

Research on General-Purpose Brain-Inspired Computing Systems

Peng Qu1, † (渠　鹏), Xing-Long Ji2, † (纪兴龙), Jia-Jie Chen1, † (陈嘉杰), Meng Pang1, † (庞　猛)
Yu-Chen Li1, † (李宇晨), Xiao-Yi Liu1, † (刘晓义), and You-Hui Zhang1, * (张悠慧), Senior Member, CCF

1 Department of Computer Science and Technology, Tsinghua University, Beijing 100084, China
2 Department of Precision Instrument, Tsinghua University, Beijing 100084, China

E-mail: qp2018@mail.tsinghua.edu.cn; xinglongji@mail.tsinghua.edu.cn; cjj21@mails.tsinghua.edu.cn
pangm20@mails.tsinghua.edu.cn; liyuchen20@mails.tsinghua.edu.cn; xiaoyi-l17@mails.tsinghua.edu.cn
zyh02@tsinghua.edu.cn

Received December 3, 2023; accepted January 5, 2024.

Abstract Brain-inspired computing is a new technology that draws on the principles of brain science and is oriented to

the efficient development of artificial general intelligence (AGI), and a brain-inspired computing system is a hierarchical

system composed of neuromorphic chips, basic software and hardware, and algorithms/applications that embody this tech-

nology. While the system is developing rapidly, it faces various challenges and opportunities brought by interdisciplinary

research, including the issue of software and hardware fragmentation. This paper analyzes the status quo of brain-inspired

computing systems. Enlightened by some design principle and methodology of general-purpose computers, it is proposed to

construct “general-purpose” brain-inspired computing systems. A general-purpose brain-inspired computing system refers

to a brain-inspired computing hierarchy constructed based on the design philosophy of decoupling software and hardware,

which can flexibly support various brain-inspired computing applications and neuromorphic chips with different architec-

tures. Further, this paper introduces our recent work in these aspects, including the ANN (artificial neural network)/SNN

(spiking neural network) development tools, the hardware agnostic compilation infrastructure, and the chip micro-archi-

tecture with high flexibility of programming and high performance; these studies show that the “general-purpose” system

can remarkably improve the efficiency of application development and enhance the productivity of basic software, thereby

being conductive to accelerating the advancement of various brain-inspired algorithms and applications. We believe that

this is the key to the collaborative research and development, and the evolution of applications, basic software and chips in

this field, and conducive to building a favorable software/hardware ecosystem of brain-inspired computing.

Keywords brain-inspired computing, neuromorphic chip, compiler, spiking neural network

1 Introduction

Brain-inspired computing refers to computational

theories, computer architectures, and application

models/algorithms that draw on the information pro-

cessing mode and/or structure of the biological ner-

vous system. Its system architecture is one of the

heading directions of computer architecture in the

post-Moore era[1, 2].

Neuromorphic chips are the kernel of a brain-in-

spired computing system, which is structurally in-

spired by the brain organization, and efficiently sup-

Survey

This work was supported by the National Natural Science Foundation of China under Grant Nos. 62250006, 62072266, and
61836004, the National Natural Science Foundation of China Youth Fund under Grant No. 62202254, Beijing National Research
Center for Information Science and Technology under Grant No. BNR2022RC01003, the Tsinghua University Initiative Scientific
Research Program, and the Suzhou-Tsinghua Innovation Leadership Program.

†Co-First Author (Peng Qu wrote the methodological implications from the field of general purpose computing, Xing-Long Ji
wrote the content about the framework for HNNs and the Tianjic chip, Jia-Jie Chen wrote the content of instruction set and micro-
architecture, Meng Pang wrote the section of the framework for learning algorithms, Yu-Chen Li wrote the section of compilation in-
frastructure, and Xiao-Yi Liu wrote the current state of research in this field. The above several have made equal contributions to
the paper.)

*Corresponding Author

Qu P, Ji XL, Chen JJ et al. Research on general-purpose brain-inspired computing systems. JOURNAL OF COMPUT-

ER SCIENCE AND TECHNOLOGY 39(1): 4−21 Jan. 2024. DOI: 10.1007/s11390-023-4002-3

©Institute of Computing Technology, Chinese Academy of Sciences 2024

https://doi.org/10.1007/s11390-023-4002-3
https://doi.org/10.1007/s11390-023-4002-3
https://doi.org/10.1007/s11390-023-4002-3
https://doi.org/10.1007/s11390-023-4002-3
https://doi.org/10.1007/s11390-023-4002-3
https://doi.org/10.1007/s11390-023-4002-3
https://doi.org/10.1007/s11390-023-4002-3

ports spiking neural networks[3] (SNNs; the main-

stream form of the brain-inspired neural network at

present) in the computing paradigm, in order to break

through the bottleneck of traditional computer archi-

tecture for higher computing efficiency.

The basic software of brain-inspired computing

(hereinafter referred to as brain-inspired software in

abbreviation)[4] is the intermediate layer that bridges

the development requirements of applications and the

computing capability of chips. Specifically, it not on-

ly meets the needs of various applications in this in-

terdisciplinary field by providing flexible and friendly

development interface, but also efficiently drives vari-

ous hardware back-ends, through compilation, re-

source scheduling and mapping. Basic software is crit-

ically important for building the ecosystem of brain-

inspired computing.

Countries around the world have fully recognized

the importance of brain science and brain-inspired re-

search. The United States, the European Union,

Japan, Canada, Australia, and South Korea have car-

ried out relevant research respectively. In China,

“Brain and Brain-Inspired Research” (China Brain

Project) is included in the “Science and Technology

Innovation 2030 Major Projects” and the “New Gen-

eration of Artificial Intelligence Development Plan"

(Fig.1).

The study on brain-inspired computing systems is

a typical interdisciplinary research. Neuroscience, ma-

terials science, electronics/microelectronics, computer

science and technology, etc. have made unique contri-

butions: the computational needs and inspiration of

neuroscience[5] are the source of progress, neuromor-

phic devices/circuits drive the development of neuro-

morphic chips with high energy-efficiency, and the in-

tegration of deep learning and SNN has greatly accel-

erated the real applications.

Thus, the following contents analyze the progress

trends from multiple perspectives, including neuro-

morphic chips and learning algorithms, as well as the

computational neuroscience, and then condenses the

opportunities and challenges faced. In response to

these issues, we have drawn methodological enlighten-

ment from general-purpose computers and proposed

to construct “general-purpose” brain-inspired comput-

ing systems. We also introduce our series of work

from this aspect, including the ANN (artificial neural

network)/SNN (spiking neural network) development

tools, the hardware agnostic compilation infrastruc-

ture, and the chip designs.

2 Status Quo of Brain-Inspired Computing

Systems

2.1 Diversity of Neuromorphic Chips

Traditional computing hardware, such as CPUs

and GPGPUs, often fails to fully utilize the potential

energy efficiency or computation density of neuromor-

phic computations. In contrast, neuromorphic chips

are optimized for executing SNNs and other neuro-

morphic workloads. Their architectures differ vastly,

ranging from the traditional von Neumann architec-

ture to emerging neuromorphic architectures, and

provide different programming interfaces and/or func-

tional primitives.

● Neuromorphic chips of the von Neumann archi-

tecture often start with existing general purpose pro-

cessors, and augment them with custom functional

units for SNNs. One typical case is SpiNNaker[6]. It

uses CMP (chip multi-processor) composed of ARM-

cores as the baseline architecture, which is equipped

with customized NoC (network on chip) to achieve

1990 2008 2013 2014 2021

Proposal of
Neuromorphic
Computing

DARPA
SyNAPSE
Project
by USA

Human Brain
Project
(HBP) by EU

IBM's Neuromorphic
Chip, TrueNorth

China Brain Project
Formulated as a 15-Year Plan
(2016-2030)

Brain and Brain-
Inspired Research
(China Brain
Project) Launched

Brain Mapping by
Integrated
Neurotechnologies
for Disease Studies
(Brain/MINDS)
by Japan

Australian Brain
Alliance Initiative

Brain Canada
Foundation

2011 2016

Brain Research
Through
Advancing
Innovative
Neurotechnologies
(BRAIN) Initiative
by USA

Korean Brain Initiative

Fig.1. Timeline of brain and brain-inspired research supported by countries around the world.

Peng Qu et al.: Research on General-Purpose Brain-Inspired Computing Systems 5

the efficient SNN computation with an event-driven

programming model. As the main-body of computa-

tion is completed by software, it is easier to support a

variety of SNN applications. The second generation

SpiNNaker chip[7] is still based on ARM cores and the

custom NoC. It uses several techniques to improve

the energy efficiency, including near-threshold opera-

tion and dynamic voltage-and-frequency scaling. The

architectural enhancements also include some acceler-

ators for DNN (deep neural network) processing.

● Emerging neuromorphic architectures usually

take a more aggressive approach by directly achiev-

ing synaptic processing and/or neuronal computation

at the level of circuits (analog/digital).

For example, some[8–10] fully utilize ReRAM-based

circuits to complete the vector matrix multiplications

(the main body of synaptic computing) in analog, and

some[11, 12] further use the dynamic properties of non-

volatile memory to complete the more complex dy-

namics of neural networks, like the STDP rule[13].

Some digital chips, like TrueNorth[14], have dedicated

neurosynaptic cores to achieve synaptic processing

and neuronal computation. In addition, TrueNorth

employs asynchronous-synchronous-hybrid circuits to

fully exploit the asynchronous nature of SNNs. Brain-

drop[15] is an analog-digital-mixed neuromorphic chip,

with subthreshold-analog and asynchronous-digital

circuits. It is characterized by being programmed at a

high level.

Moreover, some chips try to provide more flexible

programming while ensuring high performance. For

example, Intel’s Loihi[16] is an asynchronous neuro-

morphic chip that supports synaptic plasticity. Each

chip contains 128 neuromorphic cores for SNN pro-

cessing, three x86 cores for control, and an asyn-

chronous network-on-chip for massage transmission.

It also provides the Loihi toolchain[17] with a friendly

programming interface. GaBAN[18] utilizes a control-

flow/data-flow hybrid architecture. It provides an in-

struction set tailored to neuromorphic computation

for friendly programming, as well as a hardware

scheduler to improve the efficiency of irregular data

access in SNN computation.

● Most chips come with their own toolchain, fol-

lowing the software and hardware coupled methodolo-

gy. The toolchain includes a compiler or a mapper to

convert an SNN program into the executable to drive

the chip, and/or some runtime libraries to provide

high-level APIs for programming. Usually, a toolchain

is only designed for the target chip, that is, the devel-

opment interface and intermediate representations of

the toolchain are bound to the target[17, 19]. While this

methodology brings high performance to the target

applications, it impairs the programming efficiency

and portability, and increases the development diffi-

culty of new toolchain.

Despite different architectures, some emerging

chips show the common characteristics of supporting

the hybrid of SNN and DNN.

The second generation of Tianjic[20, 21] initially us-

es a unified processing architecture to support SNNs,

biological dynamic neural networks, multilayered per-

ceptron, convolutional neural networks (CNNs), and

recurrent neural networks (RNNs) efficiently, through

multiple integration and transformation operations.

SpiNNaker 2’s architectural enhancements include the

acceleration for DNN processing. Loihi 2[22]'s exten-

sions① in this regard include two main points, the

generalized event-based messaging and the enhanced

learning capabilities. The former permits spikes to

carry integer-valued payloads (while Loihi originally

supported only binary-valued spike) to provide

greater numerical precision. The latter provides sup-

port for many neuro-inspired learning algorithms, in-

cluding approximations of the error back-propagation

algorithm (the essential of deep learning).

