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Abstract Identifying accounts across different online social networks that belong to the same user has attracted extensive

attentions. However, existing techniques rely on given user seeds and ignore the dynamic changes of online social networks,

which fails to generate high quality identification results. In order to solve this problem, we propose an incremental user

identification method based on user-guider similarity index (called CURIOUS), which efficiently identifies users and well

captures the changes of user features over time. Specifically, we first construct a novel user-guider similarity index (called

USI) to speed up the matching between users. Second we propose a two-phase user identification strategy consisting of USI-

based bidirectional user matching and seed-based user matching, which is effective even for incomplete networks. Finally,

we propose incremental maintenance for both USI and the identification results, which dynamically captures the instant

states of social networks. We conduct experimental studies based on three real-world social networks. The experiments

demonstrate the effectiveness and the efficiency of our proposed method in comparison with traditional methods. Compared

with the traditional methods, our method improves precision, recall and rank score by an average of 0.19, 0.16 and 0.09

respectively, and reduces the time cost by an average of 81%.
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1 Introduction

Online social networks have become more and more

popular in recent years. It is very common that one

real-world person gets involved in different social net-

works concurrently to satisfy his/her different requests.

For instance, by using different public social networks

(such as Twitter 1○, Facebook 2○ and Foursquare 3○), a

user can access the latest news, share photos and make

a post. Besides public social networks, he/she can also

share files by using multiple private social networks

(such as enterprise networks and department networks).

User identification, which is to identify accounts across

different online social networks that belong to the same

user, has been extensively studied. Integrating data

across various social platforms down to the granularity
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of individuals is an essential task in today’s social-data-

enabled business intelligence [1]. User-centric data fu-

sion from various sources is very important for many ap-

plications such as social recommendation, community

detection, public opinion analysis, and so on. For in-

stance, by aggregating sufficient user-centric behaviour

data from multiple networks, recommendation systems

can obtain more complete profiles and richer behavioral

data, which enables an all-sided analysis on user pref-

erences.

We study the problem of user identification across

social networks. Given multiple social networks, we aim

to efficiently identify accounts that belong to the same

user. For user identification across social networks,

three key issues need to be addressed. First, we need to

design an efficient index scheme for searching the simi-

lar users with respect to an incoming user. According

to the statistics from Hootsuite [2], there are now 4.62

billion social media users, with 424 million new users

added in the past year. The number of social media

users is now equal to more than 58% of the world’s

population. Obviously, all-pairwise-comparison for this

huge number of users is infeasible. Second, we need

to propose a robust user identification strategy that ef-

fectively integrates data across various sources, even for

incomplete social networks. The incompleteness mainly

lies in the lack of user attributes and seeds. In practice,

it is very difficult to obtain users’ private information

in many real-world applications because of privacy con-

cerns, resulting in the lack of attributes. Also it is labo-

rious to label enough prior alignment manually, leading

to the lack of user seeds. In scenarios where social data

is sparse, incomplete, or hard to obtain, the process of

user identification needs to be still effective. Third, we

need to propose an incremental maintenance strategy

for both the constructed index and the current identifi-

cation results, which can effectively capture the instant

states of social networks. As users’ attributes and their

interactions with others may change over time, failing

to capture these dynamic states may lead to low quality

identification.

According to the features used in the process of

identification, existing user identification approaches

can be classified into three categories, attributes-based

approaches [1, 3–10], structure-based approaches [11–26]

and hybrid approaches [27–35]. Most approaches only

rely on one type of features (either user attributes or

topological structures), which does not reflect the com-

plete features of users. To improve the accuracy of

identification, hybrid approaches have been proposed to

identify users by combining user attributes with topo-

logical structures. However, existing hybrid approaches

ignore the dynamic changes of social networks (includ-

ing the changes of users themselves and the changes of

interaction among users), which fails to generate high

quality identification. Meanwhile, these methods are

not effective for incomplete networks.

In this paper, we propose an incremental user iden-

tification method based on user-guider similarity in-

dex (called CURIOUS), which identifies users more effi-

ciently and accurately. Specifically, a novel user-guider

similarity index (called USI) is built to speed up search-

ing the similar users with respect to an incoming user.

Then, a robust two-phase user identification strategy

(consisting of USI-based bidirectional user matching

and seed-based user matching) is proposed, which is

effective even for incomplete networks. Finally, we pro-

pose some incremental maintenance strategies, which

effectively capture the instant states of users and the

interactions among users. Our contributions are as fol-

lows.

• We construct USI, an efficient index scheme, to

improve the identification efficiency, which is guaran-

teed by a novel guider-based candidate pruning. It has

better generality, which does not depend on particular

patterns or specific hash functions.

• We propose a two-phase user identification strat-

egy. In the first phase, the similar users with respect to

an incoming user are searched by bidirectionally match-

ing in USI. In the second phase, seeds are exploited to

further expand the matching results generated in the

previous phase, which better solves the problems caused

by the incompleteness of networks.

•We propose incremental maintenance for USI and

the identification results respectively. Some incremen-

tal maintenance strategies are proposed for the changes

including the insertion, deletion or updating of user

nodes, which enables the identification results to well

reflect the networks’ dynamic states.

• Extensive experimental studies based upon three

real-world networks are conducted. The experiments

demonstrate the effectiveness and efficiency of our pro-

posed method.

The rest of this paper is organized as follows. Sec-

tion 2 reviews related work. Section 3 formulates

the problem and gives an overview of our CURIOUS

method. Section 4 and Section 5 propose the USI con-

struction algorithm and the two-phase user identifica-

tion strategy respectively. Section 6 proposes the in-

cremental maintenance strategies. Section 7 shows the
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experimental results and Section 8 makes conclusions.

2 Related Work

Various approaches for user identification across so-

cial networks have been studied over the years. First,

we briefly review the techniques for them, and then an-

alyze how our work differs from them.

2.1 Attribute-Based User Identification

Attributes-based user identification methods collect

user attributes about user profiles, user-generated con-

tent, behaviors or friend networks, and then represent

them in vectors, of which each dimension corresponds

to an attribute field. These methods can be divided

into profile-based methods and content-based methods.

The basic idea of profile-based methods is to use the

user profile attributes to measure the similarity of user

accounts, and then to identify users based on the simi-

larity results. For example, in [3, 4], user profiles such

as user-name or description, are collected as attributes

for user identification. In [5] username and display

name are used to solve the problem of user identification

across social networks. In [6] a reinforcement learning

based framework is designed to augment the attributes

following an exploration-exploitation strategy. In [1]

the user identities of multiple networks are projected

into a common latent user space and the linked users

are identified by comparing their profiles in the latent

user space.

Content-based methods attempt to identify users

based on the time and locations that users post con-

tent, as well as the writing style of the content. For

example, in [7] personal identifiable information from

user-generated content is collected and used for iden-

tification. In [8] users’ behavior patterns, such as user

language and writing styles, are analyzed for building

user identification models. In [9, 10] the representa-

tive features from users’ geo-locations or trajectories

are extracted, compared to decide whether to link two

trajectories as the same user.

2.2 Structure-Based User Identification

Structure-based user identification methods utilize

the structures of social networks, because for most

users their online friends usually constitute a simi-

lar group of people on different social graphs. These

structure-based methods leverage user arrange struc-

tures or seeds (i.e., priori distinguished users) to iden-

tify more users, and can be divided into three cate-

gories: propagation-based methods, network alignment

methods, and representation-based methods.

