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Abstract With the developing demands of massive-data services, the applications that rely on big geographic data

play crucial roles in academic and industrial communities. Unmanned aerial vehicles (UAVs), combining with terrestrial

wireless sensor networks (WSN), can provide sustainable solutions for data harvesting. The rising demands for efficient data

collection in a larger open area have been posed in the literature, which requires efficient UAV trajectory planning with

lower energy consumption methods. Currently, there are amounts of inextricable solutions of UAV planning for a larger

open area, and one of the most practical techniques in previous studies is deep reinforcement learning (DRL). However, the

overestimated problem in limited-experience DRL quickly throws the UAV path planning process into a locally optimized

condition. Moreover, using the central nodes of the sub-WSNs as the sink nodes or navigation points for UAVs to visit may

lead to extra collection costs. This paper develops a data-driven DRL-based game framework with two partners to fulfill the

above demands. A cluster head processor (CHP) is employed to determine the sink nodes, and a navigation order processor

(NOP) is established to plan the path. CHP and NOP receive information from each other and provide optimized solutions

after the Nash equilibrium. The numerical results show that the proposed game framework could offer UAVs low-cost data

collection trajectories, which can save at least 17.58% of energy consumption compared with the baseline methods.

Keywords wireless sensor network, efficient data collection, deep reinforcement learning, game theory

1 Introduction

With big geographic data playing a crucial role in

current life, efficient geo-data collection has become

an urgent request for academic research [1, 2]. The re-

quest demands collecting geo-data from broader and

more complex areas to carry out the tasks of sensing,

exploring, and monitoring harsh fields, which is still

challenging [3, 4]. One of the most crucial factors is the

cost of data collection [5, 6]. Unmanned aerial vehicles

(UAVs), with their flexibility, could be integrated with

the ground wireless sensor networks (WSN) as low-cost

enablers for collecting data automatically [7]. However,

the broad geographic space with a significant amount

of data far from sustainable supplements challenges

UAVs-enabled tasks. UAVs may execute missions with

unreasonable trajectories, raising energy consumption

and increasing data collection costs. Naturally, plan-

ning trajectories with low-energy costs for the UAV has

become one of the most critical problems in geographic

data harvesting.

The current literature shows that automatic data

collection has been one of the most crucial techniques

in UAVs-enabled geographic space scenarios [8]. Vast

geographic data are delivered among parties, posing ur-

gent concerns of costs and efficiency for data collection.

Previous studies have suggested that the optimization

of trajectory planning for UAVs can significantly re-

duce the cost of data collection tasks [9]. To reduce the
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data collection costs, quantities of heuristic methods

are proposed, achieving comparable success with ap-

proximate optimal results [10]. However, these heuristic

algorithms acquire limited performance and can hardly

provide practical solutions [11, 12]. Hence, many data-

driven algorithms were developed to plan the energy-

conservation paths for UAVs [13]. For example, Zhao et

al. [14] considered a model-free strategy to obtain opti-

mized paths from data rather than dynamic knowledge.

Bono et al. [15] regarded the UAV planning problem as

a particular orienteering problem with spatiotemporal

dependencies, which could provide the optimal solu-

tions for small-scale situations. However, these data-

driven methods are task-specific and data-dependent,

which cannot be applied to larger geographic spaces

with limited data. Recently, some studies have focused

on finding solutions with limited data. One of the most

typical methods is offline deep reinforcement learning

(DRL), by which agents can learn strategies from ready-

made experiences [16]. These developed DRL methods

have been proven to provide sustainable solutions for

ordering navigation [17–19]. For example, Challita et

al. [20] developed an anti-disturbing scheme to process

trajectories for UAVs, which employs the echo state

network (ESN) cells to minimize the time-relevant uti-

lity. Xie et al. [21] made efforts on the 3-dimensional

path processing for UAVs and employed the dueling

network to find locally optimized paths. Mukherjee et

al. [22] considered the task of allocating path process-

ing for UAVs, which can reduce the computing comple-

xity of mission execution with large-scale data. Zhu

et al. [23] combined the pointer network and the A* al-

gorithm to obtain efficient trajectories, which enables

the UAV to collect the data from the clustered sen-

sors. Zhang et al. [24] developed a DRL approach based

on the twin delayed deep deterministic policy gradients

(TD3) algorithm, which enables UAVs to perform nav-

igation process tasks with unpredictable and dynamic

multi-obstacle settings. Shi et al. [25] developed a novel

coverage issue in battery-free wireless sensor networks

(BF-WSNs) to maximize the coverage quality. Zhang et

al. [26] presented an intelligent blockchain-assisted mas-

sive Internet of Things (IoT) data collection (MIDC)

architecture to enhance the efficiency and security con-

siderations of vast data collection for large-scale hete-

rogeneous WSNs.