2.2 Refinement of Computational

Neuroscience

The neuroscience community has accumulated ex-

tensive experimental data across a wide range of

scales, from sub-cellular structures and neurons to cir-

cuits and networks. This wealth of data has inspired

the research interest of biological neural network

models, aiming to unveil the functional mechanisms of

nervous systems at multiple scales. Contrary to the

prevailing trend in the domain of deep learning, which

tends to simplify the biological neurons as an elemen-

tary point, experimental results show that a detailed

neuron model has complex internal structures and

functionalities, and it is able to learn to undertake

complex tasks.

The detailed neuron model introduces more bio-

logical authenticities, such as dendritic tree and iron

channels. Moreover, in contrary to the simulation of

6 J. Comput. Sci. & Technol., Jan. 2024, Vol.39, No.1

①https://www.intel.com/content/www/us/en/research/neuromorphic-computing-loihi-2-technology-brief.html, Jan. 2024.

https://www.intel.com/content/www/us/en/research/neuromorphic-computing-loihi-2-technology-brief.html
https://www.intel.com/content/www/us/en/research/neuromorphic-computing-loihi-2-technology-brief.html
https://www.intel.com/content/www/us/en/research/neuromorphic-computing-loihi-2-technology-brief.html
https://www.intel.com/content/www/us/en/research/neuromorphic-computing-loihi-2-technology-brief.html
https://www.intel.com/content/www/us/en/research/neuromorphic-computing-loihi-2-technology-brief.html
https://www.intel.com/content/www/us/en/research/neuromorphic-computing-loihi-2-technology-brief.html
https://www.intel.com/content/www/us/en/research/neuromorphic-computing-loihi-2-technology-brief.html
https://www.intel.com/content/www/us/en/research/neuromorphic-computing-loihi-2-technology-brief.html
https://www.intel.com/content/www/us/en/research/neuromorphic-computing-loihi-2-technology-brief.html
https://www.intel.com/content/www/us/en/research/neuromorphic-computing-loihi-2-technology-brief.html
https://www.intel.com/content/www/us/en/research/neuromorphic-computing-loihi-2-technology-brief.html

point models which only needs to solve a few simple

ordinary differential equations (ODEs), the simula-

tion of detailed models must solve a linear system of

equations. In the detailed neuron model, the dendrit-

ic tree is decomposed as a series of short cylindric ca-

bles, and the circuit diagram of each piece of cable is

modeled through the general cable equation and its

extensions. These equations, together with the corre-

sponding dynamic equations of non-linear ion chan-

nels, constitute the linear system of equations that

needs to be solved.

As the detailed neuron models a complex system

of dendritic tree, iron channels, and the soma, it pro-

vides considerable functionality and computational

power. Research work[23] shows that the computation-

al capability of detailed neurons is comparable to a

5–8 layers deep neural network. This advantage of de-

tailed models has attracted widespread research inter-

est, from high-performance simulation frameworks[24]

to efficient learning algorithms[25].

2.3 SNN/ANN Hybrid

Besides the trend of mutual influence and gradual

integration between SNNs and ANNs at the hard-

ware level, many training algorithms for SNNs are

drawing inspiration from the gradient descent algo-

rithm employed by ANNs. These algorithms can be

divided into four categories.

● ANN-to-SNN Conversion. Training a deep spik-

ing neural network, which involves the learning of

synaptic weights, poses significant challenges. An al-

ternative strategy is to transform a pre-trained neu-

ral network into an SNN. The initial network is re-

ferred to as an ANN due to its real-valued activa-

tions, which represent spike rates. After the conver-

sion, the original weights are retained, while the ana-

log (rate) neurons of the ANN are substituted with

integrate-and-fire (IF) spiking neurons. This ap-

proach is effective: throughout the simulation, the av-

erage firing rate of the spiking neurons gradually ap-

proximates the activation of the corresponding neu-

rons in the original ANN. Extensive efforts[26–28] have

been made to explore diverse methods for accomplish-

ing this conversion efficiently, thereby facilitating the

training of progressively larger SNNs.

● Training ANNs with SNNs' Constraints. DNNs

have attained exceptional success across various tasks.

This achievement implies that these models may pro-

vide valuable insights into human problem-solving

processes. Consequently, substantial efforts have been

directed towards increasing the biological realism of

DNNs by introducing neural “spiking”. In pursuit of

this goal, some researchers[29] have explored the use of

softened leaky integrate-and-fire (LIF) models, which

involves the utilization of continuous bounded gradi-

ents achieved by smoothing activation thresholds.

This approach aims to replicate the spiking behavior

of SNNs within ANNs.

● Direct Training SNNs with Surrogate Gradi-
ents. Because SNNs use spikes for signaling, this mod-

el inherently lacks gradients at the neuron level. As a

result, it does not naturally accommodate the direct

application of the gradient descent method common-

ly employed in ANNs. To address this challenge, some

researchers have introduced surrogate gradients at the

neuron level to ensure the entire network differen-

tiable[30, 31]. This approach enables SNNs to be direct-

ly trained within the frameworks of ANNs, such as

PyTorch[32] and TensorFlow[33]. Furthermore, cus-

tomized gradients can incorporate specific features of

SNNs, such as time coding and rate coding, enhanc-

ing their adaptability and expressiveness[34].

● Hybrid Usage of SNNs and ANNs. Different

from drawing inspiration from ANNs to SNNs (or vice

versa), another promising way is to design hybrid

neural networks (HNNs) by integrating SNNs and

ANNs to leverage both strengths. Some researches[35–37]

have proposed to employ some features of ANNs and

SNNs to solve given intelligent tasks. Recent work[38]

proposes a framework to support the construction and

processing of HNNs at multiple scales and multiple

domains by separating ANNs and SNNs and then

combining them through specific interfaces. The inter-

faces are designable and learnable. Demonstrations

have shown that this research can achieve cross-

paradigm modeling for a variety of intelligent tasks.

At the same time, SNN is being gradually applied

to non-AI/non-nervous-system-simulation applica-

tions, including scientific computing, signal process-

ing, multi-class optimization problems, etc., making

applications further diversified.

2.4 New Challenges

Based on the above analysis, the challenges faced

by brain-inspired computing systems come from two

aspects.

First, the chip micro-architectures span largely,

with the diversity of hardware primitives and con-

Peng Qu et al.: Research on General-Purpose Brain-Inspired Computing Systems 7

straints, while the software toolchain is basically

bound to the target chip, which increases the difficul-

ty of programming/porting applications and the diffi-

culty of basic software development.

Second, now brain-inspired applications include

not only brain simulation and intelligent applications

but also some common applications. Thus, the re-

quirements for computing accuracy and flexibility, as

well as learning algorithms, are getting higher, which

are given as follows:

● Computational Refinement. Multi-precision cal-

culation and flexible modeling are needed to meet the

requirement of multi-scale and multi-dimensional ner-

vous system simulation.

● Broad Spectrum of Learning Algorithms. There

are multiple algorithms with different biological au-

thenticities, as well as the SNN/DNN hybrid algo-

rithms.

Accordingly, the applications have different com-

putational characteristics from DNNs, including com-

puting sparsity and the poor scale-out feature. For ex-

ample, the firing rate of a biological neuron is usually

no more than 100 Hz, or even only a few hertz or

less[39], while a time step within the numerical simula-

tion is usually 0.1 milliseconds. So the percent of neu-

rons that fire in a time step does not exceed 1%, and

the distribution can be regarded as random. Accord-

ingly, because the communication between neurons is

sparse and irregular, and the SNN simulation usually

adopts time-step synchronization, the scale out of

SNNs (Fig.2) is poor[40].

Forward
Circle
FC

1 2 3 4

40

30

20

10

0
5 6 7 8

Number of Nodes

T
im

e
 (

s)

Fig.2. Strong scalability of SNNs with different topologies on a
GPGPU cluster[40]. ‘‘Forward’’, ‘‘Circle’’, and ‘‘FC (full-connec-
tion)’’ stand for different topologies. The three SNNs run on
GPU clusters with different numbers of nodes, and the net-
work size remains the same.

There is ongoing work to address these challenges.

In view of the fragmentation of software toolchain,

the Lava② framework released by Intel at the end of

2021 abstracts SNN applications into computing mod-

els of CSP (communication sequence process). Lava is

intended as a cross-platform development framework.

Currently, it provides the runtime libraries that sup-

port CPU/GPU and Loihi chips.

For the efficient SNN development with multiple

learning algorithms, Spikingjelly[41] was proposed. It

modifies PyTorch[32] to achieve parallel computation

acceleration for training and inference of deep SNNs,

while providing friendly development interfaces.

Another recent work is DeepDendrite[24], which in-

tegrates a high-performance simulation algorithm of

biophysically detailed compartment models and the

NEURON[42] simulator (a widely-used biological neu-

ral network simulation tool). DeepDendrite demon-

strates its applications in neuroscience tasks and the

potential to enable the efficient training for AI tasks,

that is, to bridge AI tasks and the compartment mod-

els.

3 Design Methodology of General Purpose

Computers and Enlightenment

The problem that brain-inspired computing sys-

tems face is the fragmentation of software and hard-

ware. The root cause is that current computing sys-

tems are mostly developed around their respective

target chips, and the design of the interface between

each layer of the system is bound to the target chip.

Although this design principle will improve the effi-

ciency of targeted applications, it increases the devel-

opment difficulty of other common applications, im-

pairs portability, and even fails to meet the need of

some applications.

Accordingly, we draw experience from several de-

sign methodologies of general-purpose computers, to

develop “general-purpose” basic brain-inspired soft-

ware and hardware.

3.1 Computational Completeness

Alan Turing proposed an ideal computational

model consisting of an infinitely long paper tape and

a read/write head. This simple and intuitive model is

Turing Machine[43]. Based on the Turing machine, an

important concept was introduced—Turing complete-

ness. If a computing system can simulate a Turing

8 J. Comput. Sci. & Technol., Jan. 2024, Vol.39, No.1

②https://lava-nc.org/, Jan. 2024.

https://lava-nc.org/
https://lava-nc.org/
https://lava-nc.org/

machine, the system is Turing-complete. Any general-

purpose programming language can be used to write

arbitrary algorithms as long as it satisfies Turing-

completeness. Similarly, if any hardware is Turing-

complete, it can simulate the execution of any gener-

al-purpose programming language.

Further, the hardware abstraction of the von Neu-

mann architecture is called the Instruction Set Archi-

tecture (ISA), which is similar to a general-purpose

Turing machine and is more flexible and efficient. For

general-purpose CPUs, ISA decouples hardware im-

plementation from software. Thus, hardware engi-

neers can focus on the efficient micro-architecture im-

plementation of ISA. At the same time, high-level

programming languages conceal hardware details of

ISA, making software development much more effi-

cient. To some extent, this also implies the meaning

of general-purpose computing, that is, software and

hardware can be developed independently and effi-

ciently while compatible with each other.

Meanwhile, the research community of brain-in-

spired computing has envisioned that “as these hard-

ware-specific interfaces begin to stabilize…”[44], while

the implication we get from the field of general-pur-

pose computer is that the premise of interface stabili-

ty is a reasonable hardware abstraction and the defi-

nite capability boundary. Accordingly, our prelimi-

nary work[45] proposed the theory of neuromorphic

completeness, which combines Turing completeness

with the universal approximation theorem and then

allows any Turing-computable application to be con-

verted to a non-exact equivalence on neuromorphic

hardware with controllable accuracy loss. To be spe-

cific, general-purpose computers regard “computa-

tion” as a precise and concrete operational process,

while we view “computation” as a combination of

“memory” and the traditional computation (where

“memory” refers to specific means such as neural net-

work fitting, lookup table implementation of transcen-

dental functions, and underlying logical functions im-

plemented by lookup tables within FPGA; the com-

monality is that a large amount of storage resources

are needed to store relevant parameters for fitting).

