
 

Research on General-Purpose Brain-Inspired Computing Systems

Peng Qu1, † (渠　鹏), Xing-Long Ji2, † (纪兴龙), Jia-Jie Chen1, † (陈嘉杰), Meng Pang1, † (庞　猛)
Yu-Chen Li1, † (李宇晨), Xiao-Yi Liu1, † (刘晓义), and You-Hui Zhang1, * (张悠慧), Senior Member, CCF

1 Department of Computer Science and Technology, Tsinghua University, Beijing 100084, China
2 Department of Precision Instrument, Tsinghua University, Beijing 100084, China

E-mail: qp2018@mail.tsinghua.edu.cn; xinglongji@mail.tsinghua.edu.cn; cjj21@mails.tsinghua.edu.cn
pangm20@mails.tsinghua.edu.cn; liyuchen20@mails.tsinghua.edu.cn; xiaoyi-l17@mails.tsinghua.edu.cn
zyh02@tsinghua.edu.cn

Received December 3, 2023; accepted January 5, 2024.

Abstract    Brain-inspired computing is a new technology that draws on the principles of brain science and is oriented to

the efficient development of artificial general intelligence (AGI), and a brain-inspired computing system is a hierarchical

system composed of neuromorphic chips, basic software and hardware, and algorithms/applications that embody this tech-

nology. While the system is developing rapidly, it faces various challenges and opportunities brought by interdisciplinary

research, including the issue of software and hardware fragmentation. This paper analyzes the status quo of brain-inspired

computing systems. Enlightened by some design principle and methodology of general-purpose computers, it is proposed to

construct “general-purpose” brain-inspired computing systems. A general-purpose brain-inspired computing system refers

to a brain-inspired computing hierarchy constructed based on the design philosophy of decoupling software and hardware,

which can flexibly support various brain-inspired computing applications and neuromorphic chips with different architec-

tures. Further, this paper introduces our recent work in these aspects, including the ANN (artificial neural network)/SNN

(spiking neural network) development tools, the hardware agnostic compilation infrastructure, and the chip micro-archi-

tecture with high flexibility of programming and high performance; these studies show that the “general-purpose” system

can remarkably improve the efficiency of application development and enhance the productivity of basic software, thereby

being conductive to accelerating the advancement of various brain-inspired algorithms and applications. We believe that

this is the key to the collaborative research and development, and the evolution of applications, basic software and chips in

this field, and conducive to building a favorable software/hardware ecosystem of brain-inspired computing.
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1    Introduction

Brain-inspired  computing  refers  to  computational

theories,  computer  architectures,  and  application

models/algorithms that draw on the information pro-

cessing  mode  and/or  structure  of  the  biological  ner-

vous  system.  Its  system  architecture  is  one  of  the

heading  directions  of  computer  architecture  in  the

post-Moore era[1, 2].

Neuromorphic  chips  are  the  kernel  of  a  brain-in-

spired  computing  system,  which  is  structurally  in-

spired by the brain organization,  and efficiently  sup-
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ports  spiking  neural  networks[3] (SNNs;  the  main-

stream  form  of  the  brain-inspired  neural  network  at

present) in the computing paradigm, in order to break

through the bottleneck of traditional computer archi-

tecture for higher computing efficiency.

The  basic  software  of  brain-inspired  computing

(hereinafter  referred  to  as  brain-inspired  software  in

abbreviation)[4] is  the intermediate layer that bridges

the development requirements of applications and the

computing capability of chips. Specifically, it not on-

ly meets  the needs of  various applications in this  in-

terdisciplinary field by providing flexible and friendly

development interface, but also efficiently drives vari-

ous  hardware  back-ends,  through  compilation,  re-

source scheduling and mapping. Basic software is crit-

ically  important  for  building  the  ecosystem of  brain-

inspired computing.

Countries around the world have fully recognized

the importance of brain science and brain-inspired re-

search.  The  United  States,  the  European  Union,

Japan, Canada, Australia, and South Korea have car-

ried  out  relevant  research  respectively.  In  China,

“Brain  and  Brain-Inspired  Research” (China  Brain

Project)  is  included  in  the “Science  and  Technology

Innovation 2030 Major Projects” and the “New Gen-

eration  of  Artificial  Intelligence  Development  Plan"

(Fig.1).

The study on brain-inspired computing systems is

a typical interdisciplinary research. Neuroscience, ma-

terials  science,  electronics/microelectronics,  computer

science and technology, etc. have made unique contri-

butions:  the  computational  needs  and  inspiration  of

neuroscience[5] are  the  source  of  progress,  neuromor-

phic devices/circuits drive the development of neuro-

morphic chips with high energy-efficiency, and the in-

tegration of deep learning and SNN has greatly accel-

erated the real applications.

Thus, the following contents analyze the progress

trends  from  multiple  perspectives,  including  neuro-

morphic chips and learning algorithms, as well as the

computational  neuroscience,  and  then  condenses  the

opportunities  and  challenges  faced.  In  response  to

these issues, we have drawn methodological enlighten-

ment  from  general-purpose  computers  and  proposed

to construct “general-purpose” brain-inspired comput-

ing  systems.  We  also  introduce  our  series  of  work

from this aspect, including the ANN (artificial neural

network)/SNN (spiking neural  network) development

tools,  the  hardware  agnostic  compilation  infrastruc-

ture, and the chip designs. 

2    Status  Quo  of  Brain-Inspired  Computing

Systems
 

2.1    Diversity of Neuromorphic Chips

Traditional  computing  hardware,  such  as  CPUs

and GPGPUs, often fails to fully utilize the potential

energy efficiency or computation density of neuromor-

phic  computations.  In  contrast,  neuromorphic  chips

are  optimized  for  executing  SNNs  and  other  neuro-

morphic  workloads.  Their  architectures  differ  vastly,

ranging  from  the  traditional  von  Neumann  architec-

ture  to  emerging  neuromorphic  architectures,  and

provide different programming interfaces and/or func-

tional primitives.