Nevertheless, current DRL-based data-driven meth-

ods still suffer from overestimating during the optimiza-

tion process. Consequently, the current DRL-based

methods easily throw the process of path planning

into a locally optimized condition. Due to the high-

dimension search space of the UAV planning in open

areas, the neglection of consideration for different initial

states may lead to overestimating. For example, Fig.1

shows that the clustered ground WSNs use the cen-

tral nodes as the sink nodes and navigation potions for

the UAV, which may lead to extra energy consumption.

Specifically, the UAV collects the data from a WSN

that only needs to visit the sink nodes. The selected

sink nodes of sub-WSNs will determine the UAV’s nav-

igation points, and the cost of data collection is mainly

related to the visiting order of these navigation points.

Fig.1(a) shows that choosing the central nodes of clus-

ters as sink nodes may lead to extra energy consump-

tion of UAVs. Under some circumstances, using lim-

bic nodes as sink nodes may be the optimal choice for

UAV trajectory planning, as shown in Fig.1(b). Hence,

choosing suitable sink nodes as the navigation while

Cluster Head 

(Sink Node)

Data Flow
UAV Trajectory
Sensor
Sensor Cluster

(b)

Cluster Head 

(Sink Node)

(a)

Fig.1. Example of the UAV trajectory planning with different sink nodes. (a) Trajectory planning by using central points of clusters
as the sink nodes. (b) Trajectory planning by using limbic points of clusters as the sink nodes.
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planning the energy-conserved path for the UAV is still

challenging.

Previous studies have shown that the game theory

could help the neural network break the local optimiza-

tion, and each game participant could obtain more in-

formation from the data distribution to achieve a bet-

ter convergence [27]. Thus, this paper employs the game

framework to develop a DRL-based approach that con-

sists of two partners: a cluster head processor (CHP)

and a navigation order processor (NOP). During the

game process, the CHP receives the navigation order

list from the NOP and uses this order to evaluate the

utility for all cluster heads. The NOP accepts the clus-

ter head list from the CHP and then plans the data-

collection path for the UAV. This process repeats un-

til two partners reach a Nash Equilibrium. The deve-

loped game framework provides two partners with a

stably convergent impact factor, which can help the

agents release from the overestimated situation within

the training process. According to the numerical re-

sults, the NOP adjusts the convergent trend continu-

ally and strides over the local optimized station with a

higher probability. At the same time, compared with

using the central cluster nodes directly, choosing cluster

heads with the CHP as navigation could also reduce the

energy consumption of UAVs. Our contributions can be

concluded as follows.

• This paper formulates a UAV-enabled data-

collection optimization problem for the clustered aerial-

terrestrial WSN network, which is used to optimize the

cost of geo-data harvesting.

• This paper constructs the process of cluster find-

ing and navigation ordering with the Markov decision

process (MDP) separately. The constructed MDPs are

used to find the cluster heads and low-cost UAV’s data-

collecting trajectories.

• This paper develops a game-based training frame-

work to assist the data-driven DRL in releasing from

the overestimating situation, which consists of two

DRL-based partners: CHP and NOP. The two part-

ners receive the results from each other and generate

optimized solutions after the Nash equilibrium.

• This paper conducts extensive numerical experi-

ments to validate the advancement of the developed

method. The numerical results illustrate that the CHP

can find better sink nodes for clustered WSNs, and

the NOP can provide convergent solutions for planning

UAV trajectories. It is proved that the developed game-

frame DRL method can overcome the local optimiza-

tion with more possibilities during the training phases

and can acquire more energy-conserved solutions.

The rest of this paper is organized as follows. Sec-

tion 2 introduces the related work about the DRL-

based methods and game theories. The background and

problem formulation is presented in Section 3, which

includes the model preliminaries, mission background,

data collection cost model, and problem definition. Sec-

tion 4 presents the constructions of the CHP and the

NOP in detail and describes the developed game frame-

work for cluster heads choosing and UAV path planning

optimization. Section 5 describes the numerical results

and shows the advancement of the developed method.

Finally, this paper is concluded in Section 6.

2 Related Work

2.1 Reinforcement Learning Approaches

The reinforcement learning (RL) methods iter-

ate the learning process under the MDP framework

and have been widely used in different industrial

scenarios [28, 29]. The typical RL-based method is q-

learning [30], which establishes a table to evaluate the

actions according to the time difference (TD) error.

Combined with the deep learning, Deep q-learning Net-

works (DQNs) predict the values with neural networks

to fit the improving capacity of the state space [31].