This work thereby theoretically makes it feasible

to design a brain-inspired system for general-purpose

computing applications, based on the principle of soft-

ware and hardware decoupling. Fig.3 shows the corre-

spondence between Turing completeness and neuro-

morphic completeness. Another benefit is that it in-

creases the space for system design and optimization.

Simply put, for a target application, the best combi-

nation of “precise computation” and “memory”
should be found, which can guide the optimization of

basic software and chip architecture.

3.2 Compilation Infrastructure

In addition to separating software and hardware

by ISA, high-level programming languages further

separate algorithms from specific hardware instruc-

tions, and compilers complete the conversion from

programs in high-level languages to machine instruc-

tions. This design ensures that software applications

and hardware chips can progress independently: ex-

perts of software/algorithms can develop applications

without understanding hardware details, while chip

architects also do not need to be proficient in specific

Neural-Network Framework Programming Language

Software Programming Model Abstract Syntax Tree

Hardware Programming Model Hardware Instruction Sequence

Neuromorphic Chips General-Purpose Processors

Software

Compiler

Hardware

Approximation

Equivalence

Equivalence

Equivalence

Equivalence

Equivalence

Equivalence

Turing Completeness

Turing Completeness

Turing Completeness

Turing Completeness

Turing Completeness

Turing Completeness

Neuromorphic Completeness

Neuromorphic Completeness

Fig.3. Turing completeness and neuromorphic completeness[45].

Peng Qu et al.: Research on General-Purpose Brain-Inspired Computing Systems 9

algorithms for various application areas③.

It should be pointed out that the design of mod-

ern compilers themselves also reflects the hierarchical

and SW (software)/HW (hardware) decoupled char-

acteristics. Taking LLVM[46] as an example, LLVM is

a modular and reusable compiler infrastructure that

supports multiple front-ends (high-level languages)

and back-ends (general-purpose processors). Specifi-

cally, LLVM converts the language code into the in-

termediate code as an intermediate representation

(IR), which can be converted into machine code for

any supported hardware architecture (Fig.4). The IR

is independent of the source and target languages,

which looks like the assembly but offers richer type

annotations and user-friendly syntax. This design

methodology greatly reduces the cost of developing

compilers, as the infrastructure’s IR, language conver-

sion processes, and optimization techniques can be

reused.

One of LLVM's latest extension efforts is

MLIR[47]. MLIR is a compilation infrastructure for the

problem of fragmentation, which helps improve the ef-

ficiency of building domain-specific compilers with

lower cost. It provides a specification for IRs and of-

fers a framework to do the progressive lowering of

IRs. One of its features is partial lowering, that is, in

the lowering path it supports mixing different levels

of abstraction and concepts in the same layer. MLIR

intends to solve a similar problem to that the brain-

inspired computing is facing, that is, to efficiently de-

sign the compiler for DSA (domain specific architec-

ture). Thus, we can make full use of the compilation

resources of traditional computing systems to solve

the fragmentation problem in the brain-inspired field.

3.3 Reduced Instruction Set Computer

(RISC)

The principle of Reduced Instruction Set Comput-

er (RISC) had an important impact on the design of

modern computer processors. It further clarifies the

focus of different layers of the entire computer sys-

tem hierarchy: ISA is mainly oriented to hardware,

focused on streamlined and efficient hardware imple-

mentation, while programming languages are orient-

ed to software developers, focused on development

flexibility and convenience. The equivalence of pro-

gramming languages and instruction sets can be guar-

anteed by Turing-completeness theoretically, while

the conversion of them is achieved by compilation.

This hierarchical design decouples software and hard-

ware requirements, avoiding the situation where the

two are pinned down. RISC has become an impor-

tant design philosophy for contemporary processors.

Professor David A. Patterson and Professor John L.

Hennessy won the 2017 Turing Award for this contri-

bution.

Our preliminary work[48, 49] also reflected the de-

sign philosophy of RISC, that is, we proposed a set of

basic primitives to realize arbitrary precision approxi-

mation of arbitrary functions (including zero-error ap-

proximation), as shown in Fig.5. These primitives are

widely compatible with most current neuromorphic

hardware, which can obtain accurate transformations

with high complexity and approximate transforma-

tions with low complexity. For recent work [18], espe-

cially when designing chip architectures that combine

flexible programming and high performance, we still

draw on this philosophy, try to provide reduced hard-

ware primitives, and leave complex functions to soft-

ware (compiler).

C/C++

Go

Rust

Toy toyc

rustc

Gollvm

Clang

LLVM IR
LLVM

Optimizer

Middle-End

LLVM IR
LLVM

Static Compiler

Back-End

x86

ARM

RISC-V

MIPS

PowerPC

...

Fig.4. LLVM diagram④.

10 J. Comput. Sci. & Technol., Jan. 2024, Vol.39, No.1

③Decoupling of hardware and software is an important design principle. In practice, software and hardware co-design is also a
widely-used method, and how to get a balance between the two is the key point.

④https://www.alibabacloud.com/blog/compilation-optimization-llvm-code-generation-technology-details-and-its-application-in-
databases_598408, Jan. 2024.

https://www.alibabacloud.com/blog/compilation-optimization-llvm-code-generation-technology-details-and-its-application-in-databases_598408
https://www.alibabacloud.com/blog/compilation-optimization-llvm-code-generation-technology-details-and-its-application-in-databases_598408
https://www.alibabacloud.com/blog/compilation-optimization-llvm-code-generation-technology-details-and-its-application-in-databases_598408
https://www.alibabacloud.com/blog/compilation-optimization-llvm-code-generation-technology-details-and-its-application-in-databases_598408
https://www.alibabacloud.com/blog/compilation-optimization-llvm-code-generation-technology-details-and-its-application-in-databases_598408
https://www.alibabacloud.com/blog/compilation-optimization-llvm-code-generation-technology-details-and-its-application-in-databases_598408
https://www.alibabacloud.com/blog/compilation-optimization-llvm-code-generation-technology-details-and-its-application-in-databases_598408
https://www.alibabacloud.com/blog/compilation-optimization-llvm-code-generation-technology-details-and-its-application-in-databases_598408
https://www.alibabacloud.com/blog/compilation-optimization-llvm-code-generation-technology-details-and-its-application-in-databases_598408
https://www.alibabacloud.com/blog/compilation-optimization-llvm-code-generation-technology-details-and-its-application-in-databases_598408
https://www.alibabacloud.com/blog/compilation-optimization-llvm-code-generation-technology-details-and-its-application-in-databases_598408
https://www.alibabacloud.com/blog/compilation-optimization-llvm-code-generation-technology-details-and-its-application-in-databases_598408
https://www.alibabacloud.com/blog/compilation-optimization-llvm-code-generation-technology-details-and-its-application-in-databases_598408
https://www.alibabacloud.com/blog/compilation-optimization-llvm-code-generation-technology-details-and-its-application-in-databases_598408
https://www.alibabacloud.com/blog/compilation-optimization-llvm-code-generation-technology-details-and-its-application-in-databases_598408
https://www.alibabacloud.com/blog/compilation-optimization-llvm-code-generation-technology-details-and-its-application-in-databases_598408
https://www.alibabacloud.com/blog/compilation-optimization-llvm-code-generation-technology-details-and-its-application-in-databases_598408
https://www.alibabacloud.com/blog/compilation-optimization-llvm-code-generation-technology-details-and-its-application-in-databases_598408
https://www.alibabacloud.com/blog/compilation-optimization-llvm-code-generation-technology-details-and-its-application-in-databases_598408
https://www.alibabacloud.com/blog/compilation-optimization-llvm-code-generation-technology-details-and-its-application-in-databases_598408
https://www.alibabacloud.com/blog/compilation-optimization-llvm-code-generation-technology-details-and-its-application-in-databases_598408
https://www.alibabacloud.com/blog/compilation-optimization-llvm-code-generation-technology-details-and-its-application-in-databases_598408
https://www.alibabacloud.com/blog/compilation-optimization-llvm-code-generation-technology-details-and-its-application-in-databases_598408
https://www.alibabacloud.com/blog/compilation-optimization-llvm-code-generation-technology-details-and-its-application-in-databases_598408
https://www.alibabacloud.com/blog/compilation-optimization-llvm-code-generation-technology-details-and-its-application-in-databases_598408

4 Our Work

The research on completeness theoretically makes

feasible the “general-purpose” brain-inspired comput-

ing system. Further, we draw on the compilation in-

frastructure and the RISC design philosophy and

adopt the hierarchical and decoupling technologies to

develop “general-purpose” basic software and hard-

ware. We have supported SNN development with

broad-spectrum learning algorithms, achieved

SW/HW decoupling and non-chip-specific compila-

tion infrastructure, and designed the chip micro-archi-

tecture with reduced hardware primitives, flexible

programming, and high performance.

Around the above principles, we have carried out

the following work.

4.1 Framework for HNNs

HNNs combine SNNs from the neuroscience

paradigm with ANNs from the computer science

paradigm, offering flexible building blocks to advance

the development of Artificial General Intelligence

(AGI). To facilitate the systematic construction of

HNNs, a framework[38] was proposed for their general

design and computation, as illustrated in Fig.6. The

framework introduces hybrid units (HUs) as the link-

age interface. HUs are both customizable and train-

able, enabling support for the transmission and modu-

lation of hybrid information flows within HNNs.

Building upon this foundation, diverse HNN architec-

tures characterized by hybrid serial, parallel, and

feedback structures, along with various hybrid infor-

mation flows, can be constructed. These architectures

enable the realization of advanced sensing, cognition,

and learning tasks.

As a representative, the hybrid sensing network

utilizes a parallel structure with diverse transmission

paths, enabling multi-pathway sensing. This design

allows for extra high-speed tracking capabilities while

maintaining high accuracy[38]. Moreover, the hybrid

modulation network adopts a hierarchical feed for-

ward structure and employs hybrid modulation to

achieve multi-level abstraction of task information,

Input

Conv

Add

ReLU

Pooling

Conv

Add

ReLU

Conv

Add

ReLU

Conv

Add

ReLU

Concate

Output

Input

Output

CUCUCU

CU CU CU CU CU CU CU CU

CU CU CU CU CU CU CU CU

CU

CU
ReLU

Dot

(b)(a)

CU CU CU CU CU CU CU CU

CU

CU CU CU CU

CU CU CU CU

CU CU CU CU CU CU CU

Fig.5. Different functions can be approximated by finite and basic primitives. (a) Software programming model. (b) Hardware exe-
cution model. CU: computer unit.

ANNs SNNs

HU

HU

HU

HU

Hybrid Transmission

Hybrid Modulation

Fig.6. Architecture and information flow of the HNN frame-
work.

Peng Qu et al.: Research on General-Purpose Brain-Inspired Computing Systems 11

which effectively mitigates catastrophic forgetting in

continual learning scenarios[38]. The hybrid reasoning

network implements a comprehensive neuro-symbolic

system, utilizing heterogeneous transmission for inter-

pretable and robust multimodal reasoning[38]. These

innovative architectures contribute to the advance-

ment of intelligent systems by combining the

strengths of different paradigms and achieving superi-

or performance in various intelligent tasks.

Several HNNs explore advanced functionalities

like adversarial robustness and the binding problem.

