

SHA: QoS-Aware Software and Hardware Auto-Tuning for Database
Systems

Jin Li1 (李　进), Quan Chen1 (陈　全), Senior Member, CCF, Xiao-Xin Tang2 (唐晓新), Member, CCF
and Min-Yi Guo1, * (过敏意), Fellow, CCF, IEEE

1 Department of Computer Science, Shanghai Jiao Tong University, Shanghai 200240, China
2 Department of Computer Science and Technology, Shanghai University of Finance and Economics, Shanghai 200433, China

E-mail: lijin@sjtu.edu.cn; chen-quan@cs.sjtu.edu.cn; tang.xiaoxin@sufe.edu.cn; guo-my@cs.sjtu.edu.cn

Received June 30, 2021; accepted March 25, 2022.

Abstract While databases are widely-used in commercial user-facing services that have stringent quality-of-service

(QoS) requirement, it is crucial to ensure their good performance and minimize the hardware usage at the same time. Our

investigation shows that the optimal DBMS (database management system) software configuration varies for different us-

er request patterns (i.e., workloads) and hardware configurations. It is challenging to identify the optimal software and

hardware configurations for a database workload, because DBMSs have hundreds of tunable knobs, the effect of tuning a

knob depends on other knobs, and the dependency relationship changes under different hardware configurations. In this

paper, we propose SHA, a software and hardware auto-tuning system for DBMSs. SHA is comprised of a scaling-based per-

formance predictor, a reinforcement learning (RL) based software tuner, and a QoS-aware resource reallocator. The perfor-

mance predictor predicts its optimal performance with different hardware configurations and identifies the minimum

amount of resources for satisfying its performance requirement. The software tuner fine-tunes the DBMS software knobs to

optimize the performance of the workload. The resource reallocator assigns the saved resources to other applications to im-

prove resource utilization without incurring QoS violation of the database workload. Experimental results show that SHA

improves the performance of database workloads by 9.9% on average compared with a state-of-the-art solution when the

hardware configuration is fixed, and improves 43.2% of resource utilization while ensuring the QoS.

Keywords auto-tuning, database configuration, joint tuning, utilization, quality-of-service (QoS)

1 Introduction

Databases are widely used to collect, process, and

analyze large volume of data, and play an outstand-

ing role in the development of the software

industry[1–3]. It is important to ensure the quality-of-

service (QoS) of the online databases for good user

experience.

A database requires both well-tuned DBMS

(database management system) software knobs and

hardware resource configuration to achieve good per-

formance. However, it is challenging to achieve the

above goal for two reasons. On the one hand, a

DBMS often has a large amount of parameters (e.g.,

MySQL has more than 300 tunable knobs) that con-

trol the runtime operations[4]. For instance, MySQL

assumes that a database is deployed on a 160 MB

RAM machine①, leaving most of today's computers'

memory unused, and the default configuration is

based on this assumption. Inappropriate software con-

figuration results in the poor performance of database.

On the other hand, the amount of resources (e.g., the

number of cores and the size of memory space) de-

manded by a database varies depending on the

amount of its access load, given determined QoS re-

quirement. Statically assigning all the resources to a

Regular Paper

This work is partially sponsored by the National Natural Science Foundation of China under Grant Nos. 62022057, 61832006,
61632017, and 61872240.

*Corresponding Author

Li J, Chen Q, Tang XX et al. SHA: QoS-aware software and hardware auto-tuning for database systems. JOURNAL OF

COMPUTER SCIENCE AND TECHNOLOGY 39(2): 369−383 Mar. 2024. DOI: 10.1007/s11390-022-1751-3

①InnoDB startup options and system variables. https://dev.mysql.com/doc/refman/8.0/en/innodb-parameters.html, Mar. 2024.
©Institute of Computing Technology, Chinese Academy of Sciences 2024

https://doi.org/10.1007/s11390-022-1751-3
https://doi.org/10.1007/s11390-022-1751-3
https://doi.org/10.1007/s11390-022-1751-3
https://doi.org/10.1007/s11390-022-1751-3
https://doi.org/10.1007/s11390-022-1751-3
https://doi.org/10.1007/s11390-022-1751-3
https://doi.org/10.1007/s11390-022-1751-3
https://dev.mysql.com/doc/refman/8.0/en/innodb-parameters.html
https://dev.mysql.com/doc/refman/8.0/en/innodb-parameters.html
https://dev.mysql.com/doc/refman/8.0/en/innodb-parameters.html

database wastes resources that could be used by oth-

er applications, and hence degrades their performance.

It is challenging to tune the DBMS software

knobs for a database to achieve the required QoS due

to the complex interactive relationship between differ-

ent knobs. Therefore, when end-users, like online

game providers, want to deploy databases on a data-

center, they usually need to hire expensive experts to

configure the database knobs, due to a lack of the

knowledge for knob tuning. It is reported that 50% of

the total database budget is spent on database tun-

ing and maintenance, while database experts spend

almost 25% of their time on tuning[5]. Once the soft-

ware knobs are determined, these knobs will not

change. However, the load of a database often experi-

ences diurnal pattern[6, 7]. It is more cost-efficient to

co-locate the database with batch applications that

have no QoS requirement when the load of the

database is low. Simply decreasing the amount of re-

sources allocated to a database at low load and allo-

cating the saved resources to other applications may

result in the QoS violation of the database. Therefore,

adjusting the hardware configuration is equally im-

portant.

Two problems have to be resolved to guarantee

the QoS of a database while maximizing resource uti-

lization. As for the first problem, our investigation

shows that the optimal software configuration for a

database varies with both different load and different

hardware resources. It is necessary to tune software

knobs and hardware allocation together when the load

of a database changes. As for the second problem, co-

located applications contend for the shared resources

(e.g., memory bandwidth), and the contention may

result in the QoS violation of the database.

