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Abstract Embedded and Internet of Things (IoT) devices have extremely strict requirements on the area and power

consumption of the processor because of the limitation on its working environment. To reduce the overhead of the embedded

processor as much as possible, this paper designs and implements a configurable 32-bit in-order RISC-V processor core based

on the 16-bit data path and units, named RV16. The evaluation results show that, compared with the traditional 32-bit

RISC-V processor with similar features, RV16 consumes fewer hardware resources and less power consumption. The maxi-

mum performance of RV16 running Dhrystone and CoreMark benchmarks is 0.92 DMIPS/MHz and 1.51 CoreMark/MHz,

respectively, reaching 75% and 71% of traditional 32-bit processors, respectively. Moreover, a properly configured RV16

running program also consumes less energy than a traditional 32-bit processor.
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1 Introduction

The Internet of Things (IoT), as an emerging in-

formation industry, is widely used in various fields, in-

cluding smart homes, smart cities, industry, and trans-

portation. With the development of the 5th generation

mobile networks (5G), the IoT industry will generate a

huge market that includes a large number of low-power

devices [1]. The processor is an indispensable part of

modern information equipment, and the processor de-

sign technology must be suitable for the development

of IoT.

Limited by factors such as size and cost, the edge

nodes of IoT need to work for several years with lim-

ited energy supply, which puts extremely stringent area

and energy consumption requirements on the processor

design [2]. Therefore, the current development trend of

the IoT processor is smaller, cheaper, and lower power-

consuming [3]. On the other hand, although 8-bit or 16-

bit processors have obvious advantages in terms of area

and power consumption, IoT devices are more inclined

to use 32-bit processors because some IoT applications

still have a higher demand for performance [4].

In order to reduce the area and power consumption

of the embedded processor, this paper proposes RV16

from the aspect of optimizing the processor microar-

chitecture without significant performance degradation.

RV16 is an ultra-low-cost in-order scalar 32-bit RISC-

V processor core with two pipeline stages and supports

64 KiB instruction memory and 64 KiB data memory.

Compared with traditional open-source in-order 32-bit

and 64-bit RISC-V processors (such as Zero-riscy [5] and

Rocket [6]), the significant difference of RV16 is that it

is based on the 16-bit data path and processes 32-bit

operand by reusing 16-bit function units.

Processors must be configurable because of vastly

different demands of runtime resources for diffe-

rent IoT applications [1]. Therefore, RV16 supports

three different configurations: RV16-32EC, RV16-32IC,

and RV16-32IMC, which support RISC-V instruction

set architecture (ISA) standard extensions RV32EC,

RV32IC, and RV32IMC, respectively. In addition,
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RV16 provides a fast multiplier and a slow multiplier to

support RISC-V “M” extension in different scenarios.

By optimizing the implementation of specific RISC-

V instructions on the 16-bit data path, the maxi-

mum performance of RV16 running Dhrystone and

CoreMark benchmarks is 0.92 DMIPS/MHz and 1.51

CoreMark/MHz respectively, reaching 75% and 71%

of traditional 32-bit RISC-V processors, respectively.

And the average performance of running the Embench

benchmark suite can reach 76% of Cortex-M0. More-

over, the experimental results show that the hardware

resources and the power consumption of RV16 are lower

than those of traditional open-source 32-bit RISC-V

processor cores.

In a nutshell, the contributions of this paper are as

follows.

• A configurable 32-bit RISC-V processor core is de-

signed and implemented based on the 16-bit data path.

• Some optimization methods for specific RISC-V

instructions are proposed to improve the performance

of the processor.

• The area, performance, power and energy con-

sumption of the processor are evaluated.

The following sections are organized as follows.

Some work related to this paper is introduced in Sec-

tion 2. Section 3 introduces the details of the microar-

chitecture of RV16. In Section 4, the area, performance,

power and energy consumption of RV16 are evaluated.

Finally, Section 5 concludes our work.

2 Related Work

ARM Cortex-M series processors are currently the

most widely-used embedded low-cost processors, in

which Cortex-M0 is the most typical processor core.

