
Zhu YQ, Deng JY, Pu JC et al. ML-Parser: An efficient and accurate online log parser. JOURNAL OF COMPUTER

SCIENCE AND TECHNOLOGY 37(6): 1412–1426 Nov. 2022. DOI 10.1007/s11390-021-0730-4

ML-Parser: An Efficient and Accurate Online Log Parser

Yu-Qian Zhu (Á�Ê), Jia-Ying Deng ("ZL), Jia-Chen Pu (ÆW®)
Peng Wang∗ (� +), Member, CCF, IEEE, Shen Liang (ù ù), and Wei Wang (� ¥), Member, CCF

School of Computer Science, Fudan University, Shanghai 200082, China

E-mail: {19212010018, 19212010083, 17212010028, pengwang5, sliang11, weiwang1}@fudan.edu.cn

Received June 21, 2020; accepted September 18, 2021.

Abstract A log is a text message that is generated in various services, frameworks, and programs. The majority of log

data mining tasks rely on log parsing as the first step, which transforms raw logs into formatted log templates. Existing log

parsing approaches often fail to effectively handle the trade-off between parsing quality and performance. In view of this, in

this paper, we present Multi-Layer Parser (ML-Parser), an online log parser that runs in a streaming manner. Specifically,

we present a multi-layer structure in log parsing to strike a balance between efficiency and effectiveness. Coarse-grained

tokenization and a fast similarity measure are applied for efficiency while fine-grained tokenization and an accurate similarity

measure are used for effectiveness. In experiments, we compare ML-Parser with two existing online log parsing approaches,

Drain and Spell, on ten real-world datasets, five labeled and five unlabeled. On the five labeled datasets, we use the

proportion of correctly parsed logs to measure the accuracy, and ML-Parser achieves the highest accuracy on four datasets.

On the whole ten datasets, we use Loss metric to measure the parsing quality. ML-Parse achieves the highest quality on

seven out of the ten datasets while maintaining relatively high efficiency.

Keywords log parsing, online approach, structure extraction, similarity measure

1 Introduction

A log is a text message that is generated in various

services, frameworks, and programs, which serves as an

important interface between developers and users. Log

data can be highly valuable in that it conveys useful

information from the users and can be easily extracted

due to its partly structured nature. The rapid growth

of log data has spawned numerous log data mining tech-

niques, covering tasks such as anomaly detection, fault

diagnosis, and performance improvement. For all these

tasks, the first step to fully exploit log data is to effec-

tively parse it.

Logs are printed by logging statements in the source

code of programs. A log is composed of constants and

variables. Constants are the words written in logging

statements where variables are values of parameters in

logging statements. Therefore, logs generated by one

logging statement share the same constants and have

different variables. When replacing the variables with

a wildcard in a log, a log template is formed, which re-

veals the event type. The goal of log parsing is to sum-

marize raw logs into log templates, as shown in Fig.1.

Fig.1(a) shows a sequence of raw logs collected from the

HDFS system released by [1]. After log parsing, each

log is labeled as belonging to a log template. The cor-

responding templates are shown in Fig.1(b), in which

“*” represents a variable. t1, t2, t3 are template IDs.

Each template ID corresponds to one log template.

The log parsing approaches can be categorized into

offline approaches and online approaches. The former,

offline log parsing approaches, require all logs are availa-

ble before parsing and process them in a batch fashion.

However, in real applications, logs are always collected

in a streaming manner and applications have an in-

creasing need for online monitoring and maintenance.

Therefore, more and more approaches, like Drain [2] and

Spell [3], focus on online log parsing which scans raw logs

sequences and parses them sequentially.

However, existing approaches lack handling the

Regular Paper

This work was supported by the National Natural Science Foundation of China under Grant No. 61672163.
∗Corresponding Author

©Institute of Computing Technology, Chinese Academy of Sciences 2022

http://dx.doi.org/10.1007/s11390-021-0730-4

Yu-Qian Zhun et al.: ML-Parser: An Efficient and Accurate Online Log Parser 1413

081109 203518 143 INFO dfs.DataNode$DataXceiver: Receiving

block blk_-1608999687919862906 src: /10.250.19.102:54106 dest:

/10.250.19.102:50010

081109 203519 29 INFO dfs.FSNamesystem: BLOCK*

NameSystem.addStoredBlock: blockMap updated: 10.250.10.6:50010

is added to blk_-1608999687919862906 size 91178

081109 104321 28 INFO dfs.FSNamesystem BLOCK*

NameSystem.addStoredBlock: blockMap updated:

10.250.15.198:50010 is added to blk_8894334107354324777 size

3549832

081109 212510 19 INFO dfs.FSNamesystem: BLOCK* ask

10.250.18.114:50010 to delete blk_-5140072410813878235

081109 143353 12141 INFO dfs.DataNode$DataXceiver: Receiving

block blk_4959462704623252283 src: /10.251.125.174:44166 dest:

/10.251.125.174:50010

081109 203633 147 INFO dfs.FSNamesystem: BLOCK* ask

10.251.126.5:50010 to delete blk_-9016567407076718172

blk_-8695715290502978219

t

t

t

t

t

t

t: Receiving block * src: /* dest: /*

t: BLOCK* ask * : * to delete blk_*

t: BLOCK* NameSystem.addStoredBlock:
blockMap updated: * is added to * size *

(b)

(a)

Fig.1. Illustration of raw logs collected from the HDFS system released by [1] and their log templates. The task of log parsing is to
summarize the former into the latter. (a) Raw logs. (b) Log templates.

trade-off between effectiveness and efficiency. Specifi-

cally, we identify two factors affecting this trade-off.

The first factor is the granularity of parsing. Specifi-

cally, we call the case of only using the space character

to split the log message into tokens as coarse-grained

parsing, while that of using both space and other non-

alphanumeric characters (like “-” and “/”) to split as

fine-grained parsing. Fine-grained parsers [4, 5] tend to

have a better accuracy than coarse-grained ones [2, 3]

when distinguishing between constants and variables,

especially when parsing logs with complex structures.

For example, for the log “FA||URL||taskID[2019353678]

dealloc”, a coarse-grained parser may summarize it as

“* dealloc”, while a fine-grained one may summarize

it as “FA URL taskID * dealloc”. Clearly, the lat-

ter retains more information useful for finding simi-

lar logs. Current online log parsing approaches, like

Drain [2] and Spell [3], all adopt the simple coarse granu-

larity. They can adopt fine granularity by changing the

delimiters set to non-alphanumeric characters. How-

ever, fine granularity always leads to more tokens af-

ter tokenization. In the previous example, a coarse-

grained parser obtains a sequence of length 2 while a

fine-grained parser obtains a sequence of length 5. As

the length of the token sequence increases, the cost of

similarity computation increases. Especially, when the

longest common subsequence (LCS) is used to measure

the similarity, the cost increases in a quadratic fashion.

The second factor is the similarity measure used to

match logs and log templates. For example, among

existing online parsers, Drain [2] only supports simple

comparisons between logs of the same length. Although

Spell [3] can process variable-length logs by exploiting a

similarity measure based on LCS, it assumes the logs

belonging to the same template must have the exact

prefix. Therefore, to avoid the expensive LCS com-

putation, Spell uses a prefix tree to do early pruning,

which may cause the incorrect grouping.