A typical example is the hybrid top-down attention

network, which combines a feed forward SNN with a

feedback ANN to efficiently allocate processing re-

sources towards informative sensory inputs. This at-

tention mechanism achieves remarkable resilience

against adversarial noise while maintaining computa-

tional efficiency[50]. Additionally, an HNN inspired by

the human cortex addresses the binding problem

through an architecture employing an ANN for top-

down mean-field attention and an SNN for bottom-up

coincidence detection. The HNN produces syn-

chronous coding patterns, providing a biologically

plausible solution to the fundamental binding prob-

lem in neuroscience[51].

Moreover, in order to tackle intricate tasks and ef-

fectively orchestrate ANNs and SNNs, Hybrid Neural

State Machine (HNSM)[52] has been devised. This

neuro-inspired state machine governs the information

flow among multiple networks, offering encouraging

progress in control logic for such systems. One com-

pelling illustration of the HNSM's capabilities is man-

ifested in the hybrid neural state tracker[53], which

leverages this approach to achieve high-speed track-

ing objectives. By combining ANN-based detection

with correlation filter tracking, it demonstrates a sub-

stantial enhancement in both tracking accuracy and

speed.

Merits. Aiming at the trend of SNN/ANN hybrid,

the HNN framework has achieved cross-paradigm

modeling, enabling the tackling of a wide array of in-

telligent tasks.

4.2 Framework for Various Brain-Inspired

Learning Algorithms

The research on the training algorithms of SNN

has not yet converged[54], in contrast with the well-es-

tablished gradient descent and error backpropagation

utilized in ANNs. It exhibits diverse approaches, in-

cluding those inspired by DNNs like D-SNN, spike-

based backpropagation algorithms such as STBP[55],

and biomimetic unsupervised learning through synap-

tic plasticity[56]. The challenge lies in balancing biolog-

ical authenticity with performance. Existing develop-

ment tools, like SNN simulators (NEST[57] and NEU-

RON[42], etc.) and ANN development frameworks

(PyTorch[32] and TensorFlow[33], etc.), are suboptimal

for SNN training. The former is designed for biologi-

cal neural network (BNN) simulation, while the devel-

opment and running efficiency of the latter is relative-

ly low due to SNNs’ different computational charac-

teristics from ANNs. Thus, an adaptable, and high-

performance SNN development framework is impera-

tive, addressing various learning algorithms while of-

fering usability and performance enhancement. FA-

BLE[58] was introduced as a comprehensive three-lev-

el framework designed to meet these requirements ef-

fectively.

First, it presents a computing model for various

SNN training algorithms and optimizations. Based on

the synchronous data flow (SDF), this model can de-

couple algorithm definition and optimized implemen-

tation by representing them through simple deforma-

tions. Specifically, this approach introduces the time

dimension into the scheduling process while effective-

ly representing parallelism between neural computa-

tions. Thus, it can incorporate essential SNN opti-

mization methods that facilitate computation fusion

both across time steps and within time steps.

To achieve cross-time-step optimization, we repre-

sent the SNN computational process with a two-level

loop that supports the fusion of synapses and neu-

rons at different time steps. Intra-time steps optimiza-

tion, on the other hand, involves the analysis of data

dependency between nodes (neurons/synapses) and

then fuses nodes of the same type without dependency.

Moreover, we have integrated operators that are

finely tuned for widely-used SNN neurons and opti-

mized for sparse computing to yield higher running

speed. Specifically, for neuron-related operators, sev-

eral fine-grained operators within the neuron compu-

tation process over multiple time steps will be merged

into one coarse-grained operator. In terms of synaptic

spike delivery, we have harnessed an optimized sparse

matrix multiplication algorithm for superior results.

This algorithm involves the compression of the spike

matrix (synaptic connection matrix) into a redun-

dant format resembling GCOO[59], and then divides

the matrix into tiles for better data locality and par-

allelism. Finally, multi-stage prefetching for both

sparse and dense data is employed to improve the ef-

12 J. Comput. Sci. & Technol., Jan. 2024, Vol.39, No.1

ficiency further.

Through an extensive adaption of PyTorch, we

implemented FABLE (as shown in Fig.7), incorporat-

ing the aforementioned features while maintaining

compatibility with PyTorch. To achieve this, we have

leveraged PyTorch's fundamental components, such

as the tensor data types, GPU and CPU operators,

and basic parallel computing primitives, extended

A B C
A
B

B
C

C
B

Input

#A

LIF

#B

LIF

#C

(a)

A
B CAB BC CB

A B CAB BC CB

A B CAB BC CB

(b)

SNN Model

API Layer

Model

Description

Model

Optimization

Scheduling Layer

Node

Scheduler …

PyTorch Operators

OP Layer

SpMM LIF …

SNN Operators

(e)

A B C

A B CAB BC CB

A B CAB BC CB

A B CAB BC CB

(c) (d)

PyTorch API

…

…

for  in range(T):
 for  in nodes:
 .compute()

for  in range(0,T,�D):
 for  in nodes:
 for  in range(D):
 .compute()

InnerState

InnerState InnerState

InnerState
InnerState



  

  

     

      

      

      

Fig.7. Overview of FABLE[58]. (a) Original SNN. (b) Unrolled dataflow graph. (c) Cross-time-step optimization. (d) Intra-time-step
optimization. (e) Implementation architecture.

Peng Qu et al.: Research on General-Purpose Brain-Inspired Computing Systems 13

them to accommodate custom operators, and then im-

plemented our scheduler. Specifically, in the operator

(OP) layer, we have designed a variety of coarse-

grained operators for neuronal computation, includ-

ing multiple variants of LIF (leaky integrate-and-fire)

employed by different algorithms, as well as sparse

computing operators for spike delivery. Within the

scheduling layer, we have established a uniform

scheduling strategy for the data flow graph, effective-

ly separating the definitions of neurons and synapses

from concrete computations. At the API layer, we

have crafted friendly interfaces for custom neurons

and synapses, along with the pre-defined neuron and

synaptic models used in multiple integrated learning

algorithms.

Merits. This work demonstrates the decoupling of

SNN training algorithm and development framework.

To illustrate the flexibility, five learning algorithms

with different biological authenticity have been port-

ed with less programming efforts (i.e., less coding)

compared with their original implementations. Experi-

ments reveal that FABLE outperforms the original

implementations, achieving up to a 2.61x improve-

ment in computational performance.

4.3 Compiler Infrastructure

The evolution of research in neuromorphic archi-

tecture has brought a variety of hardware function

primitives. Thus, efficiently translating applications of

varied characteristics into executables to drive assort-

ed hardware back-ends poses a significant challenge.

Even though existing neuromorphic chips possess

their distinct software toolchains, these are designed

for the respective target chips. In essence, the devel-

opment interface and intermediate representations

(IRs) within the toolchain frequently exhibit a close

binding to the target, i.e., a tight coupling between

software and hardware. Therefore, it is necessary to

design a software-hardware decoupled compilation

framework.

The proposed compilation framework uses

MLIR[47] extensively, which supports partial lowering.

Thus, the same top-level code can be transformed in-

to a variety of hardware-specific code at the bottom

level, to support different back ends, in which multi-

ple lowering paths can share common optimizations,

decreasing the effort and difficulty of developing com-

pilers for new back ends.

Specifically, our compilation framework has three

layers of IRs. The top level is SNN IRs, which con-

tain the definition and initialization of neurons and

synapses, the neuron update process, and the synap-

tic delivery process. They go through several lowing

paths and generate either fine-grained or coarse-

grained IRs at the second layer before being translat-

ed into the hardware-specific IRs at the third layer.

During the lowering process (Fig.8), some optimiza-

tions and transformations can be shared.

 SNN Dialect

Coarse-Grained

synapse_init

Coarse/Fine

neuron_init

Fine

spike_delivery

Coarse

neuron_update

Coarse

CPU IR GPU IR RERAM IR

Second-Level IR

First-Level IR

Third-Level IR

Fig.8. Multiple lowering paths.

To generate efficient executables for broad-spec-

trum applications and hardware, our compilation

framework uses the following techniques.

● Attribute to Describe SNN Characteristics. Dif-

ferent SNN applications vary greatly, e.g., synaptic

connections in computational neurology are generally

sparse, whereas D-SNNs are denser. We introduce

some new attributes to describe the sparsity of

synapses, to give the compiler directives to produce

more efficient code.

● Optimized Merging Pass. SNN applications (es-

pecially computational neuroscience applications) of-

ten have many neuron populations. Since their

synapse connections are inherently sparse, multiple

populations make the distribution of sparse synaptic

connections more irregular. Therefore, we design a

specific merging pass to merge neurons of different

populations into a larger matrix, allowing more room

for parallel optimization (like SIMD (single instruc-

tion multiple data) and multi-threading).

● Algorithm for Spiking Delivery. There are prop-

agation delays in the synaptic delivery process while

storing separate weights for each delay would lead to

an increase in the sparsity. Therefore we proposed an

14 J. Comput. Sci. & Technol., Jan. 2024, Vol.39, No.1

extended CSR format, which supported storing the

weights of different delays in a single CSR matrix,

and an efficient spike delivery algorithm based on this

format was proposed further.

Merits. Owing to the HW/SW decoupled design, a

hardware-agnostic SNN program is written once, and

the compilation framework can translate it into high

performance executables for different chips along mul-

tiple lowering paths. For example, it demonstrates

7.1x performance improvement on GPU compared

with a widely-used SNN simulator. Now four kinds of

back-ends have been supported, and we are extend-

ing the scope. Further, this design will reduce the

burden of developing compilers for new chips, as these

lowering paths share common optimizations or trans-

formations. For example, although the ReRAM-based

back-end belongs to the data flow architecture, it can

still share the same high-level dialect for SNN and

three main functional compilation modules.

4.4 Research on Instruction Set and

Micro-Architecture

As the general abstraction of neuromorphic work-

loads, SNNs have some special and interesting com-

puting characteristics, including high parallel compu-

tations, irregular and sparse memory accesses, event-

driven computational mode, etc.

These characteristics provide optimization oppor-

tunities at the micro-architecture level. Through ex-

ploiting the sparse and parallel nature of SNN, we

proposed the ISA-based neuro-processor, GaBAN[18].

GaBAN aims to provide both high-performance

and flexible programming for SNN simulations, using

a custom instruction set. The design motivation

comes from the observation that although memory ac-

cesses of SNN simulation are sparse, the address of

the accesses does not depend on complex computa-

tions or conditions. Thus, GaBAN introduces a hard-

ware module, Buffets⑤ (the central module in Fig.9),

to fully decouple the following three aspects of SNN

simulation: address generation, memory access, and

computation. This allows memory loads and write-

backs to happen concurrently with computations, as

well as an extremely large number of outstanding

memory accesses, resulting in the full overlap of com-

putation and memory access.

The programming model of GaBAN is centered

around ``iteration'', and different steps within SNN

simulations can be seen as iterations on different enti-

ties: neuron updates iterate on the data of each neu-

ron, spike propagations iterate on firing neurons and

their corresponding rows within the synapse matrix.

Thus, the kernel of a GaBAN program specifies a

computation step, which contains instructions and

multiple types of data (constants, variables, and

memory values). The parameters for a single instance

of computation step includes the iteration length, the

initial value of constants and variables, and the base

address of different memory values. These data are

written by the control core (the GaBAN architecture

contains a general-purpose core for control and initial-

ization, and the vector cores that are responsible for

computation) during startup, and may change be-

tween runs.

