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Abstract Real-world networks, such as social networks, cryptocurrency networks, and e-commerce networks, always

have occurrence time of interactions between nodes. Such networks are typically modeled as temporal graphs. Mining

cohesive subgraphs from temporal graphs is practical and essential in numerous data mining applications, since mining

cohesive subgraphs gets insights into the time-varying nature of temporal graphs. However, existing studies on mining

cohesive subgraphs, such as Densest-Exact and k-truss, are mainly tailored for static graphs (whose edges have no temporal

information). Therefore, those cohesive subgraph models cannot indicate both the temporal and the structural characteristics

of subgraphs. To this end, we explore the model of cohesive temporal subgraphs by incorporating both the evolving and

the structural characteristics of temporal subgraphs. Unfortunately, the volume of time intervals in a temporal network is

quadratic. As a result, the time complexity of mining temporal cohesive subgraphs is high. To efficiently address the problem,

we first mine the temporal density distribution of temporal graphs. Guided by the distribution, we can safely prune many

unqualified time intervals with the linear time cost. Then, the remaining time intervals where cohesive temporal subgraphs

fall in are examined using the greedy search. The results of the experiments on nine real-world temporal graphs indicate

that our model outperforms state-of-the-art solutions in efficiency and quality. Specifically, our model only takes less than

two minutes on a million-vertex DBLP and has the highest overall average ranking in EDB and TC metrics.

Keywords temporal network, temporal feature distribution, cohesive subgraph, convex property

1 Introduction

Mining cohesive subgraphs is very important for

network analysis. Previous research proposed many

models and algorithms for mining cohesive subgraphs

on static graphs, where edges do not evolve with

time [1]. For example, one of cohesive subgraph models

is the average-degree density, namely the average num-

ber of edges induced per node [2]. However, real-world

networks are often time-stamped, indicating when the

interactions between vertices occurred [3–6]. For exam-

ple, in social networks like Facebook or LinkedIn, each

edge has a timestamp to indicate when a user follows

another [6]. In neuroscience, the brain network, a com-

plex system of interconnected neurons, is also a tem-

poral network, in which nerve cells interact by passing

electrical impulses [7].
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Existing cohesive models, such as average-degree

density on non-temporal graphs, may not work when

handling such temporal networks. For instance, Fig.1

illustrates a mobile phone-call network, in which each

timestamp on edges indicates when two persons had a

phone call. The subgraph H1 is the densest subgraph

when ignoring the timestamps on edges [2]. However, if

we want to detect persons who interact frequently and

intensively, H1 is not a good candidate because Jan and

Bob are both frequently and tightly connected to Lisa

but are loosely connected to the other persons in H1.

In addition, the phone calls between vertices of H1 span

a longer gap and thus the communication in H1 is less

frequent and intensive than that in H3 (more details

in Section 2). Therefore, it is important to define the

temporal cohesive subgraph to suit the real-life applica-

tions. For example, the telecom operators can provide

more guaranteed QoS (e.g., more bandwidth) to the rec-

ognized frequent and dense calling users. Other exam-

ples include: recognizing the most active group in social

temporal networks to promote advertising and friend

recommendation, and finding the densely and tightly

connected neurons to facilitate the in-depth research

on the mechanisms of brain networks. In addition, it

can also be applied to discover the congested networks,

scientific cooperation groups, and other meaningful hid-

den patterns.

Recently, some studies have emerged on mining co-

hesive subgraphs in temporal networks. For example,

Rozenshtein et al. [8] proposed the KGAPPROX algo-

rithm for mining cohesive temporal subgraphs based

on average-degree density [2]. As mentioned above, the

model ignores the frequency of interactions, and thus

may discover some unsuitable subgraphs. As an im-

provement, Chu et al. [9] proposed a bursting commu-

nity on temporal networks, which should satisfy the

constraints on both density and duration. However,

mining bursting communities is NP-hard, wherefore

the bursting community mining algorithm OL faces

an intractable computational bottleneck. FIDES+ [10]

focuses on finding dense subgraphs in special tempo-

ral networks whose structure remains fixed, and the

weights of edges change over time. Therefore, FIDES+

is limited by its application scenarios. Besides, some

studies model temporal networks as a special case

of multilayer graphs to search the meaningful dense

subgraphs. For instance, MiMAG [11], DCCS [12] and

FirmCore [13] define a dense subgraph in discrete lay-

ers based on the γ-quasi-clique [14, 15] and k-core [16, 17],

which have large gaps when the number of layers is

large. As a result, these models cannot capture the

structural characteristics in consecutive time intervals.

To this end, we model the temporal cohesive sub-

graph as a temporal densest subgraph (for brief, TDS),
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Fig.1. Example phone-call network.
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which is defined as the densely-connected and tightly-

interacting temporal subgraph. Specifically, TDS sho-

uld have the most frequent interactions among ver-

tices within a given time interval (more details in Sec-

tion 2). However, solving TDS is technically challeng-

ing because the total number of time sub-intervals is

quadratic with respect to the time span of the tempo-

ral graph, resulting in inefficiency in massive temporal

networks. Therefore, we exploit the temporal feature

distribution for identifying candidate time intervals. As

a result, we only need to search TDS on the candidate

intervals instead of the quadratic intervals. Our contri-

butions are reported as follows.

• Novel Model. We propose a novel temporal sub-

graph model named TDS. The model is based on the

condensed density for the temporal graph, instead of

average density. The condensed density is defined as

the ratio between the count of temporal edges per unit

time and the volume of vertices. In this way, our model

can capture both the structural and the temporal char-

acteristics of temporal cohesive subgraphs.

• Efficient Algorithms. To mine temporal densest

subgraphs, we first propose a baseline algorithm BA

(refer to Section 3) to identify an exact solution. How-

ever, the algorithm has high overhead. Thus, to fur-

ther improve the efficiency, we decompose the tempo-

ral graph into the sequence of snapshots, and show the

temporal feature distribution of the snapshot sequence

that is convexizable. With the convex property, we pro-

pose the ITKT algorithm (refer to Subsection 4.1) to

extract constant qualified candidate time intervals from

the quadratic time intervals with powerful strategies.

• Extensive Experiments. We evaluate the effi-

ciency and effectiveness of our solutions on nine real-

world temporal graphs. Specifically, the efficiency tests

show that our algorithms outperform others in terms

of the running time. For example, on a million-vertex

DBLP 1○, the heuristic algorithm GFDS+ITKT, con-

sisting of the GFDS algorithm (refer to Subsection 4.2)

and the ITKT algorithm (refer to Subsection 4.1), re-

quires only about two minutes to return the solution,

while some competitors need more than two days. Ad-

ditionally, we compare the effectiveness of TDS with

the existing models through qualitative analyses and

case studies. We find that our model can mine some

meaningful patterns with a higher quality than other

models.

Roadmap. Some basic concepts and the formulation

of our problem TDS are presented in Section 2. An

exact solution for TDS is proposed in Section 3, and

another heuristic but efficient temporal density aware

exploration algorithm ITKT is presented in Section 4

with several pruning techniques. Experimental results

of our model will be analyzed in Section 5. The closely

related work and conclusions will be discussed in Sec-

tion 6 and Section 7, respectively.

2 Preliminaries

2.1 Basic Concepts

Let G = (V,E,Γ ) denote the undirected temporal

network, in which Γ is the ordered and continuous inte-

ger list of timestamps when some connections between

vertices occur. E = {(u, v, t)|u, v ∈ V, t ∈ Γ} col-

lects the temporal edges for G. We refer to dG(v) =

|{(v, u, t) ∈ E}| as the temporal degree of v. Let bΓc
and dΓe be the smallest timestamp and the largest

timestamp of Γ , respectively. And the time span of

G is I(Γ ) = [bΓc, dΓe]. It indicates that the first tem-

poral edge of G begins at timestamp bΓc and the last

temporal edge of G ends at dΓe. In most cases, time

intervals are generally closed. We also use open or half-

open time intervals to denote those intervals which do

not include their endpoint(s). Since Γ is ordered and

continuous, it is easy to transfer an open or half-open

interval to a closed interval by moving out the end-

point(s). |I(Γ )|=dΓe − bΓc + 1, denoting the number

of timestamps. Fig.2(a) displays a temporal graph G
consisting of six nodes and 34 temporal edges with Γ

= {1, 2, 3, 4, 5, 6}. Therefore, its time interval I(Γ )=

[1, 6], |I(Γ )| = 6.