1414 J. Comput. Sci. & Technol., Nov. 2022, Vol.37, No.6

To address the drawbacks of existing approaches, in

this paper, we propose a novel online log parser, called

multi-layer parser (ML-Parser). It works in a stream-

ing manner and can function as a real-time streaming

service. The multi-layer framework aims to acquire a

better parsing quality while maintaining relatively high

performance. In the framework, most logs are han-

dled through coarse-grained preprocessing and simple

comparison in the first layer, while fine-grained pre-

processing and LCS are used in higher layers to im-

prove parsing quality by extending the search space to

the logs of different lengths and extracting more hidden

variables. We evaluate the proposed approach on real-

world datasets which consist of more than 10 million

lines of log messages. The results indicate that our ap-

proach outperforms various state-of-the-art techniques

in parsing quality at the cost of limited extra time. In

summary, our paper makes the following contributions.

• We bring a new perspective to the log parsing

problem. We regard the granularity of parsing and the

choice of similarity measure as two important factors

in the trade-off between parsing effectiveness and effi-

ciency.

• We present ML-Parser, an online streaming log

parsing approach with a three-layer architecture, which

can parse logs efficiently and accurately. We also the-

oretically guarantee the correctness, which means the

comparison results in each layer are consistent, by in-

troducing the concept of linear merge constraint.

• We conduct extensive experiments on 10 real-

world log datasets. Results show that our approach

achieves a better parsing quality at the cost of a lim-

ited performance decrease.

The rest of the paper is organized as follows. Sec-

tion 2 reviews the related work. Section 3 describes

the preliminaries. Section 4 presents an overview of the

proposed ML-Parser. Section 5 proves the correctness

of ML-Parser. Section 6 introduces the technical de-

tails. Section 7 reports the experimental results, and

Section 8 concludes the paper.

2 Related Work

Logs can be applied to a variety of data mining

tasks related to software systems, such as anomaly de-

tection, usage analysis, and failure diagnosis. However,

they are usually not structured enough to be directly

used for analysis. Therefore, many approaches have

been proposed to parse logs into structured formats.

The traditional approach is to define regular expres-

sions manually to extract event templates. To avoid

tedious manual intervention, Xu et al. [6] proposed an

approach using source code knowledge to infer mes-

sage templates. However, it is often impractical to ob-

tain all source code. In view of this, data-driven ap-

proaches for automated log parsing have been widely

studied in both academia and industry. Simple logfile

clustering tool (SLCT) [7] is known as the first auto-

mated log parser, which utilizes frequent pattern min-

ing to extract event templates. However, it often fails to

extract rare templates. LogSig [8] and log key extrac-

tion (LKE) [9] use distance metrics to cluster raw log

messages into different groups. Iterative partitioning

log mining (IPLoM) [10, 11] partitions log messages ite-

ratively by certain log characteristics such as length and

bipartite relationship between words. Some approaches

exploit distributed computing to deal with large vol-

umes of logs. LogMine [12] extracts templates in a hi-

erarchical way in which different levels correspond to

templates with different similarity thresholds. Logan [4]

is a generalized approach for diverse datasets, utilizing

generic variable identification for preprocessing, as well

as a similarity score based on LCS. It also introduces

a novel evaluation metric for log parsing approaches,

which does not require manually labeled ground truth.

In the past few years, several online approaches have

been proposed to parse logs in a streaming manner.

Each online approach defines a function to measure the

similarity between an event template and a raw log.

When processing a log message, each approach merges

it with the most similar template. However, computing

the similarity between a log message and all templates

is time-consuming due to a large number of templates.

To tackle this issue, numerous speedup techniques have

been raised. In length matters (LenMa) [13], each log

message can be represented as a vector composed of

word lengths and can be measured by the cosine simi-

larity. The assumption is that logs belonging to the

same template have a similar word length distribution.

This assumption can be too strong for certain scenar-

ios. Spell [3] and Drain [2] are two more applicable ap-

proaches. Spell uses a similarity measure based on LCS.

It leverages an inverted index and a prefix tree to re-

duce the processing time. Drain [2] uses a fixed-depth

parse tree which encodes specially designed rules for

parsing. For each log, it only needs to compare the log

with a small fraction of templates. Though Drain per-

forms well on certain datasets, it is length-sensitive and

inefficient in the case where logs start with variables.

Yu-Qian Zhun et al.: ML-Parser: An Efficient and Accurate Online Log Parser 1415

3 Preliminaries

In this section, we describe the preliminaries of our

approach, defining basic concepts related to log parsing.

We first give the definition of log data and log entry.

Definition 1 (Log Dataset and Log Entry). A

log dataset is composed of a sequence of logs E =

(e1, e2, . . . , em), where m is the length of the sequence

and each ei (1 6 i 6 m) is called a log entry. The log

sequence is usually sorted by the timestamp.

To operate on the word level, we need to convert

each log to a token sequence through tokenization.

Definition 2 (Token Sequence). A token se-

quence consists of a sequence of tokens or words s =

(s1, s2, . . . , sn), where n is the length of the token se-

quence.

Definition 3 (Log Tokenization). Given a delimiter

set D, log tokenization is the process of transforming a

log entry e into a token sequence sD by splitting e using

the characters in D.

Next, we will introduce the definitions of constants

and variables.

Definition 4 (Constant and Variable). Given a

group of similar log entries, for tokens appearing in cor-

responding positions in them, we call tokens that are

common to all log entries as constants, and those that

are inconsistent in each entry as variables.

Our goal is to cluster similar log entries into a group

and summarize them with a log template, which is ob-

tained by removing variables while preserving constants

in the log entries.

Definition 5 (Log Template). Given a set of delim-

iters D, a log template, denoted as tD = (s1, s2, . . . , sn),

is a token sequence, which preserves the constants while

replacing variables with a wildcard token ∗.
For example, given the logs “Process python.exe ex-

ited 0” and “Process cmd.exe exited 1”, it can be in-

ferred that “Process” and “exited” are constants, while

“python.exe” and “java.exe” are variables if we use the

space as the only delimiter of the tokens. We obtain

the log template “Process * exited *” after preserving

the constants while replacing variables with “*”. We

use log entries and token sequences interchangeably in

the remainder of this paper.

Having defined the aforementioned concepts, we are

finally in a position to provide the formal definition

of log parsing. Here we restrict our methodology to

clustering-based parsing, where we generate a template

for each cluster, ensuring each entry in the cluster is

similar to the template by some similarity measure.

Concretely, we have the following definition.

Definition 6 (Log Parsing). Given a log dataset

E = (e1, e2, . . . , em), a delimiter set D and a similarity

measure Γ, log parsing refers to the process of clustering

the entries in E into groups and generating a template

for each group, ensuring that for each entry e and its

corresponding template t, it suffices that

SimD,Γ(e, t) > ε,

where SimD,Γ(e, t) is the similarity between the token

sequence obtained by tokenizing e with D and the log

template t under Γ, and ε is a user-defined similarity

threshold. We call that e matches t. The template set

is denoted as T = {t1, t2, . . . , t|T |}, where |T | is the

number of templates in the set.

Note that when calculating SimD,Γ(e, t), we do not

take into account the wildcard token ∗.

4 ML-Parser: An Overview

In this section, we present our ML-Parser approach

for efficient and accurate online log parsing. We begin

by detailing our options for the delimiter set D and the

similarity measure Γ in Definition 6. Next, we move on

to the architecture of ML-Parser. Finally, we present a

linear merge constraint to ensure the correctness of our

ML-Parser.

4.1 Delimiter Set and Similarity Measure

As it was mentioned in Definition 6, our clustering-

based approach for log parsing requires a pre-defined

delimiter set D and a similarity measure Γ. The choice

of these two greatly affects the trade-off between pars-

ing quality and efficiency. We now separately elaborate

on the options we consider for these two in ML-Parser.

4.1.1 Delimiter

For the delimiter set D, we consider two op-

tions. The first is a popular choice among early

approaches [2, 3, 13], which is to use space as the sole de-

limiter. Concretely, we have the following definition.