As mentioned above, GaBAN employs an asyn-

chronous buffer called Buffets[60] that supports data

prefetch and delayed write-back. For each iteration, a

memory frame is allocated from buffets, in the form of

a circular buffer. The integrated LSU (load-store unit)

uses the type of each memory value and the base ad-

dress to compute the valid address, and then load da-

ta into the frame. After all data within a frame have

been loaded, the computation for that corresponding

iteration will happen, and the LSU will continue to

process the next iteration. Writebacks happen in a

Bus

RISC-V

CPU

GaBAN

Core

GaBAN

Core
Memory...

Core

AddrGenBus

Write-

Back

FIFO
Buffets

... ...

Fetch

&

Decode

Operand
Write-

Back

VPU Data

Address

Fill

Update

Shrink

Data

Execute

     

Fig.9. GaBAN's overall design (multiple core configuration)[18].

Peng Qu et al.: Research on General-Purpose Brain-Inspired Computing Systems 15

⑤Buffets[60] is a new layer of the memory hierarchy between the host and accelerator, originally proposed by NVIDIA at ASP-
LOS 2019, which we have extended to make it programmable and applied to GaBAN.

similar manner after the computations on those data

have been done. To support different steps within

SNN simulations, GaBAN's memory subsystem can

handle three types of memory accesses, which have

been individually optimized:

● Strided Memory Access. It is used by neuron

updates. When the stride step and the data size coin-

cide, multiple strided accesses can be combined into a

single burst of continuous memory reads for higher

bandwidth.

● Indexed Memory Access. It usually uses a strid-

ed memory access's result as an offset to another

memory location. Indexed accesses happen in synap-

tic updates and spike propagations.

● Fire Tables. The table is used for storing index-

es of firing neurons.

The instruction set of GaBAN aims to provide a

set of common and basic computational operations for

SNN. Three flavors of arithmetic operations are pro-

vided: floating point, fixed point, and integer arith-

metic, while conditional operations are implemented

using a mux instruction. These instructions are exe-

cuted by a VPU (vector processing unit), handling

multiple data in parallel. Because no looping and

branching instruction is needed, scheduling within the

VPU is easy and energy efficient.

Merits. The prototype is implemented on a Xilinx

VCU128 FPGA. Tests show that this ISA-based de-

sign can bring high performance while maintaining

programming flexibility. It provides better perfor-

mance (1.36x–1.56x) and programmability (support-

ing more neuron models and floating-point computa-

tion) than the SOTA work[61] also based on ISA,

while managing to consume fewer hardware resources.

Compared with software simulators, GaBAN is much

faster than the CPU-based counterpart (1.44x–3.0x),

and its performance is comparable with that of GPG-

PU. In addition, for D-SNN workloads, GaBAN can

perform comparably with some D-SNN accelerators

based on FPGA.

4.5 Tianjic-X

The research team at the Center for Brain-In-

spired Computing Research (CBICR) at Tsinghua

University, Beijing, has developed three generations of

Tianjic series chips shown in Fig.10: Tianjic-1[62],

Tianjic-2[20], and Tianjic-X[63]. The Tianjic series chips

all adopt the dual-driven brain-inspired computing

paradigm[64], which is inspired by both computer sci-

ence and neuroscience. The goal is to build a unified

and hybrid computing platform that efficiently sup-

ports the development of AGI.

(b)(a) (c)

Fig.10. Tianjic series chips. (a) Tianjic-1 IEDM 2015. (b)
Tianjic-2 Nature 2019. (c) Tianjic-X Science Robotics 2022.

Tianjic-1[62] is the initial exploration of hybrid ar-

chitecture, implemented using 110 nm process digital

circuits. The single chip has six neuromorphic func-

tional cores, with each core having a synaptic storage

size of only 256 Kb. Tianjic-1 achieved the first het-

erogeneous integration of computer-science-oriented

ANNs and neuroscience-oriented SNNs on the func-

tional cores by configuring the mode selection through

pattern registers. This allows all modules within the

functional core to operate in either ANN or SNN

mode. The first-generation Tianjic chip aims to sup-

port different types of neurons at the functional level,

without excessive optimization of chip area, speed, or

supporting network scale. Additionally, due to its

support for a simplified LIF model, the range of SNN

types it supports is limited.

Tianjic-2[20] achieved the first implementation of a

hybrid brain-inspired computing architecture, sup-

porting both independent processing of ANNs and

SNNs, and their hybrid modeling. It was manufac-

tured using the UMC 28 nm CMOS process and can

model up to 40k neurons and 10M synapses on a sin-

gle chip. The hybrid architecture of Tianjic-2 fea-

tures high resource sharing and reconfigurability, with

adjustable ANN-SNN ratios to dynamically optimize

resource allocation for various algorithms. Compared

with Tianjic-1, Tianjic-2 optimizes resource sharing,

computation within modules, and highly shared stor-

age resources. It increases fan-in and fan-out, en-

abling the processing of larger-scale neural networks.

The design of Soma modules was enriched to support

various SNN models. The modules within the func-

tional core can be independently configured, resulting

in a unified cross-paradigm functional core architec-

ture that efficiently supports hybrid neural networks.

Compared with the IBM TrueNorth chip with the

same manufacturing process, Tianjic-2 achieved a

20% increase in functional core density[65] and approx-

imately a 10-fold increase in synaptic processing capa-

16 J. Comput. Sci. & Technol., Jan. 2024, Vol.39, No.1

bility[14]. Currently, leading brain-inspired computing

research teams worldwide have adopted similar hy-

brid architectures, such as SpiNNaker2[7], Loihi-2[22],

and BrainScaleS-2[66]. The CBICR research team also

developed an autonomous bicycle that utilizes only

one Tianjic-2 chip to achieve intelligent tasks such as

target tracking, image recognition, speech recognition,

and decision control[20]. This demonstrates outstand-

ing performance capabilities.

Based on the proposed hybrid architecture, the

CBICR research team has developed the Tianjic-X[63]

chip, which is the world's first brain-inspired comput-

ing chip designed specifically for intelligent robots.

The team addressed the strict requirements of low

power consumption, low latency, and multi-modal

multi-tasking parallelism for robots by proposing a

system solution at various levels, including execution

models, the chip architecture, the software toolchain,

and robot systems. At the execution model level, they

proposed “Rivulet” multi-intelligent-tasking model in-

spired by the collaborative processing mechanisms of

multiple brain regions in the human brain, which en-

dow hardware with spatio-temporal elasticity. This al-

lows robots to parallelly handle multiple intelligent

tasks in complex and dynamic environments while ad-

justing resource allocation based on task performance

and environmental changes. Based on the “Rivulet”
model, the team developed Tianjic-X, a multi-source

asynchronous-event-driven brain-inspired computing

chip[67]. They proposed and implemented an architec-

ture design with a neuromorphic-complete instruc-

tion set, which greatly enhances the programmability

of the chip. Multiple intelligent tasks can be executed

in parallel on the Tianjic-X chip through space-shar-

ing, time-sharing and spatio-temporal sharing, achiev-

ing better load balancing and compact execution. The

NorthPole chip[68], the newest generation of IBM’s
brain-inspired computing chip published recently, al-

so adopts a similar many-core architecture with spa-

tial-temporal pattern and elastic resource sharing.

Additionally, a hierarchical and complete soft-

ware toolchain[69] has been developed to flexibly de-

ploy different paradigms of neural networks on the

chip, enabling synergistic optimization between soft-

ware and hardware. Based on Tianjic-X, the team has

also built a four-legged robot development

platform[70]. They developed a brain-inspired general

place recognition system for robotics, with the core

relying on the proposed brain-inspired multi-modal

hybrid neural network. This intelligent robotic sys-

tem systematically addresses issues such as percep-

tion aliasing, motion blur, and large-scale dynamic

changes in unmanned systems operating in open envi-

ronments. Compared with existing technologies, this

system exhibits higher robustness under conditions

such as changes in lighting and weather, while also of-

fering advantages such as low power consumption and

low latency.

Merits. The Tianjic series of chips embodies the

advantages of SNN/ANN hybrid at the hardware lev-

el. Taking its second-generation chip as an example,

compared with IBM's TrueNorth chip, it supports

more intelligent models in function, improves neu-

ronal density by 20%, and increases the computing

capability by 10 times. Combined with the cross-

paradigm multi-tasking asynchronous parallelism, it is

an efficient hardware platform for brain-inspired com-

putation.

5 Conclusions

To a large extent, the current research of brain-in-

spired computing faces the major challenge of system

fragmentation. Some work has started with the devel-

opment software of different functions, and tried to

solve such problems by supporting multiple types of

applications, training algorithms or hardware.

We drew inspiration from the development histo-

ry and the design philosophy of general-purpose com-

puting, and proposed to design a “general-purpose”
brain-inspired computing system. Based on the

SW/HW decoupling system hierarchy, it includes the

application development framework, compilation in-

frastructure, and flexible programmable neuromor-

phic chips, which can support broad-spectrum SNN

training algorithms and different kinds of back-end

hardware, while simplifying the development of appli-

cations and compilers. We believe that this series of

work is conducive to the construction of a brain-in-

spired computing ecological environment, and then

promote its development and industrialization.

Conflict of Interest You-Hui Zhang is an edi-

torial board member for Journal of Computer Science

and Technology and was not involved in the editorial

review of this article. All authors declare that there

are no other competing interests.

References

 Roy K, Jaiswal A, Panda P. Towards spike-based ma-[1]

Peng Qu et al.: Research on General-Purpose Brain-Inspired Computing Systems 17

20

chine intelligence with neuromorphic computing. Nature,

2019, 575(7784): 607–617. DOI: 10.1038/s41586-019-1677-2.

 Waldrop M M. The chips are down for Moore’s law. Na-

ture, 2016, 530(7589): 144–147. DOI: 10.1038/530144a.

[2]

 Maass W. Networks of spiking neurons: The third genera-

tion of neural network models. Neural Networks, 1997,

10(9): 1659–1671. DOI: 10.1016/S0893-6080(97)00011-7.

[3]

 Qu P, Yang L, Zheng W M, Zhang Y H. A review of ba-

sic software for brain-inspired computing. CCF Trans.

High Performance Computing, 2022, 4(1): 34–42. DOI: 10.

1007/s42514-022-00092-1.

[4]

 Kass R E, Amari S I, Arai K, Brown E N, Diekman C O,

Diesmann M, Doiron B, Eden U T, Fairhall A L, Fiddy-

ment G M, Fukai T, Grün S, Harrison M T, Helias M,

Nakahara H, Teramae J N, Thomas P J, Reimers M, Ro-

du J, Rotstein H G, Shea-Brown E, Shimazaki H, Shi-

nomoto S, Yu B M, Kramer M A. Computational neuro-

science: Mathematical and statistical perspectives. Annu-

al Review of Statistics and Its Application, 2018, 5:

183–214. DOI: 10.1146/annurev-statistics-041715-033733.

[5]

 Plana L A, Clark D, Davidson S, Furber S, Garside J,

Painkras E, Pepper J, Temple S, Bainbridge J. SpiN-

Naker: Design and implementation of a GALS multicore

system-on-chip. ACM Journal on Emerging Technologies

in Computing Systems, 2011, 7(4): 17. DOI: 10.1145/

2043643.2043647.

[6]

 Höppner S, Yan Y X, Dixius A, Scholze S, Partzsch J,

Stolba M, Kelber F, Vogginger B, Neumärker F, Ellguth

G, Hartmann S, Schiefer S, Hocker T, Walter D, Liu G T,

Garside J D, Furber S, Mayr C. The SpiNNaker 2 pro-

cessing element architecture for hybrid digital neuromor-

phic computing. arXiv: 2103.08392, 2021.https://arxiv.org/

abs/2103.08392, Jan. 2024.

