Let P ∗ be the set of all optimal results.

For any point p∗ ∈ P ∗ on an edge e ∈ E, there must be

a road network partition Gi ∈ {G0, G1, G2, G3}, so that

a certain cell C in Gi returns the optimal result p∗.

Proof. For any optimal result p∗ ∈ P ∗, the maxi-

mum reachable range of p∗ is denoted as r(p∗), whose

bounding rectangle is denoted as R(p∗). According to

Lemma 1: Fp∗(r) ⊆ Fr(p∗) ⊆ FR(p∗).

First, the top-left corner q of R(p∗) must fall into

a cell of the partition G0. This cell is marked as a

square ABCD and further divided into four 2r × 2r

sub-squares, as shown in Fig.4(c), where they are se-

quentially numbered as 0, 1, 2, 3.
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(b)(a) (c)
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r

Fig.4. Demonstration of Lemma 1. (a) r(p). (b) R(p). (c) Cell-ABCD.

Case 1. If the point q falls into the sub-square 0,

apparently, there is a cell (i.e., ABCD) of G0 that com-

pletely contains R(p∗).

Case 2. If the point q falls into sub-square 1, then

we shift the seed point to the right by 2r, and there is

a cell in the grid G1 that completely contains R(p∗).

Case 3. If the point q falls into sub-square 2, similar

to case 2, there is a cell in the grid G2 that completely

contains R(p∗).

Case 4. If the point q falls into sub-square 3, sim-

ilarly, there is a cell in the grid G3 that completely

contains R(p∗).

In summary, if the point q is within the sub-square

i ∈ [0, 3], then the grid Gi has a cell that completely

covers the facility set Fp∗(r), that is, ∀p∗ ∈ P ∗, then,

∃C in Gi ∈ {G0, G1, G2, G3} covers facility set Fp∗(r),

and thus C can return the optimal result p∗. �
Based on Lemma 2, we can perform parallel MaxRS

queries within each cell in four grids (G0, G1, G2, G3),

and then integrate local results from cells to find all

MaxRS results, which are consistent with original re-

sults. Namely, the parallel query does not miss any op-

timal result in the road network G. Next, we illustrate

briefly the main steps to partition the road network by

a grid.

Step 1: Traverse the Facility Set F , for ∀f ∈ F .

First, the current f is mapped to the covering cell

Ci,j according to the following equations: i = b f.x−α4r c,
j = b f.y−β4r c, where (f.x, f.y) is the coordinate of f .

Then, we add f to the facility list of Ci,j , and at the

same time, add the edge of f to the adjacency list of

Ci,j .

Step 2: Traverse the Node Set V , for ∀v ∈ V . Simi-

lar to step 1, we first get the cell Ci,j where v is mapped

to according to the coordinates loc(v) = (v.x, v.y), and

then v and other nodes adjacent to v are added to Ci,j .

After finishing the grid partitioning of the road net-

work, we can obtain the road network subgraph G(Ci,j)

in each cell Ci,j . In addition, the complexity of the

road network grid partitioning is: O(|F |+ |V |). There

are three main benefits of grid partitioning to facilitate

MaxRS queries in road networks, which are listed as

follows.

1) Conducive to Parallel Query. Based on Lemma 2,

after the road network is partitioned into grids, MaxRS

queries in road networks can be conducted in parallel

among cells, which is conducive to use GPU for parallel

acceleration.

2) Saving Computation. By estimating the upper

bound of the optimal result in each cell, unpromising

cells can be safely pruned to save the computation over-

head and improve the algorithm efficiency. Details of

pruning strategy are introduced in Subsection 4.2.2.

3) Reducing Memory Access Overhead. The raw

road network is relatively large, and even unable to be

loaded into memory. In contrast, the road network sub-

graph G(Ci,j) after partitioning is usually very small.

When the query radius r is small, G(Ci,j) can be di-

rectly loaded into the shared memory of the SM, so as

to reduce the memory access overhead.

4.2.2 Multi-Grained Pruning

There are a large number of cells in the four par-

titions (G0, G1, G2, G3) where MaxRS queries need

to be conducted independently, which is very time-

consuming. However, due to many overlaps between

the four partitions, many unpromising cells that con-

tain no MaxRS results can be pruned without further

checking. They not only lead to redundant computa-

tion, but also generate unnecessary data transmission

between CPU and GPU. Therefore, it is necessary to
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propose pruning strategies to reduce the unnecessary

computation of unpromising cells.