We denote G(V, Ē) as the static network of G, in

which Ē = {(u, v)|∃(u, v, t) ∈ E}. Fig. 2(b) shows

the static graph G of G. Vertex set S induces a

static subgraph GS = (S, ĒS) of G, where S ⊆ V

and ĒS = {(u, v) ∈ E|u, v ∈ S}. GS = (S,ES ,ΓS)

is a temporal subgraph of G if S ⊆ V , ES ⊆ E,

and ΓS ⊆ Γ . Fig. 2(c) exhibits a temporal sub-

graph G1 of G, which has five vertices, and 18 tem-

poral edges with ΓS = [1, 3]. Given a temporal inter-

val I, the corresponding temporal subgraph for G dur-

ing interval I is defined as GI = (VGI , EGI , I), where

EGI = {(u, v, t) ∈ E|bIc 6 t 6 dIe}. Specially, let

Gt = {(u, v, t) ∈ E} be a snapshot of G at the times-

tamp t and let deg(t) = 1
2

∑
v∈Gt

dGt(v). We refer to

G(S,I) = (S,E(S,I), I) as the subgraph of G induced by

the vertex set S and the time interval I, where S ⊆ V ,

I ⊆ Γ and E(S,I) = {(u, v, t) ∈ E|t ∈ I and u, v ∈ S}.

1○http://konect.cc/networks/dblp coauthor/, Aug. 2021.
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Fig.2. (a) Temporal graph G. (b) Static graph G of G. (c) Temporal subgraph G1 of G. (d) Condensed graph Ĝ1 of G1.

To help formalize our problem, we give the following

two definitions.

Definition 1 (Condensed Graph). For a temporal

graph G = (V,E,Γ ), its condensed graph Ĝ = (V, Ê, w),

in which Ê = {(u, v)|∃(u, v, t) ∈ E}. w : Ê → R is a

function to assign each (u, v) ∈ Ê a weight. Formally,

w(u, v) = |{(u, v, t) ∈ E}|.
We use dĜ(v) =

∑
(v,u)∈Ê w(v, u) to represent the

weighted degree of v. Furthermore, let W (Ĝ) =∑
e∈Ê w(ê)= 1

2

∑
v∈V dĜ(v).

Definition 2 (Condensed Density). Given a tem-

poral graph G = (V,E,Γ ) and its condensed graph Ĝ,

the condensed density (cdensity) of Ĝ, represented as

cdensity(Ĝ), is defined as:

cdensity(Ĝ) =
W (Ĝ)

|V ||I(Γ )|
=

1

2

∑
v∈V dĜ(v)

|V ||I(Γ )|
.

The condensed graph Ĝ1 of the temporal subgraph

G1 is shown in Fig. 2(d), whose condensed density is

cdensity(Ĝ1) = 1.2.

Proposition 1. For a temporal graph G and its

subgraph G(S,I), let Ŝ= Ĝ(S,I). ∀v1, v2 ∈ Ŝ, if dŜ(v1) 6
dŜ(v2), and then cdensity(Ŝ\v1) > cdensity(Ŝ\v2).

Proof.

cdensity(Ŝ\v1) = W (Ŝ\v1)
|S\v1||I| =

W (Ŝ)−dŜ(v1)

(|S|−1)|I|

= W (Ŝ)
(|S|−1)|I| −

dŜ(v1)

(|S|−1)|I| .

Similarly, we have

cdensity(Ŝ\v2) =
W (Ŝ)

(|S| − 1)|I|
−

dŜ(v2)

(|S| − 1)|I|
.

Thus, the following equation holds:

cdensity(Ŝ\v1)− cdensity(Ŝ\v2)

=
dŜ(v2)− dŜ(v1)

(|S| − 1)|I|
> 0.

Namely, cdensity(Ŝ\v1) > cdensity(Ŝ\v2). �

2.2 Problem Formulation

As mentioned in Section 1, the densest subgraph

models, such as average-degree density [2, 18–24], find the

subgraphs with the maximal average density and cap-

ture the density of the structure well. However, they

do not take into account the tightness of the inte-

raction time, resulting in a sub-optimal solution. In-

spired by this, to mine a densely-connected and tightly-

interacting cohesive temporal subgraph, we incorporate

time intervals into the inner temporal characteristics of

temporal graphs. One natural way is to extend the ave-

rage degree to the average number of temporal edges

induced per node. However, the model may tend to

find the subgraphs with a larger time span. Consi-

dering the example in Fig.1, H2 is the subgraph with the

maximal average-temporal-degree, in which the phone

calls between vertices still span a longer gap than H3,

which has more edges in unit time. The reason is

that the number of temporal edges increases with time

(monotonic-increasing). Therefore, the average num-

ber of temporal edges induced per node of H2 is larger.

However, edges of subgraphs (e.g., H3) occurring in

a short time may be more significant. Based on this

observation, we introduce the average-temporal-degree

per unit time (cdensity) as an indicator of cohesive tem-

poral subgraphs. And the definition is as follows.

Definition 3 (Temporal Densest Subgraph, TDS).

Given a temporal graph G and a positive integer L, we

say a temporal subgraph G(S,I) is the temporal densest

subgraph of G if these following conditions are satis-

fied: 1) |I| > L; 2) there is no other node set S′ ⊆
V such that cdensity(Ĝ(S′,I)) > cdensity(Ĝ(S,I)); 3)

there is no other interval I ′ such that |I ′| > L and

cdensity(Ĝ(S,I′)) > cdensity(Ĝ(S,I)).

Condition 1 is a limit on the time span of the TDS

solution. It is practical and essential because a sub-

graph with a large average-degree but a very small time
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span can also have a large cdensity. Such temporal sub-

graphs may not be really cohesive, that is, they may

not be cohesive in a real situation. For instance, in

Fig. 2(a), if there is no limit on the time span, then

its snapshot G3 whose cdensity is 1.33 is the solution.

This is unreasonable as it only has strong connections

in structure, but any two nodes interact at most once,

violating the “tightly-interacting” property of cohesive

temporal subgraphs. Besides, the temporal subgraphs

have the largest cdensity but their time span is less than

the limit, and they may not be cohesive in a real situa-

tion. The reason is that they violate users’ personalized

time constraints (which only keep cohesive in a shorter

time interval). In this way, some unqualified temporal

subgraphs can be pruned using this limit. Condition

2 and condition 3 require the vertex set and the time

interval to be optimal, respectively, wherefore we can

find the cohesive temporal subgraph with the maximum

cdensity.

Example 1. Considering the temporal graph G in

Fig. 2(a), its static graph G is displayed in Fig. 2(b).

According to the definition of the densest subgraph, G

itself is a densest subgraph [2] whose density is 1.67. By

Definition 3, when L = 3, we can find that the tem-

poral subgraph G1 in Fig.2(c) is the temporal densest

subgraph of G, where S = {1, 2, 3, 4, 5}, I = [1, 3] and

cdensity(Ĝ1) = 1.2.

Regarding TDS, we have the following proposition.

Proposition 2. For a temporal graph G and

its temporal densest subgraph G(S,I), we let dl be

the minimum weighted degree of Ĝ(S,I), and then

cdensity(Ĝ(S,I)) 6 dl.
Proof. Let Ŝ= Ĝ(S,I). Assuming ∃v ∈ S and

dŜ(v) = dl < cdensity(Ŝ) = W (Ŝ)/|S||I|. Let S′ =

S\v, Ŝ′ = Ĝ(S′,I), and then

cdensity(Ŝ′)

=
W (Ŝ′)

|S′||I|
=
W (Ŝ)− dŜ(v)

(|S| − 1)|I|
>
W (Ŝ)− W (Ŝ)

|S||I|

(|S| − 1)|I|

=

W (Ŝ)(|S||I|−1)
|S||I|

(|S| − 1)|I|
=

W (Ŝ)(|S||I|−1)
|S||I|

|S||I| − |I|
.