● Neuromorphic chips of the von Neumann archi-

tecture often start with existing general purpose pro-

cessors,  and  augment  them  with  custom  functional

units  for  SNNs.  One  typical  case  is  SpiNNaker[6].  It

uses  CMP (chip multi-processor)  composed of  ARM-

cores  as  the  baseline  architecture,  which  is  equipped

with  customized  NoC  (network  on  chip)  to  achieve
 

1990 2008 2013 2014 2021

 

Proposal of
Neuromorphic
Computing

DARPA 
SyNAPSE 
Project
by USA

Human Brain 
Project
(HBP) by EU 

IBM's Neuromorphic
Chip, TrueNorth   

China Brain Project 
Formulated as a 15-Year Plan
(2016-2030)

Brain and Brain-
Inspired Research
(China Brain
Project) Launched

Brain Mapping by 
Integrated 
Neurotechnologies 
for Disease Studies
(Brain/MINDS)
by Japan

Australian Brain 
Alliance Initiative

 

Brain Canada
Foundation 

2011 2016

Brain Research
Through
Advancing
Innovative
Neurotechnologies
(BRAIN) Initiative
by USA

Korean Brain Initiative

Fig.1.  Timeline of brain and brain-inspired research supported by countries around the world.
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the  efficient  SNN  computation  with  an  event-driven

programming  model.  As  the  main-body  of  computa-

tion is completed by software, it is easier to support a

variety  of  SNN  applications.  The  second  generation

SpiNNaker chip[7] is still based on ARM cores and the

custom  NoC.  It  uses  several  techniques  to  improve

the  energy  efficiency,  including  near-threshold  opera-

tion  and dynamic  voltage-and-frequency  scaling.  The

architectural enhancements also include some acceler-

ators for DNN (deep neural network) processing.

● Emerging  neuromorphic  architectures  usually

take  a  more  aggressive  approach  by  directly  achiev-

ing synaptic processing and/or neuronal computation

at the level of circuits (analog/digital).

For example, some[8–10] fully utilize ReRAM-based

circuits to complete the vector matrix multiplications

(the main body of synaptic computing) in analog, and

some[11, 12] further use the dynamic properties of non-

volatile  memory  to  complete  the  more  complex  dy-

namics  of  neural  networks,  like  the  STDP  rule[13].

Some digital chips, like TrueNorth[14], have dedicated

neurosynaptic  cores  to  achieve  synaptic  processing

and  neuronal  computation.  In  addition,  TrueNorth

employs  asynchronous-synchronous-hybrid  circuits  to

fully exploit the asynchronous nature of SNNs. Brain-

drop[15] is an analog-digital-mixed neuromorphic chip,

with  subthreshold-analog  and  asynchronous-digital

circuits. It is characterized by being programmed at a

high level.

Moreover, some chips try to provide more flexible

programming  while  ensuring  high  performance.  For

example,  Intel’s  Loihi[16] is  an  asynchronous  neuro-

morphic  chip  that  supports  synaptic  plasticity.  Each

chip  contains  128  neuromorphic  cores  for  SNN  pro-

cessing,  three  x86  cores  for  control,  and  an  asyn-

chronous  network-on-chip  for  massage  transmission.

It also provides the Loihi toolchain[17] with a friendly

programming  interface.  GaBAN[18] utilizes  a  control-

flow/data-flow hybrid architecture. It provides an in-

struction  set  tailored  to  neuromorphic  computation

for  friendly  programming,  as  well  as  a  hardware

scheduler  to  improve  the  efficiency  of  irregular  data

access in SNN computation.

● Most chips come with their  own toolchain,  fol-

lowing the software and hardware coupled methodolo-

gy. The toolchain includes a compiler or a mapper to

convert an SNN program into the executable to drive

the  chip,  and/or  some  runtime  libraries  to  provide

high-level APIs for programming. Usually, a toolchain

is only designed for the target chip, that is, the devel-

opment  interface  and  intermediate  representations  of

the toolchain are bound to the target[17, 19]. While this

methodology  brings  high  performance  to  the  target

applications,  it  impairs  the  programming  efficiency

and  portability,  and  increases  the  development  diffi-

culty of new toolchain.

Despite  different  architectures,  some  emerging

chips  show the  common characteristics  of  supporting

the hybrid of SNN and DNN.

The second generation of Tianjic[20, 21] initially us-

es a unified processing architecture to support SNNs,

biological dynamic neural networks, multilayered per-

ceptron,  convolutional  neural  networks  (CNNs),  and

recurrent neural networks (RNNs) efficiently, through

multiple  integration  and  transformation  operations.

SpiNNaker 2’s architectural enhancements include the

acceleration  for  DNN  processing.  Loihi  2[22]'s  exten-

sions① in  this  regard  include  two  main  points,  the

generalized  event-based  messaging  and  the  enhanced

learning  capabilities.  The  former  permits  spikes  to

carry  integer-valued  payloads  (while  Loihi  originally

supported  only  binary-valued  spike)  to  provide

greater  numerical  precision.  The  latter  provides  sup-

port for many neuro-inspired learning algorithms, in-

cluding approximations of the error back-propagation

algorithm (the essential of deep learning). 

2.2    Refinement of Computational

Neuroscience

The neuroscience community has accumulated ex-

tensive  experimental  data  across  a  wide  range  of

scales, from sub-cellular structures and neurons to cir-

cuits  and networks.  This wealth of  data has inspired

the  research  interest  of  biological  neural  network

models, aiming to unveil the functional mechanisms of

nervous  systems  at  multiple  scales.  Contrary  to  the

prevailing trend in the domain of deep learning, which

tends to simplify the biological neurons as an elemen-

tary point,  experimental  results  show that a detailed

neuron  model  has  complex  internal  structures  and

functionalities,  and  it  is  able  to  learn  to  undertake

complex tasks.

The  detailed  neuron  model  introduces  more  bio-

logical  authenticities,  such  as  dendritic  tree  and iron

channels.  Moreover,  in  contrary  to  the  simulation  of

6 J. Comput. Sci. & Technol., Jan. 2024, Vol.39, No.1

 

①https://www.intel.com/content/www/us/en/research/neuromorphic-computing-loihi-2-technology-brief.html, Jan. 2024.

https://www.intel.com/content/www/us/en/research/neuromorphic-computing-loihi-2-technology-brief.html
https://www.intel.com/content/www/us/en/research/neuromorphic-computing-loihi-2-technology-brief.html
https://www.intel.com/content/www/us/en/research/neuromorphic-computing-loihi-2-technology-brief.html
https://www.intel.com/content/www/us/en/research/neuromorphic-computing-loihi-2-technology-brief.html
https://www.intel.com/content/www/us/en/research/neuromorphic-computing-loihi-2-technology-brief.html
https://www.intel.com/content/www/us/en/research/neuromorphic-computing-loihi-2-technology-brief.html
https://www.intel.com/content/www/us/en/research/neuromorphic-computing-loihi-2-technology-brief.html
https://www.intel.com/content/www/us/en/research/neuromorphic-computing-loihi-2-technology-brief.html
https://www.intel.com/content/www/us/en/research/neuromorphic-computing-loihi-2-technology-brief.html
https://www.intel.com/content/www/us/en/research/neuromorphic-computing-loihi-2-technology-brief.html
https://www.intel.com/content/www/us/en/research/neuromorphic-computing-loihi-2-technology-brief.html


point models  which only needs to solve a few simple

ordinary  differential  equations  (ODEs),  the  simula-

tion of detailed models must solve a linear system of

equations. In the detailed neuron model, the dendrit-

ic tree is decomposed as a series of short cylindric ca-

bles, and the circuit diagram of each piece of cable is

modeled  through  the  general  cable  equation  and  its

extensions.  These  equations,  together  with the corre-

sponding  dynamic  equations  of  non-linear  ion  chan-

nels,  constitute  the  linear  system  of  equations  that

needs to be solved.