Cortex-M0 is a single-issue in-order core supporting

ARMv6-M ISA with two pipeline stages. It is de-

signed to be implemented in a small silicon area and

low power environment. Since most of the instructions

in the ARMv6-M are 16 bits, it also has a relatively

high code density [7].

RISC-V ISA has developed rapidly with its advan-

tages of open source. The biggest difference between

RISC-V and traditional ISA is extensibility. To im-

plement a RISC-V processor, only a simple basic in-

struction set must be implemented, and most standard

and custom extensions are optionally implemented ac-

cording to the requirements of the scenario [8]. With

the extensibility, RISC-V can be applied to all applica-

tion scenarios from high energy efficiency to high per-

formance.

Many developers have developed many RISC-V pro-

cessors for different embedded scenarios. Targeting

higher-performance fields, BOOM [9–11] is a superscalar

out-of-order processor core supporting RV64GC ISA

with a TAGE (tagged geometric history length) branch

predictor. And RSD [12] is an out-of-order RISC-V soft

processor optimized for FPGA (Field Programmable

Gate Array), which supports RV32IM ISA. For sce-

narios with limited area and power, Rocket [6] and

Ariane [13] balance the performance and area. They use

a 5-stage or 6-stage in-order scalar pipeline to support

RV32/64GC ISA with a simple predictor and cache.

However, most existing RISC-V processors are aimed at

IoT devices with extremely demanding on the area and

power consumption, such as mRISC [14], Hummingbird

E203 [15], and Zero-riscy [5], and they all contain a sim-

ple 2-stage or 3-stage pipeline without branch predic-

tor and cache. Moreover, Micro-riscy [5] is based on the

RV32E instruction set containing fewer general-purpose

registers, further reducing the overhead of the proces-

sor.

3 RV16 Microarchitecture

RV16 can be configured to support RISC-V “E”,

“I”, “M”, and “C” standard extension. The difference

between RV32E and RV32I is that RV32E contains only

16 general-purpose registers, while RV32I contains 32.

“M” extension requires to additionally support hard-

ware multiplication and division based on RV32E or

RV32I. And the length of instruction in the “C” stan-

dard extension is 16-bit, which can reduce the storage

space required by the program.

The microarchitecture of RV16 is shown in Fig.1,

in which two pipeline stages are named IFA (Instruc-

tion Fetch and Align) and IDE (Instruction Decode and

Execution). The rest of this section will introduce the

pipeline structure of RV16 in detail.

3.1 Instruction Fetch and Align

The IFA stage generates an instruction address and

sends it to instruction memory every cycle. Considering

the length of instruction in the RV32I base instruction

set, RV16 still has a 32-bit instruction path to fetch 32-

bit instruction data in each cycle. It makes possible for

RV16 to complete a 32-bit instruction that processes

32-bit data in one cycle.

However, the support for the “C” extension may

make the length of the instruction processed by RV16
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Fig.1. Microarchitecture of RV16.

be 16-bit or 32-bit. An instruction from the instruc-

tion memory needs to be aligned firstly by an instruc-

tion aligner to identify the compressed instruction. Be-

fore sending the instruction to the decoder, the com-

pressed instruction will be translated into an uncom-

pressed instruction in the compressed instruction de-

code unit (named C2I in Fig.1).

In order to minimize the hardware resource con-

sumption, in RV16, only a 16-bit register is used to

store 16-bit instruction data that may not be used in

one cycle. An instruction is generated by combining the

data in the register and the data from the instruction

memory according to whether the data in the register

is valid or not.

3.2 Instruction Decode and Execution

A RISC-V instruction always processes 32-bit data

by default. As a result, the decode and execution units

in the IDE stage of RV16 are different from traditional

RISC-V processors because of the 16-bit data path that

can only process a 16-bit operand per cycle. RV16

solves this problem by increasing the execution cycle of

an instruction to reuse the 16-bit data path and units.

Understandably, for most instructions in RISC-V, RV16

will take two execution cycles to complete the response

operation: one cycle processes the lower 16-bit in 32-bit

data, and the other cycle processes the upper 16-bit.