Since |I| > 1, then |S||I| − 1 > |S||I| − |I|, and thus

cdensity(Ŝ′) > cdensity(Ŝ) conflicts with precondi-

tions that S is the temporal densest subgraph. �
In other words, Proposition 2 shows that the mini-

mum weighted degree of a TDS should be maximal

among all temporal subgraphs containing the TDS.

Based on this, we can approach the TDS problem by

pruning the nodes whose weighted degree is less than

a given value. In this way, the process to search TDS

can speed up.

Our temporal densest subgraph model (Defini-

tion 3) is significantly different from previous densest

subgraphs [2, 18–24]. Specifically, cdensity can capture

the structural and the dynamic characteristics of tem-

poral graphs by incorporating density and the time in-

terval. Next, we show these using two metrics for tem-

poral cohesive subgraphs: edge density burstiness [9]

(EDB in short) and temporal conductance [25] (TC

in short). EDB denotes the speed that a tem-

poral subgraph accumulates edge density. For a

vertex set S and the time interval I, EDB =

|{(u, v, t)|u, v ∈ S, (u, v, t) ∈ E, t ∈ I}|/|S||S − 1||I|.
TC = Tcut(S, V \S)/min{Tvol(S), T vol(V \S)}, in

which Tcut(S, V \S) = |{(u, v, t)|(u, v, t) ∈ E, u ∈
S, v ∈ V \S, t ∈ I}| is the set of the edges between S

and V \S. Tvol(S) = |{(u, v, t)|(u, v, t) ∈ E, u ∈ S, v ∈
V, t ∈ I}|, namely all edges induced by S during I. TC

reveals the separability of S from the rest of a tem-

poral graph. Generally, the subgraph with a smaller

TC has more inner connections and less outgoing con-

nections. As Fig.3 shows, TDS and TDS- (TDS with-

out considering the monotonic-increasing of temporal

edges) have better performance than DS in both EDB

and TC. In other words, taking the time interval into

account improves the connection strength and weakens

the separability of the solution. Besides, we can learn

that considering the monotonic-increasing of temporal

edges makes the solution preferable to ignoring it. In

the following, we will define the TDS discovery prob-

lem.

Our Problem—Discovering Temporal Densest Sub-

graph (TDS). Given a temporal graph G and an integer

L, the TDS problem aims to find a temporal densest

subgraph G(S,I) from G, where |I| > L.

Although the temporal densest subgraph is similar

to the densest subgraph [2] in a sense, we cannot directly

solve our problem using the methods for the densest

subgraph. The reason is that our model has to con-

sider edge variance over a time span instead of only

the degree. Therefore, it is much more time-consuming

to find a naive TDS (refer to Section 3). Fortunately,

some convex properties exist to facilitate the design of

the efficient algorithm (refer to Section 4).

3 Baseline Algorithm

When given the time interval I, the TDS problem

for the temporal subgraph GI of G is actually to find a
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densest-like subgraph for ĜI . An intuitive baseline al-

gorithm (BA in short) for it is outlined in Algorithm 1.

We search for the temporal densest subgraph in all pos-

sible time sub-intervals longer than L (lines 2–9), i.e.,

|I(Γ )|×(|I(Γ )|+1)/2 time intervals. For each fixed time

interval I = [ts, te], the algorithm Temp-Densest-Exact

adapted from the algorithm in [2] is employed to return

a densest-like subgraph for ĜI (line 6). Finally, Algo-

rithm 1 returns the densest temporal subgraph from

|I(Γ )| × (|I(Γ )|+ 1)/2 candidate subgraphs.

Algorithm 1. Baseline Algorithm (BA)

Input: temporal graph G = (V,E,Γ ), and integer L;
Output: subgraph S and interval I;

1: Initial S = ∅ , d∗ = 0;
2: for ts ← 1 upto dΓe − L + 1 do
3: for te ← ts + L− 1 : dΓe do
4: Ĝ[ts,te] = Aggregate(ts, te);

5: Execute the MWDP strategy for Ĝ[ts,te];
6: H = Temp-Densest-Exact(Ĝ[ts,te]);
7: if d∗ < cdensity(Ĝ(H,[ts,te])) then
8: S = H, I = [ts, te];

9: d∗ = cdensity(Ĝ(H,[ts,te]));

10: return the subgraph S and the interval I;
11: procedure Aggregate(ts, te)
12: for (u, v) in Gte do
13: dĜ[ts,te]

(u) = dĜ[ts,te−1]
(u) + 1;

14: dĜ[ts,te]
(v) = dĜ[ts,te−1]

(v) + 1;

However, Temp-Densest-Exact is very costly due to

the high overhead in the calculation of the maximum

flow. Therefore, according to Proposition 2, we design

a pruning strategy—Minimum Weighted Degree Prun-

ing (MWDP) to exclude the impossible nodes. Con-

cretely, we record a current optimal solution S with

cdensity(Ŝ) = d∗ during the search process (lines 7–9).

Based on Proposition 2, if temporal subgraph ĜI con-

tains a TDS (let it be H) that is more optimal than

S, then for ∀v ∈ ĜI/H, their weighted degree must be

larger than d∗. And thus we can quickly and safely skip

those nodes without searching (line 5). After that, the

Temp-Densest-Exact algorithm is called for a pruned

subgraph to return a sub-solution (line 6) for the cur-

rent time interval.

Theorem 1. The baseline algorithm runs within

O(|I(Γ )|2 × |V ||Ē| log(|V |2/|Ē|)) time.

Proof. The complexity of Temp-Densest-Exact

is O(|V ||Ē| log(|V |2/|Ē|)). It is called for |I(Γ )|2
candidate time intervals. Additionally, procedure

Aggregate has to access all the temporal edges |I(Γ )|
times. Therefore, the complexity of BA is O(|I(Γ )|2 ×
|V ||Ē| log(|V |2/|Ē|)). �

Obviously, BA has quadratic time complexity rela-

tive to the time span, and even for a fixed time sub-

interval it spends |V ||Ē| log |V |
2

|Ē| time. In the worst

case, it is time-consuming if both the time span and

the graph are large. Besides, there are |I(Γ )|2 time

sub-intervals, leading to |I(Γ )|2 candidate subgraphs.

Therefore, it is prohibitively expensive on both the

memory consumption and the running time to choose

the best one from |I(Γ )|2 candidate subgraphs. In or-

der to speed up the densest temporal subgraph min-

ing, the temporal density aware algorithm is designed

in Section 4.

4 Temporal Density Aware Exploration

Algorithm

A temporal density aware algorithm is designed to

speed up the procedure of mining the temporal dens-

2○http://konect.cc/networks/mit/, Aug. 2021.
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est subgraph (TDS), which consists of two stages. At

the first stage, we analyze the features of temporal net-

works and identify the candidate time intervals where

the temporal densest subgraphs fall in. Then, a greedy

algorithm with a new proposed pruning technique is

adapted to explore the densest subgraphs in the possi-

ble target time intervals.

4.1 Candidate Dense Time Intervals
Extraction

A temporal graph is actually a temporal sequence

of snapshots. Some snapshots have more edges while

fewer edges occur in other snapshots. To some extent,

a time interval including snapshots with more edges is

denser than the interval including snapshots with fewer

edges. For example, in traffic peaks (e.g., morning peak

and evening peak), traffic networks tend to contain tem-

poral cohesive subgraphs. Due to it, we try to extract

some good candidate intervals by discovering evolving

trends between sequences of snapshots. By this way, we

do not need to search all permutations of time intervals

to find the temporal densest subgraph.

We model the temporal sequence of snapshots as

the edge distribution cumulative function that describes

how many edges occur before timestamp t. Let S(t) =
1
2

∑
v∈V dĜ[1,t](v) =

∑
x∈[1,t] deg(x). It is easy to know

S(t) is a strictly increasing function. To this end, it

is more useful to investigate the increase of edges in a

given interval, e.g., I : (tl, tu].

f(I : (tl, tu]) =
S(tu)− S(tl)

|I|
=
S(tu)− S(tl)

|tu − tl|
,

where f((tl, tu]) denotes the slope of S(t) over the in-

terval [tl, tu], that is, f((tl, tu]) = slope(S(tl), S(tu)).