The basic idea of propagation-based methods is to

start from seeds and extend to their unidentified neigh-

bors to identify more nodes. For example, in [11] a

divide-and-conquer approach is proposed, which par-

titions the networks into communities and performs a

two-stage mapping (first at the community level, and

then for the entire network). In [12] an algorithm called

FRUI is proposed, which employs a unified friend re-

lationship from a heterogeneous network and chooses

candidate matching pairs from currently known identi-

cal users.

Network alignment [13–16] is to fuse multiple graph

data sources by finding the corresponding nodes across

them. For example, in [13] an algorithm called IsoRank

is proposed to compute network alignments, which si-

multaneously uses the network data and the sequence

similarity data. In [14] a message passing algorithm

called NetAlignMP is proposed to compute approxi-

mate solutions to the sparse network alignment prob-

lems. In [15] a method for multimodal network align-

ment is proposed, which computes approximate maxi-

mum weight matchings of low-rank matrices to pro-

duce an alignment. In [16] a solution for the maximum

weight bipartite matching problem on the low-rank ma-

trix is proposed to produce the matching between the

graphs.

Via node representation learning, we can get the

node representation vector, which can reflect both the

local and the global structural features of user nodes.

Representation-based methods (e.g., [17–26]) first rep-

resent users as vectors and then compute the similarity

between user vectors to determine whether two users

are the same person. In [17] an unsupervised scheme

FRUI-P is proposed. First it extracts the friend rela-

tionships into feature vectors, and then calculates the

similarities of all the candidate identical users between

two networks. In [18] a dual attention matching net-

work is proposed, which models both intra-graph and

cross-graph information smartly. In [19] an adversarial-

enhanced hybrid graph network is proposed to learn hy-

brid user representation. In [20] a reinforcement learn-

ing model is proposed to optimize the linkage strategy,

which utilizes both the social network structure and the

history matched identities. In [26] an unsupervised em-

bedding method is proposed by utilizing the network

structural information.



Yue Kou et al.: Incremental User Identification Based on User-Guider Similarity Index 1089

2.3 Hybrid User Identification

Hybrid user identification methods comprehensively

consider multiple types of features including user at-

tributes and structural features to improve the accuracy

of user identification.

First, some weighted combination methods for fea-

tures are proposed. For example, in [27] not only

the structural features such as out-degree, in-degree

and n-hop neighbors, but also the attributes attached

with user nodes are considered to compute the struc-

tural similarity and the attributes similarity respec-

tively. And then the weights are assigned to them to

calculate the final similarity between users. In [28] a

framework called REGAL is proposed, which quanti-

fies the overall user similarity via the weighted combi-

nation. In [29] an iterative graph aligner called gsaNA

is proposed, which synthetically considers the simila-

rities of user attributes, relationships, node out-degree

and node in-degree to analyze the global structure of

the graphs. In [30] three levels of attribute features are

combined with the structural features by a concatenate

operation to obtain the final representation of the social

network.

Second, some methods combine different features

based on collaborative training. For example, in [31]

two models based on attribute features and structural

features are trained respectively, and then the top-k

user pairs of each model are added to the training set

iteratively. In [32] a collaborative training framework

is proposed to train the representation of various fea-

tures separately and to enhance each other with their

results until the model is convergent. In [33] a joint

attribute-preserving embedding model for cross-lingual

entity alignment is proposed, which jointly embeds the

structures and further refines the embeddings by lever-

aging attribute correlations. In [34] an ontology-guided

entity alignment method is proposed, which jointly em-

beds both the networks and their ontologies.

In addition, some work also focuses on how to speed

up identification. The common way is to reduce the

number of candidate users to be identified as much

as possible, that is, to avoid the similarity calcula-

tion of a user with a large number of dissimilar users.

Some work organizes similar users together using buck-

ets or space partitions, in order to limit the candidates

within a smaller space. For example, in [29] user nodes

are partitioned into buckets on a 2D plane by using

their distances to the vantage anchor pairs. Only the

pairwise similarity among the nodes of the two graphs

that fall into the same bucket needs to be computed.

In [35], an efficient hash-based framework for the net-

work alignment called HashAlign is proposed, which

leverages structural properties and node attributes si-

multaneously.

2.4 Differences from Existing Work

The differences between our work and existing work

are as follows.

On the one hand, attributes-based methods and

structure-based methods assume that they can collect

rich user attributes and sufficient seeds respectively.

However, in practice we can only obtain the limited

information, leading to limited or incomplete features.

Unfortunately, as most methods rely on particular pat-

terns or seeds, they face serious challenges in identifying

users across social networks if required data patterns or

seeds are not available. In this paper, we construct a

more general index scheme, which does not depend on

particular patterns or hash functions. In addition, we

propose a two-phase user identification strategy, which

takes into account both user attributes and structure

features to supply more evidence for user identification.

On the other hand, although hybrid user identifi-

cation methods improve the accuracy of identification

by considering various user features, existing methods

are proposed for static networks, which ignores the dy-

namic interactions among users, resulting in generating

some outdated results. In this paper, we propose some

incremental maintenance strategies for both the con-

structed index and the identification results, which can

well reflect the networks’ dynamic states.

3 Solution Overview

We propose an incremental user identification

method based on USI (called CURIOUS). The frame-

work of CURIOUS is shown in Fig.1.

Definition 1 (User Identification Across Social

Networks). Given two social networks (GA and GB)

and a few prematched user pairsM = {(uA, uB) | uA ∈
GA ∧ uB ∈ GB}, the problem of user identification

across social networks involves locating the other hidden

matched identity pairs χ = {(uA, uB) | uA ∈ GA∧uB ∈
GB ∧ (uA, uB) /∈ M}, where uA and uB belong to the

same natural person.

CURIOUS consists of three major components, USI

construction, two-phase user identification, and incre-

mental maintenance. First, USI is constructed accord-

ing to the extracted node features from one network
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Fig.1. Framework of our solution.

(e.g., GA), which is made up of bucket-level index nodes

and guider-level index nodes. Second, two-phase user

identification is performed. In the first phase, for each

user to be identified in GB , users in GA which are simi-

lar to it, are searched by bidirectionally matching in

USI. In the second phase, seeds are used to further ex-

pand the matching results generated in the previous

phase. Finally, incremental maintenance is performed

for the changes of both USI and the current identifi-

cation results, including the insertion, deletion or up-

dating of user nodes. We will detail these components

in Sections 4–6. The notations used in this paper are

listed in Table 1.

Table 1. Notations

Symbol Definition and Description

GA, GB Two social networks

x An index node in USI

qu Social circle feature of user u

Qu Social chain feature of user u

fui The i-th feature of user u

b Number of branches of each index node

ε Threshold for splitting

pskew Similarity skew ratio

uA, uB A user from GA, and a user from GB

Sf (uA, uB) Feature-based similarity between uA and uB

Sp(uA, uB) Propagation-based similarity between uA and uB

∆Sf Similarity scaling rate

θf , θp Threshold for Sf , and threshold for Sp

Nu
i User u’s neighbor set with i-radius

du User u’s degree

4 User-Guider Similarity Index

Starting from a user node in one social network (e.g.,

GA), we will construct a user-guider similarity index

(i.e., USI). It is used to quickly locate the similar users

in GA with respect to an incoming user.