3.2.1 Decoder

In two execution cycles of one instruction, the RV16

decoder is required to generate different control signals

at different execution cycles to select the correct data

and operation. As shown in Fig.2, when the decoder

decodes an instruction, it depends not only on the in-

put instruction but also on the execution status of the

instruction (it is represented by a one-bit signal, named

ex status in Fig.2, which is reset to 0 in the first exe-

cution cycle of one instruction). In practice, the exe-

cution status is used to indicate whether the upper 16

bits or lower 16 bits of the 32-bit data should be pro-

cessed in the current execution cycle. Therefore, the

signals related to the operand will be affected by the

execution status (such as reg addr and imm in Fig.2).

3.2.2 Register File

There are two ways to implement the register file

based on the 16-bit internal data path. The first way

keeps each register 32 bits and selects the lower or up-

per 16 bits of a register through a control signal. The

second way is to divide each 32-bit register into two 16-

bit registers and index them by address. Our experi-

ments prove that the latter consumes fewer hardware

resources because its control logic is simpler. As a re-

sult, 16 32-bit registers in RV32E and 32 32-bit registers

in RV32I are implemented by a register file containing

32 and 64 16-bit registers, respectively.

The read and write logic of the register file in RV16

is shown in Fig.3. Different from traditional RISC-V

processors, the register address of RV16 consists of the

register number in the instruction and an additional

least significant bit. The least significant bit of the reg-

ister address is determined by the type of instructions

and its execution status.

In most cases, when an instruction enters the IDE

stage from the IFA stage, the lower 16-bit data is pro-
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cessed in the first execution cycle, and the upper 16-bit

is processed in the next cycle. For example, to pro-

cess an ADD instruction, RV16 reads and writes the

lower 16-bit register in the first execution cycle, which

sets the least significant bit of register file address to

0. In the second execution cycle, it will operand the

upper register, and the least significant bit will be set

to 1. Obviously, in these cases, the least significant bit

is equal to ex status in Fig.3.

However, there are some exceptions. Firstly, for

shift right instructions, there is no way to handle the

lower 16-bit data without the upper 16-bit, because the

bits shifted out from the upper 16-bit data will appear

in the lower 16-bit result. RV16 cannot read the upper

16-bit data while reading the lower data without adding

the register file read port in one cycle. As a conse-

quence, for these instructions, RV16 first processes the

upper 16-bit data and keeps it in a special register for

reuse in the next cycle. At this point, the least signifi-

cant bit is equal to NOT ex status in Fig.3. Secondly,

for load and store instructions, the base address regis-

ter is the lower 16-bit register and cannot change during

the memory access because of the 16-bit address space;

thus the least significant bit is always equal to 0.

3.2.3 Arithmetic Logic Unit

The arithmetic logic unit (ALU) in RV16 includes

three parts: a shifter, an adder, and a logic unit, as

shown in Fig.4(a). The compare unit after the adder

generates signals to indicate the magnitude relationship

between the two operands according to the result of the

adder, which is used to achieve the compare and branch

instructions. The logic unit of RV16 is a traditional 16-

bit logic unit because bits of the logical result do not

affect each other, while the shifter and the adder are

different from the traditional RISC-V processor.
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As mentioned earlier, the correct 32-bit result can-

not be obtained if only 16-bit data is used per cycle for

a shift operation. RV16 processes the upper 16-bit data

first for a shift right operation and the lower first for

a shift left operation. The advantage is that the 16-bit

data processed first does not depend on other 16-bit

data for a 32-bit operand.

The detailed logic of the RV16 shifter is shown in

Fig.4(b), which is mainly composed of a 32-bit shifter.

The operand of the 32-bit shifter is spliced by two 16-

bit operands (op1 and op3 in Fig.4(b)). And op3 is set

to 1 or 0 by bit according to the shift mode in the first

execution cycle and is equal to the previous op1 in the

second cycle. For example, an SRA (shift right arith-

metic) instruction sets all bits of op3 to the sign bit of

the shifted data and lets op1 equal the upper 16 bits of

the shifted data in the first execution cycle. In the sec-

ond execution cycle, op3 is equal to the first cycle op1,

and op1 is equal to the lower 16 bits of the shifted data.