Definition 7 (Delimiter Set with Space Only).

Ds = {space}.

Ds is simple to set and is extensively used, but it

cannot handle logs with complex structures. For exam-

ple, for the log entries “FA||URL||taskID[2019353678]

dealloc” and “FA||URL||taskID[2019353687] dealloc”,

the resulting log templates under Ds are “* dealloc”,

which is clearly over-generalized.

1416 J. Comput. Sci. & Technol., Nov. 2022, Vol.37, No.6

Our second option for the delimiter set is to use non-

alphanumeric characters like [4, 5]. Formally, we have

the following definition.

Definition 8 (Non-Alphanumeric Delimiter Set).

Da = {c|c is a non-alphanumeric character}.

Da is more effective at extracting hidden variables

from raw logs. Let us consider the previous exam-

ple with “FA||URL||taskID[2019353678] dealloc” and

“FA||URL||taskID[2019353687] dealloc”. Under Da, we

can obtain the template “FA URL taskID * dealloc”,

which is far more detailed than that obtained under Ds,

as it preserves more constant tokens. Moreover, Da is

better at telling whether two logs are similar. For exam-

ple, let us suppose we use the Jaccard similarity [14] as

the similarity measure. Specifically, the Jaccard simila-

rity between two logs (or log templates) x and y under

the delimiter set D is

SimD, Jaccard(x, y) = Jaccard(X,Y) =
|X ∩ Y |
|X ∪ Y |

,

where X and Y are the sets of tokens obtained by tok-

enizing x and y with D respectively. For the aforemen-

tioned two log entries, let us suppose we use ε = 0.5

as the similarity threshold to decide whether they are

similar to each other. Using Ds as the delimiter leads

to a similarity score of 0.33, which is below the thresh-

old. In this way, we will falsely conclude that the two

logs are dissimilar. In contrast, using Da yields a high

similarity score of 0.67, which is over the threshold and

is consistent with the fact that the two logs are of the

same type.

4.1.2 Similarity Measure

For the choice of the similarity measure, we also

consider two options. The first is the normalized Ham-

ming (n-Ham) similarity for words, used by Drain [2].

Specifically, for two logs (or log templates) x and y,

their n-Ham similarity under the delimiter set D is

SimD, n-Ham(x, y) =
Ham(X,Y)

n
,

where X = (X1, X2, . . . , Xn), and Y = (Y1, Y2, . . . , Yn)

are the token sequences obtained by tokenizing x and

y with D and

Ham(X,Y) =

n∑
i=1

equ(Xi, Yi),

where

equ(Xi, Yi) =

{
1, if Xi = Yi ,

0, otherwise.

The n-Ham similarity has a linear time comple-

xity of O(n). However, it cannot correctly handle

cases where the two token sequences are of different

lengths. For example, let us consider the logs “Process

python.exe exited 0” and “Process NVIDIA share.exe

exited 1”. Under the alignment of n-Ham, “exited” will

not be considered as a token shared by the two logs.

The second option we consider is the normalized

longest common subsequence (n-LCS) similarity, which

is inspired by the similarity measure used by Spell [3].

Concretely, n-LCS is based on the concept of LCS [15],

which is defined as follows.

Definition 9 (Longest Common Subsequence,

LCS). Let X = (X1, X2, . . . , Xm) and Y =

(Y1, Y2, . . . , Yn) denote two sequences. The prefixes of

X with i tokens and Y with j tokens are denoted as Xi

and Y j respectively. LCS of Xi and Y j is

LCS (Xi, Y j) =



∅, if i = 0 or
j = 0,

LCS (Xi−1, Y j−1)ˆXi, if i, j > 0
and
xi = yj ,

max{LCS (Xi−1, Y j),

LCS (Xi, Y j−1)}, otherwise.

with

LCS (X,Y) = LCS (Xm, Y n).

Here ˆ means appending the i-th token in X to the ex-

isting sequence.

For two logs (or log templates) x and y, their n-LCS

similarity under the delimiter set D is

SimD, n-LCS(x, y) =
|LCS (X,Y)|

max(|X| , |Y |)
,

where X and Y are the token sequences obtained by

tokenizing x and y with D respectively.

Compared with n-Ham, n-LCS boasts the ability

to handle varying-length logs. For example, for the

aforementioned logs “Process python.exe exited 0” and

“Process NVIDIA share.exe exited 1”, n-LCS can cor-

rectly take into account the shared token “exited”.

However, this comes at the price that n-LCS has a high

time complexity of O(n2).

In conclusion, it is clear that for both delimiter sets

and similarity measures, no single option has the opti-

mal effectiveness and efficiency. To handle this trade-

off, we propose a novel multi-layer framework, which

will be introduced in Subsection 4.2.

Yu-Qian Zhun et al.: ML-Parser: An Efficient and Accurate Online Log Parser 1417

4.2 Multi-Layer Framework of ML-Parser

In this paper, our choice is to utilize Da as the delim-

iter set and n-LCS as the similarity measure to online

parse the log sequence. However, the fine-grained pars-

ing and complex similarity will lead to a high compu-

tation cost. To address this issue, we propose a multi-

layer parsing framework.

First, we give the rationale behind our approach.

As analyzed beforehand, using Ds is more efficient than

using Da, since the former leads to a shorter token se-

quence. Also, n-Ham is more efficient than n-LCS, since

the complexity of the former is linear while that of the

latter is quadratic. Therefore, we propose a three-layer

framework to map logs to templates. The first layer

utilizes Ds and n-Ham, the second layer utilizes Ds and

n-LCS, and the third layer utilizes Da and n-LCS. In

each layer, we maintain a set of templates, denoted as

{T 1, T 2, T 3}. Moreover, we build and keep the map-

ping relation between templates of different layers, as

shown in Fig.2.

SimDs↪n-Ham SimDs↪n-LCS SimDa↪n-LCS

T


T


T


|T



t

t

t

t

t



t


t


t


t


t










..
.

Fig.2. Structure of the multi-layer framework.

We use |T 1|, |T 2|, |T 3| to represent the number of

templates in each layer, and t1j , t
2
k, t3l to represent a

template in T 1, T 2, and T 3 respectively. j, k, l is the

template ID in each layer respectively. When a new log

ei arrives, we first parse it with Ds, and compare the

token sequence with templates in T 1. If there exists a

template t1j satisfying:

• SimDs, n-Ham(ei, t
1
j) > ε, and

• the linear merge constraint between ei and t1j is

satisfied, which will be introduced later,

then we add ei into the log group of template

t1j . Through the mapping relation between templates

across layers, we can find the corresponding templates

in T 2 and T 3 to which ei belongs. Otherwise, we add

a new template, t1|T 1|+1 into T 1 and turn to the second

layer.

In the second layer, we try to find a template, say

t2k, in T 2, which satisfies the following two conditions,

• SimDs, n-LCS(ei, t
2
k) > ε, and

• the linear merge constraint between ei and t2k is

satisfied.

Similarly, if either condition cannot be met, we turn

to the third layer. Also, a new template t2|T 2|+1 is in-

serted into T 2. Otherwise, we build the mapping rela-

tion between t1|T 1|+1 and t2k, and assign ei into the group

of t2k and its corresponding template group in the third

layer.

In the third layer, we first parse ei with Da, and try

to find a template, say t3l , in T 3, such that

SimDa, n-LCS(ei, t
3
l) > ε.

If so, we add ei into the log group of t3l . Otherwise, we

create a new template t3|T 3|+1 in the third layer.