Basic Pruning Idea. To avoid the computation of

unpromising cells, for any cell C, we first estimate an

upper bound ub(C) of the MaxRS result in C, and

then compare ub(C) with the current MaxRS result

MaxRSct. If ub(C)<MaxRSct, there is no better so-

lution in C, and thus we prune this unpromising cell.

A naive way to compute ub(C) for C is to sum the

weights of all facilities in C. Generally, let FC denote

the facility list covered by cell C.

Lemma 3 (Naive Pruning Strategy). Given the

current MaxRS value MaxRSct and a cell C, if∑
f∈FC

w(f)<MaxRSct holds, then C can be safely

pruned.

Proof. For any cell C in grid Gi, the local opti-

mal result in the cell is denoted as p∗C . Apparently,

there must be
∑
f∈Fp∗

C
(r)
w(f) 6

∑
f∈FC

w(f), and

thus ub(C) =
∑
f∈FC

w(f). If ub(C) < MaxRSct

holds, we can derive that
∑
f∈Fp∗

C
(r)
w(f) < MaxRSct.

Therefore, C contains no MaxRS results and can be

safely pruned. �
We consider a cell AEGH in Fig. 5(a) and sup-

pose MaxRSct = 10. The weight of each facility

is 1. The total weight of all facilities in this cell is∑
f∈FC

w(f) = 9. There is no MaxRS result in this cell

since MaxRSct = 10 is greater than ub(C) = 9. Hence,

this cell can be safely pruned.

Enhanced Pruning. According to Lemma 3, given

the current MaxRS value MaxRSct, and the upper

bound ub(C), any unpromising cell with ub(C) less than

MaxRSct can be safely pruned without further consid-

eration. However, ub(C) =
∑
f∈FC

w(f) is very loose

in reality so that only a small part of unpromising cells

can be pruned. Hence, to estimate ub(C) more accu-

rately, we further divide the cell into fine-grained unit

squares evenly. As shown in Fig.5(b), the cell is 4r×4r,

which is further divided into 16 unit squares of size r×r
by six vertical and horizontal dotted lines.

Definition 5 (Largest Intersecting Square). Given

a cell C and user-specified r, let p∗C be a local opti-

mal result in C. After fine-grained division, the maxi-

mal reachable range r(p∗C) may intersect with nine unit

squares at most, and the region composed of them is

defined as the largest intersecting square.

For instance, A,E,G,H in Fig.5(b) are four corners

of the cell C. Obviously, the local optimal result p∗C in

this cell must be contained in one of the 16 r × r unit

squares. Without loss of generality, let us suppose that

p∗C is contained in unit square 0, and the red region Rul

composed of nine unit squares intersecting with r(p∗C)

is one of the largest intersecting squares. Likewise, the

green region, the yellow region, and the purple region

are also the largest intersecting squares in C, denoted

as Rur, Rll, and Rlr, respectively. For each largest in-

tersecting square, we sum the weights of the facilities

located in this region. Then, the following Lemma 4 is

derived.

Lemma 4 (Largest Intersecting Square Prun-

ing Strategy). Supposing MaxRSct is the optimal

result found so far, for any cell C, if ub(C) =

max
R∈{Rul,Rur,Rll,Rlr}

{
∑
f∈FR

w(f)}<MaxRSct holds, then

C can be safely pruned without further consideration.

Proof. As shown in Fig.5(b), when p∗C is contained

in unit square 0, 1, 2, and 3, r(p∗C) may intersect with

(b)(a)

r r

r

A B E

r↼pC↽

F
C

GKH

A E

GH

D

 



*

Fig.5. Pruning example. (a) Cell. (b) Fine-grained cell.
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nine small squares at most. There are four cases of

upper bound estimation.

Case 1. If p∗C is in the region ABCD, then∑
f∈Fp∗

C
(r)
w(f) 6

∑
f∈FRul

w(f).

Case 2. If p∗C is in the region BCFE, then∑
f∈Fp∗

C
(r)
w(f) 6

∑
f∈FRur

w(f).

Case 3. If p∗C is in the region CDHK, then∑
f∈Fp∗

C
(r)
w(f) 6

∑
f∈FRll

w(f).

Case 4. If p∗C is in the region CKGF , then∑
f∈Fp∗

C
(r)
w(f) 6

∑
f∈FRlr

w(f).