The SRA instruction always generates a 32-bit shifter

operand according to op3 in the upper 16 bits and op1

in the lower. Lastly, it selects the lower 16 bits of the

32-bit shift result to write to the destination register as

the result of this cycle.

For the adder, it is obvious that the lower carry bit

needs to be considered in the upper 16-bit operation.

Therefore, unlike the traditional RISC-V processor, the

adder in RV16 needs to process the carry signal. Un-

derstandably, the carry signal is set to 0 in the first

execution cycle and is generated by the first cycle in

the second execution cycle.

3.2.4 Multiplier and Divider for RV32M

Multiplier and divider exist only in RV16 that sup-

ports RISC-V “M” standard extension. The implemen-

tation of the divider is similar to that of the traditional

RISC-V processor but the operands require two cycles

to pass in. RV16 provides two implementations of mul-

tiplier for configurability: fast multiplier (F) and slow

multiplier (S).

In the fast multiplier, the 32-bit multiplication ope-

ration is achieved by a 16-bit single-cycle multiplier.

When the lower 32 bits of the multiplication result

are needed (MUL instruction), three 16-bit multipli-

cation operations are required. When the upper 32

bits are needed (MULH instruction), four operations

are required. And the slow multiplier is implemented

by accumulating operands in multiple cycles.

3.3 Optimization

Generally, it will take two cycles to process a 32-

bit operation (except for multiplication and division)

by the 16-bit data path, which has a significant impact

on performance. As a result, RV16 has proposed some

optimization methods for certain RV32I instructions to

improve performance.
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First of all, the branch instruction judges the mag-

nitude relationship between the two operands and de-

termines if the branch is taken or not based on the

result. In RV16, whether a branch instruction handles

the lower 16-bit data is determined by the result of the

upper operation. Only when the upper 16 bits of two

operands are equal, the lower bits will be processed. If

they are not equal, RV16 can directly get the result of

the relationship between them.

Additionally, LBU (load byte unsigned) and LHU

(load half-word unsigned) instructions can hide one-

cycle delay required to access memory by writing the

upper 16-bit destination register first. As shown in

Fig. 5, the first execution cycle of a load instruction

generates and sends the address to data memory, and

writes 0 to the upper destination register. In the sec-

ond execution cycle, the first 16-bit load data is already

valid and can be written into the lower destination reg-

ister. At this point, LBU and LHU have been com-

pleted. If an LB (load byte) or LH (load half-word) in-

struction is being executed, whether the third execution

cycle is needed depends on the sign bit of the load data.

And for an LW (load word) instruction, RV16 will load

the higher data from memory in the second execution

cycle, and write the load data to the upper destination

register in the third cycle.

clock

ex_status

rd[0]

Cycle 1 Cycle 2 Cycle 3

Fig.5. Partial waveform of key signals when executing a load
instruction.

Similarly, an SLT (set less than) instruction only

needs to write 0 or 1 to the destination register, and

thus its upper 16-bit destination register is always 0.

Therefore, in the first execution cycle, RV16 writes 0

to the upper destination register because the result of

the comparison between the two operands has not come

out. Then, RV16 only requires to write 0 or 1 to the

lower destination register according to the comparison

result in the second execution cycle.

3.4 Theoretical Execution Cycles

Table 1 counts the number of theoretical execution

cycles required by various RISC-V instructions in RV16.

Because RV16 only supports the 16-bit address space,

the Jump instruction calculates the target address and

saves the return address in the first cycle, and jumps to

the correct address to fetch the instruction in another

cycle. The Branch instruction requires one or two cy-

cles when the branch is not taken, and just like Jump,

an extra cycle is required to jump to the target when

the branch is taken. All ALU instructions require two

cycles to process higher and lower 16 bits of the 32-bit

operand separately. LBU/LHU and LW instructions

can be completed in two cycles and three cycles respec-

tively; LB and LH require two or three cycles depending

on the sign bit. The SB (store byte) and SH (store half-

word) instructions can be completed in one cycle, while

SW (store word) requires two cycles. MUL and MULH

require three cycles and five cycles in the fast multi-

plier, respectively, while they both require 35 cycles in

the slow multiplier. Lastly, the division operation re-

quires three cycles when the divisor is equal to zero,

while 38 cycles are required in the other cases.