We use the log entries in Fig.3 as examples to illus-

trate the processing of different layers. Let the thresh-

old ε be 0.5. For e1 and e2, we can easily obtain that

SimDs, n-Ham(e1, e2) = 0.67, if the integers, 0 and 1, are

ignored 1○. In this case, e1 and e2 are grouped together

and represented by a template t11, “Process * exited

with code *”. We also insert templates t21 and t31 of the

same content into T 2 and T 3 respectively.

e : Process python.exe exited with code 0

e : Process NVIDIA share.exe exited with code 0

e : WLSSPI-0001:zbmbankap03:10.119.165.82

e : WLSSPI-0001:zbmbankap10:10.119.165.82

e : Process cmd.exe exited with code 1

Fig.3. Example for multi-layer processing.

Then, we start to process e3. Although e3 and t11
only have two differences in the first layer, we cannot

merge e3 with t11 because the lengths of the correspond-

ing token sequences are different. Since we cannot find

a match in the first layer, we create a new template t12
for e3 in the first layer and pass it to the second layer.

We compute that SimDs, n-LCS(e3, t
2
1) = 0.57. Thus,

the similarity is higher than the threshold and t12 is

1○In practice, we use regular expressions to identify all the numbers in logs. Then the tokens recognized as numbers will be
ignored when computing the similarity.

1418 J. Comput. Sci. & Technol., Nov. 2022, Vol.37, No.6

mapped to t21. Since LCS can map tokens of unaligned

positions, it is more applicable.

Finally, as for e4 and e5, it can be seen that they are

strings connected by “-” and “:”. If we use the delimiter

set Ds, e4 and e5 are two different one-token sequences

and SimDs, n-Ham(e4, e5) = 0. However, if we use Da, e4

and e5 will be split into multiple tokens, in which most

tokens are the same between e4 and e5. Therefore, in

the third layer, they will be merged into one group.

As it was mentioned in Subsection 4.1, comparing

token sequences based on Ds is faster than that based

on Da. Also, using n-Ham is more efficient than us-

ing n-LCS. Therefore, it can be inferred that the time

to process log entries increases layer by layer in the

multi-layer framework. This framework can improve

the performance greatly, as most of the log entries can

be handled in the first or second layer. We will validate

this in the experiments in Subsection 7.3.

5 Correctness of ML-Parser

By correctness, we mean that the log grouping and

the set of templates generated by our multi-layer frame-

work should be the same as those generated by only the

third layer. In other words, if two logs, x and y, are

grouped together in the first or second layer, it must

hold that

SimDs, n-LCS(x, y) > ε.

5.1 From the First Layer to the Second Layer

We first prove the correctness between the first layer

and the second layer, by Lemma 1.

Lemma 1. For any two token sequences X and Y ,

it holds true that

|LCS (X,Y)| > Ham(X,Y).

Proof. For variable-length logs, LCS can not only

catch the same token at the same position but also catch

the same token of two logs even if they are at diffe-

rent positions while the Hamming distance only consid-

ers the equivalence of the token at the same position.

Therefore, more shared tokens can be found by LCS

and that is the reason why the length of the LCS se-

quence is larger than or equal to that of the Hamming

distance. �
Since n-Ham is based on the Hamming distance,

it can be easily deduced that for any two sequences,

the value of n-LCS is greater than or equal to that of

n-Ham with the same delimiter set. This means if a

newly-arrived log finds a match in the first layer, it can

also find a match in the second layer.

However, the same cannot be said for the log

from the first (second) layer to the third layer,

where the change of the delimiter set can cause in-

consistency. If there are two log entries, “Process

python.exe exited 0” and “Process java.exe exited

java.lang.NullPointerException”, their similarity score

will be 0.5 in the first layer. In contrast, the score in

the third layer is 0.43, which is lower than 0.5. If the

similarity threshold ε satisfies ε ∈ (0.43, 0.5), then the

comparison results are inconsistent between the first

and the third layer. Under the multi-layer structure,

the logs will be considered similar and the template

will be updated to “Process * exited *”, which is un-

intended if we remove the multi-layer framework and

only use the third layer. In Subsection 5.2, we attempt

to avoid this situation by introducing the concept of the

linear merge constraint.

5.2 Linear Merge Constraint

To ensure the correctness of ML-Parser for the first

(second) layer and the third layer, we now introduce

the linear merge constraint. We first present some nece-

ssary definitions.

Definition 10 (New Token). For a log entry e, X

is the token sequence after the tokenization with Ds. If

we switch from Ds to Da to tokenize a log entry e, a new

token sequence X ′ will be obtained. X ′ will be longer

than or has the same length as X. Tokens which do

not exist in X but in X ′ are denoted as the set of new

tokens NT (X). NT (X)i denotes the i-th new token.

For example, with the log entry e “Process

python.exe exited 0”, we have the token sequences X

“Process python.exe exited 0” and X ′ “Process python

exe exited 0” with the delimiter sets Ds and Da, re-

spectively. In this case, the new tokens set for X is

NT (X) = {python, exe}.
For a log e, let the token set of X be s and that of

X ′ be s′, and then we have NT (X) = s′ \ s, where “\”
means the set difference.

We then provide the definitions of the position func-

tion and the reverse position function respectively.

Definition 11 (Position Function and Reverse

Position Function). Given a sequence X =

(X1, X2, . . . , Xn), the position function of an element

Xi is

pos(Xi, X) = i,

Yu-Qian Zhun et al.: ML-Parser: An Efficient and Accurate Online Log Parser 1419

while its reverse position function is

rpos(Xi, X) = n− i− 1.

Definition 12 (Linear Merge Constraint). Given

two log entries x and y, their token sequences with Ds

are X and Y , and new sequences with Da corresponding

to X and Y are X ′ and Y ′, respectively. We define the

normalized similarity between new tokens shared by the

two logs x and y, denoted as Simsa(x, y), as follows:

Simsa(x, y) =

∑
i poseq(NT (X)i, X ′, NT (Y)i, Y ′)

max(|NT (X)|, |NT (Y)|)
,

where

poseq(a,X ′, b, Y ′)

=


1, if a == b and

(pos(a,X ′) = pos(b, Y ′) or

rpos(a,X ′) = rpos(b, Y ′)),

0, otherwise.

We call that x and y satisfy the linear merge constraint,

if it holds that

Simsa(x, y) > ε.

For example, if we have two log entries e1 “Pro-

cess python.exe exited 0” and e2 “Process NVIDIA

share.exe exited 1”, their token sequences under Ds

and Da are X, Y and X ′, Y ′, respectively. We

will get the new tokens for X and Y : NT (X) =

(python, exe), NT (Y) = (share, exe). Then, we

will see
∑
i posequ(NT (X)i, X ′, NT (Y)i, Y ′) = 1 and

Simsa(x, y) = 0.5. The score of Simsa(x, y) is equal

to the similarity threshold ε and the linear merge con-

straint is met.

5.3 From the First Layer to the Third Layer

With this constraint, we have the following two the-

orems.

Theorem 1. Given two logs x and y, if the follow-

ing two conditions are satisfied:

1) x and y are similar in the second layer, i.e.,

SimDs, n-LCS(x, y) > ε,

2) the linear merge constraint is met, i.e.,

Simsa(x, y) > ε,

then x and y must be similar in the third layer, i.e.,

SimDa, n-LCS(x, y) > ε.

Proof. Given x and y, assuming X and Y are token

sequences under Ds, and X ′ and Y ′ are those under Da,

we have

|LCS(X,Y)| > max(|X|, |Y |)× ε.

Let A(x, y) = Simsa(x, y) × max(|NT (X)|, |NT (Y)|),
and we have

A(x, y) > ε×max(|NT (X)|, |NT (Y)|).

Thus we have

|LCS(X,Y)|+A(x, y)

> ε× (max(|X|, |Y |) + max(|NT (X)|, |NT (Y)|)).