In summary, no matter which unit square p∗C falls

into, the following relationship must be satisfied:∑
f∈Fp∗

C
(r)

w(f) 6 max
R∈{Rul,Rur,Rll,Rlr}

{
∑
f∈FR

w(f)}.

Thus,

ub(C) = max
R∈{Rul,Rur,Rll,Rlr}

{
∑
f∈FR

w(f)}.

In other words, max
R∈{Rul,Rur,Rll,Rlr}

{
∑
f∈FR

w(f)} is the

upper bound estimation of the optimal result in this

cell C. If ub(C)<MaxRSct holds, we can derive that:∑
f∈Fp∗

C
(r)

w(f) 6 ub(C) < MaxRSct.

Therefore, any cell with ub(C) less than MaxRSct

will certainly contain no point with the maximal range

sum greater than MaxRSct and the cells can be safely

pruned. �
Let us consider the example in Fig.5(b) again. As-

sume MaxRSct = 5 and the weight of each facility is 1.

Based on Lemma 4, the total weight of the facilities in

the largest intersecting squares Rul, Rur, Rll and Rlr is

4, 4, 4, 3, respectively. Then, ub(C) = max{4, 4, 4, 3} =

4, instead of ub(C) = 9 by Lemma 3. Hence, this cell

can be safely pruned since MaxRSct = 5 is greater than

ub(C) = 4. However, Lemma 3 cannot prune this cell

in this case.

Conspicuously, the upper bound of Lemma 4 is more

accurate than that of Lemma 3, and can be used to

prune more unpromising cells that do not contain the

query result of MaxRS in road networks. Based on the

upper bound of the cell, we can further estimate the

upper bound of the result in a grid G.

Lemma 5 (Grid Pruning Strategy). Supposing

MaxRSct is the MaxRS result found so far, for any

grid partitioning G ∈ {G0, G1, G2, G3}, ub(G) =

max
C in G

{ub(C)} is the upper bound of MaxRS results in

a grid G. If ub(G) < MaxRSct holds, then all cells in

G can be safely pruned without further consideration.

Proof. For any cell C in grid G, the local optimal

result existing in C is denoted as p∗C , and the following

equation always holds:∑
f∈Fp∗

C
(r)

w(f) 6 max
C∈G
{ub(C)}.

Thus, ub(G) = max
C in G

{ub(C)} is the upper bound of

MaxRS results in G. If ub(G)<MaxRSct holds, we can

derive that
∑
f∈Fp∗

C
(r)
w(f)<MaxRSct. Therefore, any

cell in G must not contain MaxRS results greater than

MaxRSct and all cells can be pruned. �
Based on Lemma 5, we can directly prune all cells

in a grid that do not contain query results. After the

upper bound ub(G) is computed, grids are processed

by the descending order of ub(G). Intuitively, the grid

with a greater ub(G) has a higher probability containing

MaxRS results. Note that the upper bound estimation

can be computed efficiently while performing grid par-

titioning. Before the query starts, we can heuristically

select a cell with the largest ub(C) to get MaxRSct for

pruning. After the pruning is completed, the remaining

promising cells are utilized for the subsequent MaxRS

query in phase 2.

4.3 Phase 2: Computing Optimal Results

The first phase of GAM returns a set of promising

cells which may contain MaxRS results. This phase

conducts parallel MaxRS queries in all promising cells

to get all MaxRS results. It is worth mentioning that

phase 1 is usually efficient and occupies a small frac-

tion of the overall query processing time. In contrast,

the MaxRS query in phase 2 is typically very expen-

sive to compute. We hence focus on accelerating phase

2 by GPU. For efficient performance, we first design a

GPU-friendly storage structure CRN, and then propose

a two-level parallel framework based on it.