[7]

 Zhang W B, Yao P, Gao B, Liu Q, Wu D, Zhang Q T, Li

Y K, Qin Q, Li J M, Zhu Z H, Cai Y, Wu D B, Tang J S,

Qian H, Wang Y, Wu H Q. Edge learning using a fully

integrated neuro-inspired memristor chip. Science, 2023,

381(6663): 1205–1211. DOI: 10.1126/science.ade3483.

[8]

 Yao P, Wu H Q, Gao B, Tang J S, Zhang Q T, Zhang W

Q, Yang J J, Qian H. Fully hardware-implemented mem-

ristor convolutional neural network. Nature, 2020,

577(7792): 641–646. DOI: 10.1038/s41586-020-1942-4.

[9]

 Nguyen A, Nguyen H, Venimadhavan S, Venkattraman

A, Parent D, Wong H Y. Fully analog ReRAM neuromor-

phic circuit optimization using DTCO simulation frame-

work. In Proc. the 2020 International Conference on Sim-

ulation of Semiconductor Processes and Devices (SIS-

PAD), Sept. 2020, pp.201–204. DOI: 10.23919/SISPAD

49475.2020.9241635.

[10]

 She X Y, Long Y, Mukhopadhyay S. Improving robust-

ness of ReRAM-based spiking neural network accelerator

with stochastic spike-timing-dependent-plasticity. In Proc.

the 2019 International Joint Conference on Neural Net-

works (IJCNN), Jul. 2019, pp.1–8. DOI: 10.1109/IJCNN.

2019.8851825.

[11]

 Kim C H, Lee S, Woo S Y, Kang W M, Lim S, Bae J H,

Kim J, Lee J H. Demonstration of unsupervised learning

with spike-timing-dependent plasticity using a TFT-type

NOR flash memory array. IEEE Trans. Electron Devices,

[12]

2018, 65(5): 1774–1780. DOI: 10.1109/TED.2018.2817266.

 Shouval H Z, Wang S S H, Wittenberg G M. Spike tim-

ing dependent plasticity: A consequence of more funda-

mental learning rules. Frontiers in Computational Neuro-

science, 2010, 4: 19. DOI: 10.3389/fncom.2010.00019.

[13]

 Akopyan F, Sawada J, Cassidy A, Alvarez-Icaza R,

Arthur J, Merolla P, Imam N, Nakamura Y, Datta P,

Nam G J, Taba B, Beakes M, Brezzo B, Kuang J B,

Manohar R, Risk W P, Jackson B, Modha D S.

TrueNorth: Design and tool flow of a 65 mW 1 million

neuron programmable neurosynaptic chip. IEEE Trans.

Computer-Aided Design of Integrated Circuits and Sys-

tems, 2015, 34(10): 1537–1557. DOI: 10.1109/TCAD.2015.

2474396.

[14]

 Neckar A, Fok S, Benjamin B V, Stewart T C, Oza N N,

Voelker A R, Eliasmith C, Manohar R, Boahen K. Brain-

drop: A mixed-signal neuromorphic architecture with a

dynamical systems-based programming model. Proceed-

ings of the IEEE, 2019, 107(1): 144–164. DOI: 10.1109/

JPROC.2018.2881432.

[15]

 Davies M, Srinivasa N, Lin T H, Chinya G, Cao Y Q,

Choday S H, Dimou G, Joshi P, Imam N, Jain S, Liao Y

Y, Lin C K, Lines A, Liu R K, Mathaikutty D, Mccoy S,

Paul A, Tse J, Venkataramanan G, Weng Y H, Wild A,

Yang Y, Wang H. Loihi: A neuromorphic manycore pro-

cessor with on-chip learning. IEEE Micro, 2018, 38(1):

82–99. DOI: 10.1109/MM.2018.112130359.

[16]

 Lin C K, Wild A, Chinya G N, Cao Y Q, Davies M, Lav-

ery D M, Wang H. Programming spiking neural networks

on Intel’s Loihi. Computer, 2018, 51(3): 52–61. DOI: 10.

1109/MC.2018.157113521.

[17]

 Chen J J, Yang L, Zhang Y H. GaBAN: A generic and

flexibly programmable vector neuro-processor on FPGA.

In Proc. the 59th ACM/IEEE Design Automation Confer-

ence, Jul. 2022, pp.931–936. DOI: 10.1145/3489517.3530561.

[18]

 Amir A, Datta P, Risk W P, Cassidy A S, Kusnitz J A,

Esser S K, Andreopoulos A, Wong T M, Flickner M, Al-

varez-Icaza R, McQuinn E, Shaw B, Pass N, Modha D S.

Cognitive computing programming paradigm: A Corelet

language for composing networks of neurosynaptic cores.

In Proc. the 2013 International Joint Conference on Neu-

ral Networks (IJCNN), Aug. 2013, pp.1–10. DOI: 10.

1109/IJCNN.2013.6707078.

[19]

 Pei J, Deng L, Song S, Zhao M G, Zhang Y H, Wu S,

Wang G R, Zou Z, Wu Z Z, He W, Chen F, Deng N, Wu

S, Wang Y, Wu Y J, Yang Z Y, Ma C, Li G Q, Han W

T, Li H L, Wu H Q, Zhao R, Xie Y, Shi L P. Towards ar-

tificial general intelligence with hybrid Tianjic chip archi-

tecture. Nature, 2019, 572(7767): 106–111. DOI: 10.1038/

s41586-019-1424-8.

[20]

 Deng L, Wang G R, Li G Q, Li S C, Liang L, Zhu M H,

Wu Y J, Yang Z Y, Zou Z, Pei J, Wu Z Z, Hu X, Ding Y

F, He W, Xie Y, Shi L P. Tianjic: A unified and scalable

chip bridging spike-based and continuous neural computa-

tion. IEEE Journal of Solid-State Circuits, 2020, 55(8):

2228–2246. DOI: 10.1109/JSSC.2020.2970709.

[21]

 Orchard G, Frady E P, Rubin D B D, Sanborn S,

Shrestha S B, Sommer F T, Davies M. Efficient neuro-

morphic signal processing with Loihi 2. In Proc. the 2021

[22]

18 J. Comput. Sci. & Technol., Jan. 2024, Vol.39, No.1

https://doi.org/10.1038/s41586-019-1677-2
https://doi.org/10.1038/s41586-019-1677-2
https://doi.org/10.1038/s41586-019-1677-2
https://doi.org/10.1038/s41586-019-1677-2
https://doi.org/10.1038/s41586-019-1677-2
https://doi.org/10.1038/s41586-019-1677-2
https://doi.org/10.1038/s41586-019-1677-2
https://doi.org/10.1038/530144a
https://doi.org/10.1016/S0893-6080(97)00011-7
https://doi.org/10.1016/S0893-6080(97)00011-7
https://doi.org/10.1016/S0893-6080(97)00011-7
https://doi.org/10.1016/S0893-6080(97)00011-7
https://doi.org/10.1016/S0893-6080(97)00011-7
https://doi.org/10.1007/s42514-022-00092-1
https://doi.org/10.1007/s42514-022-00092-1
https://doi.org/10.1007/s42514-022-00092-1
https://doi.org/10.1007/s42514-022-00092-1
https://doi.org/10.1007/s42514-022-00092-1
https://doi.org/10.1007/s42514-022-00092-1
https://doi.org/10.1007/s42514-022-00092-1
https://doi.org/10.1007/s42514-022-00092-1
https://doi.org/10.1146/annurev-statistics-041715-033733
https://doi.org/10.1146/annurev-statistics-041715-033733
https://doi.org/10.1146/annurev-statistics-041715-033733
https://doi.org/10.1146/annurev-statistics-041715-033733
https://doi.org/10.1146/annurev-statistics-041715-033733
https://doi.org/10.1146/annurev-statistics-041715-033733
https://doi.org/10.1146/annurev-statistics-041715-033733
https://doi.org/10.1145/2043643.2043647
https://doi.org/10.1145/2043643.2043647
https://arxiv.org/abs/2103.08392
https://arxiv.org/abs/2103.08392
https://doi.org/10.1126/science.ade3483
https://doi.org/10.1038/s41586-020-1942-4
https://doi.org/10.1038/s41586-020-1942-4
https://doi.org/10.1038/s41586-020-1942-4
https://doi.org/10.1038/s41586-020-1942-4
https://doi.org/10.1038/s41586-020-1942-4
https://doi.org/10.1038/s41586-020-1942-4
https://doi.org/10.1038/s41586-020-1942-4
https://doi.org/10.23919/SISPAD49475.2020.9241635
https://doi.org/10.23919/SISPAD49475.2020.9241635
https://doi.org/10.1109/IJCNN.2019.8851825
https://doi.org/10.1109/IJCNN.2019.8851825
https://doi.org/10.1109/TED.2018.2817266
https://doi.org/10.3389/fncom.2010.00019
https://doi.org/10.1109/TCAD.2015.2474396
https://doi.org/10.1109/TCAD.2015.2474396
https://doi.org/10.1109/JPROC.2018.2881432
https://doi.org/10.1109/JPROC.2018.2881432
https://doi.org/10.1109/MM.2018.112130359
https://doi.org/10.1109/MC.2018.157113521
https://doi.org/10.1109/MC.2018.157113521
https://doi.org/10.1145/3489517.3530561
https://doi.org/10.1109/IJCNN.2013.6707078
https://doi.org/10.1109/IJCNN.2013.6707078
https://doi.org/10.1038/s41586-019-1424-8
https://doi.org/10.1038/s41586-019-1424-8
https://doi.org/10.1038/s41586-019-1424-8
https://doi.org/10.1038/s41586-019-1424-8
https://doi.org/10.1038/s41586-019-1424-8
https://doi.org/10.1038/s41586-019-1424-8
https://doi.org/10.1038/s41586-019-1424-8
https://doi.org/10.1038/s41586-019-1424-8
https://doi.org/10.1109/JSSC.2020.2970709

IEEE Workshop on Signal Processing Systems (SiPS),

Oct. 2021, pp.254–259. DOI: 10.1109/SiPS52927.2021.00053.

 Beniaguev D, Segev I, London M. Single cortical neurons

as deep artificial neural networks. Neuron, 2021, 109(17):

2727–2739.e3. DOI: 10.1016/j.neuron.2021.07.002.

[23]

 Zhang Y C, He G, Ma L, Liu X F, Hjorth J J J, Kozlov

A, He Y T, Zhang S J, Kotaleski J H, Tian Y H, Grillner

S, Du K, Huang T J. A GPU-based computational frame-

work that bridges neuron simulation and artificial intelli-

gence. Nature Communications, 2023, 14(1): 5798. DOI:

10.1038/s41467-023-41553-7.

[24]

 Bicknell B A, Häusser M. A synaptic learning rule for ex-

ploiting nonlinear dendritic computation. Neuron, 2021,

109(24): 4001–4017.e10. DOI: 10.1016/j.neuron.2021.09.044.

[25]

 Rueckauer B, Lungu I A, Hu Y H, Pfeiffer M, Liu S C.

Conversion of continuous-valued deep networks to effi-

cient event-driven networks for image classification. Fron-

tiers in Neuroscience, 2017, 11: 682. DOI: 10.3389/fnins.

2017.00682.

[26]

 Ding J H, Yu Z F, Tian Y H, Huang T J. Optimal ANN-

SNN conversion for fast and accurate inference in deep

spiking neural networks. arXiv: 2105.11654, 2021.https://

arxiv.org/abs/2105.11654, Jan. 2024.