4.1 USI Data Structure

Given a social network GA, USI is a tree that de-

scribes the similarities between users in GA. It is made

up of guider-level index nodes and bucket-level index

nodes. The data structure of USI is as follows. 1)

Each guider-level index node in USI consists of a set

of guiders. Each guider corresponds to a user node in

GA, which is used as a reference for searching. 2) Each

bucket-level index node includes a group of users in GA.

For two users (suppose one is from an index node x, and

the other is from x’s child in USI), the similarity be-

tween them should meet a certain threshold. 3) The

relationships between two adjacent index nodes in USI

are one-to-many. An edge between two index nodes is

built if and only if their similarity meets a certain inter-

val. For each index node, we use a node set NS and an

edge set ES to store its guiders/users and the similarity

relationships with its child node, respectively.

An example of USI is shown in Fig.2. There are

two guider-level index nodes and two bucket-level in-

dex nodes, each of which has a guider/user node set

and an edge set. For bucket-level index nodes, they
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make up all the leaves of USI and their ESs are empty.

Let us suppose u1 and u2 are selected as guiders to form

a guider-level index node (denoted as x1) in USI. Each

unassigned user in GA (denoted as u) will be assigned

to USI according to its similarity with u1 (denoted as

S(u, u1)) and with u2 (denoted as S(u, u2)). Here

we use the average value of S(u, u1) and S(u, u2) to

measure the similarity between u and x1. In Fig.2 the

number of branches (denoted as b) of each index node

is 2, and thus each user will be assigned to either of

them, depending on whether their similarity belongs to

the interval of [0, 0.5) or [0.5, 1]. Since the similarity

between u3 (or u4, u5) and x1 is less than 0.5, it is as-

signed to x2. As the similarity between u6 (or u7) and

x1 is not less than 0.5, it is assigned to x3. Therefore

the node sets of x2 and x3 are {u3, u4, u5} and {u6, u7},
respectively. And there are two index edges connecting

x1 to x2, and x1 to x3 respectively.

 

...

Guider-Level Bucket-Level

User

[0, 0.5)

[0, 0.5) [0.5, 1]

Guider

u

x

x

x
x

u

u   u   u
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u    u

Fig.2. Example of index nodes in USI.

4.2 USI Construction

For USI construction, it consists of two main steps.

First, we preprocess the data to extract user attributes

and structural features from multiple perspectives. Sec-

ond, for each user node in GA, it is assigned to USI

according to its extracted features. Initially a bucket-

level index node is constructed to store users. And then

it will be split into a guider-level index node and sev-

eral bucket-level index nodes, once it consists of enough

user nodes.

4.2.1 Data Preprocessing

Users can be described by attributes such as user

name, age and occupation. Through data preprocess-

ing, the users’ attributes will be extracted. In the pa-

per, we consider three types of attributes, i.e., numeric,

string and label (category). More specially, for numeric

attributes, we use the Euclidean distance and cosine

similarity to calculate the similarity between them. For

continuous string attributes, we use the edit distance

to calculate the similarity between them. For token

string attributes, we use Jaccard similarity to measure

their similarity. For label attributes, we first convert

them to numeric attributes or string attributes, and

then use the corresponding similarity measures to cal-

culate. In addition, the similarity measures between

label attributes can be divided into strict measures and

relaxed measures. The former refers to that two labels

are considered similar only if they are identical (the

similarity is 1); otherwise they are considered dissimi-

lar (the similarity is 0). For example, strict measures

are often adopted for gender labels. Relaxed measures

refer to that two labels may be considered similar even

if they are not identical. For example, the relaxed mea-

sures can be adopted for occupation labels.

Besides user attributes, we also consider users’

structural features. In addition to common structural

features such as out-degree, in-degree and the number

of neighbors, we define two new structural features: so-

cial circle and social chain. Fig.3 shows an example of

extracting a user u’s social circle and social chain by

traversing a social network.

1
1

1

2

2

1

1

1

2

2

1-Radius

qu=11122 Qu={12, 12, 1}

2-Radius

2-Hop

2-Hop

u u  

1-Hop

(b)(a)

Fig.3. Example of extracting u’s structural features. (a) Social
circle feature. (b) Social chain feature.

On the one hand, a sequence qu = 11122 represent-

ing u’s social circle feature can be generated by using

the breadth-first traversal. With u as the center node,

there are three users with 1-radius (each is represented

as 1 in qu) and two users with 2-radius (each is repre-

sented as 2 in qu). Each neighbor with 1-radius repre-

sents a direct friend of the current user, and each neigh-

bor with 2-radius or larger radius represents an indirect

friend. As the radius increases, the influence of friends

on the current user decreases. Given the social circles

of u and u′ (denoted as qu and qu
′

respectively), we

can calculate their similarity in social circle (as in (1)).

Here dmax is the maximum radius in the sequences, and
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qui (or qu
′

i ) is the number of u’s (or u′’s) i-radius neigh-

bors.

Scir(q
u, qu

′
) =

1

dmax

dmax∑
i=1

1

1 + |qui − qu
′

i |/i
. (1)

On the other hand, by adopting the depth-first

traversal, a sequence set Qu = {12, 12, 1} representing

u’s social chain feature can be obtained, from which it

can be known that there are two 2-hop social chains

and one 1-hop social chain. Each chain is a sequence,

the first digit in the sequence represents a 1-hop friend

of u, and the second digit represents a 2-hop friend of

u, who is known by its previous 1-hop user, and so

on. However, the depth-first traversal is random and

may lead to inconsistent social chains obtained by two

traversals. This problem is caused by the fact that each

user has multiple friends, resulting in multiple possi-

bilities when choosing a path. In order to solve this

problem, the neighbor node with the smallest degree

is preferentially selected for traversal. To reduce com-

putational complexity, if there are multiple neighbors

with the same degree, we randomly select one of them

for traversal. Given the social chains of u and u′ (de-

noted as Qu and Qu′
respectively), we can calculate

their similarity (as in (2) and (3)). Here Qu
i (or Qu′

j ) is

the i-th (or j-th) sequence in Qu (or Qu′
).

Scha(Qu, Qu′
) =

min(|Qu|, |Qu′ |)
max(|Qu|, |Qu′ |)

× h. (2)

h =
∑

Qu
i ∈Qu,Qu′

j ∈Qu′

Overlap(Qu
i , Q

u′

j )

min(|Qu
i |, |Qu′

j |)
. (3)

Social networks are often incomplete, that is, lack-

ing in some features. Since it is impossible to determine

whether the null features are similar or dissimilar, it is

not feasible to calculate the similarity between users by

weighted accumulation on all features. To this end, we

use a switch function to dynamically remove these null

features when computing the similarity between users

(as in (4)). Here fui (or fu
′

i ) is the i-th feature of u

(or u′). And S(fui , f
u′

i ) is the similarity between fui
and fu

′

i . SW (fui , f
u′

i ) is a switch function, which is

equal to 1 if and only if both fui and fu
′

i are not null;

otherwise it is equal to 0.

Sf (u, u′) =

∑
i wi × SW (fui , f

u′

i )× S(fui , f
u′

i )∑
i wi × SW (fui , f

u′
i )

. (4)

4.2.2 Accumulation and Splitting

Based on the features extracted above, we can con-

struct a USI by performing accumulation and splitting

iteratively. In the accumulation phase, a bucket-level

index node is initialized to load user nodes. When the

number of user nodes reaches the split threshold (de-

noted as ε), the splitting phase will be enabled. In

the splitting phase, a guider-level index node and sev-

eral bucket-level index nodes are created to replace the

original index node. The user nodes in the original in-

dex node are re-assigned to a newly-created index node.