As  the  detailed  neuron  models  a  complex  system

of dendritic tree, iron channels, and the soma, it pro-

vides  considerable  functionality  and  computational

power. Research work[23] shows that the computation-

al  capability  of  detailed  neurons  is  comparable  to  a

5–8 layers deep neural network. This advantage of de-

tailed models has attracted widespread research inter-

est,  from  high-performance  simulation  frameworks[24]

to efficient learning algorithms[25]. 

2.3    SNN/ANN Hybrid

Besides the trend of mutual influence and gradual

integration  between  SNNs  and  ANNs  at  the  hard-

ware  level,  many  training  algorithms  for  SNNs  are

drawing  inspiration  from  the  gradient  descent  algo-

rithm  employed  by  ANNs.  These  algorithms  can  be

divided into four categories.

● ANN-to-SNN Conversion. Training a deep spik-

ing  neural  network,  which  involves  the  learning  of

synaptic  weights,  poses  significant  challenges.  An  al-

ternative  strategy  is  to  transform  a  pre-trained  neu-

ral  network  into  an  SNN.  The  initial  network  is  re-

ferred  to  as  an  ANN  due  to  its  real-valued  activa-

tions,  which  represent  spike  rates.  After  the  conver-

sion, the original weights are retained, while the ana-

log  (rate)  neurons  of  the  ANN  are  substituted  with

integrate-and-fire  (IF)  spiking  neurons.  This  ap-

proach is effective: throughout the simulation, the av-

erage firing rate of the spiking neurons gradually ap-

proximates  the  activation  of  the  corresponding  neu-

rons in the original ANN. Extensive efforts[26–28] have

been made to explore diverse methods for accomplish-

ing this conversion efficiently, thereby facilitating the

training of progressively larger SNNs.

● Training ANNs with SNNs' Constraints. DNNs

have attained exceptional success across various tasks.

This achievement implies that these models may pro-

vide  valuable  insights  into  human  problem-solving

processes. Consequently, substantial efforts have been

directed  towards  increasing  the  biological  realism  of

DNNs by  introducing  neural “spiking”.  In  pursuit  of

this goal, some researchers[29] have explored the use of

softened leaky integrate-and-fire (LIF) models,  which

involves  the  utilization  of  continuous  bounded gradi-

ents  achieved  by  smoothing  activation  thresholds.

This approach aims to replicate the spiking behavior

of SNNs within ANNs.

● Direct  Training  SNNs  with  Surrogate  Gradi-
ents. Because SNNs use spikes for signaling, this mod-

el inherently lacks gradients at the neuron level. As a

result,  it  does  not  naturally  accommodate  the  direct

application  of  the  gradient  descent  method common-

ly employed in ANNs. To address this challenge, some

researchers have introduced surrogate gradients at the

neuron  level  to  ensure  the  entire  network  differen-

tiable[30, 31]. This approach enables SNNs to be direct-

ly  trained  within  the  frameworks  of  ANNs,  such  as

PyTorch[32] and  TensorFlow[33].  Furthermore,  cus-

tomized gradients can incorporate specific features of

SNNs,  such  as  time  coding  and  rate  coding,  enhanc-

ing their adaptability and expressiveness[34].

● Hybrid  Usage  of  SNNs  and  ANNs. Different

from drawing inspiration from ANNs to SNNs (or vice

versa),  another  promising  way  is  to  design  hybrid

neural  networks  (HNNs)  by  integrating  SNNs  and

ANNs to leverage both strengths. Some researches[35–37]

have proposed to employ some features of ANNs and

SNNs to solve given intelligent tasks. Recent work[38]

proposes a framework to support the construction and

processing  of  HNNs  at  multiple  scales  and  multiple

domains  by  separating  ANNs  and  SNNs  and  then

combining them through specific interfaces. The inter-

faces  are  designable  and  learnable.  Demonstrations

have  shown  that  this  research  can  achieve  cross-

paradigm modeling for a variety of intelligent tasks.

At the same time, SNN is being gradually applied

to  non-AI/non-nervous-system-simulation  applica-

tions,  including  scientific  computing,  signal  process-

ing,  multi-class  optimization  problems,  etc.,  making

applications further diversified. 

2.4    New Challenges

Based on the above analysis, the challenges faced

by  brain-inspired  computing  systems  come  from  two

aspects.

First,  the  chip  micro-architectures  span  largely,

with  the  diversity  of  hardware  primitives  and  con-
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straints,  while  the  software  toolchain  is  basically

bound to the target chip, which increases the difficul-

ty of programming/porting applications and the diffi-

culty of basic software development.

Second,  now  brain-inspired  applications  include

not only brain simulation and intelligent applications

but  also  some  common  applications.  Thus,  the  re-

quirements for computing accuracy and flexibility, as

well as learning algorithms, are getting higher, which

are given as follows:

● Computational  Refinement. Multi-precision cal-

culation and flexible modeling are needed to meet the

requirement of multi-scale and multi-dimensional ner-

vous system simulation.

● Broad Spectrum of Learning Algorithms. There

are  multiple  algorithms  with  different  biological  au-

thenticities,  as  well  as  the  SNN/DNN  hybrid  algo-

rithms.

Accordingly,  the  applications  have  different  com-

putational characteristics from DNNs, including com-

puting sparsity and the poor scale-out feature. For ex-

ample, the firing rate of a biological neuron is usually

no  more  than  100  Hz,  or  even  only  a  few  hertz  or

less[39], while a time step within the numerical simula-

tion is usually 0.1 milliseconds. So the percent of neu-

rons that fire in a time step does not exceed 1%, and

the distribution can be  regarded as  random. Accord-

ingly, because the communication between neurons is

sparse and irregular, and the SNN simulation usually

adopts  time-step  synchronization,  the  scale  out  of

SNNs (Fig.2) is poor[40].
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There is ongoing work to address these challenges.

In view of the fragmentation of software toolchain,

the Lava② framework released by Intel at the end of

2021 abstracts SNN applications into computing mod-

els of CSP (communication sequence process). Lava is

intended as a cross-platform development framework.

Currently, it provides the runtime libraries that sup-

port CPU/GPU and Loihi chips.

For  the  efficient  SNN development  with  multiple

learning  algorithms,  Spikingjelly[41] was  proposed.  It

modifies  PyTorch[32] to  achieve  parallel  computation

acceleration for training and inference of  deep SNNs,

while providing friendly development interfaces.