The action space of q-learning and DQN is discrete,

which is not acceptable for continuous actions. Hence,

the deep deterministic policy gradients (DDPG) based

methods [32] are established for continuous actions con-

trol. The DDPG-based methods obey the actor-critic

(AC) [33] framework and use the TD error to update the

neural network. The flourishing achievements of the

AC-based framework have also pioneered DRL in re-

cent years, such as advantage actor-critic (A2C) [34] and

asynchronous advantage actor-critic (A3C) [35]. A2C

uses the advantage function to replace the original re-

ward in the critic network, which can be utilized to

be the metric to evaluate the value of choosing actions

and average actions. A3C is an asynchronous method

to obtain the training experience from environments.

Each worker of A3C employs the parameters from the

global network to interact with the environment. All

workers give their gradients to update the global net-

work. Furthermore, some DRL-based methods also in-

spire our work. Schaul et al. [36] improved the experi-

ence playback mechanism to focus on the samples’ pri-

ority. Wang et al. [37] developed a dueling neural net-

work structure, which can evaluate both actions and

status.
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2.2 Stackelberg Game Methods

With the development of the game theory, the

Stackelberg game has been employed in different sce-

narios. For example, Su et al. [38] formulated a jamming

counter measure Stackelberg game to describe the sys-

tem’s jamming power control dynamic and developed

an iterative measure algorithm to acquire the Stackel-

berg equilibrium. Bansal and Sikdar [39] developed a

Stackelberg game based approach to construct a secu-

rity service pricing model for UAV swarms, which can

maximize the profit of providing security services. Shi

et al. [40] conducted a problem of cooperative low proba-

bility of intercept (LPI) in a multi-static radar system,

and they developed a Stackelberg game based method

to get the optimal global solution. A general Stackel-

berg game system includes a leader (or leaders) and a

follower (or followers), which could be used in satellite

communications [41] and anti-tracking jammer [42]. Note

that our work is mainly related to a typical Stackelberg

model with one leader and multiple followers [27].

3 Background and Problem Formulation

In this section, we introduce model preliminaries,

mission background, and data collection cost model at

first. Then, we formulate the problem that needs to be

optimized.

3.1 Model Preliminaries

3.1.1 MDP and RL Approaches

In this paper, the CHP and the NOP are modeled

with two MDPs with finite time steps. The MDP is

a stochastic sequential decision-making approach that

consists of an agent set I, a state space S, an action

space A, and a reward function R : S × A → R. At

each time step, the agent observes the state st ∈ S of

the environment and chooses an action at ∈ A based

on the policy π(s). The environment changes its state

from st to st+1 and outputs a reward rt according to

the state transfer function T : S ×A× S → [0, 1]. The

agent adjusts its action-choosing policy π(s) according

to the reward rt. This process executes continuously

until the optimal policy π∗ is constructed.

This paper uses the value-based RL methods

DQN [31] and Dueling network [37] to obtain the opti-

mized solutions with the modeled MDP. DQN is an

off-policy learning scheme that is used to obtain a

greedy policy π(s) = argmaxaQπ(s, a), where Qπ(s, a)

indicates the Q value utilized to evaluate the ac-

tions. The Q value can be calculated by the equation

Qθ (st, at) = Ert,st+1∼E (r (st, at) + γQθ (st+1, at+1)),

where Qθ(s, a) is a neural network parameterized by

θ, E denotes the environment, r denotes the reward,

and γ is the discount factor. To overcome the over-

estimations of previous DQN methods [31], the Dueling

network is developed [37].

3.1.2 Stackelberg Game Process

The Stackelberg game is a two-stage dynamic game

with complete information. We describe the Stackel-

berg game process for UAV path planning from Wang

et al. [27]. Specifically, this paper conducts the Stack-

elberg game with multiple followers to design the inte-

ractive framework for the CHP and the NOP. At the

beginning of the training phases, the leader adopts a

strategy π ∈ Π, and n followers produce reactions after

observing the leader’s strategy. Once the leader’s strat-

egy π is determined, an n-player simultaneous game will

be constructed and each participant should minimize or

maximize its utility function. The i-th follower’s uti-

lity function can be concluded as fi(xi, x−i, π), where

xi ∈ Xi is the i-th follower’s own action, x−i ∈ X−i
indicates the joint action of other followers, Xi is the

i-th follower’s strategy space, and π ∈ Π represents the

leader’s strategy. It is assumed that there is no secret

among followers, i.e., all the followers have access to the

other followers’ objective functions and strategy space.

After all followers obtain the unique equilibrium x∗1,...,n,

the leader will optimize the objective to get the new

policy π. This process continues until the Stackelberg

leader chooses an optimal π∗ to maximize its utility,

and the game process reaches a Nash equilibrium.