4.3.1 GPU-Friendly Storage Structure

In order to facilitate efficient access to the road net-

work data within each cell in GPU, we propose the CRN

based on the cells partitioned by the grid, which covers

the entire road network. Specifically, CRN consists of

three major components: a cell-based header table H,

an array-based road network adjacency list L and an

array-based road network facility list F . We associate

the table H with the list L to access any edge or node

in each cell efficiently.
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1) Cell-Based Header Table. We first devise a

cell-based header table H consisting of all the cells

in the ascending order of cell identifiers to store

the concise information of the road network data in

each cell. Each element in H is a quadruple of

(cid, offset, length, upper), where cid is the identifier

of a cell. For any cell Ci,j in Gi, its cid can be calculated

according to the formula cid = j×GridDimX+i, where

GridDimX is the number of cells in a row of the grid

Gi. Furthermore, offset and length specify a continu-

ous part in the vertex array of L starting from offset

to offset+length−1, in which all the nodes are within

Ccid. upper is the upper bound of the MaxRS result in

Ccid, which is estimated according to the pruning strat-

egy in Subsection 4.2.2 to directly prune cells without

the MaxRS result.

2) Array-Based Road Network Adjacency List. Al-

though the nodes of the road network are spatially cor-

related, the degree of each node of the road network is

usually not very large (generally less than 5). Namely,

in real life, most road networks are sparse graphs. Due

to the limited GPU global memory size, we utilize the

adjacency list to represent the road network, and the

space complexity is only O(|V | + |E|). In the CUDA

architecture, the global memory is regarded as an array,

which can be efficiently read and written. Based on the

above analysis, we design an array-based adjacency list

to store the road network inside each cell, consisting of

the vertex array, the edge array, the length array, the

lock array and the segment list. Specifically, the ver-

tex array and the edge array store all the vertices and

edge information inside the cell respectively, and the

length of each edge is recorded in the length array. In

order to avoid multi-thread competition and ensure the

thread safety, we use the lock array to record whether

the segment list corresponding to each edge is perform-

ing read and write operations. In addition, the segment

generated by the facility on each edge is stored in the

segment list. Note that since each edge must appear

twice in the edge array, we only attach a segment list

behind one of the corresponding edges to save memory.

3) Facility List. The facility list stores all facilities

covered by each cell in the road network continuously.

Each facility f is a triplet of (fid, position, weight),

representing the detailed information of f as defined

in Section 3. Note that facility requests from CUDA

threads can be coalesced in Subsection 4.3.2, because

facilities in the same cell are stored continuously in the

global memory.

For example, given the query radius r = 0.5, accord-

ing to the partition steps in Subsection 4.2.1, the road

network is partitioned into cells by grid G0 in Fig.6. For

cell C0,0, we can obtain its cid = 0 by the mapping func-

tion, and further index into the cell-based header table

H to obtain the concise information (0, 0, 4, 3) of the

road network in C0,0. Then, we use offset and length

to index the detailed information of C0,0 in the array-

based adjacency list L. The red dashed area and the

blue dashed area are the specific information of the road

network subgraphs G(C0,0) and G(C1,0), respectively.

All facilities are kept in the facility list. f1, f2, f13 are

located in C0,0 and f3, f4 are located in C1,0.
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4.3.2 Two-Level Parallel Framework

The input of this step consists of the promising cells

and the query radius r. The output is composed of all

MaxRS results from all promising cells. The lock array

and segment list is initially set to 0 s. After segment

generation, it will be parsed by line sweep to get all

MaxRS results contained in the promising cells.

A straightforward way to perform the MaxRS query

on GPU is to treat each promising cell query indepen-

dently using one CUDA thread. However, the efficiency

of this parallelism may vary a lot with user-specified

r. For example, when r increases, the number of cells

N = d l4r e × d
w
4r e will rapidly decrease, which obvi-

ously leads to a degradation of the parallel performance.

Considering the GPU hardware architecture, the GPU

is composed of dozens of SMs, and each SM contains

multiple SPs (CUDA cores). When a CUDA program

is running on the GPU, CUDA blocks are handled by

SMs concurrently, and all threads of a CUDA block

execute on SPs within an SM in parallel. Therefore,

only mapping promising cells to CUDA threads cannot

fully utilize the hardware resources of GPU, resulting

in poor parallel performance. A two-level parallel query

framework is thus proposed to address these problems.

As shown in Fig.7, we first distribute each promis-

ing cell in the road network grid to a CUDA block (the

first level) and there are many facilities in each promis-

ing cell. For MaxRS queries in road networks, the cost

of the segment generation may become the bottleneck

of query processing, as analyzed in [16, 17]. We hence

handle the segment generation of a facility by a CUDA

thread to further accelerate the MaxRS query within

a promising cell (the second level), which forms a two-

level parallel query framework as follows.

1) Cell-Level Parallelism. After the road network

is partitioned into cells, we distribute the computation

of cells among CUDA blocks, and thus the processing

between cells is in parallel.