Table 1. Number of Theoretical Execution Cycles of Various
Instructions in RV16

Instruction Number of Execution Cycles

Jump 2

Branch 1, 2 or 3

ALU 2

Load 2 or 3

Store 1 or 2

Multiple (fast) 3 or 5

Multiple (slow) 35

Divide 3 or 38

4 Evaluation

In this section, the area, performance, power and

energy consumption of RV16 are evaluated. We syn-

thesize RV16 RTL (Register Translation Level) code

on FPGA and custom CMOS (Complementary Metal

Oxide Semiconductor) respectively to get its area cost

information. The performance of RV16 is evaluated by

running Dhrystone, CoreMark, and Embench bench-

mark suite [16]. Finally, the power and energy consump-

tion of RV16 is evaluated by running Dhrystone and

CoreMark on custom CMOS.

Zero-riscy/Micro-riscy [5] and E203 [15] are tradi-

tional open-source 32-bit RISC-V processor cores that



Yuan-Hu Cheng et al.: RV16: An Ultra-Low-Cost Embedded RISC-V Processor Core 1313

contain similar features to RV16, and thus their infor-

mation is shown for comparison. In addition, ARM

Cortex-M0 processor is also included in the comparison,

because it is a widely-used commercial processor core

in the low-cost field. It is worth noting that the Cortex-

M0 processor evaluated in the experiment comes from

the Cortex-M0 DesignStart (DS) provided by ARM for

free, which contains a single-cycle fast multiplier.

4.1 Area

The FPGA resources consumed by each processor

core are shown in the form of the number of LUTs

(Look-Up Tables), FFs (Flip-Flops), and DSPs (Dig-

ital Signal Processors) in Table 2. The second col-

umn lists the specific ISA supported by the proces-

sor core. RV16 based on the RV32I instruction set

consumes more LUTs and FFs than that based on

RV32E because it contains more general-purpose reg-

isters. The single-cycle multiplier is implemented by

DSP on FPGA, and thus RV16-32I/EMC(F) consumes

fewer LUTs than RV16-32I/EMC(S).

When supporting the same RISC-V ISA, RV16 con-

sumes fewer FPGA resources than other RISC-V pro-

cessor cores. For example, to support RV32IMC, RV16

with a fast multiplier consumes 1 808 LUTs, 1 365 FFs,

and 1 DSP, while Zero-riscy consumes 3 352 LUTs,

2 006 FFs, and 1 DSP. On the other hand, FPGA re-

sources consumed by RV16 are also lower than Cortex-

M0: RV16-32EMC(F) contains the features closest to

Cortex-M0 and consumes 52% LUT and 92% FF of

Cortex-M0.

Table 2. FPGA Resource Consumption of Processors

Processor ISA Number of Number of Number of

LUTs FFs DSPs

RV16-32IMC(F) IMC 1 808 1 365 1

RV16-32IMC(S) IMC 1 867 1 365 0

RV16-32EMC(F) EMC 1 580 851 1

RV16-32EMC(S) EMC 1 617 851 0

RV16-32IC IC 1 461 1 222 0

RV16-32EC EC 1 088 742 0

Micro-riscy EC 2 501 1 352 0

Zero-riscy IMC 3 352 2 006 1

E203 IMC 3 772 1 814 0

Cortex-M0 v6-M 2 814 922 3

The synthesized result on custom CMOS at 100

MHz is shown in Fig.6. Similar to the FPGA results,

RV16 occupies the smallest CMOS area in RISC-V pro-

cessor cores that support the same ISA. For RV32IMC,

the area of RV16-32IMC(F) is 20 757.91 µm2, while

that of E203 is 29 024.18 µm2 and that of Zero-riscy

is 32 802.67 µm2. In addition, the area of RV16-

32EMC(F) is 64% of that of Cortex-M0.

In Fig.6, the area advantage of RV16-32EC (com-

pared with Micro-riscy) is more significant than that of
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RV16-32IMC(F) (compared with Zero-riscy and E203).