Another recent work is DeepDendrite[24], which in-

tegrates  a  high-performance  simulation  algorithm  of

biophysically  detailed  compartment  models  and  the

NEURON[42] simulator  (a  widely-used biological  neu-

ral  network  simulation  tool).  DeepDendrite  demon-

strates  its  applications  in  neuroscience  tasks  and the

potential to enable the efficient training for AI tasks,

that is, to bridge AI tasks and the compartment mod-

els. 

3    Design Methodology of General Purpose

Computers and Enlightenment

The  problem  that  brain-inspired  computing  sys-

tems face is  the fragmentation of  software and hard-

ware.  The  root  cause  is  that  current  computing  sys-

tems  are  mostly  developed  around  their  respective

target chips,  and the design of  the interface between

each layer of the system is bound to the target chip.

Although  this  design  principle  will  improve  the  effi-

ciency of targeted applications, it increases the devel-

opment  difficulty  of  other  common  applications,  im-

pairs  portability,  and  even  fails  to  meet  the  need  of

some applications.

Accordingly, we draw experience from several de-

sign  methodologies  of  general-purpose  computers,  to

develop “general-purpose” basic  brain-inspired  soft-

ware and hardware. 

3.1    Computational Completeness

Alan  Turing  proposed  an  ideal  computational

model consisting of an infinitely long paper tape and

a read/write head. This simple and intuitive model is

Turing Machine[43]. Based on the Turing machine, an

important concept was introduced—Turing complete-

ness.  If  a  computing  system  can  simulate  a  Turing

8 J. Comput. Sci. & Technol., Jan. 2024, Vol.39, No.1
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machine, the system is Turing-complete. Any general-

purpose  programming  language  can  be  used  to  write

arbitrary  algorithms  as  long  as  it  satisfies  Turing-

completeness.  Similarly,  if  any  hardware  is  Turing-

complete, it can simulate the execution of any gener-

al-purpose programming language.

Further, the hardware abstraction of the von Neu-

mann architecture is called the Instruction Set Archi-

tecture  (ISA),  which  is  similar  to  a  general-purpose

Turing machine and is more flexible and efficient. For

general-purpose  CPUs,  ISA  decouples  hardware  im-

plementation  from  software.  Thus,  hardware  engi-

neers can focus on the efficient micro-architecture im-

plementation  of  ISA.  At  the  same  time,  high-level

programming  languages  conceal  hardware  details  of

ISA,  making  software  development  much  more  effi-

cient.  To  some extent,  this  also  implies  the  meaning

of  general-purpose  computing,  that  is,  software  and

hardware  can  be  developed  independently  and  effi-

ciently while compatible with each other.

Meanwhile,  the  research  community  of  brain-in-

spired computing has envisioned that “as these hard-

ware-specific interfaces begin to stabilize…”[44],  while

the  implication  we  get  from the  field  of  general-pur-

pose computer is that the premise of interface stabili-

ty is a reasonable hardware abstraction and the defi-

nite  capability  boundary.  Accordingly,  our  prelimi-

nary  work[45] proposed  the  theory  of  neuromorphic

completeness,  which  combines  Turing  completeness

with  the  universal  approximation  theorem  and  then

allows any Turing-computable  application to be con-

verted  to  a  non-exact  equivalence  on  neuromorphic

hardware  with controllable  accuracy loss.  To be  spe-

cific,  general-purpose  computers  regard “computa-

tion” as  a  precise  and  concrete  operational  process,

while  we  view “computation” as  a  combination  of

“memory” and  the  traditional  computation  (where

“memory” refers to specific means such as neural net-

work fitting, lookup table implementation of transcen-

dental functions, and underlying logical functions im-

plemented  by  lookup  tables  within  FPGA;  the  com-

monality  is  that  a  large  amount  of  storage  resources

are needed to store relevant parameters for fitting).

This  work  thereby  theoretically  makes  it  feasible

to design a brain-inspired system for  general-purpose

computing applications, based on the principle of soft-

ware and hardware decoupling. Fig.3 shows the corre-

spondence  between  Turing  completeness  and  neuro-

morphic  completeness.  Another  benefit  is  that  it  in-

creases the space for system design and optimization.

Simply put,  for  a target application,  the best  combi-

nation  of “precise  computation” and “memory”
should be found, which can guide the optimization of

basic software and chip architecture. 

3.2    Compilation Infrastructure

In  addition  to  separating  software  and  hardware

by  ISA,  high-level  programming  languages  further

separate  algorithms  from  specific  hardware  instruc-

tions,  and  compilers  complete  the  conversion  from

programs in  high-level  languages  to  machine  instruc-

tions.  This  design  ensures  that  software  applications

and  hardware  chips  can  progress  independently:  ex-

perts of software/algorithms can develop applications

without  understanding  hardware  details,  while  chip

architects also do not need to be proficient in specific
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algorithms for various application areas③.

It  should be pointed out that the design of  mod-

ern compilers themselves also reflects the hierarchical

and  SW  (software)/HW  (hardware)  decoupled  char-

acteristics. Taking LLVM[46] as an example, LLVM is

a  modular  and  reusable  compiler  infrastructure  that

supports  multiple  front-ends  (high-level  languages)

and  back-ends  (general-purpose  processors).  Specifi-

cally,  LLVM converts  the language code into the in-

termediate  code  as  an  intermediate  representation

(IR),  which  can  be  converted  into  machine  code  for

any supported hardware architecture (Fig.4). The IR

is  independent  of  the  source  and  target  languages,

which  looks  like  the  assembly  but  offers  richer  type

annotations  and  user-friendly  syntax.  This  design

methodology  greatly  reduces  the  cost  of  developing

compilers, as the infrastructure’s IR, language conver-

sion  processes,  and  optimization  techniques  can  be

reused.

One  of  LLVM's  latest  extension  efforts  is

MLIR[47]. MLIR is a compilation infrastructure for the

problem of fragmentation, which helps improve the ef-

ficiency  of  building  domain-specific  compilers  with

lower cost. It provides a specification for IRs and of-

fers  a  framework  to  do  the  progressive  lowering  of

IRs. One of its features is partial lowering, that is, in

the  lowering  path  it  supports  mixing  different  levels

of abstraction and concepts in the same layer. MLIR

intends to solve a similar problem to that the brain-

inspired computing is facing, that is, to efficiently de-

sign  the  compiler  for  DSA (domain  specific  architec-

ture). Thus, we can make full use of the compilation

resources  of  traditional  computing  systems  to  solve

the fragmentation problem in the brain-inspired field. 

3.3    Reduced  Instruction  Set  Computer

(RISC)

The principle of Reduced Instruction Set Comput-

er (RISC) had an important impact on the design of

modern  computer  processors.  It  further  clarifies  the

focus  of  different  layers  of  the  entire  computer  sys-

tem  hierarchy:  ISA  is  mainly  oriented  to  hardware,

focused on streamlined and efficient  hardware  imple-

mentation,  while  programming  languages  are  orient-

ed  to  software  developers,  focused  on  development

flexibility  and  convenience.  The  equivalence  of  pro-

gramming languages and instruction sets can be guar-

anteed  by  Turing-completeness  theoretically,  while

the  conversion  of  them  is  achieved  by  compilation.