According to Definition 2, it is surprised to find that:

f(I : (tl, tu]) =
W (ĜI)

|I|
.

In other words, our condensed density is highly rele-

vant to the slope of S(t). Therefore, the interval with

a greater slope of S(t) may be a better candidate inter-

val for the TDS problem. Inspired by this, we try to

extract k time intervals with the top-k value of func-

tion f , and take them as the target intervals to solve

the TDS problem. An intuitive way to find the top-k

time intervals is to calculate and compare the slope of

S(t) for all permutations of time sub-intervals. As men-

tioned in Section 3, it is time-consuming. It is known

that the slope of the tangent line to a convex function g

increases in a non-negative manner [26]. That is, if S =

{(0, S(0)), (1, S(1)), ..., (t, S(t)), ..., (dΓe, S(dΓe))}
is a convex sequence of condensed graphs, we can eas-

ily determine the sub-sequence ending at (t, S(t)) (for

simplicity, we denote (t, S(t)) as st) with the maximum

slope. In this way, it is possible to compare only |I(Γ )|
time intervals and extract the top-k from these inter-

vals. Unfortunately, S is not convex. Thus, we con-

struct a convex sequence P by adding points from S
and maintain its convexity dynamically. Concretely,

some convex nodes may turn to concave after adding a

new node. Therefore, to maintain the convexity of P,

it is necessary to check whether it is still convex when a

new node is added. If not, we remove concave points so

that the sequence is convex. The process is sketched in

ITKT (Algorithm 2). In the following, we will discuss

ITKT in detail.

According to Definition 3, the time span of the

temporal densest subgraph is not less than L. For

each point st ∈ S, where t > L, if we find the sequence

{set , ..., st} that starts with point set has the maximum

slope, namely et = {x|f((x, t]) = max(f((x0, t]), x0 ∈
[0, t − L])}. Then, we can get the corresponding time

interval (et, t] which has the maximum value of func-

tion f in all intervals ending with t. To quickly find

such a sequence for each point st ∈ S, we maintain

a convex point sequence P for st, and let it end with

st−L. Before adding the point st−L to P, we consider

the following situations. First, if P is empty, point

st−L will be added directly to P. If P is not empty

and P is still convex after adding st−L, then it will

also be inserted into the sequence directly. In many

cases, after adding st−L, P is not convex again. There-

fore, we need to remove some nodes from P to keep

its convexity (line 12 in Algorithm 2). In more details,

if slope(Pj , st−L) 6 slope(Pj−1,Pj), Algorithm 2 will

remove the concave node Pj until there is no concave

point (lines 7–12), where j is the end index of P, and

Pj denotes the end point of P. In this way, we can

maintain a convex sequence P for current point st.

Second, to find the corresponding interval (et, t], we

need to check the points again in P from Pi, where i is

the first index of P, and Pi denotes the first point of P.

Specifically, we compute the slope of the sub-sequence

{Pi, ...,Pj , st}. Since P is convex, if slope(Pi, st) >
slope(Pi,Pi+1), then Pi cannot maximize the slope of

the sub-sequence ending with st, and thus Algorithm 2

will remove the point Pi (line 19) and update P to

check again until the maximum slope is obtained (lines

14–19). Finally, we can get the start point set = Pi.
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Algorithm 2. Identifying the Top-k Time Intervals (ITKT)

Input: temporal graph G = (V,E,Γ ), and the integers L and k;

Output: top-k time intervals;

1: P is a convex sequence, P = ∅;
2: y = S(t) is the edge distribution function, and st denotes the

node in S, and S is the node sequence for S(t);
3: let I be a maximum heap to save k candidate intervals;
4: AccumulateDeg(G);
5: Initial i = 0, j = 0;
6: for t← L upto dΓe do
7: while (j − i) > 1 do
8: slope1← slope(Pj , st−L);
9: slope2← slope(Pj−1,Pj);

10: if slope1 > slope2 then
11: break;

12: j ← j − 1;

13: j ← j + 1; Pj ← st−L;
14: while (j − i) > 1 do
15: slope3← slope(Pi, st);
16: slope4← slope(Pi,Pi+1);
17: if slope3 < slope4 then
18: break;

19: i← i + 1;

20: if I.size() < k then
21: I.push(Pi, st, slope(Pi, st));
22: continue;

23: if I.top().slope < slope(Pi, st) then
24: I.pop();
25: I.push(Pi, st, slope(Pi, st));

26: return I;
27: procedure AccumulateDeg(G))
28: for t← 1 upto dΓe do
29: S(t) = S(t) + |EGt |;
30: procedure slope(si, sj)
31: return (S(j)− S(i))/(j − i);

Having computed the corresponding interval for the

current candidate point st in S, we update the

candidate intervals based on the current value of

slope(set , st) (lines 20–25) to extract k time intervals

with the top-k value of function f . Actually, the experi-

ment conducted in Section 5 (experiment 7) confirms

that the top-k intervals returned by ITKT are good

candidates for the TDS problem.

Example 2. Considering the temporal graph G
in Fig. 2(a), and letting L = 2, we show the pro-

cess of identifying the top-2 time intervals by the

ITKT algorithm in Fig. 4. It is easy to get S =

{(0, 0), (1, 6), (2, 11), (3, 19), (4, 26), (5, 29), (6, 34)} =

{s0, s1, s2, s3, s4, s5, s6}. Since L = 2, the first candi-

date point is s2. As P is empty, we directly add s0 to

P, then P = {s0}, se2 = s0, and slope(s0, s2) = 5.5.

For s3, adding s1 would not change the convexity of

P, and thus P = {s0, s1}. However, slope(s0, s3) =

(19 − 0)/(3 − 0) = 6.33 is greater than slope(s0, s1) =

(6 − 0)/(1 − 0) = 6, which indicates that s0 cannot

maximize the slope. Therefore, s0 is removed from P,

and then P = {s1}, se3 = s1 and slope(s1, s3) = 6.5.

In terms of s4, there are similar processes for s4 and

s3, and then P = {s2}. Thus, we can get that se4 = s2

and slope(s2, s4) = 7.5. As for s5, point s3 is directly

added to P, and then slope(s2, s5) < slope(s2, s3),

and thus P = {s2, s3}. Therefore, se5 = s2 and

slope(s2, s5) = 6. When dealing with s6, there is a
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Fig.4. Running example of ITKT on Fig.2(a) with L = 2. S(t) is the edge distribution cumulative function denoting how many
edges occur before timestamp t, and its corresponding point sequence is S = {(0, 0), (1, 6), (2, 11), (3, 19), (4, 26), (5, 29), (6, 34)}, briefly
denoted as {s0, s1, s2, s3, s4, s5, s6}. P describes the constructed concave point sequence. (a) Curves of S(t) and deg(t). (b) t = 2 (s2).
(c) t = 3 (s3). (d) t = 4 (s4). (e) t = 5 (s5). (f) t = 6 (s6).
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fact that slope(s3, s4) = 7 is less than slope(s2, s3) = 8,

which means that s3 would become a concave node af-

ter adding s4 to P, and thus we need to remove s3 to

protect the convexity of P. Finally, we obtain a set

I including two intervals with the top-2 slope of S(t),

where I = {(1, 3], (2, 4]}.
Theorem 2. The time complexity of Algorithm 2

is O(|I(Γ )|).

Proof. 1) Computing y = S(t) chart line costs

O(|I(Γ )|) time. 2) Algorithm 2 takes O(|I(Γ )|) time

to get the top-k time intervals. Specifically, for a can-

didate node st, Algorithm 2 needs to remove concave

nodes and delete unsatisfactory nodes. In general, all

nodes may be convex and each node will be deleted

at most once as a concave node (or an unsatisfactory

node), and thus Algorithm 2 takes O(|I(Γ )|) time to

get the start point set for each st ∈ S. And then, Al-

gorithm 2 needs O(|I(Γ )|× log k) time to get the top-k

time intervals, where k is a small constant, and thus

the time complexity of Algorithm 2 is O(|I(Γ )|). �

4.2 Greedy Search with a Pruning Strategy

After analyzing the features of the temporal graph,

we can extract a set I including k candidate time inter-

vals. For each I ∈ I, we first compute the condensed

graphs ĜI of GI . And then we employ an iterative algo-

rithm to greedily find a densest-like subgraph (GFDS).