By Lemma 1, we have

|LCS(X ′ −X,Y ′ − Y)| > Ham(X ′ −X,Y ′ − Y).

It can be easily inferred that

|LCS(X ′, Y ′)|
> |LCS(X,Y)|+ |LCS(X ′ −X,Y ′ − Y)|,

and

|LCS(X ′ −X,Y ′ − Y)| > A(x, y).

Therefore

|LCS(X ′, Y ′)| > |LCS(X,Y)|+A(x, y).

Besides, we have

max(|X ′|, |Y ′|)
6 max(|X|, |Y |) + max(|NT (X)|, |NT (Y)|).

Therefore

|LCS(X ′, Y ′)| > ε×max(|X ′|, |Y ′|).

Thus

SimDa, n-LCS(x, y) =
|LCS(X,Y)|

max(|X ′|, |Y ′|)
> ε. �

Theorem 2. Given two logs x and y, if the follow-

ing two conditions are satisfied:

1) x and y are similar in the first layer, i.e.,

SimDs, n-Ham(x, y) > ε,

2) the linear merge constraint is met, i.e.,

Simsa(x, y) > ε,

then x and y must be similar in the third layer, i.e.,

SimDa, n-LCS(x, y) > ε.

1420 J. Comput. Sci. & Technol., Nov. 2022, Vol.37, No.6

Proof. From Lemma 1, we have

|LCS (Xs, Y s)| > Ham(Xs, Y s),

then

SimDs, n-LCS(x, y) > SimDs, n-Ham(x, y) > ε.

By Theorem 1, we have

SimDa, n-LCS(x, y) > SimDs, n-LCS(x, y) > ε. �

These two theorems guarantee the consistency be-

tween the first (second) layer and the third layer. Com-

bined with Lemma 1, the correctness of our entire

multi-layer structure is guaranteed.

6 Technical Details of ML-Parser

Having presented an overview of ML-Parser, we now

dive into the technical details. As previously men-

tioned, our approach runs in a streaming manner, which

means the log groups and templates are updated simul-

taneously as new logs arrive. Concretely, for a newly-

arrived raw log entry, we first preprocess it with a user-

defined regular expression set to remove variables that

can be easily identified. The preprocessed log is fed into

the multi-layer framework of ML-Parser.

In the first layer, we compare the preprocessed log

with the templates in T 1. If a match is found, the log

is added to the matching group and the corresponding

log template is updated by preserving constants in the

group and replacing variables with wildcards. Other-

wise, we generate a new log template for the new log in

the first layer and feed it into the second layer to find

a match in T 2. If it is found, the matching template is

updated and the mapping relation of the two templates

in different layers is recorded. Otherwise, a similar pro-

cess will take place from the second layer to the third

layer.

6.1 Preprocessing of Log Entries

Before feeding the newly-arrived log entry into the

multi-layer framework, we conduct preprocessing on it,

which has been proved to be an important step to im-

prove parsing performance [2, 4, 5, 16]. Concretely, we ex-

ploit regular expressions to pre-remove certain variables

from the raw log. The regular expressions are provided

by users as an optional way to feed in domain know-

ledge. For efficiency, only a very limited number of the

simple regular expressions are used in preprocessing.

Specifically, we list the regular expressions used in

Table 1.

Table 1. Regular Expressions Used

Variable Type Example Regular Expression

IP 126.1.17.9 (\d+\.){3}\d+

Decimal 1080 (ˆ|)\d+(|$)

Time 12:25:31 \d{2}:\d{2}(:\d{2})*
Hexadecimal A2F35C (ˆ|)([0-9a-fA-F]){3,}(|$)

After employing the regular expressions, we further

split a log entry into a sequence of tokens with the de-

limiters presented in Subsection 4.1.

6.2 First Layer

After preprocessing, the log entry is fed into our

multi-layer framework. In the first layer, the prepro-

cessed log entry is compared with the templates in T 1

that have the same length and begin with the same

token as the entry. To efficiently find such templates,

we use a prefix tree [17] to index the existing log tem-

plates in T 1. Concretely, we exploit a prefix tree with

the maximum depth, which is almost identical to the

fixed-depth prefix tree in Drain [2]. All the templates

are stored in leaf nodes.

Fig.4 shows an illustration of the prefix tree. The

templates of different lengths are stored in different leaf

nodes. For example, the leftmost leaf node stores all

templates that satisfy: 1) the length of the templates’

token sequence is 3; 2) the prefix of the templates’ token

sequence is (A,Z). The prefix tree can help us find the

candidate templates that the new log should compare

with.

After obtaining the templates to compare with from

the prefix tree, we compute the similarity between these

templates and the new log under SimDs, n-Ham. The

template with the highest similarity will be selected.

If the similarity score is larger than the user-defined

threshold ε, then the log message should probably be

in that group. However, we still require the linear merge

constraint introduced in Subsection 5.2 to be met. If so,

the log will be added into the group, the corresponding

template will be updated by scanning the tokens in cor-

responding locations of the log and the template, and

detecting and replacing the variables with wildcards.

For example, the logs “Process python.exe exited with

code 0” and “Process cmd.exe exited with code 1” will

be merged as “Process * exited with code *”. Accord-

ingly, the children templates in the next two layers are

also updated to keep consistent with the templates in

Yu-Qian Zhun et al.: ML-Parser: An Efficient and Accurate Online Log Parser 1421

the first layer. Otherwise, a new log group will be cre-

ated, which only contains the new log. Also, the corre-

sponding template is identical to the new log.

Root

Length
3

Length
1

Length
5

A
B

C

Templates
Group 2

Templates
Group 1

Z Y

Maximum

Depth: 2

Templates
Group n

⋯

Fig.4. Illustration of the prefix tree used to store log templates
in the first layer.

6.3 Second Layer

When no matching template is found in the first

layer, the log ei will be passed to the second layer,

to determine whether it will match an existing tem-

plate in T 2. Concretely, we compare ei with those

templates currently residing in the second layer under

SimDs, n-LCS. If the maximum similarity value exceeds

the user-defined threshold ε and the linear merge con-

straint is met, then the matching template t2k is merged

with ei. Otherwise, the merge is rejected and a new

template t2|T 2|+1 identical to the coming one will be

added to T 2 and will be passed to the third layer to

find a match in T 3. The merge is executed by replac-

ing all the tokens in the templates which are not in the

LCS sequence with wildcards. For example, the tem-

plate “Process NVIDIA Share.exe exited with 1” and

ei “Process python.exe exited with 0” are merged as

“Process * exited with *”. Also, the children templates

in the third layer should be updated accordingly.

In practice, we accelerate the matching process by

pruning the unnecessary templates to calculate n-LCS

with ei. The idea is to exploit the Jaccard similarity

to prune a potentially large number of templates that

are definitively not similar enough to the new template

under n-LCS. Specifically, it can be proved that if the

Jaccard similarity between a log and a template is be-

low the threshold ε, they are definitely dissimilar to

each other under n-LCS.

To efficiently compute the Jaccard values, we main-

tain an inverted index built upon the tokens, which is

shown in Fig.5. Specifically, for each unique token sj ,

the inverted index has a <K,V > pair. The key is sj .

The value is a set of (id, count) pairs, where id is the ID

of certain template in T 2 and count is the occurrence

times of token sj in this template. The wildcards are

not indexed. With the inverted index, Jaccard values

can be obtained in linear time. Note that when two

templates are merged, the inverted index needs to be

updated accordingly.