Then the remaining user nodes in the social network

continue to be assigned in this way until all the user

nodes have been assigned to the USI.

The key for building a USI is how to insert a user,

i.e., to locate an index node to load it. The target

index node should contain the users similar to the in-

serted user. We propose a user insertion algorithm (Al-

gorithm 1). Given the current USI with its root, the

user u to be inserted and the split threshold ε, Algo-

rithm 1 is performed according to the following three

cases.

Algorithm 1. insertUser(root, u, ε)

Input: root, u, ε

Output: root of the new USI root

1 if root is null do //Initialize a USI

2 root ← initializeBucket(u);

3 else if isGuiderLevel(root) do //Insert u into USI

4 child ← locateChild(root, S(u, root));

5 insertUser(child, u, ε); //Insert u into child

6 else add u to root //Insert u into root

7 if satisfySplit(root, ε) do //Split root into a 2-USI

8 g ← selectGuiders(root);

9 root′ ← initialize2-USI(g);

10 foreach u′ in root do

11 insertUser(root′, u′, ε);

12 root ← root′; //Replace root with root′

13 return root;

1) If root is null, then a bucket-level index node is

initialized to load u (lines 1 and 2). In order to make

the USI balance as soon as possible, it is vital to select

an exact user as the initial u. The median user is usu-

ally suggested to be chosen so as to build a balanced

tree directly [36]. Therefore, it should be an intuitive

idea to build the USI based on presorted users. Here

we use the method proposed in [37] to presort the users

in the social network, and then select the median user

as the initial u.

2) If root of the current USI is a guider-level index

node (lines 3–5):

step 1: calculate the similarity between u and root.

step 2: locate to one child of root according to the



Yue Kou et al.: Incremental User Identification Based on User-Guider Similarity Index 1093

similarity. The insertion process is performed recur-

sively with the child as the new root.

3) If the root of the current USI is a bucket-level

index node (lines 6–12):

insert u into root and check whether the number of

users in root reaches the split threshold ε. If so, root will

be split. During splitting, one or more users are ran-

domly selected from root as guiders to initialize a new

two-layer USI (denoted as a 2-USI). Then the remain-

ing users in root are inserted into the 2-USI. Finally,

root is replaced by the 2-USI.

The basic idea of USI is similar to that of VP-

Tree [38], an index for the nearest neighbor search. How-

ever, the direct application of VP-Tree cannot solve the

problem of user identification across social networks.

First, VP-tree does not consider the processing of miss-

ing features during similarity calculation. However,

most social networks are incomplete due to the missing

of attribute features and structural features. Second,

VP-Tree requires clear partition boundaries. Due to

the complexity of social networks, we often cannot get

a clear partition boundary to judge whether users are

similar or not. Compared with VP-Tree, our USI can

better adapt to the characteristics of user identification

across social networks. On the one hand, to solve the

problem of missing features, we use a switch function

to dynamically remove the missing features when com-

puting the similarity between users. On the other hand,

aiming at the error amplification resulted from the clear

partition boundary, we adopt the interval overlapping

strategy, the similarity scaling strategy and the back-

tracking strategy to make USI adapt to the user iden-

tification better.

4.3 Complexity Analysis

The above USI construction process uses iterative

splitting to ensure that the number of users per index

node does not exceed the threshold ε. When inserting

a user into a USI, we need to go through a path from

the root to the bucket-level index node where the user

will be stored. The average length of the path is equal

to the depth of the USI. Therefore the average time

complexity of traversal is O(logb n+ ε), where b repre-

sents the number of branches of each index node and n

is the total number of users in the social network. Since

ε is a constant, the time complexity is O(logb n).

The above analysis assumes that the similarity be-

tween users and index nodes is uniformly distributed.

This is because the depth of the USI approximates

logb n only if the similarity conforms to the uniform

distribution. But that is not really the case. Most

users in a social network are not similar to each other.

Even if users share certain features such as common

preferences or belong to the same community, they are

not necessarily very similar. To this end, we introduce

the similarity skew ratio (denoted as pskew) to repre-

sent the maximum proportion of users that a subtree

in USI contains. Since the most time-consuming traver-

sal must occur in the most skew subtree, the maximum

depth of traversal is the depth of such a subtree. The

maximum number of possible users in each child node

of the root is n × pskew, the maximum number of users

in each next-layer child node is n × (pskew)2, and so on.

In a leaf node, the maximum number is n × (pskew)d ,

where d is the depth of the USI. The number of users

in each leaf must not exceed ε, that is, d is less than

(log ε − log n)/log pskew. Therefore, by considering the

similarity skew, the worst time complexity of traversal

is O((log ε− log n)/log pskew).

5 Two-Phase User Identification

During the USI construction, we only consider the

user features within one social network. However, there

are some valuable features across social networks such

as user seeds. In this section, we propose a two-phase

user identification strategy, which first matches users

via USI, and then expands the matching results based

on user seeds.

5.1 Phase 1: USI-Based Bidirectional User
Matching

Supposing a USI has been constructed based on GA,

for each user uB (uB ∈ GB), the first-phase matching

is to search the users from the USI which are similar

to uB . In this subsection, we need to distinguish which

social network a user is from; thus we add a superscript

A or B to u to indicate whether u is from GA or GB .

Since the USI is built based on a probabilistic model,

strict interval divisions for guider-level index nodes may

result in the missing of real matching users. As the

search progresses, more and more such users might be

lost, i.e., error amplification. For example, supposing

the interval divisions are [0, 0.5) and [0.5, 1.0] and the

similarity between uB and a guilder-level index node

is 0.48, uB will be strictly allocated to only one child

node to continue matching. However, there may be

some matching results in the other child node, because

0.48 is very close to the interval boundary.
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In order to solve the error amplification, we propose

the following strategies.

1) Interval Overlapping Strategy. Interval overlap-

ping means that the intersection of two adjacent inter-

vals of a guilder-level index node is not empty. Here we

introduce an overlapping rate during interval division,

so that the users contained in adjacent child nodes have

intersection. As shown in Fig.4, the intervals of each

guilder-level index node are set to [0, 0.6] and [0.4, 1]

respectively with the overlapping rate of 0.33. Suppos-

ing the similarity between uB and x0 is 0.5, both x1
and x2 will be located for further matching.

Candidates
Interval Overlapping 

Backtracking
Similarity Scaling 

Sf↼u
B
↪ x↽⇁∆Sf/bÎ[0.44, 0.54] x

x x

xxxx

[0, 0.6] [0.4, 1]

[0, 0.6] [0, 0.6] [0.4, 1][0.4, 1]

Fig.4. Three strategies for solving the error amplification.

2) Similarity Scaling Strategy. Although the inter-

val overlapping strategy can alleviate the error ampli-

fication to a certain extent, it may cause a waste of

space, especially when the overlapping rate is too high.

Thus we define a scaling rate (denoted as ∆Sf ) and

propose a similarity scaling strategy. If the similarity

between uB and an index node x is Sf (uB , x), we com-

pare Sf (uB , x)+∆Sf/b with each interval to determine

which child nodes to be searched further. Here b is

the number of branches of each index node. As shown

in Fig.4, supposing Sf (uB , x0)=0.49 and ∆Sf=0.1, the

scaled similarity will be [0.44, 0.54], which overlaps both

[0, 0.6] and [0.4, 1]. Therefore it will continue matching

with both branches of x0.