[27]

 Gao H R, He J X, Wang H B, Wang T X, Zhong Z Q, Yu

J Y, Wang Y, Tian M, Shi C. High-accuracy deep ANN-

to-SNN conversion using quantization-aware training

framework and calcium-gated bipolar leaky integrate and

fire neuron. Frontiers in Neuroscience, 2023, 17: 1141701.

DOI: 10.3389/fnins.2023.1141701.

[28]

 Hunsberger E, Eliasmith C. Spiking deep networks with

LIF neurons. arXiv: 1510.08829, 2015.https://arxiv.org/

abs/1510.08829, Jan. 2024.

[29]

 Wu Y J, Deng L, Li G Q, Zhu J, Xie Y, Shi L P. Direct

training for spiking neural networks: Faster, larger, bet-

ter. In Proc. the 33rd AAAI Conference on Artificial In-

telligence, Jan. 27–Feb. 1, 2019, pp.1311–1318. DOI: 10.

1609/aaai.v33i01.33011311.

[30]

 Shrestha S B, Orchard G. SLAYER: Spike layer error re-

assignment in time. In Proc. the 32nd International Con-

ference on Neural Information Processing Systems, Dec.

2018, pp.1419–1428.

[31]

 Paszke A, Gross S, Massa F, Lerer A, Bradbury J,

Chanan G, Killeen T, Lin Z M, Gimelshein N, Antiga L,

Desmaison A, Köpf A, Yang E, DeVito Z, Raison M, Te-

jani A, Chilamkurthy S, Steiner B, Fang L, Bai J J, Chin-

tala S. PyTorch: An imperative style, high-performance

deep learning library. In Proc. the 33rd International

Conference on Neural Information Processing Systems,

Dec. 2019, Article No. 721.

[32]

 Abadi M, Barham P, Chen J M, Chen Z F, Davis A,

Dean J, Devin M, Ghemawat S, Irving G, Isard M, Kud-

lur M, Levenberg J, Monga R, Moore S, Murray D G,

Steiner B, Tucker P, Vasudevan V, Warden P, Wicke M,

Yu Y, Zheng X Q. TensorFlow: A system for large-scale

machine learning. In Proc. the 12th USENIX Symposium

on Operating Systems Design and Implementation, Nov.

2016, pp.265–283.

[33]

 Kim J, Kim K, Kim J J. Unifying activation- and timing-

based learning rules for spiking neural networks. In Proc.

[34]

the 34th International Conference on Neural Information

Processing Systems, Dec. 2020, Article No. 1639.

 Lobov S, Mironov V, Kastalskiy I, Kazantsev V. A spik-

ing neural network in sEMG feature extraction. Sensors,

2015, 15(11): 27894–27904. DOI: 10.3390/s151127894.

[35]

 Chancán M, Hernandez-Nunez L, Narendra A, Barron A

B, Milford M. A hybrid compact neural architecture for

visual place recognition. IEEE Robotics and Automation

Letters, 2020, 5(2): 993–1000. DOI: 10.1109/LRA.2020.

2967324.

[36]

 Lee C, Kosta A K, Zhu A Z, Chaney K, Daniilidis K, Roy

K. Spike-FlowNet: Event-based optical flow estimation

with energy-efficient hybrid neural networks. arXiv:

2003.06696, 2020. https://arxiv.org/abs/2003.06696, Jan.

2024.

[37]

 Zhao R, Yang Z Y, Zheng H, Wu Y J, Liu F Q, Wu Z Z,

Li L K, Chen F, Song S, Zhu J, Zhang W L, Huang H Y,

Xu M K, Sheng K F, Yin Q B, Pei J, Li G Q, Zhang Y

H, Zhao M G, Shi L P. A framework for the general de-

sign and computation of hybrid neural networks. Nature

Communications, 2022, 13(1): 3427. DOI: 10.1038/s41467-

022-30964-7.

[38]

 Roxin A, Brunel N, Hansel D, Mongillo G, Vreeswijk C

V. On the distribution of firing rates in networks of corti-

cal neurons. Journal of Neuroscience, 2011, 31(5):

16217–16226. DOI: 10.1523/JNEUROSCI.1677-11.2011.

[39]

 Qu P, Lin H, Pang M, Liu X F, Zheng W M, Zhang Y H.

ENLARGE: An efficient SNN simulation framework on

GPU clusters. IEEE Trans. Parallel and Distributed Sys-

tems, 2023, 34(9): 2529–2540. DOI: 10.1109/TPDS.2023.

3291825.

[40]

 Fang W, Chen Y Q, Ding J H, Yu Z F, Masquelier T,

Chen D, Huang L W, Zhou H H, Li G Q, Tian Y H. Spik-

ingJelly: An open-source machine learning infrastructure

platform for spike-based intelligence. Science Advances,

2023, 9(40): eadi1480. DOI: 10.1126/sciadv.adi1480.

[41]

 Hines M L, Carnevale N T. The NEURON simulation en-

vironment. Neural Computation, 1997, 9(6): 1179–1209.
DOI: 10.1162/neco.1997.9.6.1179.

[42]

 Turing A M. On computable numbers, with an applica-

tion to the entscheidungsproblem. Journal of Mathemat-

ics, 1936, 58: 345–363. DOI: 10.112/plms/s2-42.1.230.

[43]

 Aimone J B, Severa W, Vineyard C M. Composing neu-

ral algorithms with Fugu. In Proc. the International Con-

ference on Neuromorphic Systems, Jul. 2019, Article No.

3. DOI: 10.1145/3354265.3354268.

[44]

 Zhang Y H, Qu P, Ji Y, Zhang W H, Gao G R, Wang G

R, Song S, Li G Q, Chen W G, Zheng W M, Chen F, Pei

J, Zhao R, Zhao M G, Shi L P. A system hierarchy for

brain-inspired computing. Nature, 2020, 586(7829): 378–
384. DOI: 10.1038/s41586-020-2782-y.

[45]

 Lattner C. LLVM: An infrastructure for multi-stage opti-

mization [Master’s Thesis]. University of Illinois at Ur-

bana-Champaign, Champaign-Urbana, 2002.

[46]

 Lattner C, Amini M, Bondhugula U, Cohen A, Davis A,

Pienaar J, Riddle R, Shpeisman T, Vasilache N, Zinenko

O. MLIR: Scaling compiler infrastructure for domain spe-

cific computation. In Proc. the 2021 IEEE/ACM Interna-

tional Symposium on Code Generation and Optimization

[47]

Peng Qu et al.: Research on General-Purpose Brain-Inspired Computing Systems 19

https://doi.org/10.1109/SiPS52927.2021.00053
https://doi.org/10.1016/j.neuron.2021.07.002
https://doi.org/10.1038/s41467-023-41553-7
https://doi.org/10.1038/s41467-023-41553-7
https://doi.org/10.1038/s41467-023-41553-7
https://doi.org/10.1038/s41467-023-41553-7
https://doi.org/10.1038/s41467-023-41553-7
https://doi.org/10.1038/s41467-023-41553-7
https://doi.org/10.1038/s41467-023-41553-7
https://doi.org/10.1016/j.neuron.2021.09.044
https://doi.org/10.3389/fnins.2017.00682
https://doi.org/10.3389/fnins.2017.00682
https://arxiv.org/abs/2105.11654
https://arxiv.org/abs/2105.11654
https://doi.org/10.3389/fnins.2023.1141701
https://arxiv.org/abs/1510.08829
https://arxiv.org/abs/1510.08829
https://doi.org/10.1609/aaai.v33i01.33011311
https://doi.org/10.1609/aaai.v33i01.33011311
https://doi.org/10.3390/s151127894
https://doi.org/10.1109/LRA.2020.2967324
https://doi.org/10.1109/LRA.2020.2967324
https://arxiv.org/abs/2003.06696
https://doi.org/10.1038/s41467-022-30964-7
https://doi.org/10.1038/s41467-022-30964-7
https://doi.org/10.1038/s41467-022-30964-7
https://doi.org/10.1038/s41467-022-30964-7
https://doi.org/10.1038/s41467-022-30964-7
https://doi.org/10.1038/s41467-022-30964-7
https://doi.org/10.1038/s41467-022-30964-7
https://doi.org/10.1523/JNEUROSCI.1677-11.2011
https://doi.org/10.1523/JNEUROSCI.1677-11.2011
https://doi.org/10.1523/JNEUROSCI.1677-11.2011
https://doi.org/10.1109/TPDS.2023.3291825
https://doi.org/10.1109/TPDS.2023.3291825
https://doi.org/10.1126/sciadv.adi1480
https://doi.org/10.1162/neco.1997.9.6.1179
https://ieeexplore.ieee.org/document/9357578
https://ieeexplore.ieee.org/document/9357578
https://ieeexplore.ieee.org/document/9357578
https://doi.org/10.1145/3354265.3354268
https://doi.org/10.1038/s41586-020-2782-y
https://doi.org/10.1038/s41586-020-2782-y
https://doi.org/10.1038/s41586-020-2782-y
https://doi.org/10.1038/s41586-020-2782-y
https://doi.org/10.1038/s41586-020-2782-y
https://doi.org/10.1038/s41586-020-2782-y
https://doi.org/10.1038/s41586-020-2782-y

(CGO), Feb. 2021, pp.2–14. DOI: 10.1109/CGO51591.2021.

9370308.

 Ji Y, Zhang Y Y, Xie X F, Li S C, Wang P Q, Hu X,

Zhang Y H, Xie Y. FPSA: A full system stack solution for

reconfigurable ReRAM-based NN accelerator architecture.

In Proc. the 24th International Conference on Architec-

tural Support for Programming Languages and Operat-

ing Systems, Apr. 2019, pp.733–747. DOI: 10.1145/

3297858.3304048.

[48]

 Ji Y, Liu Z X, Zhang Y H. A reduced architecture for

ReRAM-based neural network accelerator and its soft-

ware stack. IEEE Trans. Computers, 2021, 70(3): 316–
331. DOI: 10.1109/TC.2020.2988248.

[49]

 Liu F Q, Zhao R. Enhancing spiking neural networks with

hybrid top-down attention. Frontiers in Neuroscience,

2022, 16: 949142. DOI: 10.3389/fnins.2022.949142.

[50]

 Zheng H, Lin H, Zhao R, Shi L P. Dance of SNN and

ANN: Solving binding problem by combining spike tim-

ing and reconstructive attention. In Proc. the 36th Inter-

national Conference on Neural Information Processing

Systems, Nov. 28–Dec. 9, 2022, pp.31430–31443.

[51]

 Tian L, Wu Z Z, Wu S, Shi L P. Hybrid neural state ma-

chine for neural network. Science China Information Sci-

ences, 2021, 64(3): 132202. DOI: 10.1007/s11432-019-2988-1.

[52]

 Zou Z, Wu Y J, Zhao R. HNST: Hybrid neural state

tracker for high speed tracking. In Proc. the 7th Interna-

tional Conference on Control, Automation and Robotics

(ICCAR), Apr. 2021, pp.231–235. DOI: 10.1109/ICCAR

52225.2021.9463460.

[53]

 Eshraghian J K, Ward M, Neftci E, Wang X X, Lenz G,

Dwivedi G, Bennamoun M, Jeong D S, Lu W D. Train-

ing spiking neural networks using lessons from deep learn-

ing. arXiv: 2109.12894, 2021. https://arxiv.org/abs/2109.

12894, Jan. 2024.