This hierarchical design decouples software and hard-

ware  requirements,  avoiding  the  situation  where  the

two  are  pinned  down.  RISC  has  become  an  impor-

tant  design  philosophy  for  contemporary  processors.

Professor  David  A.  Patterson  and  Professor  John  L.

Hennessy won the 2017 Turing Award for this contri-

bution.

Our  preliminary  work[48, 49] also  reflected  the  de-

sign philosophy of RISC, that is, we proposed a set of

basic primitives to realize arbitrary precision approxi-

mation of arbitrary functions (including zero-error ap-

proximation), as shown in Fig.5. These primitives are

widely  compatible  with  most  current  neuromorphic

hardware, which can obtain accurate transformations

with  high  complexity  and  approximate  transforma-

tions with low complexity. For recent work [18], espe-

cially when designing chip architectures that combine

flexible  programming  and  high  performance,  we  still

draw on this philosophy, try to provide reduced hard-

ware primitives, and leave complex functions to soft-

ware (compiler). 
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③Decoupling of hardware and software is an important design principle. In practice, software and hardware co-design is also a
widely-used method, and how to get a balance between the two is the key point.

 

④https://www.alibabacloud.com/blog/compilation-optimization-llvm-code-generation-technology-details-and-its-application-in-
databases_598408, Jan. 2024.
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4    Our Work

The research on completeness theoretically makes

feasible  the “general-purpose” brain-inspired comput-

ing system. Further,  we draw on the compilation in-

frastructure  and  the  RISC  design  philosophy  and

adopt the hierarchical and decoupling technologies to

develop “general-purpose” basic  software  and  hard-

ware.  We  have  supported  SNN  development  with

broad-spectrum  learning  algorithms,  achieved

SW/HW  decoupling  and  non-chip-specific  compila-

tion infrastructure, and designed the chip micro-archi-

tecture  with  reduced  hardware  primitives,  flexible

programming, and high performance.

Around the above principles, we have carried out

the following work. 

4.1    Framework for HNNs

HNNs  combine  SNNs  from  the  neuroscience

paradigm  with  ANNs  from  the  computer  science

paradigm, offering flexible building blocks to advance

the  development  of  Artificial  General  Intelligence

(AGI).  To  facilitate  the  systematic  construction  of

HNNs, a framework[38] was proposed for their general

design  and  computation,  as  illustrated  in Fig.6.  The

framework introduces hybrid units (HUs) as the link-

age  interface.  HUs  are  both  customizable  and  train-

able, enabling support for the transmission and modu-

lation  of  hybrid  information  flows  within  HNNs.

Building upon this foundation, diverse HNN architec-

tures  characterized  by  hybrid  serial,  parallel,  and

feedback  structures,  along  with  various  hybrid  infor-

mation flows, can be constructed. These architectures

enable the realization of advanced sensing, cognition,

and learning tasks.

As  a  representative,  the  hybrid  sensing  network

utilizes  a  parallel  structure  with diverse  transmission

paths,  enabling  multi-pathway  sensing.  This  design

allows for extra high-speed tracking capabilities while

maintaining  high  accuracy[38].  Moreover,  the  hybrid

modulation  network  adopts  a  hierarchical  feed  for-

ward  structure  and  employs  hybrid  modulation  to

achieve  multi-level  abstraction  of  task  information,

 

Input

Conv

Add

ReLU

Pooling

Conv

Add

ReLU

Conv

Add

ReLU

Conv

Add

ReLU

Concate

Output

Input

Output

CUCUCU

CU CU CU CU CU CU CU CU

CU CU CU CU CU CU CU CU

CU

CU
ReLU

Dot

(b)(a)

CU CU CU CU CU CU CU CU

CU

CU CU CU CU

CU CU CU CU

CU CU CU CU CU CU CU

Fig.5.  Different functions can be approximated by finite and basic primitives. (a) Software programming model. (b) Hardware exe-
cution model. CU: computer unit.

 

ANNs SNNs

HU

HU

HU

HU

Hybrid Transmission

Hybrid Modulation

Fig.6.   Architecture  and  information  flow  of  the  HNN  frame-
work.

Peng Qu et al.: Research on General-Purpose Brain-Inspired Computing Systems 11



which  effectively  mitigates  catastrophic  forgetting  in

continual  learning  scenarios[38].  The  hybrid  reasoning

network  implements  a  comprehensive  neuro-symbolic

system, utilizing heterogeneous transmission for inter-

pretable  and  robust  multimodal  reasoning[38].  These

innovative  architectures  contribute  to  the  advance-

ment  of  intelligent  systems  by  combining  the

strengths of different paradigms and achieving superi-

or performance in various intelligent tasks.

Several  HNNs  explore  advanced  functionalities

like  adversarial  robustness  and  the  binding  problem.

A  typical  example  is  the  hybrid  top-down  attention

network, which combines a feed forward SNN with a

feedback  ANN  to  efficiently  allocate  processing  re-

sources  towards  informative  sensory  inputs.  This  at-

tention  mechanism  achieves  remarkable  resilience

against  adversarial  noise  while  maintaining computa-

tional efficiency[50]. Additionally, an HNN inspired by

the  human  cortex  addresses  the  binding  problem

through  an  architecture  employing  an  ANN for  top-

down mean-field attention and an SNN for bottom-up

coincidence  detection.  The  HNN  produces  syn-

chronous  coding  patterns,  providing  a  biologically

plausible  solution  to  the  fundamental  binding  prob-

lem in neuroscience[51].

Moreover, in order to tackle intricate tasks and ef-

fectively orchestrate ANNs and SNNs, Hybrid Neural

State  Machine  (HNSM)[52] has  been  devised.  This

neuro-inspired state machine governs the information

flow  among  multiple  networks,  offering  encouraging

progress  in  control  logic  for  such  systems.  One  com-

pelling illustration of the HNSM's capabilities is man-

ifested  in  the  hybrid  neural  state  tracker[53],  which

leverages  this  approach  to  achieve  high-speed  track-

ing  objectives.  By  combining  ANN-based  detection

with correlation filter tracking, it demonstrates a sub-

stantial  enhancement  in  both  tracking  accuracy  and

speed.

Merits. Aiming at the trend of SNN/ANN hybrid,

the  HNN  framework  has  achieved  cross-paradigm

modeling, enabling the tackling of a wide array of in-

telligent tasks. 