3) Backtracking Strategy. The above two strategies

rely on the overlapping rate and the scaling rate respec-

tively. If they are set too small, the error amplification

has not been effectively solved. Therefore, we propose

a backtracking strategy. Firstly, during USI construc-

tion, we adopt the interval overlapping strategy to as-

sign user nodes. Secondly, the similarity scaling strat-

egy is performed to search the leaf nodes similar to uB

in the USI. Finally, these leaf nodes are backtracked up

layer by layer to expand the search range. As shown in

Fig.4, suppose the leaf node similar to uB is x5. Dur-

ing backtracking, we start from x5, then backtrack to

x4 and x6 along two paths x5-x2-x0-x1-x4 and x5-x2-x6
respectively, and match more users from x4 and x6 as

candidates, so as to expand the result data.

Based on the above strategies, we propose a USI-

based bidirectional candidates search algorithm (Algo-

rithm 2). Given the current USI, the target user uB ,

the number of candidates (denoted as K), the scaling

rate ∆Sf and the similarity threshold θf , the output

of Algorithm 2 is a queue ψ used to store candidate

users from the USI which are similar to uB . Algorithm

2 includes the following steps.

Algorithm 2. getSimilar(root, uB , K, ∆Sf , θf )

Input: the root of USI root, uB , K, ∆Sf , θf

Output: ψ

1 ψ ← initializeQueue(K);

2 if isBucketLevel(root) do

3 foreach uA in root do //Get similar users from root

4 if Sf (uB , uA) > θf and uA.mark==available do

5 ψ ← addSimilar(uA, Sf (uB , uA));

6 else foreach uA in root do //Get similar users from

root

7 if Sf (uB , uA) > θf do

8 ψ ← addSimilar(uA, Sf (uB , uA));

9 b ← |root.branches|;
10 C ← locateChildren(root, Sf (uB , root)±∆Sf/b);

11 foreach rootc in C do //Get similar users from rootc

12 ψ ← ψ∪getSimilar(rootc, uB , K-size(ψ), ∆Sf , θf );

13 while size(ψ) < K and existUnvisitedChild(root)

14 neighbors ← locateNeighbors(C);

15 foreach rootn in neighbors do //Backtracking search

16 ψ ← ψ∪ getSimilar(rootn, uB , K-size(ψ), ∆Sf , θf );

17 return ψ;

Step 1. Initialize a queue ψ for storing the search

result (line 1).

Step 2. Perform one of the following two cases ac-

cording to the type of the root.

Step 2.1. If the root of the USI is a bucket-level

node, the similarity between uB and each uA in the

root root is calculated directly. The user, who meets

the threshold θf and is marked as available (see Sub-

section 6.1), is inserted into ψ as a candidate user (lines

2–5).

Step 2.2. Otherwise (i.e., the root is a guilder-level

node), the similarity between uB and each uA in root

is calculated, and the users that meet threshold θf are

inserted into ψ (lines 6–8). Next, we calculate the ave-

rage of all the similarities and take it as the similarity

between uB and root. Then, according to the scaled

similarity, we locate the child nodes of root, and use

them as the new roots for iterative search (lines 9–12).
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If the number of users in ψ is less than K or there are

some unvisited nodes, we start from these child nodes

and conduct a backtracking search in the USI until the

termination condition is satisfied (lines 13–16).

Step 3. Return queue ψ (line 17).

5.2 Phase 2: Seed-Based User Matching

The completeness of matching results cannot be

guaranteed if only the first-phase matching is carried

out. The reasons are as follows. Firstly, the USI is

constructed based on the probability model; thus there

is a certain probability of losing matching results. Sec-

ondly, the first-phase matching relies on the similarity

between features, which is sensitive to features and may

lead to a lower similarity between real matching users,

especially when features are seriously missing. There-

fore, we adopt the second-phase matching, i.e., seed-

based user matching. The basic idea is to propagate

the mapping relationship between identified user pairs

(i.e., seed users) to unidentified pairs along the social

networks. For each pair to be matched, the simila-

rity between them is calculated by accumulating all the

mapping relationship propagated to them, so as to ex-

pand the matching results generated in the first phase.

For uB to be matched in GB , how to determine its

candidate users in GA? If all the unidentified users in

GA are compared with uB , it inevitably leads to high

computational complexity. To solve this problem, we

first obtain uB ’s seed neighbors in GB (i.e., the inter-

section of uB ’s neighbors and seeds), and then deter-

mine the users in GA to be compared with uB via these

seed neighbors. As shown in Fig.5, suppose uB1 ’s seed

neighbors are {uB2 , uB6 }, corresponding to the seed pairs

(uB2 , uA2 ) and (uB6 , uA6 ) respectively. Then the candi-

date users of uB1 are uA1 and uA5 , who are the neighbors

of uA2 and uA6 respectively.
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Fig.5. Example of seed-based candidate users determination.

In addition to direct neighbors, indirect neighbors

can also propagate their respective mapping relation-

ship to the user, and the influence will gradually de-

crease with the increase of the distance between them.

Therefore, we measure the similarity between users

based on such propagation relationship (as in (5)). Here

NuB

i (or NuA

i ) means uB ’s (or uA’s) neighbor set with

i-radius (i ∈ [0, dmax]). And dv
B

(or dv
A

) means user

vB ’s (or vA’s) degree in GB (or GA). M is the set of

seed pairs connecting GB and GA.

Sp(uB , uA)

=

dmax∑
i=1

1

i+ 1

∑
vB∈NuB

i ∧vA∈NuA

i

∧(vB , vA)∩M6=∅

1√
dvB × dvA

. (5)

In the second phase, we comprehensively consider

Sp and Sf to measure the similarity between uB and

each candidate user (as in (6)), where w is the weight

of propagation-based similarity.

S(uB , uA)

= w × Sp(uB , uA) + (1− w)× Sf (uB , uA). (6)

In order to further expand the matching results

generated in the first phase, we propose a seed-based

user matching algorithm (Algorithm 3). Given GA and

GB , the set of seed pairs connecting them (denoted as

M), the current unidentified user set in GB (denoted

as R) and the similarity threshold θp, the output of Al-

gorithm 3 is a set (denoted as χ) to store the matching

user pairs.

Algorithm 3. expandResult(GA, GB , M, R, θp)

Input: GA, GB , M, R, θp

Output: χ

1 χ ← ∅;
2 foreach uB in R do

3 c ← getCandidates(uB , GA, GB , M);

4 foreach uA in c do

5 if S(uB , uA) > θp do

6 χ ← χ ∪ (uB , uA); //Expand the current result

7 return χ;

Algorithm 3 further utilizes seed users to propagate

the similarity from the matching results to the uniden-

tified ones. Firstly, for each unidentified user uB in GB ,

his/her candidate users are determined in GA (lines

2 and 3). Then, the similarity between uB and each

candidate is calculated (lines 4 and 5). Finally, the

user pairs whose similarity is greater than the simila-

rity threshold are added to the current identification

results (line 6).
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6 Incremental Maintenance

In this section, we present incremental maintenance

strategies for the changes of social networks, including

the maintenance for the constructed USI and for the

current results of user identification.

6.1 Incremental Maintenance for USI

Due to the dynamics of social networks, the USI

needs to be maintained dynamically. Assuming a USI

has been built based on GA, if it is completely rebuilt

when GA changes, it will cause higher computational

cost. Therefore we propose incremental maintenance

strategies for the following cases.