[54]

 Wu Y J, Deng L, Li G Q, Zhu J, Shi L P. Spatio-tempo-

ral backpropagation for training high-performance spik-

ing neural networks. Frontiers in Neuroscience, 2018, 12:

331. DOI: 10.3389/fnins.2018.00331.

[55]

 Grossberg S. Competitive learning: From interactive acti-

vation to adaptive resonance. Cognitive Science, 1987,

11(1): 23–63. DOI: 10.1016/S0364-0213(87)80025-3.

[56]

 Gewaltig M O, Diesmann M. NEST (neural simulation

tool). Scholarpedia, 2007, 2(4): 1430. DOI: 10.4249/schol-

arpedia.1430.

[57]

 Pang M, Li Y C, Li Z L, Zhang Y H. FABLE: A develop-

ment and computing framework for brain-inspired learn-

ing algorithms. In Proc. the 2023 International Joint Con-

ference on Neural Networks (IJCNN), Jun. 2023. DOI: 10.

1109/IJCNN54540.2023.10192026.

[58]

 Shi H, Wang Q, Chu X W. Efficient sparse-dense matrix-

matrix multiplication on GPUs using the customized

sparse storage format. In Proc. the 26th IEEE Interna-

tional Conference on Parallel and Distributed Systems

(ICPADS), Dec. 2020, pp.19–26. DOI: 10.1109/ICPADS

51040.2020.00013.

[59]

 Pellauer M, Shao Y S, Clemons J, Crago N, Hegde K,

Venkatesan R, Keckler S W, Fletcher C W, Emer J. Buf-

fets: An efficient and composable storage idiom for explic-

it decoupled data orchestration. In Proc. the 24th Inter-

[60]

national Conference on Architectural Support for Pro-

gramming Languages and Operating Systems, Apr. 2019,

pp.137–151. DOI: 10.1145/3297858.3304025.

 Oltra-Oltra J A, Madrenas J, Zapata M, Vallejo B, Mata-

Hernandez D, Sato S. Hardware-software co-design for ef-

ficient and scalable real-time emulation of SNNs on the

edge. In Proc. the 2021 IEEE International Symposium on

Circuits and Systems (ISCAS), May 2021. DOI: 10.1109/

ISCAS51556.2021.9401615.

[61]

 Shi L P, Pei J, Deng N, Wang D, Deng L, Wang Y,

Zhang Y H, Chen F, Zhao M G, Song S, Zeng F, Li G Q,

Li H L, Ma C. Development of a neuromorphic comput-

ing system. In Proc. the 2015 IEEE International Elec-

tron Devices Meeting (IEDM), Dec. 2015, pp.4.3.1–4.3.4.
DOI: 10.1109/IEDM.2015.7409624.

[62]

 Ma S C, Pei J, Zhang W H, Wang G R, Feng D H, Yu F

W, Song C H, Qu H Y, Ma C, Lu M S, Liu F Q, Zhou W

H, Wu Y J, Lin Y H, Li H Y, Wang T Y, Song J R, Liu

X, Li G Q, Zhao R, Shi L P. Neuromorphic computing

chip with spatiotemporal elasticity for multi-intelligent-

tasking robots. Science Robotics, 2022, 7(67): eabk2948.

DOI: 10.1126/scirobotics.abk2948.

[63]

 Zhang B, Shi L P, Song S. Creating more intelligent

robots through brain-inspired computing. Science

Robotics, 2016, 354(6318): 1445.

[64]

 Merolla P A, Arthur J V, Alvarez-Icaza R, Cassidy A S,

Sawada J, Akopyan F, Jackson B L, Imam N, Guo C,

Nakamura Y, Brezzo B, Vo I, Esser S K, Appuswamy R,

Taba B, Amir A, Flickner M D, Risk W P, Manohar R,

Modha D S. A million spiking-neuron integrated circuit

with a scalable communication network and interface. Sci-

ence, 2014, 345(6197): 668–673. DOI: 10.1126/science.1254

642.

[65]

 Pehle C, Billaudelle S, Cramer B, Kaiser J, Schreiber K,

Stradmann Y, Weis J, Leibfried A, Müller E, Schemmel J.

The BrainScaleS-2 accelerated neuromorphic system with

hybrid plasticity. Frontiers in Neuroscience, 2022, 16:

795876. DOI: 10.3389/fnins.2022.795876.

[66]

 Li H Y, Ma S C, Wang T Y, Zhang W H, Wang G R,

Song C H, Qu H Y, Lin J F, Ma C, Pei J, Zhao R. HASP:

Hierarchical asynchronous parallelism for multi-NN tasks.

IEEE Trans. Computers, 2024, 73(2): 366–379. DOI: 10.

1109/TC.2023.3329937.

[67]

 Modha D S, Akopyan F, Andreopoulos A, Appuswamy R,

Arthur J V, Cassidy A S, Datta P, DeBole M V, Esser S

K, Otero C O, Sawada J, Taba B, Amir A, Bablani D,

Carlson P J, Flickner M D, Gandhasri R, Garreau G J,

Ito M, Klamo J L, Kusnitz J A, Mcclatchey N J, Mck-

instry J L, Nakamura Y, Nayak T K, Risk W P, Schleu-

pen K, Shaw B, Sivagnaname J, Smith D F, Terrizzano I,

Ueda T. Neural inference at the frontier of energy, space,

and time. Science, 2023, 382(6668): 329–335. DOI: 10.1126/

science.adh1174.

[68]

 Lin J F, Qu H Y, Ma S C, Ji X L, Li H Y, Li X C, Song

C H, Zhang W H. SongC: A compiler for hybrid near-

memory and in-memory many-core architecture. IEEE

Trans. Computers. DOI: 10.1109/TC.2023.3311948.

[69]

 Yu F W, Wu Y J, Ma S C, Xu M K, Li H Y, Qu H Y,

Song C H, Wang T Y, Zhao R, Shi L P. Brain-inspired

[70]

20 J. Comput. Sci. & Technol., Jan. 2024, Vol.39, No.1

https://doi.org/10.1109/CGO51591.2021.9370308
https://doi.org/10.1109/CGO51591.2021.9370308
https://doi.org/10.1145/3297858.3304048
https://doi.org/10.1145/3297858.3304048
https://doi.org/10.1109/TC.2020.2988248
https://doi.org/10.3389/fnins.2022.949142
https://doi.org/10.1007/s11432-019-2988-1
https://doi.org/10.1007/s11432-019-2988-1
https://doi.org/10.1007/s11432-019-2988-1
https://doi.org/10.1007/s11432-019-2988-1
https://doi.org/10.1007/s11432-019-2988-1
https://doi.org/10.1007/s11432-019-2988-1
https://doi.org/10.1007/s11432-019-2988-1
https://doi.org/10.1109/ICCAR52225.2021.9463460
https://doi.org/10.1109/ICCAR52225.2021.9463460
https://arxiv.org/abs/2109.12894
https://arxiv.org/abs/2109.12894
https://doi.org/10.3389/fnins.2018.00331
https://doi.org/10.1016/S0364-0213(87)80025-3
https://doi.org/10.1016/S0364-0213(87)80025-3
https://doi.org/10.1016/S0364-0213(87)80025-3
https://doi.org/10.1016/S0364-0213(87)80025-3
https://doi.org/10.1016/S0364-0213(87)80025-3
https://doi.org/10.4249/scholarpedia.1430
https://doi.org/10.4249/scholarpedia.1430
https://doi.org/10.4249/scholarpedia.1430
https://doi.org/10.1109/IJCNN54540.2023.10192026
https://doi.org/10.1109/IJCNN54540.2023.10192026
https://doi.org/10.1109/ICPADS51040.2020.00013
https://doi.org/10.1109/ICPADS51040.2020.00013
https://doi.org/10.1145/3297858.3304025
https://doi.org/10.1109/ISCAS51556.2021.9401615
https://doi.org/10.1109/ISCAS51556.2021.9401615
https://doi.org/10.1109/IEDM.2015.7409624
https://doi.org/10.1126/scirobotics.abk2948
https://doi.org/10.1126/science.1254642
https://doi.org/10.1126/science.1254642
https://doi.org/10.3389/fnins.2022.795876
https://doi.org/10.1109/TC.2023.3329937
https://doi.org/10.1109/TC.2023.3329937
https://doi.org/10.1126/science.adh1174
https://doi.org/10.1126/science.adh1174
https://doi.org/10.1109/TC.2023.3311948

multimodal hybrid neural network for robot place recogni-

tion. Science Robotics, 2023, 8(78): eabm6996. DOI: 10.

1126/scirobotics.abm6996.

Peng Qu received his B.E. degree

in computer science and technology

from Tsinghua University, Beijing, in

2013, and his Ph.D. degree in the

same field in 2018. Currently, he is an

assistant professor in the Department

of Computer Science and Technology

at Tsinghua University, Beijing. His primary research

interests include computer architecture and neuromor-

phic computing.

Xing-Long Ji received his B.E. de-

gree from Huazhong University of Sci-

ence and Technology, Wuhan, in 2011,

and his Ph.D. degree in microelectron-

ics from University of Chinese Acade-

my of Sciences, Beijing, in 2016. He is

currently an associate professor in the

Department of Precision Instrument at Tsinghua Uni-

versity, Beijing. His current research interests include

brain-inspired computing, edge computing, and non-

volatile memory technologies.

Jia-Jie Chen received his B.E. de-

gree in computer science from Ts-

inghua University, Beijing, in 2021. He

is currently a Ph.D. student in the De-

partment of Computer Science and

Technology at Tsinghua University,

Beijing. His research interests include

computer architecture and neuromorphic computing.

Meng Pang received his B.E. de-

gree in computer science from Jilin

University, Changchun, in 2020. He is

currently a Ph.D. student in the De-

partment of Computer Science and

Technology at Tsinghua University,

Beijing. His research interests include

compilation optimization and automatic parallelization.

Yu-Chen Li is currently an under-

graduate student in the Department of

Computer Science and Technology at

Tsinghua University, Beijing. His re-

search interests include neuromorphic

computing and compilation technology.

Xiao-Yi Liu received his B.E. de-

gree in computer science from Ts-

inghua University, Beijing, in 2023. He

is currently a Master student in the

Department of Computer Science and

Technology at Tsinghua University,

Beijing. His research interests include

computer architecture and neuromorphic computing.

You-Hui Zhang received his B.E.

degree in computer science from Ts-

inghua University, Beijing, in 1998,

and his Ph.D. degree in computer sci-

ence from the same university in 2002.

Currently, he is a professor in the De-

partment of Computer Science and

Technology at Tsinghua University, Beijing. His re-

search interests include computer architecture, proces-

sor microarchitecture, and neuromorphic computing.

Peng Qu et al.: Research on General-Purpose Brain-Inspired Computing Systems 21

https://doi.org/10.1126/scirobotics.abm6996
https://doi.org/10.1126/scirobotics.abm6996

	1 Introduction
	2 Status Quo of Brain-Inspired Computing Systems
	2.1 Diversity of Neuromorphic Chips
	2.2 Refinement of Computational Neuroscience
	2.3 SNN/ANN Hybrid
	2.4 New Challenges

	3 Design Methodology of General Purpose Computers and Enlightenment
	3.1 Computational Completeness
	3.2 Compilation Infrastructure
	3.3 Reduced Instruction Set Computer (RISC)

	4 Our Work
	4.1 Framework for HNNs
	4.2 Framework for Various Brain-Inspired Learning Algorithms
	4.3 Compiler Infrastructure
	4.4 Research on Instruction Set and Micro-Architecture
	4.5 Tianjic-X

	5 Conclusions
	Conflict of Interest
	References