4.2    Framework for Various Brain-Inspired

Learning Algorithms

The  research  on  the  training  algorithms  of  SNN

has not yet converged[54], in contrast with the well-es-

tablished gradient descent and error backpropagation

utilized  in  ANNs.  It  exhibits  diverse  approaches,  in-

cluding  those  inspired  by  DNNs  like  D-SNN,  spike-

based  backpropagation  algorithms  such  as  STBP[55],

and biomimetic unsupervised learning through synap-

tic plasticity[56]. The challenge lies in balancing biolog-

ical  authenticity  with  performance.  Existing  develop-

ment tools, like SNN simulators (NEST[57] and NEU-

RON[42],  etc.)  and  ANN  development  frameworks

(PyTorch[32] and TensorFlow[33], etc.), are suboptimal

for SNN training. The former is  designed for biologi-

cal neural network (BNN) simulation, while the devel-

opment and running efficiency of the latter is relative-

ly  low  due  to  SNNs’ different  computational  charac-

teristics  from  ANNs.  Thus,  an  adaptable,  and  high-

performance  SNN development  framework  is  impera-

tive,  addressing  various  learning algorithms while  of-

fering  usability  and  performance  enhancement.  FA-

BLE[58] was introduced as a comprehensive three-lev-

el framework designed to meet these requirements ef-

fectively.

First,  it  presents  a  computing  model  for  various

SNN training algorithms and optimizations. Based on

the synchronous data flow (SDF), this model can de-

couple  algorithm definition  and  optimized  implemen-

tation by representing them through simple deforma-

tions.  Specifically,  this  approach  introduces  the  time

dimension into the scheduling process while effective-

ly  representing  parallelism  between  neural  computa-

tions.  Thus,  it  can  incorporate  essential  SNN  opti-

mization  methods  that  facilitate  computation  fusion

both across time steps and within time steps.

To achieve cross-time-step optimization, we repre-

sent the SNN computational process with a two-level

loop  that  supports  the  fusion  of  synapses  and  neu-

rons at different time steps. Intra-time steps optimiza-

tion, on the other hand, involves the analysis of data

dependency  between  nodes  (neurons/synapses)  and

then fuses nodes of the same type without dependency.

Moreover,  we  have  integrated  operators  that  are

finely  tuned  for  widely-used  SNN  neurons  and  opti-

mized  for  sparse  computing  to  yield  higher  running

speed.  Specifically,  for  neuron-related  operators,  sev-

eral  fine-grained operators  within the neuron compu-

tation process over multiple time steps will be merged

into one coarse-grained operator. In terms of synaptic

spike delivery, we have harnessed an optimized sparse

matrix  multiplication  algorithm  for  superior  results.

This  algorithm involves  the compression of  the spike

matrix  (synaptic  connection  matrix)  into  a  redun-

dant  format  resembling  GCOO[59],  and  then  divides

the matrix into tiles for better data locality and par-

allelism.  Finally,  multi-stage  prefetching  for  both

sparse and dense data is employed to improve the ef-
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ficiency further.

Through  an  extensive  adaption  of  PyTorch,  we

implemented FABLE (as shown in Fig.7), incorporat-

ing  the  aforementioned  features  while  maintaining

compatibility with PyTorch. To achieve this, we have

leveraged  PyTorch's  fundamental  components,  such

as  the  tensor  data  types,  GPU  and  CPU  operators,

and  basic  parallel  computing  primitives,  extended
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them to accommodate custom operators, and then im-

plemented our scheduler. Specifically, in the operator

(OP)  layer,  we  have  designed  a  variety  of  coarse-

grained  operators  for  neuronal  computation,  includ-

ing multiple variants of LIF (leaky integrate-and-fire)

employed  by  different  algorithms,  as  well  as  sparse

computing  operators  for  spike  delivery.  Within  the

scheduling  layer,  we  have  established  a  uniform

scheduling strategy for the data flow graph, effective-

ly separating the definitions of  neurons and synapses

from  concrete  computations.  At  the  API  layer,  we

have  crafted  friendly  interfaces  for  custom  neurons

and synapses,  along with the pre-defined neuron and

synaptic  models  used  in  multiple  integrated  learning

algorithms.

Merits. This work demonstrates the decoupling of

SNN training algorithm and development framework.

To  illustrate  the  flexibility,  five  learning  algorithms

with different biological  authenticity have been port-

ed  with  less  programming  efforts  (i.e.,  less  coding)

compared with their original implementations. Experi-

ments  reveal  that  FABLE  outperforms  the  original

implementations,  achieving  up  to  a  2.61x  improve-

ment in computational performance. 

4.3    Compiler Infrastructure

The  evolution  of  research  in  neuromorphic  archi-

tecture  has  brought  a  variety  of  hardware  function

primitives. Thus, efficiently translating applications of

varied characteristics into executables to drive assort-

ed  hardware  back-ends  poses  a  significant  challenge.

Even  though  existing  neuromorphic  chips  possess

their  distinct  software  toolchains,  these  are  designed

for  the respective  target  chips.  In essence,  the devel-

opment  interface  and  intermediate  representations

(IRs)  within  the  toolchain  frequently  exhibit  a  close

binding  to  the  target,  i.e.,  a  tight  coupling  between

software  and  hardware.  Therefore,  it  is  necessary  to

design  a  software-hardware  decoupled  compilation

framework.

The  proposed  compilation  framework  uses

MLIR[47] extensively, which supports partial lowering.

Thus, the same top-level code can be transformed in-

to  a  variety  of  hardware-specific  code  at  the  bottom

level, to support different back ends, in which multi-

ple  lowering  paths  can  share  common  optimizations,

decreasing the effort and difficulty of developing com-

pilers for new back ends.

Specifically,  our  compilation  framework has  three

layers  of  IRs.  The  top  level  is  SNN IRs,  which  con-

tain  the  definition  and  initialization  of  neurons  and

synapses,  the  neuron update  process,  and the  synap-

tic  delivery  process.  They  go  through  several  lowing

paths  and  generate  either  fine-grained  or  coarse-

grained IRs at the second layer before being translat-

ed  into  the  hardware-specific  IRs  at  the  third  layer.

During  the  lowering  process  (Fig.8),  some  optimiza-

tions and transformations can be shared.
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To  generate  efficient  executables  for  broad-spec-

trum  applications  and  hardware,  our  compilation

framework uses the following techniques.

● Attribute to Describe SNN Characteristics.  Dif-

ferent  SNN  applications  vary  greatly,  e.g.,  synaptic

connections in computational  neurology are generally

sparse,  whereas  D-SNNs  are  denser.  We  introduce

some  new  attributes  to  describe  the  sparsity  of

synapses,  to  give  the  compiler  directives  to  produce

more efficient code.

● Optimized Merging Pass.  SNN applications (es-

pecially  computational  neuroscience  applications)  of-

ten  have  many  neuron  populations.  Since  their

synapse  connections  are  inherently  sparse,  multiple

populations  make  the  distribution  of  sparse  synaptic

connections  more  irregular.  Therefore,  we  design  a

specific  merging  pass  to  merge  neurons  of  different

populations into a larger matrix, allowing more room

for  parallel  optimization  (like  SIMD  (single  instruc-

tion multiple data) and multi-threading).