3.2 Mission Background

This paper considers a terrestrial WSN de-

ployed into an open area to execute the missions.

The WSN consists of a group of sensors B =

{bi | i = 1, ..., k} which are classified into K clusters

C = {cj | j = 1, ...,K}. A sub-WSN connects the

sensors in each cluster, and all sensors generate the

data continuously according to different mission re-

quirements. It is assumed that the sensors in the same

sub-WSN can transmit their data to others, while sen-

sors in different sub-WSNs cannot share the informa-

tion. Thus, there is a sink node to gather all data of

sensors in a sub-WSN, and the vehicle collects the data

by visiting all sub-WSNs’ sink nodes rather than all
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sensors. This work employs a solo UAV to harvest and

deliver the collected data from WSN to the base sta-

tion. The UAV keeps a fixed velocity vuav and height h

during the mission execution. We hypothesize that the

movement of the UAV will not be influenced by tem-

perature, humidity, air density, or other environmental

impacts. Under these considerations, this paper aims

to find optimized solutions for low-cost data collection

paths and suitable sink nodes for all clusters.

3.3 Data Collection Cost Model

This work requires the UAV to collect all data from

the WSN with low-level energy consumption. The pre-

vious studies make assumptions that the data collection

cost depends on the utility of UAVs [23, 43,44]. There-

fore, we use the energy-conservation utility to evaluate

the cost, which means a path with high utility is the

trajectory with a low data collection cost, i.e., the

energy-conservation utility is inversely proportional to

the UAV’s energy consumption. In this paper, we will

not evaluate the data transmitting energy due to the

transmission relying on the facility carried by the UAV.

Consequently, the UAV’s energy consumption is shown

as (1).

Etotal = Eflight + Ehover, (1)

where Eflight is the flight energy, and Ehover is the hover-

ing energy of the employed UAV. In fact, Eflight can be

affected by three factors, including flight time Tflight,

moving power Pmove and hovering power Phover. Fol-

lowing the previous studies [23, 43], we define the flight

energy as (2).

Eflight = Tflight (Phover + Pmove ) , (2)

where Tflight is the total flight time of the UAV. The

total flight time Tflight depends on the UAV’s velocity

and the distance has passed [23, 43], which is shown in

(3).

Tflight =
1

vUAV

K∑
i=1

K∑
j=1
j 6=i

dci,cjLci,cj , ∀ci, cj ∈ C, (3)

where vUAV is the velocity of UAV, which is a fixed

parameter according to the hypothesis that the UAV

keeps a fixed velocity during executing missions. C =

{c1, c2, ..., cK} is the set of cluster heads and dci,cj in-

dicates the distance between the cluster heads ci and

cj . L ∈ R|C|×|C| is an indicator matrix. If Lci,cj = 1,

it means that the UAV would fly from ci to cj with

the current trajectory; otherwise Lci,cj = 0. Phover

and Pmove are the hovering and moving power of

UAV [23, 43], which are described with (4) and (5) re-

spectively.

Phover =

√
(mg)

3

2πr2
pnpρ

, (4)

Pmove =
Pmax − Pidle

vmax
vUAV + Pidle, (5)

where m is the mass of the UAV with the carried data-

transmitting facility, g is a fixed factor and represents

the earth gravity, rp is the radius of the UAV’s pro-

pellers, np is the number of propellers, and ρ is the air

density. vmax is the maximum speed of the UAV and

Pidle is the power of the UAV with the idle status. All

of these parameters are fixed.

Moreover, the hovering energy consumption Ehover

relies on the hovering time Thover and power Phover,

which is shown in (6) [23, 43].

Ehover = Thover × Phover =

K∑
i=1

cdata
i

rtrans
× Phover, (6)

where cdata
i is the data volume of the i-th cluster, and

rtrans is the data transmission rate. The mission’s sus-

tainably execution relies on energy conservation within

the aerial-terrestrial data collection task. Hence, this

paper uses UTUAV to define the energy-conservation

utility, which is shown in (7).

UTUAV =
1

Etotal
=

1

Eflight + Ehover
. (7)

(7) indicates that the utility of a mission execution

is inversely proportional to the energy consumption.