In addition to the factor of the register file, another rea-

son is that the area overhead of the multiplier is signif-

icant in the low-cost processor core: a 16-bit multiplier

for supporting RV32M increases the area of RV16-32EC

by 8 508.19 µm2.

4.2 Performance

The performance of RV16 is evaluated in two ways.

The first takes two SRAMs (Static Random Access

Memories) as instruction and data memory respectively

to run benchmarks to get the performance. Another

way runs benchmarks in Cortex-M0 DS SoC prototype

simulation environment.

4.2.1 Comparison With RISC-V Processors

The performance of RV16 and other low-cost RISC-

V processor cores running Dhrystone and CoreMark

is shown in Table 3. The maximum performance of

RV16-32IMC(F) running Dhrystone binary code com-

piled based on RV32IM can reach 0.92 DMIPS/MHz,

which is comparable to the traditional 32-bit processor.

Moreover, the smallest RV16-32EC can also provide

competitive performance, reaching 0.81 DMIPS/MHz.

Table 3. Performance of Running Dhrystone and CoreMark

Processor Maximum Performance

Dhrystone CoreMark

(DMIPS/MHz) (CoreMark/MHz)

RV16-32IMC(F) 0.92 1.51

RV16-32IMC(S) 0.87 1.04

RV16-32EMC(F) 0.84 1.49

RV16-32EMC(S) 0.81 1.03

RV16-32IC 0.89 0.62

RV16-32EC 0.81 0.58

Micro-riscy [5] 1.19 0.91

Zero-riscy 1.29 2.20

E203 [15] 1.23 2.14

The 16-bit data path has a more significant impact

on CoreMark. The maximum performance of RV16-

32IMC(F) is 1.51 CoreMark/MHz, about 70% of the

traditional 32-bit RISC-V processor. However, unlike

the running Dhrystone, the performance of RV16 with-

out supporting hardware multiplication and division

(RV16-32I/EC) running CoreMark is much lower than

that with supporting hardware multiplication and divi-

sion (RV16-32I/EMC). To analyze the reasons for this

situation, we count the instruction distribution in the

main loop of two benchmarks compiled for RV32IM,

and the results are shown in Fig.7.

0% 20% 40% 60% 80% 100%

Dhrystone

CoreMark

ALU MUL/DIV Load/Store Branch Other

Fig.7. Instruction distribution of CoreMark and Dhrystone com-
piled for RV32IM.

The ratio of multiplication and division instructions

(MUL/DIV in Fig.7) in CoreMark is higher than that in

Dhrystone. As a consequence, software multiplication

and division will significantly increase the number of in-

structions in CoreMark. As shown in Table 4, compiled

with GCC, the number of RV32I instructions in Core-

Mark’s main loop is 2.45 times the number of RV32IM

instructions, while Dhrystone is just 1.11 times. A

larger number of instructions lead to a lower perfor-

mance for running CoreMark on the processor that does

not support hardware multiplication and division.

Table 4. Number of Instructions Executed in the Main Loop of
Dhrystone and CoreMark

ISA Instruction Count

Dhrystone (500 Loops) CoreMark (1 Loop)

RV32E 160 677 776 542

RV32I 147 245 732 505

RV32IM 132 745 298 825

We calculate the IPC (Instructions-Per-Cycle) of

RV16 running Dhrystone and CoreMark, which is

shown in Table 5. Overall, when hardware multiplica-

tion and division are not supported, the IPC of RV16

is about 0.46. It drops slightly after supporting a fast

multiplier because a multiplication or division instruc-

tion requires more execution cycles. The absence of di-

vision instructions in CoreMark’s main loop results in a

smaller drop in IPC. Finally, Table 6 shows the actual

average execution cycles of various RISC-V instructions

in RV16-32IMC(F).