2) Facility-Level Parallelism. Within each cell, the

MaxRS query in road networks is further decomposed

into two independent components, namely, segment

generation [17] and line sweep [32]. Thus, the segment

generation for facilities can be performed by CUDA

threads concurrently, and then we integrate all local

results in each cell to get final results by line sweep.

We first organize the promising cells in the grid into

CRN and transfer it to the global memory of the GPU.

Note that the road network subgraph G(C) covered by

a cell C is stored continuously within CRN in the global

memory of the GPU. We then perform MaxRS queries

for the promising cells on the GPU in parallel. Specifi-

cally, we assign facilities covered by a promising cell to

one CUDA block (handled by a GPU SM), which will

then be distributed uniformly among CUDA threads.

In a CUDA block, for each facility f , a CUDA thread

tries to generate segments for f along the road network

until the distance reaches query radius r. In our imple-

mentation, like the GPU accelerated graph search, we

maintain a stack for each facility recording the nodes to

be expanded and the remaining network radius in the

global memory of the GPU. For the generated segment

s in edge e, we first check if the lock bit of e is 0. If so,

we set this lock bit to 1, then s is recorded into the seg-

ment list of this edge, and the merge strategy in [17] is

used to merge these existing segments with the new seg-

ment. Note that in this step, data requests from CUDA

threads can be coalesced, because facilities and nodes

in the same promising cell are stored continuously in

the global memory.

After the segment generation is completed, we

transfer the segment list of CRN back to the CPU,

MaxRS Query in Road Network Software Hardware

CUDA Grid

CUDA Block

Grid

Cell 0 Cell i Cell n

CUDA
Thread

GPU
Device

SM

SP
(CUDA Core)

Cell-Level
Parallelism
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Facility↪ Facility↪i Facility↪m Facilityn↪ Facilityn↪i Facilityn↪m'

... ...

...

... ... ... ...

Fig.7. Two-level parallel query framework.
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and the CRN is cleared out of the global memory. We

find the local result in each edge’s segment list by line

sweep [32], which is the line version of algorithm plane

sweep. Then we put the result with the maximal to-

tal weight computed so far into set P ∗. Finally, P ∗

containing all MaxRS results in the network will be re-

turned.

To facilitate efficient access to facilities in one

promising cell, we can directly store them in a smaller

but faster shared memory associated with each GPU

SM when r is relatively small. It is worth noting that

our query framework is hardware-conscious and can be

easily extended to multiple GPUs by assigning a grid

Gi ∈ {G0, G1, G2, G3} to one GPU, which can fur-

ther improve parallel query performance. In short, our

query framework not only makes better use of GPU re-

sources, but also effectively solves the MaxRS problem

in road networks. We use CUDA proposed by NVIDIA

as the programming model on the GPU.

4.4 Algorithm Details

In this subsection, we provide some details of GAM

in Algorithm 1. It takes a query radius r and a road

network dataset G as input and returns a set P ∗ with

the maximum range sum.

Algorithm 1. GAM

Input: query radius r, road network G;
Output: MaxRS result set P ∗;

1 P ∗ ← ∅;
2 for seedPointi ∈ {(0, 0), (0, 2r), (2r, 0), (2r, 2r)} do
3 Gi ← GridPartition(G, seedPointi);
4 Pruning(Gi);
5 Copy CRN to device;
6 for cell in Gi parallel do // Cell-level

Parallelism

7 for f ∈ Fcell parallel do // Facility-level

Parallelism

8 GenerateSegment(f);
9 end

10 end
11 for e ∈ E do // Update P ∗ by line sweep

12 P ′ ← LineSweep(e.segmentList);
13 if P ′.MaxRS > P ∗.MaxRS then
14 P ∗ ← P ′;
15 end
16 else if P ′.MaxRS = P ∗.MaxRS then
17 P ∗ ← P ∗ ∪ P ′;
18 end

19 end

20 end
21 return P ∗;

P ∗ is initialized to an empty set in line 1. In

lines 2 and 3, for any seedPointi ∈ {(0, 0), (0, 2r),

(2r, 0), (2r, 2r)}, GAM calls GridPartition, introduced

in Subsection 4.2.1, to partition the whole road network

G into many cells and estimate the upper bound of the

maximum range sum for each cell in the meanwhile. In

line 4, we prune the unpromising cells in Gi that do not

contain any optimal result by comparing ub(C) with

MaxRSct. CRN is constructed for remaining promis-

ing cells and copied to the GPU’s global memory in line

5.