1) User Insertion. When a new user joins GA, we

need to insert it into the USI. The insertion process

is similar to the process of building a USI (shown in

Fig.6(a)). First, according to the feature similarity be-

tween u and each index node, the index nodes similar to

u are located layer by layer in the USI, and u is inserted

into the leaf nodes similar to it. Then, each leaf node

is checked about whether it reaches the split threshold.

If so, the leaf node will be split and be replaced by a

2-USI.

2) User Deletion. When a user is deleted from GA,

we consider the following two cases to maintain the USI

(shown in Fig.6(b)). 1) If u is in a bucket-level index

node, it can be deleted directly, because this will nei-

ther result in any impact on the USI structure nor affect

other users in USI. 2) If u is in a guilder-level index node

(supposing it is x), it cannot be simply deleted from x.

There are some other users that have been guided by u

and have been loaded into x’s subtrees. These users will

be affected by the deletion of u. If the subtree is com-

pletely rebuilt when u is deleted, this will undoubtedly

cause a higher computation cost. Therefore, we do not

delete any users from the USI, but give each of them a

mark to indicate whether it is available. When a user

has been deleted from GA, it is marked as unavailable

in the USI (Algorithm 4). This ensures that the traver-

sal of the USI will not be affected by the deletion of

users from GA. While matching, only users marked as

available can become the matching result.

3) User Updating. When user features are updated,

we need to measure the difference between the features

before and after the update. If the difference is less

enough, there is no need to update the USI because the

current change will only have a slight impact on the

USI. Otherwise, the current USI needs to be updated

(shown in Fig.6(c)). In order to avoid a great deal of

cascade updating, we propose an algorithm for user up-

dating (Algorithm 5). Supposing a user changes from u

to u′, the input of Algorithm 5 includes u, u′, the root

of USI root, the split threshold ε and the threshold for

Sf . If u and u′ are still similar, the current USI remains

unchanged. Otherwise, the USI will be updated. Simi-

lar to the incremental user deletion proposed above, u is

deleted from the USI, that is, u is either deleted directly

from the USI or marked as unavailable in the USI (see

Algorithm 4). Then, as a new user, u′ is inserted into

the USI by performing the incremental user insertion

strategy proposed above (see Algorithm 1).

6.2 Incremental Maintenance for Identification

In addition to USI, the dynamic changes of social

networks also affect the current identification results.

Here we discuss how to incrementally maintain the

identification results to be suitable for the dynamics of

networks, including user insertion, deletion and updat-

ing. This impact on the identification results is mainly

reflected in two aspects.

6.2.1 From Similar to Dissimilar

Two users were similar before, but when the so-

cial network changed, they became dissimilar. Here we

discuss the following two scenarios. First, when uB is

deleted from GB , the candidate queues which contain

uB will be affected because uB has been already un-

available. Second, when the features of uB change, the

original users similar to uB may no longer be similar to
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Fig.6. Illustration of incremental maintenance for USI. (a) User insertion. (b) User deletion. (c) User updating.
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the state (denoted as uB
′
) after uB changes, and thus

the candidate queues of these users will be affected.

Algorithm 4. deleteUser(root,u)

Input: the root of USI root, u

1 if containUser(root, u) do //Delete u from root

2 if isBucketLevel(root) do

3 removeUser(root, u); //Remove u directly

4 else u.mark ← “unavailable”; //Mark u as unavailable

5 else C ← locateChildren(root);

6 foreach rootc in C do

7 deleteUser(rootc, u); //Delete u from rootc

8 return;

Algorithm 5. updateUser(root, u, u′, ε, θf )

Input: the root of USI root, u, u′, the split threshold ε, θf

1 if Sf (u, u′) < θf do

2 deleteUser(root, u); //Delete u from root

3 insertUser(root, u′, ε); //Insert u′ into USI

4 return;

For the above changes of users from similar to dis-

similar, we will directly delete the dissimilar user pairs

from the affected identification results. Although some

space will be released in these candidate queues at this

time, in order to reduce the computational cost, we will

not immediately fill new user pairs, which has been ex-

cluded previously due to the length limitation of the

candidate queue, into the queues. Although this will

reduce the recall of identification, the accuracy of iden-

tification will not be affected. For the cases insensitive

to the value of K, the impact of directly deleting can-

didate pairs from queues can be ignored.

Fig.7 shows some examples of incremental mainte-

nance for the above two scenarios. As shown in Fig.7(a),

when uB exits GB , uB should be removed from uA’s

candidate queue. As shown in Fig.7(b), when uB is

updated to uB
′
, the users previously similar to uB

(suppose they are uA1 and uA2 ) will be affected. Since

Sf (uB
′
, uA1 ) is still greater than θf (supposing θf is

0.6), uB
′

remains in the candidate queue of uA1 . While

Sf (uB
′
, uA2 ) is smaller than 0.6, uB

′
needs to be re-

moved from the candidate queue of uA2 .

6.2.2 From Dissimilar to Similar

The changes of users from dissimilar to similar are

mainly caused by the changes of user features. This

scenario is relatively complex, because it is difficult to

determine which users will be affected by them.
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Fig.7. Examples of incremental maintenance for the scenarios
from similar to dissimilar. (a) User deletion. (b) User updating.

Suppose the updated user is uB (supposing it

changes from uB to uB
′
). A simple way is to calcu-

late the similarity between uB
′

and each user in GA, so

as to determine which users in GA have newly become

the users similar to uB
′
. But this way is too expensive,

because it needs to compare uB
′

with every user in GA.

In fact, the change of uB will only affect those users

who are similar to uB
′
. We can search such users via

the USI. Then the users needing to be recomputed are

only limited within a local region of the USI, and thus

it will not cause too much computational cost.

Fig.8 shows an example of incremental maintenance

for the scenario from dissimilar to similar. Before uB

changes, neither uA1 nor uA2 is in uB ’s candidate queue.

Similarly, uB is not in the candidate queues of uA1 and

uA2 too. After changing, USI can be used to quickly

search users similar to uB
′
. Supposing both uA1 and

uA2 become similar to uB
′
, they constitute an affect-

ing subset of the identification results. At this time,

the candidate queues of uB
′
, uA1 and uA2 need to be

updated respectively.

For two social networks, we usually select the rela-

tively stable one from them to build a USI. Then for

each user that changes in the other network, we need to

determine its affecting subset via the USI. Finally only

the users in the affecting subset should be recomputed.

However, if both networks change frequently, we need to

build USIs for both of them, because efficient similarity

computing needs to be supported by both networks.

7 Experiments

In this section, we conduct experimental studies to

evaluate the effectiveness and the efficiency of our pro-
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Fig.8. Example of incremental maintenance for the scenario from dissimilar to similar.

posed method.

7.1 Experimental Settings

We implement the experiments on a PC with Intelr

Xeonr E5-2620 V4 CPU @ 2.10 GHZ, 32 GB main

memory and 512 GB hard disk. As shown in Table 2, we

use three real-world social graphs: EMAIL 4○, DBLP 5○

and Last.fm 6○.