A 1: 2 2: 1 3: 1

B 1: 1

C 1: 1 2: 1

D 2: 1

E 3: 1

In Template t, an A Appeared Once

Inverted Index for Templates

ı[A↪ B↪ C↪ A]↪ [A↪ C↪ D]↪ [A↪ E]℘

Fig.5. Illustration of the inverted index used to store log template
in the second layer. t23 is the third template in the second layer.

6.4 Third Layer

The second layer mainly deals with logs of vary-

ing lengths. However, this is not enough beca-

use the logs may have complex structures occasion-

ally. Specifically, in some cases, one token may be

composed of a few simpler tokens connected with

some non-space delimiters, such as specific serial

numbers (e.g., “blk 38860”), equations (e.g., “User-

Name=jack”), and complex names of system compo-

nents (e.g., “dfs.DataNode$PacketResponder”). Al-

though they can be handled by introducing hand-

crafted regular expressions, this requires much manual

effort. By contrast, we employ finer granularity to au-

tomatically deal with this.

To be specific, given the incoming log ei, we parse

it based on Da and compare the token sequence against

templates in T 3 using SimDa, n-LCS. Here we substitute

the coarse-grained Ds with the fine-grained Da. Similar

to the second layer, the search space can be reduced by

exploiting the Jaccard similarity and the inverted in-

dex. If a match is found, the matching template and ei
will be merged. Otherwise, there are no log templates

matching the log entry in all three layers and a new

template will be created for this log in the third layer,

which is identical to the new log entry.

1422 J. Comput. Sci. & Technol., Nov. 2022, Vol.37, No.6

7 Experiments

In this section, we evaluate the effectiveness and effi-

ciency of ML-Parser, by comparing it with the state-of-

the-art approaches. All experiments are performed on a

Windows server with dual Intelr Xeonr CPU E5-2673

v3 @ 2.40 GHz CPUs, 384 GB memory. All approaches

are implemented in Python 3.7.

We use the popular log benchmark which is publicly

available in [1]. The detailed information of the used

datasets is shown in Table 2. These datasets have been

commonly used in [2,3,18], with sizes ranging from 2.24

MB to 2.74 GB.

We select three existing online log parsers to com-

pete against our approach in terms of efficiency and

effectiveness, which are Spell [3], Drain [2] and an im-

proved version of Drain [18] (abbreviated as Drain2).

The idea of Spell is to compare the log with templates

using the LCS similarity metrics. Besides, Drain and

Drain2 use a prefix tree and a simple loop method for

speedup. On the other hand, Drain partitions all the

log templates by length and then performs a search in a

fixed-depth prefix tree. Drain2 features improvements

such as eliminating the need to define a threshold for

similarity comparison, taking tokens at the end of the

sequences into the prefix tree, and introducing an op-

tional merge mechanism for log templates of different

lengths.

Table 3 shows the parameter settings of these ap-

proaches used in our experiments. For Spell and

Drain, we use the settings recommended in [1]. As for

Drain2 [18], we set st to 0.95 for the Proxifier dataset

and 1 for the rest, following [18]. Besides, the afore-

mentioned rival approaches utilize coarse-grained pre-

processing.

Since our ML-Parser utilizes fine-grained granular-

ity, that is, Da, we enable this option for the rival ap-

proaches for fairness. These modified rival approaches

will be distinguished by the suffix “S” in their names.

Note that although SpellS (fine-grained Spell) also uses

Da and LCS, similar to our approach, it uses some ap-

proximate techniques to speed up, which impacts the

accuracy.

7.1 Effectiveness of ML-Parser

In this subsection, we evaluate the parsing quality

of our approach. We use the supervised metric accu-

racy applied in [2, 3, 18] and the unsupervised metric

Loss in [4] for evaluation. The accuracy results of each

approach are shown in Table 4. It can be seen that

the proposed approach achieves rank-1 on four datasets,

and rank-2 on the other datasets, which verifies the ef-

fectiveness of the proposed approach.

The Loss metric is based on the idea that the

log templates should be neither over-generalized nor

under-parsed. Given a set of log templates T =

{t1, t2, . . . , t|T |}, we have

AverageTokenLost(ti)

= AverageMatchLength(ti)− |ti| ,
LengthFactor(T) = (log |T |)θ,

QualityFactor(T) =

|T |∑
i=1

(
AverageTokenLost(ti)

|ti|
)2,

Loss = LengthFactor(T) +QualityFactor(T),

where AverageMatchLength(ti) is the average length

of all sequences matched to template ti during evalua-

tion.

Table 2. Dataset Information

Dataset Description Dataset Size Number of Logs Length Number of Events

HDFS Hadoop distributed file system log 1.47 GB 1.12× 107 8–29 30

Hadoop Hadoop mapreduce job log 46.34 MB 3.94× 105 0–52 N/A

Spark Spark job log 2.74 GB 3.32× 107 1–78 N/A

Zookeeper ZooKeeper service log 9.94 MB 7.43× 104 7–26 95

BGL Blue Gene/L supercomputer log 708.76 MB 4.74× 106 9–102 619

HPC High performance cluster log 32.00 MB 4.33× 105 6–104 104

Linux Linux system log 2.24 MB 2.56× 104 5–24 N/A

Mac Mac OS log 16.10 MB 1.17× 105 0–104 N/A

Proxifier Proxifier software log 2.42 MB 2.13× 104 10–27 8

Apache Apache web server error log 4.90 MB 5.65× 104 7–23 N/A

Yu-Qian Zhun et al.: ML-Parser: An Efficient and Accurate Online Log Parser 1423

Table 3. Parameters for Approaches

Approach Parameter Description Value Range

Drain [2] Similarity threshold st [0.2, 0.7]

Tree depth {4, 5, 6}
Drain2 [18] Merge threshold mt [0.95, 1]

Spell [3] Similarity threshold τ [0.5, 0.95]

ML-Parser Similarity threshold st [0.2, 0.7]

Prefix tree depth {4, 5, 6]

Table 4. Accuracy for Each Approach

Approach HDFS BGL HPC Proxifier Zookeeper

Drain 0.84 0.78 0.75 0.51 0.95

DrainS 0.67 0.75 0.72 0.50 0.95

Drain2 0.84 0.76 0.77 0.01 0.95

Drain2S 0.67 0.60 0.72 0.02 0.95

Spell 0.99 0.68 0.57 1.00 0.95

SpellS 0.32 0.20 0.57 0.52 0.95

ML-Parser 0.85 0.81 0.78 1.00 0.95

Note: The highest accuracy on each dataset is marked in bold.
HDFS is the abbreviation of Hadoop Distributed File. BGL is
the abbreviation of Blue Gene/L. HPC is the abbreviation of
High Performance Cluster.

LengthFactor reflects how many templates are

generated in T . On the other hand, QualityFactor

represents the ratio of generalized tokens, which indi-

cates the extent of over-generalization. θ is a hyper-

parameter to control the importance of one factor over

another. It is set to 1.5 according to [4]. The smaller

the metric Loss is, the higher the quality of the result

template set T is.

As shown in Table 5 and Table 6, most of the ap-

proaches that employ fine-grained preprocessing iden-

tify fewer templates and have a lower Loss on most

datasets. This is probably because more hidden vari-

ables can be found, which verifies our claim that fine

granularity is preferred. On most datasets (7/10), ML-

Parser has the smallest Loss. It is worth noting that

for all four datasets of long logs (length > 100), our

approach works better than SpellS.

Compared with other approaches, SpellS and our

approach generate fewer log templates. However, on

some datasets, SpellS has generated fewer templates,

but suffered a higher Loss. This implies that some

important tokens are lost in the parsing process. In

summary, our approach outperforms all the other ap-

proaches except SpellS in terms of Loss and the number

of the templates generated. It obtains the lowest Loss

on seven out of 10 datasets among all the approaches.