In lines 6–10, promising cells in Gi are processed

in parallel. Within each cell, we invoke the method

GenerateSegment in [17] to generate segments for each

facility f concurrently, and insert segments into the

SegmentList of CRN. In lines 11 and 12, we use the

existing method LineSweep in [32] to find the local op-

timal results in each edge. Then, we update the result

with the maximal total weight computed so far into set

P ∗ in lines 13–18. Finally, P ∗ containing all MaxRS

results in the network will be returned in line 21.

We omit the detailed description of SegmentList

and LineSweep here. Next, we will prove the correct-

ness of GAM.

Theorem 1. GAM (i.e., Algorithm 1) returns all

optimal results of the MaxRS query in road networks

correctly.

Proof. Intuitively, the correctness of GAM is guar-

anteed by the following three aspects.

1) Based on Lemma 1 and Lemma 2, for any opti-

mal result p∗ on an edge e ∈ E, there must be a cell C

in Gi ∈ {G0, G1, G2, G3} returning p∗.

2) Based on Lemma 4 and Lemma 5, the pruning

strategies prune the unpromising cells not containing

any optimal result p∗ correctly.

3) For a promising cell C, after segment generation,

the line sweep can compute the total weight of points in

this cell exactly, and the result with the maximal total

weight is always kept in P ∗.

To sum up, all optimal results of the MaxRS query

are kept in P ∗ returned by GAM. �

5 Experiment

5.1 Datasets and Experimental Settings

Platform. All experiments are implemented in

Python 3.8.5 with CUDA 8.0. The experiments are

executed on DELL Precision Tower 3620 Workstation

(Intelr Xeonr E3-1225 v6 @ 3.30 GHz 3.31 GHz

(4 cores) + 32 G RAM + 64-bit windows 10). We

equip the computer with a NVIDIA GeForce RTX 2080

graphics card, which has 2 944 CUDA cores and 11 G

graphical memory.
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Datasets. In the experiment, considering various

real application scenarios, we use two real road network

datasets with different data scales, ranging from the

county to the state. They are Oldenburg (OL) [33] and

California (CA) road networks. OL is generated based

on the real road network of Oldenburg with 100 km2

in [33], which contains 6 105 vertices and 7 035 edges.

The average degree of the nodes in this network is

2.304. CA is a popular and widely-used real road net-

work dataset, which is generated based on the real road

network of California State in USA with 100 000 km2

and contains 87 635 real facilities. This dataset is ob-

tained from [34], which contains 21 048 vertices and

21 693 edges. Table 4 provides more detailed informa-

tion of the road network datasets. In order to facilitate

data processing, we normalize the coordinate range of

all datasets to [0, 100 00].

Table 4. Cardinalities of Real Datasets

Dataset Number of Number of Average Average
Nodes Edges Length Degree

OL 6 105 7 035 73.679 2.304

CA 21 048 21 693 0.016 2.061

Same as the previous work [16, 17], the facilities are

generated randomly in the road network with uniform

distribution in terms of the road network distance, and

their weights are within the range of (0, 50].

Competitors. Since our GPU acceleration method

refers to the idea of segment generation, we compare

GAM with the segment generation based algorithm [17]

(denoted as SEG) mentioned before. Although the

method in [17] is based on external memory storage,

we implement it in memory to make the experiment

more reasonable and optimize it by pruning redun-

dant segment generation. To illustrate the effectiveness

of our multi-grained pruning technique and two-level

parallel query framework, we also consider two variants

of GAM: GAM-noPrun and GAM-CPU as follows.

• GAM. The GPU-accelerated method for MaxRS

queries in road networks is based on our two-level para-

llel query framework, equipped with the grid partition-

ing technique, and the multi-grained pruning technique.

• GAM-noPrune. This is GAM without the

multi-grained pruning technique, where all cells in

{G1, G2, G3, G4} need to be processed.

• GAM-CPU. This is the CPU version of GAM us-

ing multi-threading, where each cell in {G1, G2, G3, G4}
is assigned to a thread running on the CPU (i.e.,

only one-level parallel) for segment generation and line

sweep.