Table 2. Description of Real Datasets

Dataset Number of Number of Graph Number of

Nodes Edges Type Labels

EMAIL 1 133 5 451 Undirected 5

DBLP 9 142 32 676 Undirected 1

Last.fm 136 420 1 685 524 Undirected 1

The three cross-network datasets are generated by

synthesis, following the existing work [39, 40]. As de-

scribed in Section 1, the incompleteness of social net-

works mainly lies in the lack of user attributes and

seeds. Formally, given a graph GA with adjacency ma-

trix A, we generate a noisy graph GB with matrix B,

where B is randomly generated by perturbing A. By

adding different levels (i.e., the perturbation rate, de-

noted as η) of synthetic noise, both the graph structure

and labels are perturbed to simulate real-world scenar-

ios. That is, different degrees of incomplete GB can be

achieved via perturbation on GA. The higher the value

of η, the higher the incompleteness of GB . We simu-

late the effect of perturbation on GA as follows: 1) add

edges to GA in proportion to η; 2) remove edges from

GA in proportion to η; 3) change the labels of nodes in

GA in proportion to η (the new values are not null); 4)

set the labels of nodes in GA to null in proportion to η.

The problem of user identification can be considered

as a binary classification problem, which needs to de-

termine whether two users are matching or mismatch-

ing. For classification, the samples are divided into four

types: true positive (TP), false positive (FP), true neg-

ative (TN) and false negative (FN). To evaluate the

performance of user identification, we employ the stan-

dard evaluation metrics in information retrieval: preci-

sion (denoted as P ) and recall (denoted as R), which are

defined as (7) and (8) respectively. Besides, we use rank

score (denoted as RS), which is a widely-used evalua-

tion metric in many real user identification applications,

to evaluate the top-k candidates for user identification

(as shown in (9)). Here T is the set of candidate queues

and li is the position of real matching users in the can-

didate matching queue.

P =
TP

TP + FP
. (7)

R =
TP

TP + FN
. (8)

RS =
∑
i∈T

1

li
. (9)

The baselines can be divided into three groups: an

attribute-based user identification method (ULink [1]),

two structure-based user identification methods

(NetAlignMP [14] and IsoRank [13]) and two hybird user

identification methods (HashAlign [35] and MAUIL [30]).

ULink [1]. The profiles of users are compared in the

latent user space.

NetAlignMP [14]. The overlap of structures is consi-

dered for message passing.

IsoRank [13]. It simultaneously uses the network

data and the sequence similarity data to compute net-

work alignments.

HashAlign [35]. It leverages structural properties

and node attributes simultaneously.

4○konect.uni-koblenz.de/networks, Aug. 2022.
5○dblp.uni-trier.de/db, Aug. 2022.
6○aminer.cn/cosnet, Aug. 2022.
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MAUIL [30]. It combines the text attributes for each

network with user relationships to learn the final rep-

resentation of each user.

7.2 Performance Comparison

Fig.9 shows the precision, recall, rank score and time

cost of different user identification methods on the three

cross-network datasets, respectively.

For precision (shown in Figs.9(a), 9(d) and 9(g)),

our first observation is that with the increase of η, the

precision of identification decreases gradually. Second,

HashAlign may lose some useful information (such as

the association between labels) when transforming user

features into feature vectors, and thus its precision is

lower in the three datasets. Third, for EMAIL, the

precision of our CURIOUS method is basically equal

to that of ULink, NetAlignMP, IsoRank and MAUIL.

This is because the dataset is rich in features, and in

this case, the advantage of our method is not obvious

enough. Compared with EMAIL, there are fewer node

features (e.g., node labels) that can be obtained from

DBLP or Last.fm, resulting in a lower precision than

EMAIL. ULink only considers user attributes, and ig-

nores the structure features. In contrast, NetAlignMP

and IsoRank rely on the structural features of the net-

works without considering user attributes. Although

both user attributes and structure features are consi-

dered by MAUIL, it focuses on node embedding by user
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Fig.9. Performance comparison of different user identification methods. (a) Precision on EMAIL. (b) Recall on EMAIL. (c) Rank score
on EMAIL. (d) Precision on DBLP. (e) Recall on DBLP. (f) Rank score on DBLP. (g) Precision on Last.fm. (h) Recall on Last.fm. (i)
Rank score on Last.fm.
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attributes, while only simple neighborhood information

(first-order proximity and second-order proximity) is

considered. When few user attributes are available, its

advantage will be weakened. Compared with them, our

method comprehensively considers user attributes, so-

cial circle features, social chain features and neighbor-

hood information, which is still effective for user iden-

tification across incomplete networks and thus has a

higher precision.

As shown in Figs.9(b), 9(e), and 9(h), with the in-

crease of η, the recall of identification decreases grad-

ually. Different from others, our method adopts two-

phase user identification to maintain the recall of the

results. Specifically, in the first phase we adopt three

strategies (including interval overlapping, similarity

scaling and backtracking) to avoid losing candidates.

Also we adopt the second-phase matching, i.e., seed-

based user matching, to expand the matching results

generated in the first phase. Therefore, our method

outperforms the others in recall.

Figs.9(c), 9(f), and 9(i) show that the change trend

of rank score is consistent with that of precision. How-

ever, because the rank score is used to measure the

matching of a group of candidate users, it is higher

than the corresponding precision.

We compare the time cost of our method (i.e., the

sum of the time cost of phase-1 matching and phase-2

matching) and baselines (shown in Tables 3–5). Be-

sides, we evaluate the time cost for constructing a USI.

Both HashAlign and our CURIOUS method use in-

dexes to quickly locate users similar to the incoming

user. The time cost of CURIOUS and HashAlign is

similar, which is lower than that of the other methods.

However, as the data scale increases (e.g., Last.fm), the

time cost of HashAlign increases significantly, which is

higher than that of CURIOUS obviously. This indi-

cates CURIOUS has a more obvious advantage on time

cost with the increase of data scale.

Compared with the traditional methods, our

method improves the precision, recall and rank score

by an average of 0.19, 0.16 and 0.09 respectively, and

reduces the time cost by an average of 81%.

7.3 Ablation Analysis

In this subsection, we compare our method with

its following variants: 1) StaticUSIMatch: only the

first phase, i.e., USI-based bidirectional user matching,

is adopted; 2) StaticMatch: both USI-based bidirec-

tional user matching and seed-based user matching are

adopted, but the incremental maintenance is lacked;

3) DynamicUSIMatch: based on StaticUSIMatch, the

incremental maintenance is adopted, but the second

phase matching is lacked.

Table 3. Time Cost (s) Comparison on EMAIL

Method η

0.05 0.10 0.15 0.20

ULink 237.76 232.13 239.63 242.19

NetAlignMP 162.23 146.01 150.30 161.15

IsoRank 634.27 633.18 620.67 585.27

HashAlign 10.01 13.87 11.85 16.75

MAUIL 767.18 771.65 769.33 774.54

USI Construction 6.21 6.45 6.61 6.16

Phase-1 12.97 12.56 12.47 12.79

Phase-2 0.22 0.41 0.29 0.42

CURIOUS 13.19 12.97 12.76 13.21

Table 4. Time Cost (s) Comparison on DBLP

Method η

0.05 0.10 0.15 0.20

ULink 1 612.25 1 632.56 1 589.45 1 627.37

NetAlignMP 4 294.35 4 116.71 4 273.57 4 173.55

IsoRank 5 277.06 5 034.54 5 032.54 5 294.29

HashAlign 242.67 538.43 191.73 319.87

MAUIL 3 998.31 3 976.17 4 002.19 3 010.63

USI Construction 32.59 33.87 33.29 32.46

Phase-1 249.52 181.52 198.14 170.68

Phase-2 0.83 1.72 2.56 2.08

CURIOUS 250.35 183.24 200.70 172.76

Table 5. Time Cost (s) Comparison on Last.fm

Method η

0.002 5 0.005 0 0.007 5 0.010 0

ULink 13 492 16 672 17 296 17 373

NetAlignMP 28 824 26 182 24 257 24 832

IsoRank 47 763 44 903 47 026 46 792

HashAlign 15 772 17 254 14 771 15 665

MAUIL 20 675 20 714 20 824 20 139

USI Construction 59 56 58 73

Phase-1 1 398 1 490 1 425 1 489

Phase-2 898 816 1 347 1 765

CURIOUS 2 296 2 306 2 772 3 254

We simulate the dynamics of social networks by in-

serting new users. To evaluate the effectiveness of our

proposed method, experiments are carried out on dy-

namic networks by varying the changing rate (denoted

as µ). Since the experimental results on DBLP are

consistent with those on EMAIL, only the results on

EMAIL and Last.fm are demonstrated here.