GFDS borrows some ideas from the greedy Peeling

algorithm [21] that is an approximation algorithm for

mining the densest subgraphs on static networks. In-

spired by this, following Proposition 1, GFDS greedily

deletes the node with the minimum weighted degree

step by step, and then updates the cdensity of the new

condensed subgraph. When the iteration terminates,

we can get the subgraph with the largest cdensity. How-

ever, the iterative process may be costly. To speed up

the search process, we first introduce Proposition 3.

Proposition 3. Supposing I is a time interval, ĜI
is the condensed graph of the subgraph GI of G, and then

cdensity(ĜI) 6
max(dĜI

(v))

2|I| .

It is easy to know Proposition 3 is true from the def-

inition of cdensity. With Proposition 3, we can prune

some unqualified vertices according to the maximum

weighted degree. Concretely, for all candidate time in-

tervals, we maintain the optimal solution with optimal

cdensity as d∗. Let GFDS stop when the upper-bound

of the current condensed graph is not greater than d∗.

In other words, if max(dĜI (v)) < 2d∗|I|, there is no

optimal solution for the current condensed graph. By

this way, we can skip these unnecessary searches. In

the following, we analyze the time complexity of our

algorithm.

Theorem 3. The time complexity of GFDS is

O(|Ē|+ |V | log |V |).

Proof. GFDS greedily deletes the nodes with the

minimum weighted degree. For a subgraph of G, at

most |V | nodes need to be removed. In this way, the

delete operation needs O(|V | log |V |) time. In addition

to this, GFDS accesses each static edge at most once

to update the weighted degree, and thus the update

operation needs O(|Ē|) time. Therefore, the GFDS al-

gorithm takes O(|Ē|+ |V | log |V |) time for a given time

interval. �

5 Experimental Evaluation

Several comprehensive experiments are carried out

to assess efficiency, scalability, and effectiveness of the

proposed methods. These experiments are executed on

a server with an Xeon 2.00 GHz and 256 GB memory

running Ubuntu 18.04.

5.1 Experimental Setup

Datasets. We evaluate the proposed methods on

nine real-word temporal networks with different types

and sizes (Table 1). Specifically, Rmin 3○, Primary 4○,

Lyon 5○ and Thiers 5○ are temporal face-to-face net-

works, in which each node represents a student (or

teacher) and each temporal edge records the physi-

cal contact timestamp of the corresponding persons.

Facebook 6○ and Twitter 7○ are both temporal social

networks that record the interactions among users via

social platforms. Enron 8○ and Lkml 9○ are temporal

email networks for Enron company and Linux kernel,

3○http://konect.cc/networks/mit/, Aug. 2021.
4○http://www.sociopatterns.org/datasets/primary-school-temporal-network-data/, Aug. 2021.
5○http://www.sociopatterns.org/datasets/co-location-data-for-several-sociopatterns-data-sets/, Aug. 2021.
6○http://konect.cc/networks/facebook-wosn-wall/, Aug. 2021.
7○http://snap.stanford.edu/data/higgs-twitter.html, Aug. 2021.
8○http://konect.cc/networks/enron-rm/, Aug. 2021.
9○http://konect.cc/networks/lkml-reply/, Aug. 2021.
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respectively. DBLP 10○ is a million-vertex temporal col-

laboration network.

Table 1. Dataset Statistics

Dataset |V | |E| |Ē| |I(Γ )| TS
Rmin 96 76 551 2 539 5 576 Hour
Primary 242 26 351 8 317 20 Hour
Lyon 242 218 503 26 594 20 Hour
Thiers 328 352 374 43 496 50 Hour
Twitter 304 198 464 653 452 202 7 Day
Facebook 45 813 461 179 183 412 223 Week
Enron 86 978 697 956 297 456 177 Week
Lkml 26 885 328 092 159 996 98 Month
DBLP 1 729 816 12 007 380 8 546 306 72 Year

Note: TS is the time scale of the timestamp.

Models. We choose several state-of-the-art com-

petitors that are most similar to our problem.

Densest-Exact [2] is an exact algorithm that can mine

the densest subgraph from non-temporal networks.

KGAPPROX [8] dynamically searches temporal sub-

graphs with the maximum total density. OL [9] models

the bursting temporal subgraphs according to their den-

sity and duration. FIDES+ [10] finds a dense temporal

subgraph with the heaviest total weight. To make our

datasets adapt to FIDES+, we assign the weight of an

edge as +1 if it exists at that timestamp; otherwise, we

set its weight as −1. MiMAG [11] aims to mine the clus-

ters of vertices that are densely connected by edges with

similar labels. To accommodate its input, we treat each

timestamp as an attribute. DCCS [12] and FirmCore [13]

are both defined based on k-core, and explore the dens-

est subgraph with different constraints in multilayer

networks. GFDS+TQ and GFDS+ITKT are our meth-

ods which differ in the volume of time intervals to search

in GFDS. In the former, GFDS runs on |I(Γ )|2 time in-

tervals while the later only executes GFDS on k time in-

tervals. According to the experimental situation, com-

prehensively considering all datasets, parameters L and

k are set to 6 and 10, respectively (unless otherwise

specified, their values are not changed). All these algo-

rithms are implemented in C++ 11○.

Experiment 1: Running Time of Various Temporal

Methods on Different Datasets. Table 2 reports the run-

ning time of eight temporal methods on nine datasets.

Clearly, GFDS+ITKT is consistently faster than the

other methods on most datasets. It only costs less than

five seconds on most datasets except DBLP, where it

requires less than two minutes. GFDS+TQ ranks the

third and is slightly slower than the heuristics algo-

rithm FIDES+. FirmCore, DCCS and MiMAG take

more time than GFDS+TQ as they need to search for

the base model (core, clique) and integrate the results

to return the solution. OL ranks the sixth because it

is NP-hard and runs several iterations to return the

solutions. As for KGAPPROX, it gets the worst per-

formance, because it dynamically calculates the time

intervals to obtain the optimal solutions. These results

suggest that the proposed pruning strategies (in Sec-

tion 4) are effective in practice.

Experiment 2: Scalability. We generate the synth-

etic networks by resampling nodes and timestamps to

evaluate the scalability of our methods. In more de-

tail, we generate eight artificial networks by randomly

selecting 20%, 40%, 60%, and 80% of the nodes or vary-

ing TS to change |I(Γ )| on DBLP. The running time of

GFDS+TQ and GFDS+ITKT is plotted in Fig.5. As

it shows, the running time of GFDS+TQ varies non-

linearly when changing |I(Γ )|, as its time complexity

is quadratic with the time span. But in other cases,

the running time of GFDS+TQ and GFDS+ITKT

varies near-linearly. Additionally, GFDS+ITKT per-

forms better than GFDS+TQ, indicating that it can

handle the large-scale temporal networks.

Table 2. Running Time (s) of Temporal Methods on Different Datasets

Dataset KGAPPROX [8] OL [9] FirmCore [13] MiMAG [11] FIDES+ [10] DCCS [12] GFDS+TQ GFDS+ITKT
Rmin 526.708 47.121 4 112.281 470.670 1.065 * 463.201 2 0.023 1
Primary 425.443 69.515 0.959 12 300.100 0.318 4.094 0.693 7 0.062 4
Lyon 1 312.427 1 635.670 3.587 7 560.000 0.914 19.335 3.820 5 0.380 2
Thiers 3 111.475 2 077.790 16.084 8 340.370 1.402 175.428 17.001 2 0.600 3
Twitter 95 504.369 35 151.700 26.036 2 943.954 84.024 8.323 6.300 0 3.340 1
Facebook 127 741.870 51.213 2 413.352 6 389.240 18.643 3 796.355 1 974.004 1 1.090 0
Enron >172 800.000 2 679.060 2 073.825 11 460.400 13.514 4 913.610 2 545.017 7 2.210 1
Lkml 32 014.886 3 130.130 448.820 31 860.371 10.727 1 638.877 286.011 0 0.390 4
DBLP >172 800.000 2 345.710 8 080.973 * 43.093 5 236.058 11 132.614 1 111.600 1
Avg. rank 8 6 4 7 2 5 3 1

Note: ∗ denotes the methods cannot return a solution in 4 days. Avg. rank is the average rank of each method in the test datasets.
The best result on the current dataset is in bold.