• SEG [17]. This method extends the rectangular

intersection of the traditional query into the intersec-

tion of segments in the road network, consisting of two

steps: segment generation and line sweep.

Metrics. For efficiency comparison we collect the

following measures:

• execution time: the wall-clock elapsed time;

• speedup: the ratio of the running time of algo-

rithm A (before acceleration) and algorithm B (after

acceleration), namely: TB

TA
;

• pruning ratio: let |F |before and |F |after be the num-

bers of facilities for generating segments before and af-

ter the pruning respectively. This metric is computed

by |F |before−|F |after
|F |before

.

Parameters. In the experiments, we evaluate the

performance of GAM in terms of several aspects: the

effect of query radius r (efficiency), the effect of the

number of facilities |F | (scalability), and the effect of

pruning (pruning). Let R be the coordinate range of the

road network, and we set the query radius r = θ × R,

where θ is changed among 0.5%, 1%, 2%, 3% and 4%.

Apart from this, we vary |F | among 20k, 40k, 60k,

80k and 100k. The concrete settings of parameters are

shown in Table 5 and the default values are underlined.

All the parameters in the datasets and queries use the

default values (if not explicitly specified). Note that,

before querying, the road network is pre-loaded into

memory.

Table 5. Parameter Settings

Parameter Description Used Value

θ Query range size 0.5%, 1%, 2%, 3%, 4%

|F | Number of facilities 20k, 40k, 60k, 80k, 100k

5.2 Experiment 1: Effect of Query Range Size

The first experiment evaluates the performance of

GAM, GAM-CPU and SEG on varying the query range

size θ from 0.5% to 4%. Fig.8 illustrates the experimen-

tal results conducted on OL and CA.

As depicted in Fig.8(a) and Fig.8(b), with a greater

value of θ, the query time of the SEG increases rapidly,

and its growth trend is approximately super-linear.

Note that when θ is particularly small (e.g., θ = 0.5%),

the efficiency of GAM-CPU is roughly the same as

that of GAM which is about one order of magnitude

faster than SEG. However, with the increase of θ (e.g.,

θ = 4%), the time of GAM-CPU quickly increases to

approach that of SEG. In contrast, no matter how θ

changes, the time of GAM grows slowly.
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This is because when θ is very small (e.g., θ = 0.5%),

the data is partitioned into many cells by a grid, and

the number of segments that need to be generated and

swept is very small. Therefore, the advantage of our

two-level parallelism is not significant, and the parallel

efficiency of GAM-CPU is roughly the same as that

of GAM. Besides, there are additional overheads in

the GAM algorithm such as grid partitioning and data
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transmission between GPU and CPU. Therefore, GAM-

CPU is even slightly faster than GAM. However, with θ

increases, the number of cells decreases rapidly, result-

ing in a rapid growth of GAM-CPU query time.

As shown in Fig.8(c) and Fig.8(d), with the increase

in θ, the speedup of GAM becomes more and more obvi-

ous, while the speedup of GAM-CPU has an apparently

downward trend. As analyzed in Subsection 4.3.2, the

number of cells partitioned by the grid decreases rapidly

as r increases, which obviously leads to a rapid decrease

in the speedup of GAM-CPU only with one-level paral-

lelism. Conversely, due to two-level parallelism for each

facility in a cell, GAM still maintains a high and stable

speedup.

Fig.8(e) and Fig.8(f) show the query time decompo-

sition of our algorithm GAM with the growing of θ. It

consists of two parts: phase 1 and phase 2. Experimen-

tal results show that phase 2 accounts for the majority

of the total time. It also demonstrates that the cost

of phase 1 basically levels off and phase 2 spends more

time with the growing of θ. Apparently, the cost of

phase 1 (i.e., grid partitioning and pruning) can be ig-

nored for the MaxRS query in road networks.

5.3 Experiment 2: Effect of the Number of

Facilities

The second experiment evaluates the performance

of GAM, GAM-CPU and SEG on the varying num-

ber of facilities |F | (i.e., scalability) from 20k to 100k.

Fig.9 illustrates the experimental results conducted on

OL and CA.

As depicted in Fig.9(a) and Fig.9(b), when the num-

ber of facilities increases, the query time of the SEG

grows rapidly, while the running time of the GAM-CPU

increases relatively slowly. Apparently, our algorithm

GAM always outperforms all the other algorithms in

terms of the query time. In addition, our algorithm

has a nearly linear scalability. This shows that GAM

based on the two-level parallel framework has better

scalability than GAM-CPU based on the cell-level par-

allelism.