7.2 Efficiency of ML-Parser

We now move on to the efficiency of our approach.

Table 7 shows the running time of ML-Parser and rival

Table 5. Number of Log Templates Generated by Each Approach on Each Dataset

Approach BGL Hadoop Spark HDFS HPC Proxifier Zookeeper Linux Apache Mac

Drain 1 848 347 571 48 325 57 77 500 29 4 000

DrainS 1 251 316 353 55 122 13 88 548 39 2 090

Drain2 1 202 288 639 48 143 10 76 497 36 758

Drain2S 15 878 335 4 458 56 130 13 86 553 43 850

Spell 27 266 5 635 960 38 330 339 180 452 29 1 928

SpellS 298 181 148 30 61 8 78 297 27 535

ML-Parser 604 254 236 35 73 10 73 311 28 557

Table 6. Loss Values for Each Approach

Approach BGL Hadoop Spark HDFS HPC Proxifier Zookeeper Linux Apache Mac

Drain 20.68 14.22 16.43 7.71 14.00 8.24 9.09 15.52 6.21 23.92

DrainS 19.83 13.99 14.69 8.81 10.72 5.49 9.83 16.84 7.17 21.54

Drain2 19.08 13.53 15.13 7.72 11.24 3.64 9.07 15.52 6.80 17.13

Drain2S 18.60 13.99 15.03 8.81 10.92 5.39 9.83 16.84 7.17 21.54

Spell 32.65 25.39 18.22 7.11 15.29 14.15 11.85 15.23 6.21 20.87

SpellS 13.71 12.11 11.63 7.31 8.50 4.42 9.49 14.60 6.22 16.36

ML-Parser 16.36 13.12 12.90 6.85 7.09 3.63 8.94 13.83 6.12 15.99

Note: The smallest Loss on each dataset is marked in bold.

1424 J. Comput. Sci. & Technol., Nov. 2022, Vol.37, No.6

Table 7. Running Time (s) of Each Approach

Approach BGL Hadoop Spark HDFS HPC Proxifier Zookeeper Linux Apache Mac

Drain 966 33 5 411 2 079 75 4 13 4 8 29

DrainS 1 259 54 8 623 3 130 96 6 18 7 14 51

Drain2 941 35 5 453 2 174 78 5 14 5 10 29

Drain2S 1 540 55 8 673 3 145 100 6 19 7 15 43

Spell 3 970 103 5 283 1 908 67 11 13 6 8 39

SpellS 957 66 7 181 2 374 74 6 19 8 14 45

ML-Parser 1 193 47 7 286 2 570 83 6 15 8 12 39

approaches. As is shown, approaches with fine granu-

larity generally run slower than other approaches. The

only exception is SpellS, which is fast because it has a

fixed threshold of 0.5 for pre-filtering in the prefix tree

and the simple loop.

By bringing in more delimiters under a fine-grained

setting, the log sequences are longer and it is more pos-

sible for a log to find a match. Our approach is slightly

slower than Drain and Drain2. This is because 1) it

has a much larger search space to handle varying-length

logs; 2) it employs not just linear match; 3) it involves

fine-grained tokenization. In conclusion, our approach

achieves better parsing quality at the cost of a slightly

longer running time.

7.3 Case Studies

We perform case studies on two log datasets,

Hadoop and Spark, to further showcase the effective-

ness and efficiency of ML-Parser. We select the log

datasets of Hadoop and Spark, due to the popularity

of these systems. Moreover, the Spark dataset is the

largest one, based on which we can test the performance

of the proposed approach to handle the large dataset.

We compare ML-Parser with Drain, Drain2, Spell and

their fine-grained version with the suffix “S” in their

names. Fig.6 shows the results of LengthFactor and

QualityFactor.

It can be seen that our approach has less tem-

plates (represented by LengthFactor) than the other

approaches except SpellS on both datasets. Although

SpellS generates fewer templates, it suffers a higher

QualityFactor. The differences among different ap-

proaches are greater for larger and more complicated

datasets. As with QualityFactor, we achieve almost

the same QualityFactor as Drain on Hadoop and have

a lower QualityFactor on Spark. This demonstrates

the effectiveness of our linear merge constraint, which

rejects unintended merges between log templates.

Table 8 shows the number of log templates returned

in each layer of ML-Parser. It can be seen that in the

first layer, we only have 550 templates in the Hadoop

dataset and 805 templates in the Spark dataset. Com-

pared with the number of raw logs, the number of log

templates drops by more than 99%, which means that

most logs can find a matching template in the first layer.

It can also be inferred that the LCS-based merging in

the third layer is more effective because fine-grained

parsing extracts nested tokens and allows for a larger

search space. The numbers in parentheses indicate the

compression ratio of the log templates to the raw logs.

For example, 1.390‰ of the first layer means after the

Hadoop raw logs are abstracted into the log templates

in the first layer, the number of log types can be reduced

to 1.39‰ of the raw ones.

8 Conclusions

In this paper, we proposed ML-Parser, a novel on-

line log parser that works in a streaming manner, which

features a multi-layer framework to generate the log

templates efficiently and accurately. By leveraging a

prefix tree with the maximum depth and linear simi-

larity search with a linear merge constraint, the LCS-

based search process for log templates is speeded up.

With incorporated fine-grained preprocessing, more to-

kens are extracted and more accurate log templates are

generated. Our experiments showed that ML-Parser

achieves the highest accuracy on four out of five la-

beled datasets. It also outperforms other approaches on

seven out of 10 datasets in the unsupervised metric. In

conclusion, ML-Parser can acquire better parsing qua-

lity while maintaining relatively high performance. For

future work, we plan to investigate the reason for er-

ror matching between logs and templates, and explore

the use of logs’ semantic information to reduce error

matching.

Yu-Qian Zhun et al.: ML-Parser: An Efficient and Accurate Online Log Parser 1425

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

10

15

20

25

30

35

L
e
n
g
th
F
a
c
to
r

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

Log Size (Τ105) Log Size (Τ105)

Log Size (Τ107) Log Size (Τ107)

0.0

0.1

0.2

0.3

Q
u
a
li
ty
F
a
c
to
r

Drain

Spell

ML-Parser

Drain2

DrainS

SpellS

Drain2S

Drain

Spell

ML-Parser

Drain2

DrainS

SpellS

Drain2S

Drain

Spell

ML-Parser

Drain2

DrainS

SpellS

Drain2S

Drain

Spell

ML-Parser

Drain2

DrainS

SpellS

Drain2S

0.5 1.0 1.5 2.0 2.5 3.0 3.5

10

15

20

25

L
e
n
g
th
F
a
c
to
r

0.5 1.0 1.5 2.0 2.5 3.0 3.5
0.0

0.3

0.6

0.9

1.2

Q
u
a
li
ty
F
a
c
to
r

(b)

(a)

Fig.6. LengthFactor and QualityFactor of each approach on the (a) Hadoop and (b) Spark log datasets.

Table 8. Number of Log Templates in Each Layer of ML-Parser

Dataset Number of First Second Third

Raw Logs Layer Layer Layer

Hadoop 394 308 550(1.390‰) 528(1.340‰) 254(0.640‰)

Spark 33 236 604 805(0.024‰) 781(0.023‰) 236(0.007‰)

References

[1] Zhu J, He S, Liu J, He P, Xie Q, Zheng Z, Lyu M R.

Tools and benchmarks for automated log parsing. In Proc.

the 41st IEEE/ACM International Conference on Software

Engineering: Software Engineering in Practice, May 2019,

pp.121-130. DOI: 10.1109/ICSE-SEIP.2019.00021.