3.4 Problem Definition

This work requires the UAV to collect all data from

the sensors with a high energy-conservation utility (de-

fined in (7)), and this utility is related to the energy

consumption. The UAV which flies from one cluster

head to another would consume energy. Thus, diffe-

rent visiting locations and orders require distinct en-

ergy costs. Under these considerations, this work aims

to maximize UTUAV of the UAV data collection mission,

which is shown in (8).

maxUTUAV

= min(Etotal) = min(Eflight + Ehover)

= min(Tflight (Phover + Pmove ) + Ehover). (8)

It is also assumed that the amount of harvesting

data at each cluster head is the same, wherefore Ehover
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is also fixed. Hence, this problem can be simplified with

(9).

maxUTUAV

= minTflight

= min
1

vUAV

K∑
i=1

K∑
j=1
j 6=i

dci,cjLci,cj ,∀ci, cj ∈ C, (9)

where vUAV is a fixed number. The final optimization

problem is shown in (10).

maxUTUAV

= min

K∑
i=1

K∑
j=1
j 6=i

dci,cjLci,cj , ∀ci, cj ∈ C. (10)

From (10), we can see that the objective function de-

pends on two parts: the visitation order list dci,cjLci,cj
and the cluster heads set C. This paper will optimize

these two parts with a game framework to get optimal

solutions for the objective function.

4 DRL-Based Game Framework for Cluster

Head Determination and Path Processing

This section describes a data-driven DRL-based

game framework composed of two participants: the

CHP and the NOP. We first formulate the CHP and

the NOP separately with the MDPs. Then, we in-

troduce the developed Stackelberg game-based method

and describe how the two participants interact with

each other.

4.1 Sink Nodes Determination with Cluster
Head Processor

CHP is one of the crucial parts of the developed

game framework, which receives the UAV path infor-

mation from the NOP and chooses sink nodes for all

clusters. We formulate the cluster heads finding pro-

cess with MDP, where there are K agents that stand

for the choosers to find the optimal cluster heads. Given

one chooser in the time step t, we explain the state, ac-

tion, and reward function established in the optimizing

process as follows.

1) State. To describe the chosen result of the ground

WSN’s cluster heads, we employ the local state StL and

the global state StG to represent the state of the CHP.

The agent of the i-th cluster has a local indicative state

StLi
∈ StL, which denotes its cluster head chosen result.

The local indicative state StLi
is described by a one-hot

vector to indicate which node is selected as the cluster

head. In particular, if the chooser of the i-th cluster

selects the j-th node to be the cluster head, we set the

j-th value of StLi
to 1, and the other values to 0. Con-

sequently, the global state of the CHP is represented

by StG = (StL1
, StL2

, ..., StLK
), which indicates the heads

chosen result of all clusters.

2) Action. The action of the i-th head chooser is

denoted as atci = fπci
(StLi

). atci is conducted by the

selecting policy fπci
and indicates which node will be

set as the new cluster head. In this work, we employ a

one-hot vector for representing atci to perform the clus-

ter head chosen action. For example, if the j-th value

of atci is 1, it indicates that the j-th node in ci will be

set as the cluster head. Thus, the joint action of the

CHP in the time step t is atC = (atc1 , a
t
c2 , ..., a

t
cK ).

3) Reward. This work employs the reward function

rtC = RC(jt, atC) for CHP, where jt is the path acquired

from the NOP. The reward rtC depends on the utility

that we consider in (7), which is shown in (11).

rtC = RC(jt, atC)

= UTUAV(dt, Lt)

=
P

vUAV

K∑
i=1

K∑
j=1
j 6=i

dtci,cjL
t
ci,cj , (11)

where P = Pflight + Phover, L
t
ci,cj relies on the path jt

obtained from the NOP, and dtci,cj depends on the lo-

cations of all cluster heads decided by atC. This reward

function encourages the CHP to select cluster heads

with high energy-conservation utility according to the

path information from the NOP.

4.2 UAV Path Planning with Navigation
Order Processor

According to the energy-conservation utility defini-

tion and the optimization problem defined in Subsec-

tion 3.4, the UAV needs to find an optimal path with

lower energy consumption. During the mission of the

UAV-enabled data delivery, the current position of the

UAV is only related to its prior location. Thus, we

construct the NOP with MDP to find the optimal solu-

tions. There is an agent in the NOP that represents the

controller to instruct the flight of the UAV. Given a con-

troller in the time step t, we explain the state, action,

and reward function for planning the energy-conserved

path as follows.

1) State. The agent of the NOP has an indicative

state stN to present the UAV’s location. The indicative
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state stN is represented by a K-dimensional one-hot vec-

tor to indicate which cluster the UAV stays in the time

step t. For example, if the UAV is located in the cluster

ci in the time step t, the i-th value of stN is set to 1.

Otherwise, it is set to 0. Hence, StN reflects the position

situation of the UAV and can be used to form the path

(S1
N, S

2
N, ..., S

K
N ).

2) Action. The action of the NOP is set as atN =

fπN(stN). It is performed by the navigation ordering

policy πN and indicates where the UAV will fly to in

the following time step. We utilize a K-dimensional

one-hot vector to describe atN. If the i-th value of atN is

1, it indicates that the UAV will fly to the i-th cluster

ci in the next time step.