10○http://konect.cc/networks/dblp coauthor/, Aug. 2021.
11○https://gitee.com/Dawn-snow/tds.git/, Jul. 2022.
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Fig. 5. Scalability test on DBLP (L = 6 and k = 10). (a)
GFDS+TQ. (b) GFDS+ITKT.

Experiment 3: Running Time with Varying k and

L. Figs.6(a)–6(d) display how the running time of

GFDS+TQ and GFDS+TQ varies with L. Specifi-

cally, the running time of GFDS+TQ decreases as L

increases. This is because a larger L results in fewer

time intervals and thus fewer calls to GFDS. However,

the running time of GFDS+ITKT is stable when L

varies. Fig.6(e) describes the effect of the parameter

k on the running time for the GFDS+ITKT method.

As expected, though a larger k requires a little more

time to find a TDS as it calls GFDS more times, over-

all the running time is insensitive to k. In other words,

the GFDS+ITKT method is stable regardless of vary-

ing k or L. Based on our update procedure Aggregate

(in Algorithm 1), closer intervals would take less time

to generate the temporal subgraph. For example, the

temporal subgraph G[4,9] can be obtained from G[3,8],

but G[10,15] must be rebuilt. The results indicate that

our two methods are insensitive to parameters.

Experiment 4: Average Memory Consumption of

Our Methods on Different Datasets. Table 3 reports

the average memory consumption of GFDS+TQ and

GFDS+ITKT under the default parameter settings.

Our two methods consume memory less than 1x–3x

the raw size of input graphs except for Twitter, in

which memory consumption is up to about 5x the raw

size. Furthermore, GFDS+ITKT consumes less mem-

ory than GFDS+TQ on eight of the nine datasets. The
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Varying L on DBLP. (e) GFDS+ITKT’s running time with varying k (L = 6).
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Table 3. Average Memory Consumption (MB) of Our Methods on Different Datasets

Method Rmin Primary Lyon Thiers Twitter Facebook Enron Lkml DBLP

Raw size 1.492 5 0.403 2 3.335 3 5.379 7 7.090 4 7.055 0 10.663 3 5.012 0 183.222 3

GFDS+TQ 1.578 0 0.688 6 4.212 5 6.807 8 34.229 0 14.858 6 23.708 4 11.391 4 528.111 7

GFDS+ITKT 1.928 4 0.604 6 4.121 4 6.235 4 34.075 4 9.604 5 19.893 6 6.038 2 381.848 7

Note: Raw size denotes the memory consumption of the original temporal graph.

reason is that GFDS+ITKT only executes GFDS for

k time intervals, while GFDS+TQ needs to access all

|I(Γ )|2 time intervals. On Rmin, GFDS+ITKT con-

sumes a little more memory than GFDS+TQ, since

it needs more memory to identify the top-k inter-

vals. In a word, these results indicate GFDS+TQ and

GFDS+ITKT can achieve near-linear space complexity.

5.2 Effectiveness

In this subsection, to evaluate the effectiveness of

our methods and model, we first choose cdensity (refer

to Definition 2) as a metric to evaluate whether our

methods work well. Then, we employ edge density

burstiness EDB [9] and temporal conductance TC [25]

(refer to Subsection 2.2) as the common metrics.

Experiment 5: Effectiveness of Various Algorithms

on Different Datasets. Table 4 reports the effective-

ness of the eight methods on nine datasets. For the

metric cdensity, GFDS+TQ outperforms the others

on seven datasets and GFDS+ITKT is the runner-up.

DCCS ranks the third, since it finds dense cores, with

a large average temporal degree. KGAPPROX and

FIDES+ rank the fifth and the sixth, respectively, be-

Table 4. Effectiveness of Various Algorithms

Metric Dataset Densest- KGAPPROX [8] OL [9] FirmCore [13] MiMAG [11] FIDES+ [10] DCCS [12] GFDS+ GFDS+

Exact [2] TQ ITKT

cdensity Rmin 0.155 1 0.305 2 2.812 5 0.303 8 0.002 1 0.357 5 * 3.522 2 1.629 6

Primary 5.363 0 5.658 2 2.750 0 5.374 8 1.329 3 5.823 9 4.676 6 7.406 3 7.267 4

Lyon 45.028 0 54.000 0 42.006 6 44.101 3 7.484 4 46.056 0 48.532 8 54.658 4 54.658 4

Thiers 21.619 4 18.666 9 39.297 5 20.490 7 6.255 0 23.292 8 15.479 4 43.501 6 43.501 6

Twitter 2.402 0 10.410 0 1.500 0 2.020 2 1.227 4 0.097 8 3.971 7 3.125 0 3.125 0

Facebook 0.198 3 0.371 5 1.312 5 0.292 8 0.002 8 0.354 8 1.105 7 1.333 3 1.083 3

Enron 1.060 1 3.664 5 4.680 0 1.574 2 0.748 5 1.862 1 4.988 1 6.862 6 5.826 1

Lkml 3.409 0 7.422 1 3.500 0 5.342 8 1.600 0 5.653 5 7.158 4 9.533 3 9.533 3

DBLP 0.801 5 * 6.350 0 2.444 9 * 0.333 3 4.154 2 29.230 3 29.230 3

Avg. rank 8 5 4 7 9 6 3 1 2

EDB Rmin 0.001 8 0.004 4 0.401 7 0.037 8 0.000 3 0.357 5 * 0.251 5 0.203 7

Primary 0.027 7 0.031 1 0.275 0 0.024 8 0.215 0 0.026 7 0.117 1 0.054 0 0.056 0

Lyon 0.187 6 0.229 8 0.453 5 0.202 3 0.499 0 0.196 0 0.216 2 0.259 0 0.259 0

Thiers 0.066 7 0.060 6 0.499 1 0.074 5 0.367 9 0.076 9 0.238 3 0.430 7 0.430 7

Twitter 0.011 8 0.043 7 0.375 0 0.067 3 0.288 3 0.000 1 0.136 3 0.040 0 0.039 0

Facebook 0.000 2 0.000 5 0.283 3 0.292 8 0.000 7 0.000 1 0.368 5 0.444 4 0.361 1

Enron 0.001 1 0.037 0 0.460 6 0.021 9 0.187 1 0.002 0 0.038 3 0.294 0 0.264 8

Lkml 0.008 3 0.040 6 0.467 6 0.082 2 0.400 0 0.049 6 0.052 2 0.113 5 0.113 5

DBLP 0.025 1 * 0.341 7 0.006 9 * 0.166 6 0.000 9 0.083 5 0.083 5

Avg. rank 9 8 1 6 2 7 5 3 4

TC Rmin 0.707 4 0.793 4 0.466 7 0.544 8 0.917 3 0.244 4 * 0.258 3 0.432 3

Primary 0.843 2 0.763 6 0.812 8 0.761 0 0.855 1 0.904 7 0.762 3 0.673 6 0.683 4

Lyon 1.000 0 0.990 5 0.665 3 0.893 4 0.933 4 0.995 9 0.973 9 0.877 2 0.877 2

Thiers 1.000 0 0.996 8 0.183 0 0.943 0 0.870 4 0.981 9 0.808 2 0.146 4 0.146 4

Twitter 0.962 1 0.965 7 0.998 8 0.966 0 0.992 6 0.720 4 0.984 4 0.977 2 0.977 2

Facebook 0.546 6 0.604 7 0.655 7 0.579 3 0.947 3 0.648 1 0.560 3 0.623 5 0.434 8

Enron 0.943 7 0.757 4 0.904 5 0.861 9 0.973 1 0.531 5 0.845 0 0.756 3 0.813 1

Lkml 0.731 9 0.720 5 0.964 6 0.800 2 0.981 3 0.726 2 0.774 2 0.717 1 0.717 1

DBLP 0.110 3 * 0.793 2 0.110 3 * 0.000 0 0.789 8 0.053 5 0.0535

Avg. rank 9 6 8 5 7 4 3 1 2

Note: ∗ denotes the methods cannot return a solution in 4 days. Avg. rank is the average rank of each method in the test datasets.
The best result on the current dataset is in bold.
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cause they prefer to return a solution having the large