Table 5. IPC of RV16 Running Dhrystone and CoreMark

Processor IPC

Dhrystone CoreMark

RV16-32EC 0.46 0.45

RV16-32IC 0.46 0.46

RV16-32IMC(F) 0.43 0.45
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Table 6. Number of Actual Execution Cycles of Various In-
structions in RV16-32IMC(F)

Instruction Number of Execution Cycles

Dhrystone CoreMark

Jump 2.00 2.00

Branch 2.12 2.50

ALU 2.00 2.00

Load 2.87 2.52

Store 1.92 1.87

Multiple 3.00 3.00

Divide 38.00 -

4.2.2 Compared With Cortex-M0

Different from taking two SRAMs as instruction and

data memory, the simulation environment of Cortex-

M0 DS is based on the AHB-Lite (Advanced High-

performance Bus) where instruction and data share the

same memory, which means that instruction and data

cannot be accessed at the same cycle [17]. Since most

of the instructions supported by Cortex-M0 are 16-bit,

we employ the RV16 that supports “C” extensions to

compare with it.

In the Cortex-M0 DS simulation environment, the

performance of RV16 and Cortex-M0 running Dhrys-

tone and CoreMark is shown in Fig.8, which has been

normalized by the performance of Cortex-M0. The per-

formance of RV16 running Dhrystone is only slightly

lower than that of Cortex-M0. The performance of

RV16-32IMC(F) reaches 91% of Cortex-M0 and RV16-

32EMC(F) reaches 82%. Combined with the area over-

head, this is a competitive result.

In Fig.8(b), the performance of RV16-I/EC running

CoreMark is far lower than that of Cortex-M0. After

implementing hardware division and fast multiplier, the

performance of RV16 has been greatly improved, reach-

ing 86% of Cortex-M0. A slow multiplier also rises the

performance of RV16-32E/IMC(S) to 61% of Cortex-

M0. On the other hand, it can be speculated that the

single-cycle multiplier in Cortex-M0 is one of the rea-

sons why it runs CoreMark better.

As shown in Fig. 9, the average performance

of RV16-32IMC(F) running the Embench benchmark

suite is 84% of that of Cortex-M0, and that of

RV16-32EMC(F) is 76%. The performance of RV16-

32IMC(F) running the minver and aha-mont64 bench-

mark is faster than that of Cortex-M0. However,

the multiplication operation is still a major factor

that affects the performance of RV16. Because of in-

cluding many multiplication operations, matmult-int is

the worst benchmark for RV16, and the performance

of RV16-32E/IC is much lower than that of RV16-

32E/IMC.

The dotted line in Fig.9 shows the impact of the

multiplier implementation on the performance of RV16

running different benchmark programs, and the larger

the number, the smaller the impact. When the ratio is

equal to 1, it means that the multiplier implementation

has no impact on the performance of the benchmark

program. The multiplier has less impact on the per-

formance of the RV16 based on RV32E than on RV32I

(the ratio of RV16-32EMC(S)/RV16-32EMC(F) in the

figure is always greater than or equal to that of RV16-

32IMC(S)/RV16-32IMC(F)). The reason is that RV32E

contains fewer registers than RV32I and thus the num-

ber of instructions generated by the compiler based on

RV32E is often greater than that on RV32I, which re-

duces the proportion of multiplication instructions in

all instructions.
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Fig.8. Relative performance of RV16 and Cortex-M0 running (a) Dhrystone and (b) CoreMark.
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Fig.9. Relative performance of RV16 and Cortex-M0 running the Embench benchmark suite.

4.3 Power and Energy Consumption

Based on the Switching Activity Interchange For-

mat (SAIF) file extracted by the simulation and the

netlist file generated after synthesis, we evaluate the

power and energy consumption of RV16 running bench-

mark programs on custom CMOS. The SAIF file used

for evaluation only contains the switching activity in-

formation in the main loop of the benchmark program.

The partial information of the SAIF file generated by

RV16-32IMC(F) and Cortex-M0 running Dhrystone is

shown in Table 7, and Table 8 is the explanation of the

parameters.

Fig.10 shows the static and dynamic power of RV16

running Dhrystone and CoreMark at 0.81 V and 100

MHz. With fewer logic gates, both the static and

the dynamic power of RV16 are lower than those of

Zero-riscy and Cortex-M0. In a similar configuration,

the static power of RV16-32EMC(F) is about 52% of

Cortex-M0, and that of RV16-32IMC(F) is about 60%

of Zero-riscy. We can also get similar conclusions in

terms of dynamic power. The dynamic power running

CoreMark is slightly more than that of running Dhrys-

tone, which means that the switching activity running

CoreMark is higher than that of running Dhrystone.