3) Reward. This work employs the temporal re-

ward for the NOP, which can be represented as rtN =

RN(StG, S
t
N, a

t
N) shown in (12).

rtN = RN(StG, S
t
N, a

t
N)

=
Pflight√(

xct − xct+1

)2
+
(
yct − yct+1

)2 , (12)

where ct and ct+1 indicate the clusters which the UAV

visits in the time step t, and xct , yct , xct+1
, yct+1

are

their heads’ coordinates respectively. These coordi-

nates rely on the cluster heads list decided by StG of

the CHP. xct and yct are the coordinates of the UAV’s

current location, which depend on StN. xct+1
and yct+1

are the coordinates of the navigation point that the

UAV will fly to in the next time step, which depend on

atN. This function encourages to perform the actions

that ensure the agent to get more rewards from lower

energy consumption.

4.3 Stackelberg Game Framework for CHP
and NOP

Subsection 4.1 and Subsection 4.2 introduce the

MDPs of CHP and NOP, which are the two partici-

pants of the developed game framework. In this sub-

section, we present the details of how to construct the

Stackelberg game framework in aerial-terrestrial WSN

data collection tasks. The Stackelberg game framework

provides an interaction scheme for connecting the CHP

and the NOP, which aims at finding the optimal energy

conservation path to reduce the data collection cost.

1) Nash Equilibrium Between the CHP and the

NOP. In this work, we consider that the policy π∗C =

{π∗c1 , π
∗
c2 , ..., π

∗
cK} of the CHP and π∗N of the NOP

achieve the Nash equilibrium if no partner has obvi-

ous changes from the current status at the same time.

It means that the CHP optimizes its object function in

which the NOP’s current optimal policy is regarded as

the condition defined in (13).

∀i : fci
(
π∗ci , π

∗
N

)
> fci (πci , π

∗
N) , ∀πci ∈ ΠC, (13)

where fci is the utility function of the i-th cluster, and

ΠC is the strategy space of the CHP. The NOP opti-

mizes its object function based on the optimal policy of

the CHP defined in (14).

fN (π∗N, π
∗
C) > fN (πN, π

∗
C) , ∀πN ∈ ΠN, (14)

where fN is the utility function, and ΠN is the strategy

space of the NOP. In this work, if the utility changes

of each partner fluctuate within a small and accept-

able range, it can be considered that the game process

achieves the Nash equilibrium.

2) Game Framework. This work develops a game-

based DRL framework that contains two parts: the

CHP and the NOP, which influence each other during

the training phases. The interactive learning frame-

work based on the Stackelberg game theory is shown in

Fig.2. It presents that the CHP evaluates the energy

consumption by obtaining the flight order list generated

from the NOP to find the optimal sink nodes. The NOP

regards the flight order list obtained from the CHP as

the constant when planning the optimal path. After the

stable convergence of the CHP, the NOP will evaluate

the cost of data collection with fixed coordinates of the

sink nodes set, which is outputted from the CHP. Af-

ter the game process achieves the Nash equilibrium, the

CHP will obtain the optimized result of cluster heads,

and the NOP will output the energy-conserved path for

the UAV.

3) Training Process. In the beginning, both partners

of the game framework stay at their initial states, and

none of them can produce convergent solutions. The

game framework first constructs the neural networks

for the CHP as the action executors for all clusters and

randomly generates the path as the input of the CHP.

The actions executor of the NOP is also constructed

with a neural network. Then, the CHP updates its

parameters until convergence (i.e., the optimizing result

changes are not obvious after several epochs). After the

convergence, the network of each cluster will produce

a set with sink nodes as the navigation. By receiving

the sink nodes set from the CHP, the NOP updates its

parameters of the executor and produces the clusters’

visitation order list. The CHP accepts the order list and

starts new episodes for training. The policy of choosing

actions employed in the training phases is the annealed
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Navigation Order Processor
Cluster Head Processor

Until Nash Equilibrium

Cluster Head List

Repeat

Utility

RL Network

RL Network

Navigation Points

Trajectory

Fig.2. Game framework of the CHP and the NOP. The CHP is used to produce the sink nodes set, which depends on the input of
the navigation order list generated by the NOP. The NOP evaluates the visiting order with fixed coordinates of sink nodes outputted
from the CHP. This process is executed continuously until the Nash equilibrium.

ε-greedy policy. An illustrative example of presenting

the possibility of random actions is shown in Fig.3.