sum of density. Although FirmCore is also based on the

core model, it considers a trade-off between the num-

ber of layers and the edge density. Densest-Exact and

MiMAG have the lowest cdensity score on average. The

reason is that MiMAG is a best-first search algorithm

for mining multi-layer coherent subgraph (MLCS), in

which the temporal layers in a coherent subgraph may

not be continuous. Regarding EDB, OL and MiMAG

are the top two methods (but have poor cdensity and

TC). The reason is that they are clique-based dense

subgraphs, which have more connections between their

nodes. Thus, their subgraphs have a large EDB. Our

methods rank the third and the fourth because they aim

to find the densest temporal subgraph having both a

high interaction frequency and a tighter interval. DCCS

and FirmCore only concern about the frequency of the

interaction. Therefore, it may require a long time to ac-

cumulate the structural density. FIDES+ and KGAP-

PROX always return large subgraphs, and thus the ave-

rage speed of edge accumulation is slow. In terms of the

TC metric, GFDS+TQ reaches the top ranking and

GFDS+ITKT ranks the second since our model can

capture more accurate temporal proximity from inter-

actions between nodes. DCCS, FirmCore and MiMAG

do not perform as well as our model, because they tend

to find the cohesive subgraphs in any subset of the lay-

ers, which may not be coherent and span a large gap.

Densest-Exact’s performance is the worst because its

returned subgraphs are not distinctly separated from

the rest of the network (e.g., its TCs are 1 in Lyon and

Thiers). All in all, our model is effective for finding

meaningful cohesive subgraphs which have more denser

inner connections and less outgoing temporal interac-

tions. Furthermore, our methods are effective for our

model.

Experiment 6: GFDS+ITKT’s cdensity with Vary-

ing k and L. Figs.7(a)–7(d) are heatmaps describing

how the cdensity of GFDS+ITKT changes with k and

L on four datasets. Our solution relies on L, and in

most case, cdensity decreases as L increases. Besides,

the sensitivity of cdensity to L varies with different tem-

poral graphs. For example, when increasing L from 3

to 9, the cdensity changes at most by 13% in Lkml, but

about 60% for DBLP. Furthermore, as L increases to

6, the change in cdensity decreases and gradually sta-
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bilizes. Considering all datasets, we take L = 6 as the

default setting. However, as for k, it is obvious that

cdensity is independent of k, except that it changes

about 10% on Facebook when k < 12. But taking all

temporal graphs and efficiency into consideration, we

regard k = 10 as the default setting. In summary, our

GFDS+ITKT method is insensitive to k in cdensity.

Experiment 7: Quality Comparison with the Exact

Algorithm. Fig.8 reports the ability of GFDS+TQ and

GFDS+ITKT for solving the TDS problem. We em-

ploy BA (Algorithm 1) to derive the exact solution

for the TDS problem. And then we compare BA’s

cdensity with GFDS+TQ’s and GFDS+ITKT’s. Since

BA has poor scalability, we only report the results on

two small-scale datasets Primary and Lyon. The fol-

lowing observations can be obtained. 1) The cdensity

values of the subgraphs returned by GFDS+TQ and

GFDS+ITKT are pretty close, and even become equal

when L gets larger. 2) The quality of solutions returned

by GFDS+ITKT is insensitive to k. 3) GFDS+TQ’s

and GFDS+ITKT’s cdensity are very close to BA’s

cdensity. And no matter how the parameters k and

L change, the cdensity of GFDS+ITKT is very close

to the exact solution for the TDS problem. As a re-

sult, it proves that GFDS+ITKT can mine better can-

didate time intervals for the TDS problem. Besides,

GFDS+TQ and GFDS+ITKT are comparable to TDS.

The heuristic algorithm GFDS+ITKT works well to

strike a balance between efficiency and quality.

Experiment 8: Case Study on Rmin. Fig.9(a) and

Fig.9(b) show the results of OL and GFDS+ITKT on

the Rmin dataset under their default settings, respec-

tively. OL identifies seven persons and involves five

different crowds (Fig.9(a)). Specifically, three students

are “1styeargrad” and other persons are “sloan”, “ml-

frosh”, “mlurop” and “mlgrad”. GFDS+ITKT finds

a subgraph (Fig. 9(b)) consisting of nine persons in-

volving four different crowds, in which three persons

are “mlgrad”, four persons are “1styeargrad” and the

other two persons are “sloan” and “mlfrosh”. Intu-

itively, our model returns a larger subgraph but involves

fewer identities. From this perspective, our model

can find subgraphs with stronger connections in terms

of crowds. Furthermore, there is a fact that gradu-

ate and undergraduate students have different courses.

As a result, there may be more interactions within

undergraduates (graduates). Based on this common

sense, from Fig.9(b), we can see that the subgraph re-

turned by GFDS+ITKT mainly consists of “mlgrad”

and “1styeargrad” that are both “Graduate Student”

and makes up 7/9 of the whole solution, which may be

a reflection of the previous conjecture. Therefore, to

a certain extent, it proves that our model is closer to

the real situation. Besides, as we can see, OL returns a

7-clique with strong structural constraints. But a strict

structural constraint may not always be good, since it

may ignore some hidden meaningful patterns. However,

in GFDS+ITKT’s solution, although the two persons

“sloan” and “mlfrosh” have no interactions, they are

both in the final solution as they are closely associated

with many of the same people. It has exhibited the

potential relationship, which may be more interesting

and meaningful. To be more convincing, we exhibit the

solution for GFDS+ITKT with the parameter L = 3

in Fig.9(c) (as the solution is insensitive to k, we set k

to the default value). As shown in Fig.9(c), there are

similar observations with the solution under the default

settings (Fig.9(b)). Specifically, when L = 3, though
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Fig.9. Case study on Rmin. “1styeargrad” and “mlgrad” represent first-year and not-first-year Media Lab graduate student respec-
tively. “mlfrosh” and “mlurop” represent first-year and not-first-year Media Lab undergraduate student respectively. “sloan” represents
the student of Sloan Business School, “professor” represents the Media Lab Professor, and “mlstaff” represents the Media Lab Staff
(see more details in [27]). (a) OL. (b) GFDS+ITKT (L = 6 and k = 10). (c) GFDS+ITKT (L = 3 and k = 10).

there are more nodes in the solution (as it has a more le-

nient time constraint), its solution also mainly consists

of “1styeargrad” and “mlgard” crowds. Furthermore,

we can also find the meaningful hidden pattern, that

is, two persons have no interactions but they are in

the final solution (e.g., two nodes in blue in Fig.9(c)).

Based on these observations, we can conclude that diffe-

rent parameters have no significant effect on the final

results. These experimental results indicate that our

model is more practical for finding meaningful patterns

than OL.

6 Related Work

6.1 Cohesive Subgraph Mining

Many cohesive subgraph models have been pro-

posed to suit many application scenarios. For instance,

clique [28, 29], γ-quasi-clique [14, 15], k-core [16, 17] and k-

truss [30], all these are common cohesive subgraph mod-

els. The closest one to our work is the densest subgraph

model [2, 18–20]. Goldberg [2] applied the maximum flow

technology to devise an exact solution with polyno-

mial time. However, the computation of the maximum

flow has a prohibitively high overhead and is therefore

inefficient for massive real-world graphs. Charikar [21]

developed a greedy Peeling algorithm which can gene-

rate a 2-approximation solution for the densest sub-

graph problem on the undirected static graphs. And

he further designed a linear 2-approximation algorithm

in directed graphs. Andersen and Chellapilla [22] stu-

died to search the densest subgraph with a size re-

striction. Depending on whether the limit is set on

the upper or lower boundary, it can be divided into

the DalkS and DamkS problems, respectively. They

found a 3-approximation solution for DalkS and demon-

strated the difficulty of finding an approximate method

for DamkS. Tsourakakis [19] studied to search a k-clique

densest subgraph, which has the maximum average

number of k-cliques participants. Epasto et al. [23] pro-

posed approaches to dynamically keep the densest sub-

graph when some edges are deleted or added. Recently,

a tutorial on densest subgraph computation has been

presented in [24]. However, all these approaches are tai-
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lored for static graphs and thus ignore the temporal in-

formation of networks, resulting in sub-optimal results.