As shown in Fig.9(c) and Fig.9(d), with the increase

in the number of facilities, the acceleration of GAM be-

comes more and more obvious, while the speedup of

GAM-CPU has not changed significantly. This is be-

cause the number of cells has not changed with the

growing of |F |. Thus the one-level parallelism is not

affected by the number of facilities. But at this time,

there are more facilities in each cell, and GAM gene-

rates segments in parallel for each facility. This re-

flects the advantages of our two-level parallel frame-

work. Compared with the CA road network, the OL

road network is smaller in scale. At the same |F |, the

OL speedup is smaller than the CA speedup.

Fig.9(e) and Fig.9(f) give the query time decomposi-

tion of our algorithm GAM with the growing of |F |. It

consists of two parts: phase 1 and phase 2. Experimen-

tal results show that phase 2 accounts for the majority

of the total time. It also indicates that the cost of phase

1 basically levels off and phase 2 spends more time with

the growing of |F |. Obviously, the cost of phase 1 (i.e.,

grid partitioning and pruning) can be neglected for the

MaxRS query in road networks.

5.4 Experiment 3: Effect of Pruning Strategy

The third experiment evaluates the performance of

the pruning strategy on OL and CA.

1) Effect of θ on the Pruning Strategy. Fig. 10

gives the pruning performance of GAM on road net-

work datasets by varying the query range size θ from

0.5% to 4%. Specifically, as depicted in Fig.10(a) and

Fig.10(b), with θ increasing, GAM-noPrune grows ap-

proximately super-linearly. In clear contrast, GAM

grows more slowly than GAM-noPrune and has simi-

lar trends to GAM-noPrune. Fig.10(c) and Fig.10(d)

reflect that the enhanced pruning strategies (i.e., LIS

and the grid pruning strategy) are much better than

the naive pruning strategy all the time. The pruning

ratio of both has a slight downward trend with the in-

creasing of θ. The reason is that the upper bound of

the optimal result in the cell or grid becomes looser as

θ becomes larger, which is consistent with our expecta-

tion.

2) Effect of |F | on the Pruning Strategy. Fig.11 in-

vestigates the pruning performance of the algorithms on

road network datasets with the variation of the num-

ber of facilities |F | from 20k to 100k. Conspicuously,

as shown in Fig. 11(a) and Fig. 11(b), our algorithm

GAM and GAM-noPrune have a nearly linear scala-

bility. Moreover, GAM is further improved by 2x–3x

of GAM-noPrune, and the growth trend of GAM is

slower. In Fig.11(c) and Fig.11(d), the enhanced prun-

ing strategies (i.e., LIS and the grid pruning strategy)

are much better than the naive pruning strategy all the

time. When |F | increases, the pruning ratio of both

has a little fluctuation while basically levels off. This is

because the accuracy of the upper bound of the optimal

result in the cell or grid is not affected by |F |. This is

consistent with our expectation.
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5.5 Summary

As illustrated in the experiments, in terms of query

efficiency, our algorithm GAM outperforms the other

algorithms significantly.

Under the same query range size θ, the performance

promotion of GAM is up to about one order of magni-

tude. Under the same number of facilities |F |, with
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a greater number of facilities |F |, GAM has a nearly

linear scalability and the speedup of GAM is getting

higher and higher. Decomposing the query time of

GAM, we find that the cost of phase 1 basically lev-

els off and phase 2 spends more time with the growing

of θ or |F |. Phase 2 accounts for the majority of the to-

tal time, in contrast, the cost of phase 1 can be ignored

for the MaxRS query in road networks.

6 Conclusions

In this paper, we studied the problem of MaxRS

queries in road networks. We showed that existing

approaches had a lot of limitations, such as scala-

bility and efficiency. Then, we presented GAM, a

novel GPU-accelerated algorithm, which can efficiently

handle MaxRS queries based on the proposed two-

level parallel framework. The experimental results

demonstrated that GAM is on average 10 times faster

than state-of-the-art competitors, and the maximum

speedup can achieve about 55 times. Enhanced prun-

ing strategies save about 60%–80% computation over-

head for Oldenburg and California road networks re-

spectively compared with the native pruning strategies,

which further improves the efficiency by 2–3 times over

GAM-noPrune.
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