P
ro

b
a
b
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it
y

Number of Epochs (Τ103)

0 2 41 3
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Fig.3. Example of annealed epsilon with 4 000 epochs. The an-
nealed ε-greedy policy means that the agent randomly chooses
actions with the probabilistic εt at each time step, and εt dimin-
ishes gradually. After each episode εt will be enhanced to a new
value εt+1 < εt+1.

5 Simulation and Experimental Results

This section first describes the experimental set-

tings we employed, including the baseline approaches,

parameter settings and the policy for choosing actions.

Then, this section introduces the numerical results to

analyze the advancement of our method.

5.1 Experimental Settings

1) Baseline Approaches. In this paper, we em-

ploy the central cluster heads of WSN as navigation

with two typical DRL methods, DQN [31] and Dueling

network [37], as the baseline path planning approaches.

DQN is a typical value-based DRL method that em-

ploys the deep neural network as the action controller,

which relies on the TD error obtained from the offline

datasets to update the parameters. The Dueling net-

work is an updated value-based DRL approach, and its

improved network structure can evaluate both actions

and status. Specifically, we use the central node in a

cluster as the sink node and perform the UAV plan-

ning, named DQN and Dueling network for simple il-

lustration, respectively. At the same time, G-F DQN

is the developed DQN with the game framework, and

G-F Dueling is the developed Dueling network with the

game framework.

2) Parameter Settings. This work conducts the data

collection tasks in an open area with the size of 7× 20

(×105) m2, and there are 200 sensors deployed in this

open area. These sensors have been classified into 20

clusters, each containing 10 sensors separately. An il-

lustrative example is shown in Fig.4. The experimental

parameters employed in this paper are shown in Ta-

ble 1, which includes the settings of G-F DQN and G-

F Dueling. ε is the initial probability that the agent

chooses actions from the network. εdis is the discount

factor of ε. MC is the memory capacity that is the

maximum amount of data in the experience pool. NI

is the frequent interval for updating the target net. γ

presents the learning discount factor. LR indicates the

learning rate. BS is the batch size of data used to train

the model in each learning step.

3) Action Selecting Policy. We use the annealed

ε-greedy as the policy for all experiments to choose ac-

tions for the CHP and the NOP. Fig. 3 describes an
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Fig.4. Example of initial sensors distribution and the cluster heads. (a) Distribution of the initial sensors. (b) Sink heads chosen
result.

Table 1. Parameter Settings of G-F DQN and G-F Dueling

Parameter ε εdisCHP εdisNOP MCCHP MCNOP NI γ LRCHP LRNOP (×10−3) BSCHP BSNOP

G-F DQN 0.9 1.000 027 1.000 14 1 000 3 000 500 0.9 0.001 4, 4, 0.04 256 512

G-F Dueling 0.9 1.000 027 1.000 14 1 000 3 000 500 0.9 0.001 10, 2, 0.4 256 512

illustrative example of epsilon changing. As shown

in Fig. 3, the initial value of the epsilon is 0.1. It

means that the agent chooses actions randomly with

the probability of 0.1 and chooses actions that rely on

the neural network with the possibility of 0.9. The

value decreases with a linear function, and after a fixed

amount of epochs, the epsilon will be initiated with a

lower value. ε decreases to 0 after 4 000 epochs, which

means the executor acquires all actions according to

the neural network’s output at the 4 000 epochs. This

mechanism ensures that the agents can break the lo-

cal optimization by more chances and stay at a stable

learning status at the end of the training.

5.2 Numerical Results

In this subsection, we employ extensive experiments

to validate the improvement of the developed game-

frame DRL method. Specifically, the compared algo-

rithms with different learning rates are used to prove

the advancement and generalization of the proposed

DRL game-frame method.

1) Effect of the CHP. Fig.5 records the energy con-

sumption changes with the iteration of the CHP. It

shows that energy consumption is reduced with the en-

hancement of training epochs. In the first stage, the al-

gorithm chooses the random path for the CHP, whereof

the energy consumption remains at a high level. After

the NOP finds a better path, the energy consumption

reduces sharply and decreases continuously in the fol-

lowing phases. It is proved that the interaction with the

NOP could enable the CHP to find better sink nodes

for all clusters.

2) Data Collection Cost Analysis on G-F DQN.

The results shown in Fig.6(a), Fig.6(b), and Fig.6(c)

present the energy-conservation performance compa-

rison for the developed G-F DQN with DQN. As we

can see, G-F DQN presents the best performance in

all situations compared with DQN. More specifically,

the energy of both G-F DQN and DQN reduces with

the increasing number of epochs, but the G-F DQN

presents a better convergence. Training with larger

learning rates enables the algorithms to converge faster,

and G-F DQN remains at a lower energy consumption

level all the time. To present more convincing details

for proving the performance-enhancing of the developed

framework, we employ the comparison of the average

cases and the best cases shown in Table 2. Table 2

shows that compared with benchmark methods, the en-

ergy conservation based on our method can conserve at

least 17.58% of energy and can save 38.01% of energy

in the best case.