Thus, some studies model the static graphs with diffe-

rent attributes (timestamps) as multilayer networks

to find the cohesive subgraphs, for instance, finding

top-k diversified cores covering the largest number of

vertices [12], defining clusters of densely-connected ver-

tices whose induced edges have the similar labels in

a subset of layers [11], and extracting dense subgraphs

sharing the same vertex set [13, 31] from a set of multiple

graphs. However, these studies search for the subgraphs

in discontinuous layers [32] and cannot capture the con-

tinuous temporal information.

6.2 Temporal Network Analysis

Nowadays, temporal networks are widely used to

model real-life applications. For instance, Wu et al. [33]

defined four different temporal path models by consi-

dering different temporal constraints, making these

models more realistic. Besides, they also proposed an

approach to keep the time-order by transforming tem-

poral networks into de-temporal networks. In [34], Wu

et al. presented an efficient indexing scheme TopChain

equipped with the graph transformation approach of

[33] to investigate the real time query of temporal

reachability and time-based path. It is worth men-

tioning that TopChain is able to update the index

quickly and dynamically. Rozenshtein and Gionis [35]

explored the PageRank model for temporal graphs, in

which the importance of vertices changes along with the

time. Additionally, the classic problems of the vertex

covering [36] and the graph coloring [37] also have been

studied on temporal graphs. Recently, some studies

have attempted to detect cohesive subgraphs in time-

varying networks. Specifically, Ma et al. [10] explored

how to find a heavy subgraph in a special class of tem-

poral networks, whose structure remains unchanged but

the weight of edges changes over time. Lin et al. [38]

investigated the diversified lasting cohesive subgraphs

on temporal networks. Li et al. [5] introduced a model

called persistent community, and they also devised effi-

cient algorithms for identifying a persistent community

with the largest size. Qin et al. [39] did some research on

the periodicity of cohesive subgraphs. Zhang et al. [40]

studied the problem of identifying the significant en-

gagement community to which the user-specified query

belongs. However, the closest work to ours is [8, 9],

which expanded the concept of static density and at-

tempted to find temporal subgraphs with the maximum

total density and the largest burstiness, respectively.

7 Conclusions

In this work, we proposed the novel model TDS and

three algorithms BA, GFDS+TQ and GFDS+ITKT,

which can efficiently mine more meaningful and prac-

tical temporal cohesive subgraphs. In efficiency tests,

the heuristic algorithm GFDS+ITKT outperforms the

others. And it takes less than two minutes to re-

turn a solution from the million-vertex DBLP. Besides,

GFDS+ITKT gets the best average ranking when tak-

ing the well-known EDB and TC as the metrics. These

experimental results revealed the importance of captur-

ing the temporal characteristics and the limitations of

using overly strong structural constraints. Considering

all the factors mentioned above, TDS is more practi-

cal in finding the meaningful potential patterns when

exploring the cohesive temporal subgraphs. In future

work, we will try to extend the concept of the person-

alized queries to TDS to explore the potential of find-

ing the cohesive temporal subgraphs with the specified

query nodes.

References

[1] Chang L, Qin L. Cohesive subgraph computation over large

sparse graphs. In Proc. the 35th IEEE International Confe-

rence on Data Engineering, April 2019, pp.2068-2071. DOI:

10.1109/ICDE.2019.00241.

[2] Goldberg A V. Finding a maximum density subgraph.

Technical Report, University of California Berkeley, 1984.

https://digicoll.lib.berkeley.edu/record/136696, July 2022.

[3] Rozenshtein P, Gionis A. Mining temporal networks. In

Proc. the 25th ACM SIGKDD International Conference

on Knowledge Discovery and Data Mining, August 2019,

pp.3225-3226. DOI: 10.1145/3292500.3332295.

[4] Lin L, Yuan P, Li R H, Wang J, Liu L, Jin H. Mining stable

quasi-cliques on temporal networks. IEEE Trans. Systems,

Man, and Cybernetics: Systems, 2022, 52(6): 3731-3745.

DOI: 10.1109/TSMC.2021.3071721.

[5] Li R H, Su J, Qin L, Yu J X, Dai Q. Persistent commu-

nity search in temporal networks. In Proc. the 34th IEEE

International Conference on Data Engineering, April 2018,

pp.797-808. DOI: 10.1109/ICDE.2018.00077.

[6] Yang Y, Yan D, Wu H, Cheng J, Zhou S, Lui J C S. Di-

versified temporal subgraph pattern mining. In Proc. the

22nd ACM SIGKDD International Conference on Know-

ledge Discovery and Data Mining, August 2016, pp.1965-

1974. DOI: 10.1145/2939672.2939848.

[7] Bassett D S, Yang M, Wymbs N F, Grafton S T. Learning-

induced autonomy of sensorimotor systems. Nature Neuro-

science, 2015, 18(5): 744-751. DOI: 10.1038/nn.3993.

[8] Rozenshtein P, Bonchi F, Gionis A, Sozio M, Tatti N. Find-

ing events in temporal networks: Segmentation meets dens-

est subgraph discovery. Knowledge and Information Sys-

tems, 2020, 62(4): 1611-1639. DOI: 10.1007/s10115-019-

01403-9.

https://doi.org/10.1109/ICDE.2019.00241
https://doi.org/10.1145/3292500.3332295
https://doi.org/10.1109/TSMC.2021.3071721
https://doi.org/10.1109/ICDE.2018.00077
https://doi.org/10.1145/2939672.2939848
https://doi.org/10.1038/nn.3993
https://doi.org/10.1007/s10115-019-01403-9
https://doi.org/10.1007/s10115-019-01403-9


1084 J. Comput. Sci. & Technol., Sept. 2022, Vol.37, No.5

[9] Chu L, Zhang Y, Yang Y, Wang L, Pei J. Online density

bursting subgraph detection from temporal graphs. Pro-

ceedings of the VLDB Endowment, 2019, 12(13): 2353-

2365. DOI: 10.14778/3358701.3358704.

[10] Ma S, Hu R, Wang L, Lin X, Huai J. Fast computation

of dense temporal subgraphs. In Proc. the 33rd IEEE In-

ternational Conference on Data Engineering, April 2017,

pp.361-372. DOI: 10.1109/ICDE.2017.95.

[11] Boden B, Gunnemann S, Hoffmann H, Seidl T. MiMAG:

Mining coherent subgraphs in multi-layer graphs with edge

labels. Knowledge and Information Systems, 2017, 50(2):

417-446. DOI: 10.1007/s10115-016-0949-5.

[12] Zhu R, Zou Z, Li J. Diversified coherent core search on

multi-layer graphs. In Proc. the 34th IEEE International

Conference on Data Engineering, April 2018, pp.701-712.

DOI: 10.1109/ICDE.2018.00069.

[13] Hashemi F, Behrouz A, Lakshmanan L V S. FirmCore

decomposition of multilayer networks. In Proc. the 2022

ACM Web Conference, April 2022, pp.1589-1600. DOI:

10.1145/3485447.3512205.

[14] Liu G, Wong L. Effective pruning techniques for mining

quasi-cliques. In Proc. the 2008 European Conference on

Machine Learning and Knowledge Discovery in Databases,

September 2008, pp.33-49. DOI: 10.1007/978-3-540-87481-

2 3.

[15] Pei J, Jiang D, Zhang A. On mining cross-graph quasi-

cliques. In Proc. the 11th ACM SIGKDD International

Conference on Knowledge Discovery in Data Mining, Au-

gust 2005, pp.228-238. DOI: 10.1145/1081870.1081898.
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