● Algorithm for Spiking Delivery. There are prop-

agation  delays  in  the  synaptic  delivery  process  while

storing separate weights for each delay would lead to

an increase in the sparsity. Therefore we proposed an
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extended  CSR  format,  which  supported  storing  the

weights  of  different  delays  in  a  single  CSR  matrix,

and an efficient spike delivery algorithm based on this

format was proposed further.

Merits. Owing to the HW/SW decoupled design, a

hardware-agnostic SNN program is written once, and

the compilation framework can translate  it  into  high

performance executables for different chips along mul-

tiple  lowering  paths.  For  example,  it  demonstrates

7.1x  performance  improvement  on  GPU  compared

with a widely-used SNN simulator. Now four kinds of

back-ends  have  been  supported,  and  we  are  extend-

ing  the  scope.  Further,  this  design  will  reduce  the

burden of developing compilers for new chips, as these

lowering paths share common optimizations or trans-

formations. For example, although the ReRAM-based

back-end belongs to the data flow architecture, it can

still  share  the  same  high-level  dialect  for  SNN  and

three main functional compilation modules. 

4.4    Research on Instruction Set and

Micro-Architecture

As the general abstraction of neuromorphic work-

loads,  SNNs  have  some  special  and  interesting  com-

puting characteristics,  including high parallel  compu-

tations,  irregular and sparse memory accesses,  event-

driven computational mode, etc.

These  characteristics  provide  optimization  oppor-

tunities  at  the  micro-architecture  level.  Through  ex-

ploiting  the  sparse  and  parallel  nature  of  SNN,  we

proposed the ISA-based neuro-processor, GaBAN[18].

GaBAN  aims  to  provide  both  high-performance

and flexible programming for SNN simulations, using

a  custom  instruction  set.  The  design  motivation

comes from the observation that although memory ac-

cesses  of  SNN  simulation  are  sparse,  the  address  of

the  accesses  does  not  depend  on  complex  computa-

tions or conditions. Thus, GaBAN introduces a hard-

ware module, Buffets⑤ (the central module in Fig.9),

to  fully  decouple  the  following  three  aspects  of  SNN

simulation:  address  generation,  memory  access,  and

computation.  This  allows  memory  loads  and  write-

backs  to  happen  concurrently  with  computations,  as

well  as  an  extremely  large  number  of  outstanding

memory accesses, resulting in the full overlap of com-

putation and memory access.

The  programming  model  of  GaBAN  is  centered

around  ``iteration'',  and  different  steps  within  SNN

simulations can be seen as iterations on different enti-

ties: neuron updates iterate on the data of each neu-

ron,  spike propagations iterate  on firing neurons and

their  corresponding  rows  within  the  synapse  matrix.

Thus,  the  kernel  of  a  GaBAN  program  specifies  a

computation  step,  which  contains  instructions  and

multiple  types  of  data  (constants,  variables,  and

memory values). The parameters for a single instance

of computation step includes the iteration length, the

initial value of constants and variables, and the base

address  of  different  memory  values.  These  data  are

written by the control core (the GaBAN architecture

contains a general-purpose core for control and initial-

ization,  and the  vector  cores  that  are  responsible  for

computation)  during  startup,  and  may  change  be-

tween runs.

As  mentioned  above,  GaBAN  employs  an  asyn-

chronous  buffer  called  Buffets[60] that  supports  data

prefetch and delayed write-back. For each iteration, a

memory frame is allocated from buffets, in the form of

a circular buffer. The integrated LSU (load-store unit)

uses the type of each memory value and the base ad-

dress to compute the valid address, and then load da-

ta into the frame. After all data within a frame have

been  loaded,  the  computation  for  that  corresponding

iteration  will  happen,  and  the  LSU  will  continue  to

process  the  next  iteration.  Writebacks  happen  in  a
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⑤Buffets[60] is a new layer of the memory hierarchy between the host and accelerator, originally proposed by NVIDIA at ASP-
LOS 2019, which we have extended to make it programmable and applied to GaBAN.



similar manner after the computations on those data

have  been  done.  To  support  different  steps  within

SNN  simulations,  GaBAN's  memory  subsystem  can

handle  three  types  of  memory  accesses,  which  have

been individually optimized:

● Strided  Memory  Access.  It  is  used  by  neuron

updates. When the stride step and the data size coin-

cide, multiple strided accesses can be combined into a

single  burst  of  continuous  memory  reads  for  higher

bandwidth.

● Indexed Memory Access. It usually uses a strid-

ed  memory  access's  result  as  an  offset  to  another

memory  location.  Indexed  accesses  happen  in  synap-

tic updates and spike propagations.

● Fire Tables. The table is used for storing index-

es of firing neurons.

The  instruction  set  of  GaBAN aims to  provide  a

set of common and basic computational operations for

SNN. Three  flavors  of  arithmetic  operations  are  pro-

vided:  floating  point,  fixed  point,  and  integer  arith-

metic,  while  conditional  operations  are  implemented

using  a  mux  instruction.  These  instructions  are  exe-

cuted  by  a  VPU  (vector  processing  unit),  handling

multiple  data  in  parallel.  Because  no  looping  and

branching instruction is needed, scheduling within the

VPU is easy and energy efficient.

Merits. The prototype is implemented on a Xilinx

VCU128  FPGA.  Tests  show that  this  ISA-based  de-

sign  can  bring  high  performance  while  maintaining

programming  flexibility.  It  provides  better  perfor-

mance  (1.36x–1.56x)  and  programmability  (support-

ing  more  neuron models  and floating-point  computa-

tion)  than  the  SOTA  work[61] also  based  on  ISA,

while managing to consume fewer hardware resources.

Compared with software simulators, GaBAN is much

faster  than  the  CPU-based  counterpart  (1.44x–3.0x),

and its performance is comparable with that of GPG-

PU.  In  addition,  for  D-SNN workloads,  GaBAN can

perform  comparably  with  some  D-SNN  accelerators

based on FPGA. 

4.5    Tianjic-X

The  research  team  at  the  Center  for  Brain-In-

spired  Computing  Research  (CBICR)  at  Tsinghua

University, Beijing, has developed three generations of

Tianjic  series  chips  shown  in Fig.10:  Tianjic-1[62],

Tianjic-2[20], and Tianjic-X[63]. The Tianjic series chips

all  adopt  the  dual-driven  brain-inspired  computing

paradigm[64],  which is  inspired by both computer sci-

ence and neuroscience. The goal is to build a unified

and  hybrid  computing  platform  that  efficiently  sup-

ports the development of AGI.