3) Data Collection Cost Analysis on G-F Dueling.

In this subsection, we employ three types of experi-

ments with different learning rates to validate the ad-

vancement of the developed G-F Dueling. Fig. 6(d),

Fig. 6(e), and Fig. 6(f) present the numerical results

that the G-F Dueling can provide solutions with more

energy-conservation than the Dueling network. The nu-

merical results show that training with a larger learning

rate enables the algorithm to converge faster so that the

agent can quickly reach the local optimization. On the
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Fig.5. Data collection cost with different learning rates of the CHP. (a) G-F DQN with LRCHP of 0.001 and LRNOP of 0.004. (b)
G-F DQN with LRCHP of 0.001 and LRNOP of 0.000 4. (c) G-F DQN with LRCHP of 0.001 and LRNOP of 0.000 04. (d) G-F Dueling
with LRCHP of 0.001 and LRNOP of 0.01. (e) G-F Dueling with LRCHP of 0.001 and LRNOP of 0.002. (f) G-F Dueling with LRCHP

of 0.001 and LRNOP of 0.000 4.
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Fig.6. Data collection cost comparison with different learning rates of the NOP. (a) G-F DQN with LRCHP of 0.001 and LRNOP of
0.004. (b) G-F DQN with LRCHP of 0.001 and LRNOP of 0.000 4. (c) G-F DQN with LRCHP of 0.001 and LRNOP of 0.000 04. (d)
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with LRCHP of 0.001 and LRNOP of 0.000 4.

contrary, a smaller learning rate experiment shows a

fluctuating trend and can hardly achieve a stable sta-

tus. For both situations, G-F Dueling shows the best

convergence of energy conservation. Table 3 presents
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Table 2. Energy Conservation Comparison of G-F DQN

Learning Rate Average Energy Consumption (×105) Best Energy Consumption (×105)

DQN G-F DQN (Ours) Energy Conserving (%) DQN G-F DQN (Ours) Energy Conserving (%)

0.004 1.89 ± 0.09 1.53 ± 0.09 20.03 1.68 ± 0.04 1.23 ± 0.03 22.69

0.000 4 1.91 ± 0.08 1.58 ± 0.13 17.58 1.69 ± 0.06 1.31 ± 0.04 22.18

0.000 04 2.87 ± 0.41 1.78 ± 0.14 38.01 2.25 ± 0.14 1.55 ± 0.06 31.10

Table 3. Energy Consumption Comparison of G-F Dueling

Learning Average Energy Consumption (×105) Best Energy Consumption (×105)

Rate Dueling G-F Dueling Energy Dueling G-F Dueling Energy
Network (Ours) Conserving (%) Network (Ours) Conserving (%)

0.01 1.86 ± 0.19 1.48 ± 0.09 20.43 1.71 ± 0.01 1.28 ± 0.04 24.82

0.002 1.98 ± 0.19 1.51 ± 0.11 23.81 1.76 ± 0.04 1.31 ± 0.06 25.61

0.000 4 2.02 ± 0.11 1.63 ± 0.09 19.11 1.78 ± 0.06 1.33 ± 0.05 25.38

the average and the best energy-conservation compa-

rison results. It can be seen from Table 3 that better

solutions in all cases come from the experiment with

G-F Dueling. Specifically, the G-F Dueling can con-

serve energy of 19.11%–25.61% more than the Dueling

network.

6 Conclusions

This paper developed a DRL-based game framework

with two parts, the CHP and the NOP, to find the sink

nodes of the clustered WSN, and optimized trajectories

for UAV-enabled data delivery. The CHP was utilized

to determine the cluster heads instead of directly us-

ing the central nodes as the navigation points. The

NOP was employed to find the optimized trajectories

for the UAV. Moreover, the developed game framework

provides an interactive pattern for the CHP and the

NOP and gets the optimized solution when the partners

achieve the Nash equilibrium. The numerical results

showed that the developed method could provide lower-

cost data collection solutions. More specifically, com-

pared with the benchmark methods, the DRL methods

with a game framework could enable the UAV to save

more than 17.58% of energy and save 38% of energy

in the best cases. It is suggested that the developed

game framework, with its advancement, could allow a

UAV to reduce the overestimation and find a better

energy conservation path for open area data delivery.

In the future, we will further analyze the feasibility of

the DRL-based game framework with three partners,

including sensor clustering, sink node finding, and path

processing.
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