As shown in Figs.10(a) and 10(d), our first observa-

tion is that the one-phase identification (i.e., StaticUSI-
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Fig.10. Performance comparison of variants. (a) Precision on EMAIL. (b) Recall on EMAIL. (c) Rank score on EMAIL. (d) Precision
on Last.fm. (e) Recall on Last.fm. (f) Rank score on Last.fm.

Match and DynamicUSIMatch) slightly outperforms

the two-phase identification (i.e., CURIOUS and Stat-

icMatch) on precision. This is because the second phase

only extends the results, but does not refine them. Sec-

ond, as shown in Figs.10(b) and 10(e), the two-phase

identification outperforms the one-phase identification

on recall. This is because the former utilizes the seeds

to further expand the matching results generated by

the latter. Also, with the increase of user scale, the

recall increases gradually, because the structural fea-

tures of users become richer with the increase of users.

Third, Figs.10(c) and 10(f) show that the change trend

of rank score is consistent with that of precision. Fi-

nally, as shown in Table 6 and Table 7, the dynamic

methods (i.e., CURIOUS and DynamicUSIMatch) out-

perform the static methods (i.e., StaticUSIMatch and

StaticMatch) on time cost. This is because the former

adopts incremental maintenance strategies that do not

re-identify all the users. The latter adopts static iden-

tification strategies. Once the networks change, the en-

tire networks need to be identified again. With the in-

crease of data scale, the dynamic methods have a more

obvious superiority to the static methods.

7.4 Parameter Settings

In this subsection, we evaluate the effect of parame-

ters, including b (the number of branches of each index

node), ε (the threshold for splitting), K, θf (the thresh-

old for Sf ), θp (the threshold for Sp), ∆Sf (the simi-

larity scaling rate) and w (the weight of propagation-

based similarity). We take the EMAIL dataset as an

example to show the effect of different parameter set-

tings on various metrics. The experimental results are

shown in Table 8 and Table 9.

Table 6. Time Cost (s) Comparison of Variants on EMAIL

Method µ

0.05 0.10 0.15 0.20

StaticUSIMatch 12.83 12.64 14.37 15.91

StaticMatch 13.11 12.95 14.62 16.25

DynamicUSIMatch 2.13 2.59 3.53 4.12

CURIOUS 2.64 3.16 4.25 4.87

Table 7. Time Cost (s) Comparison of Variants on Last.fm

Method µ

0.05 0.10 0.15 0.20

StaticUSIMatch 1 391 1 471 1 459 1 498

StaticMatch 2 285 2 467 2 543 2 696

DynamicUSIMatch 65 70 68 67

CURIOUS 959 1 066 1 152 1 265

With the increase of b, the time cost and the recall

decrease, but its increase has little effect on the preci-
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Table 8. Parameter Settings for b, ε and K

Metric b ε K

10 40 70 100 130 10 20 30 40 50 2 4 6 8 10

P 0.99 1.00 0.99 0.99 1.00 1.00 0.99 0.99 0.98 0.97 0.98 0.99 1.00 1.00 1.00

R 0.90 0.85 0.80 0.76 0.69 0.84 0.85 0.85 0.84 0.85 0.85 0.85 0.84 0.83 0.84

RS 0.99 1.00 0.99 0.99 1.00 1.00 0.99 0.99 0.98 0.97 0.98 0.99 1.00 1.00 1.00

Time (s) 46.61 14.62 10.10 9.30 8.41 12.66 18.46 17.66 15.76 25.67 12.45 12.88 12.72 13.72 13.31

Table 9. Parameter Settings for θf , θp, ∆Sf and w

Metric θf θp ∆Sf w

0.6 0.7 0.8 0.9 0.6 0.7 0.8 0.9 0.25 0.50 0.75 1.00 1.25 0.2 0.4 0.6 0.8

P 0.95 0.99 1.00 1.00 0.96 0.98 0.98 1.00 1.00 0.99 1.00 0.99 1.00 0.98 0.98 0.71 0.52

R 0.86 0.85 0.83 0.79 0.83 0.81 0.80 0.76 0.82 0.89 0.89 0.92 0.92 0.53 0.65 0.77 0.82

RS 0.95 0.99 1.00 1.00 0.96 0.98 0.98 1.00 1.00 0.99 1.00 0.99 1.00 0.98 0.98 0.78 0.59

Time (s) 12.98 12.33 14.01 13.67 12.35 12.46 13.98 13.59 12.38 18.21 22.63 35.77 37.87 12.38 12.36 14.42 14.01

sion and the rank score. There are fewer users in each

subtree; thus the ability of the USI to distinguish and

filter dissimilar users is enhanced. But simultaneously,

it increases the probability of dividing similar users into

different branches, which further aggravates the error

amplification, leading to a lower recall.

For the parameter ε, when it increases, the time

cost of identification increases too. This is because the

larger the value of ε, the more the users in each index

node, resulting in a higher computational cost in the

index node. The recall almost remains unchanged. For

the precision and rank score, they decrease slightly with

the increase of ε. This is because a higher ε might result

in mixing more users who are not similar to each other

within the same index node.

For the number of candidates K, the rank score in-

creases slightly with the increase of K. This is because

a higher precision means a higher probability that user

pairs with a high similarity are the same users.

For θf and θp, they have almost no impact on time

consumption. For precision, it increases with the in-

crease of θf and θp. For recall, its change trend is op-

posite to precision. When the similarity threshold is too

high, the evaluation conditions are too strict, and the

real similar users may be judged as dissimilar, resulting

in the decline of recall.

The parameter ∆Sf is to expand the search region

of the USI to adjacent subtrees or index nodes, so as to

alleviate the error amplification. As ∆Sf increases, the

recall increases, but the time cost increases too. The

experimental results show that better performance can

be achieved without too high ∆Sf . For precision and

rank score, they are not particularly sensitive to the

change of ∆Sf .

We also evaluate the performance as w varies. The

larger the value of w is, the more dominant the second

phase is. At this time, the recall is higher, while the pre-

cision is lower. Through a comprehensive evaluation,

its best value is 0.4, which illustrates the first phase is

more decisive for the final result.

8 Conclusions

We proposed an incremental user identification

method across social networks based on the user-guider

similarity index. First, we constructed a novel user-

guider similarity index to speed up the matching be-

tween users. Then we proposed a two-phase user iden-

tification strategy to efficiently identify users, which is

still effective for incomplete networks. We also pro-

posed incremental maintenance for both USI and the

identification results, which dynamically captures the

instant states of social networks. Currently, two phases

of matching are carried out separately. Next, we will

take advantage of their interplay. Beyond that, we will

work on incremental user identification for very large

datasets in a distributed environment.
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