  

(b)(a) (c)

Fig.10.   Tianjic  series  chips.  (a)  Tianjic-1  IEDM  2015.  (b)
Tianjic-2 Nature 2019. (c) Tianjic-X Science Robotics 2022.
 

Tianjic-1[62] is the initial exploration of hybrid ar-

chitecture, implemented using 110 nm process digital

circuits.  The  single  chip  has  six  neuromorphic  func-

tional cores, with each core having a synaptic storage

size  of  only 256 Kb.  Tianjic-1  achieved the first  het-

erogeneous  integration  of  computer-science-oriented

ANNs  and  neuroscience-oriented  SNNs  on  the  func-

tional cores by configuring the mode selection through

pattern  registers.  This  allows  all  modules  within  the

functional  core  to  operate  in  either  ANN  or  SNN

mode.  The  first-generation  Tianjic  chip  aims  to  sup-

port different types of neurons at the functional level,

without excessive optimization of chip area, speed, or

supporting  network  scale.  Additionally,  due  to  its

support for a simplified LIF model, the range of SNN

types it supports is limited.

Tianjic-2[20] achieved the first implementation of a

hybrid  brain-inspired  computing  architecture,  sup-

porting  both  independent  processing  of  ANNs  and

SNNs,  and  their  hybrid  modeling.  It  was  manufac-

tured using the UMC 28 nm CMOS process and can

model up to 40k neurons and 10M synapses on a sin-

gle  chip.  The  hybrid  architecture  of  Tianjic-2  fea-

tures high resource sharing and reconfigurability, with

adjustable  ANN-SNN  ratios  to  dynamically  optimize

resource  allocation  for  various  algorithms.  Compared

with  Tianjic-1,  Tianjic-2  optimizes  resource  sharing,

computation within modules,  and highly shared stor-

age  resources.  It  increases  fan-in  and  fan-out,  en-

abling  the  processing  of  larger-scale  neural  networks.

The design of Soma modules was enriched to support

various  SNN  models.  The  modules  within  the  func-

tional core can be independently configured, resulting

in  a  unified  cross-paradigm  functional  core  architec-

ture that efficiently supports hybrid neural networks.

Compared  with  the  IBM  TrueNorth  chip  with  the

same  manufacturing  process,  Tianjic-2  achieved  a

20% increase in functional core density[65] and approx-

imately a 10-fold increase in synaptic processing capa-
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bility[14]. Currently,  leading  brain-inspired  computing

research  teams  worldwide  have  adopted  similar  hy-

brid  architectures,  such  as  SpiNNaker2[7],  Loihi-2[22],

and BrainScaleS-2[66]. The CBICR research team also

developed  an  autonomous  bicycle  that  utilizes  only

one Tianjic-2 chip to achieve intelligent tasks such as

target tracking, image recognition, speech recognition,

and  decision  control[20].  This  demonstrates  outstand-

ing performance capabilities.

Based  on  the  proposed  hybrid  architecture,  the

CBICR research team has developed the Tianjic-X[63]

chip, which is the world's first brain-inspired comput-

ing  chip  designed  specifically  for  intelligent  robots.

The  team  addressed  the  strict  requirements  of  low

power  consumption,  low  latency,  and  multi-modal

multi-tasking  parallelism  for  robots  by  proposing  a

system solution at various levels,  including execution

models, the chip architecture, the software toolchain,

and robot systems. At the execution model level, they

proposed “Rivulet” multi-intelligent-tasking model in-

spired by the  collaborative  processing  mechanisms of

multiple brain regions in the human brain, which en-

dow hardware with spatio-temporal elasticity. This al-

lows  robots  to  parallelly  handle  multiple  intelligent

tasks in complex and dynamic environments while ad-

justing resource allocation based on task performance

and  environmental  changes.  Based  on  the “Rivulet”
model,  the  team developed  Tianjic-X,  a  multi-source

asynchronous-event-driven  brain-inspired  computing

chip[67]. They proposed and implemented an architec-

ture  design  with  a  neuromorphic-complete  instruc-

tion set, which greatly enhances the programmability

of the chip. Multiple intelligent tasks can be executed

in parallel  on the Tianjic-X chip through space-shar-

ing, time-sharing and spatio-temporal sharing, achiev-

ing better load balancing and compact execution. The

NorthPole  chip[68],  the  newest  generation  of  IBM’s
brain-inspired  computing  chip  published  recently,  al-

so  adopts  a  similar  many-core  architecture  with spa-

tial-temporal pattern and elastic resource sharing.

Additionally,  a  hierarchical  and  complete  soft-

ware  toolchain[69] has  been  developed  to  flexibly  de-

ploy  different  paradigms  of  neural  networks  on  the

chip,  enabling  synergistic  optimization  between  soft-

ware and hardware. Based on Tianjic-X, the team has

also  built  a  four-legged  robot  development

platform[70].  They  developed  a  brain-inspired  general

place  recognition  system  for  robotics,  with  the  core

relying  on  the  proposed  brain-inspired  multi-modal

hybrid  neural  network.  This  intelligent  robotic  sys-

tem  systematically  addresses  issues  such  as  percep-

tion  aliasing,  motion  blur,  and  large-scale  dynamic

changes in unmanned systems operating in open envi-

ronments.  Compared  with  existing  technologies,  this

system  exhibits  higher  robustness  under  conditions

such as changes in lighting and weather, while also of-

fering advantages such as low power consumption and

low latency.

Merits. The  Tianjic  series  of  chips  embodies  the

advantages of SNN/ANN hybrid at the hardware lev-

el.  Taking  its  second-generation  chip  as  an  example,

compared  with  IBM's  TrueNorth  chip,  it  supports

more  intelligent  models  in  function,  improves  neu-

ronal  density  by  20%,  and  increases  the  computing

capability  by  10  times.  Combined  with  the  cross-

paradigm multi-tasking asynchronous parallelism, it is

an efficient hardware platform for brain-inspired com-

putation. 

5    Conclusions

To a large extent, the current research of brain-in-

spired computing faces the major challenge of system

fragmentation. Some work has started with the devel-

opment  software  of  different  functions,  and  tried  to

solve  such  problems  by  supporting  multiple  types  of

applications, training algorithms or hardware.

We drew inspiration from the development histo-

ry and the design philosophy of general-purpose com-

puting,  and  proposed  to  design  a “general-purpose”
brain-inspired  computing  system.  Based  on  the

SW/HW decoupling system hierarchy, it includes the

application  development  framework,  compilation  in-

frastructure,  and  flexible  programmable  neuromor-

phic  chips,  which  can  support  broad-spectrum  SNN

training  algorithms  and  different  kinds  of  back-end

hardware, while simplifying the development of appli-

cations  and  compilers.  We  believe  that  this  series  of

work  is  conducive  to  the  construction  of  a  brain-in-

spired  computing  ecological  environment,  and  then

promote its development and industrialization. 
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