Using the power and performance information ob-

tained earlier, we can calculate the energy consumption

of processors. The final energy consumption informa-

tion of running Dhrystone (500 loops) and CoreMark

(one loop) is shown in Fig.11, in which all values are

normalized based on Cortex-M0.

In Fig.11(a), since the power of RV16 is lower and

the performance gap is small, the energy consumption

of running Dhrystone on RV16 is lower than that of

Zero-riscy and Cortex-M0. The energy consumption of

RV16-32IMC(F) and RV16-32IMC(S) is 73% and 59%

of Cortex-M0, respectively, lower than that of Zero-

riscy which supports the same ISA. The implementa-

tion of multiplication instruction has little effect on

the performance of running Dhrystone, and thus RV16-

32EMC(S) has the lowest energy consumption.

Table 7. Partial Information of the SAIF File

Signal RV16-32IMC(F) Cortex-M0

T0 (ps) T1 (ps) TX (ps) TC IG T0 (ps) T1 (ps) TX (ps) TC IG

HADDR[0] 3 697 990 000 20 020 000 0 4 004 0 3 314 160 000 20 030 000 0 4 006 0

HADDR[1] 3 162 430 000 555 580 000 0 111 116 0 2 672 370 000 661 820 000 0 128 362 0

HADDR[2] 1 951 420 000 1 766 590 000 0 164 130 0 1 664 460 000 1 669 730 000 0 183 497 0

HADDR[3] 1 961 410 000 1 756 600 000 0 106 084 0 1 679 630 000 1 654 560 000 0 134 330 0

HADDR[4] 1 866 810 000 1 851 200 000 0 85 087 0 1 654 740 000 1 679 450 000 0 101 250 0

HADDR[5] 2 081 620 000 1 636 390 000 0 71 066 0 1 569 500 000 1 764 690 000 0 88 200 0

HADDR[6] 2 011 160 000 1 706 850 000 0 68 070 0 1 714 830 000 1 619 360 000 0 62 185 0

HADDR[7] 1 776 430 000 1 941 580 000 0 61 062 0 2 054 630 000 1 279 560 000 0 80 156 0
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Table 8. Explanation of Parameters in the SAIF File

Name Explanation

T0 Duration of the time found in logic 0 state

T1 Duration of the time found in logic 1 state

TX Duration of the time found in unknown X state

TC Sum of the rise and fall transitions that are captured
during monitoring

IG Number of 0–X and 1–X glitches captured during mon-
itoring

The energy consumption result of running Core-

Mark is different from that of running Dhrystone. Two

RV16 cores that do not support hardware multiplica-

tion and division consume the most energy because

their poor performance leads to longer running time.

Among the compared processors, RV16-32EMC(S) is

still the processor with the lowest energy consumption,

about 67% of Cortex-M0. The energy consumption of

RV16-32IMC(F) running CoreMark is 79% of Cortex-

M0, which is also lower than that of Zero-riscy.

5 Conclusions

This paper designs a configurable ultra-low-cost em-

bedded 32-bit RISC-V processor core, which is imple-

mented by the 16-bit internal data path. Since more

than one cycle is required to process 32-bit data by

multiplexing the 16-bit data path and units, the paper

studies the optimization methods for some instructions

to reduce the number of cycles required. Experimental

results showed that RV16 has significant advantages in

area, power and energy consumption while its perfor-
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Fig.10. Power of running (a) Dhrystone and (b) CoreMark at 0.81 V and 100 MHz.
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Fig.11. Energy consumption of running (a) Dhrystone and (b) CoreMark at 0.81 V and 100 MHz.
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mance is only slightly lower than that of traditional 32-

bit processors. Running representative benchmarks in

the embedded field showed that, among various config-

urations of RV16, RV16E/I(C) can provide competitive

performance for applications with fewer multiplication

instructions. However, RV16E/IM(C) is more suitable

for applications with more multiplication instructions.
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