[2] He P, Zhu J, Zheng Z, Lyu M R. Drain: An online log

parsing approach with fixed depth tree. In Proc. the 2017

IEEE International Conference on Web Services, June

2017, pp.33-40. DOI: 10.1109/ICWS.2017.13.

[3] Du M, Li F. Spell: Streaming parsing of system event logs.

In Proc. the 2016 International Conference on Data Min-

ing, Dec. 2016, pp.859-864. DOI: 10.1109/ICDM.2016.0103.

[4] Agrawal A, Karlupia R, Gupta R. Logan: A distributed on-

line log parser. In Proc. the 35th IEEE International Confe-

rence on Data Engineering, April 2019, pp.1946-1951. DOI:

10.1109/ICDE.2019.00211.

[5] Agrawal A, Dixit A, Kapadia D, Karlupia R, Agrawal V,

Gupta R. Delog: A privacy preserving log filtering frame-

work for online compute platforms. arXiv:1902.04843, 2019.

https://arxiv.org/abs/1902.04843, Jan. 2021.

[6] Xu W, Huang L, Fox A, Patterson D, Jordan M I. De-

tecting large-scale system problems by mining console logs.

In Proc. the 22nd ACM SIGOPS Symposium on Ope-

rating Systems Principles, October 2009, pp.117-132. DOI:

10.1145/1629575.1629587.

[7] Vaarandi R. A data clustering algorithm for mining pat-

terns from event logs. In Proc. the 3rd IEEE Workshop on

https://doi.org/10.1109/ICSE-SEIP.2019.00021
https://doi.org/10.1109/ICWS.2017.13
https://doi.org/10.1109/ICDM.2016.0103
https://doi.org/10.1109/ICDE.2019.00211
https://doi.org/10.1145/1629575.1629587

1426 J. Comput. Sci. & Technol., Nov. 2022, Vol.37, No.6

IP Operations & Management, Oct. 2003, pp.119-126. DOI:

10.1109/IPOM.2003.1251233.

[8] Tang L, Li T, Perng C S. LogSig: Generating system events

from raw textual logs. In Proc. the 20th ACM International

Conference on Information and Knowledge Management,

October 2011, pp.785-794. DOI: 10.1145/2063576.2063690.

[9] Fu Q, Lou J G, Wang Y, Li J. Execution anomaly detection

in distributed systems through unstructured log analysis. In

Proc. the 9th IEEE International Conference on Data Min-

ing, Dec. 2009, pp.149-158. DOI: 10.1109/ICDM.2009.60.

[10] Makanju A A, Zincir-Heywood A N, Milios E E. Clus-

tering event logs using iterative partitioning. In Proc. the

15th ACM SIGKDD International Conference on Know-

ledge Discovery and Data Mining, June 2009, pp.1255-1264.

DOI: 10.1145/1557019.1557154.

[11] Makanju A, Zincir-Heywood A N, Milios E E. A

lightweight algorithm for message type extraction in sys-

tem application logs. IEEE Transactions on Knowledge

and Data Engineering, 2011, 24(11): 1921-1936. DOI:

10.1109/TKDE.2011.138.

[12] Hamooni H, Debnath B, Xu J, Zhang H, Jiang G, Mueen

A. LogMine: Fast pattern recognition for log analytics.

In Proc. the 25th ACM International on Conference on

Information and Knowledge Management, October 2016,

pp.1573-1582. DOI: 10.1145/2983323.2983358.

[13] Shima K. Length matters: Clustering system log mes-

sages using length of words. arXiv:1611.03213, 2016.

https://arxiv.org/abs/1611.03213, Jan. 2021.

[14] Levandowsky M, Winter D. Distance between sets. Nature,

1971, 234(5323): 34-35. DOI: 10.1038/234034a0.

[15] Nakatsu N, Kambayashi Y, Yajima S. A longest com-

mon subsequence algorithm suitable for similar text

strings. Acta Informatica, 1982, 18(2): 171-179. DOI:

10.1007/BF00264437.

[16] He P, Zhu J, He S, Li J, Lyu M R. An evaluation study on

log parsing and its use in log mining. In Proc. the 46th An-

nual IEEE/IFIP International Conference on Dependable

Systems and Networks, June 28-July 1, 2016, pp.654-661.

DOI: 10.1109/DSN.2016.66.

[17] Yang Y, Zhang W, Zhang Y, Lin X, Wang L. Selectivity es-

timation on set containment search. Data Science and En-

gineering, 2019, 4(3): 254-268. DOI: 10.1007/s41019-019-

00104-1.

[18] He P, Zhu J, Xu P, Zheng Z, Lyu M R. A directed acyclic

graph approach to online log parsing. arXiv:1806.04356,

2018. https://arxiv.org/abs/1806.04356, Jan. 2021.

Yu-Qian Zhu received her B.S.

degree in software engineering from

Donghua University, Shanghai, in 2019.

She is currently studying for her M.S.

degree in computer science at Fudan

University, Shanghai. Her research

interests include data mining and

information retrieval.

Jia-Ying Deng received her B.S. de-

gree in computer science from Donghua

University, Shanghai, in 2019. She is

currently studying for her M.S. degree

in computer science at Fudan Univer-

sity, Shanghai. Her research interests

include anomaly detection, data mining

and pattern recognition.

Jia-Chen Pu received his B.S. de-

gree in computer science from Shanghai

Maritime University, Shanghai, in 2017,

and his M.S. degree in computer science

from Fudan University, Shanghai, in

2020. His research interests include

deep learning, pattern recognition and

artificial intelligence.

Peng Wang received his Ph.D.

degree in computer science from Fudan

University, Shanghai, in 2007. Now he

is an associate professor in School of

Computer Science, Fudan University,

Shanghai. His research interests include

database, data mining, and series data

processing. He has published more than

30 papers in refereed international journals and conference

proceedings.

Shen Liang received his Ph.D.

degree in computer science from Fudan

University, Shanghai, in 2020, and is

now a post-doctoral researcher at Fudan

University, Shanghai. His research in-

terests include data management, data

mining, artificial intelligence and their

applications to smart manufacturing

and health informatics.

Wei Wang received his Ph.D.

degree in computer science from Fudan

University, Shanghai, in 1998. Now he

is a professor in School of Computer

Science, Fudan University, Shanghai.

His research interests include database,

data mining, and series data processing.

He has published more than 100 papers

in refereed international journals and conference proceed-

ings.

https://doi.org/10.1109/IPOM.2003.1251233
https://doi.org/10.1145/2063576.2063690
https://doi.org/10.1109/ICDM.2009.60
https://doi.org/10.1145/1557019.1557154
https://doi.org/10.1109/TKDE.2011.138
https://doi.org/10.1145/2983323.2983358
https://doi.org/10.1038/234034a0
https://doi.org/10.1007/BF00264437
https://doi.org/10.1109/DSN.2016.66
https://doi.org/10.1007/s41019-019-00104-1
https://doi.org/10.1007/s41019-019-00104-1

	1 Introduction
	2 Related Work
	3 Preliminaries
	4 ML-Parser: An Overview
	4.1 Delimiter Set and Similarity Measure
	4.1.1 Delimiter
	4.1.2 Similarity Measure

	4.2 Multi-Layer Framework of ML-Parser

	5 Correctness of ML-Parser
	5.1 From the First Layer to the Second Layer
	5.2 Linear Merge Constraint
	5.3 From the First Layer to the Third Layer

	6 Technical Details of ML-Parser
	6.1 Preprocessing of Log Entries
	6.2 First Layer
	6.3 Second Layer
	6.4 Third Layer

	7 Experiments
	7.1 Effectiveness of ML-Parser
	7.2 Efficiency of ML-Parser
	7.3 Case Studies

	8 Conclusions