Prior work has proposed methods to tune either

software or hardware knobs. As for tuning software

knobs, machine learning is often used to identify the

appropriate software configurations for different

databases, assuming fixed hardware allocation[4, 8–10].

However, these methods can get stuck in local opti-

ma, failing to make the best performance of the work-

load. Meanwhile, other prior work (e.g., Quasar[11]

and Paragon[12]) adjusted hardware allocation at run-

time to maximize resource utilization while guarantee-

ing QoS of simple user-facing services without tuning

software knobs. However, they may not work well for

database applications because they ignore the impact

of software knobs.

A straightforward way to address the above prob-

lem is combining the software auto-tuning and QoS-

aware hardware allocation. However, a state-of-the-

art auto-tuning technique requires a long time (more

than 30 minutes) to find appropriate software config-

urations under a fixed hardware allocation[8, 9], which

is too slow to catch up with the load change. There-

fore, they are only suitable for long-running databas-

es that have stable loads, and are not suitable for en-

suring the QoS of a large amount of online databases

with the diurnal load pattern while maximizing re-

source utilization.

To ensure the QoS of a database and maximize re-

source utilization, we propose SHA, a software and

hardware auto-tuning system composed of a scaling-

based performance predictor, a reinforcement learn-

ing (RL) based software tuner and a QoS-aware hard-

ware reallocator. SHA reuses the training data collect-

ed from historical tuning process to adjust new

DBMS deployments. The performance predictor lever-

ages novel scaling models to predict the best achiev-

able performance under various hardware allocations

with corresponding appropriate software configura-

tions. Based on the predictor, SHA can quickly deter-

mine the minimum hardware resources required by a

database while its QoS is satisfied. The RL-based

software tuner searches the optimal software configu-

ration using a reinforcement learning model once the

hardware allocation is determined. Meanwhile, the

QoS-aware hardware reallocator assigns the unused

hardware resources to other applications carefully,

while minimizing the contention on memory band-

width and/or shared cache that may result in serious

performance degradation of the database workload.

The main contributions of this paper are as follows.

1) We design a scaling-based performance predic-

tor, which can speed up the tuning process by reusing

the data collected from historical experience (repre-

sentative workloads). It can predict the achievable

performance under various hardware allocations and

determine the minimum hardware resources required

by a database while its QoS is satisfied.

2) We propose an RL-based software tuner, which

can search for the optimal software configuration us-

ing the RL model and achieve the best performance

online with a very short time.

3) We implement a QoS-aware hardware realloca-

tor, which can assign the unused hardware resources

to other applications when the load of a database is

370 J. Comput. Sci. & Technol., Mar. 2024, Vol.39, No.2

low. During allocation, it considers both the con-

tention problem of the memory bandwidth and the

shared cache, so that the QoS of the database work-

load will not be affected.

Our experiments show that SHA improves the

performance of databases by 9.9% compared with a

state-of-the-art solution[8] when the hardware configu-

ration is fixed, and improves 43.2% of resource uti-

lization while ensuring the QoS. Besides, SHA can de-

termine the optimal software and hardware configura-

tion in about 10 minutes, while others usually cost

more than 60 minutes.

The remainder of this paper is organized as fol-

lows. Section 2 discusses related work. We give a de-

scription of background and motivation in Section 3.

Section 4 provides an overview of SHA, followed by

the details of building performance models in Section

5, auto-tuning software and hardware configurations

in Section 6, and improving hardware utilization in

Section 7. Section 8 presents our experimental evalua-

tion. Lastly, we conclude our work in Section 9.

2 Related Work

There has been some existing work[4, 8–10] on

database configuration auto-tuning. However, most of

the methods rely on trial-and-error or rule of thumb.

They usually firstly create a copy of the production

database on a test system, and run the workload with

different parameters to observe the performance until

it meets users' requirements[13]. Some tools (e.g., IBM

DB2[14]) recommend default parameter settings based

on users' answers to high-level questions provided by

the system. But if the recommended settings cannot

satisfy the demand, these tools may not work well. In

addition, some techniques are limited to specific pa-

rameter (e.g., buffer size) tuning using control-theo-

retic approaches[15, 16]. An approach called SARD[5]

has been presented to generate a ranking of database

parameters based on their relative impacts on the sys-

tem performance, but it can be inaccurate when the

parameters have non-monotonic effects. In total, all

these methods often stick in a local optimal result,

and thus cannot achieve good performance on global

parameters auto-tuning. On the contrary, our system

SHA is able to obtain the global optimal result.

Duan et al.[4] proposed an automated tool called

iTuned that can identify good settings for database

configuration parameters. They used an adaptive

sampling technique to pick the initial experimental

settings, and built the response surface to search for

the best configurations with the Gaussian process

method. However, iTuned does not make full use of

the historical data collected by previous tuning pro-

cesses. On the basis of iTuned, another tool called Ot-

terTune[8, 9] was proposed for database configuration

auto-tuning. The authors[8, 9] considered identifying

important knobs and auto-tuning configurations by

reusing training data gathered from previous tuning

sessions. They mapped the target database workload

to the most similar historical ones based on the ses-

sion's metrics, so that they can transfer previous ex-

perience. Then they used Gaussian Process (GP) re-

gression to recommend software configurations. How-

ever, these methods consider only software auto-tun-

ing. But usually in the real world, the amount of re-

sources (e.g., the number of cores and the size of

memory space) demanded by a database varies de-

pending on the amount of its access load, and diverse

hardware configurations result in different optimal

software knobs. Statically assigning all the resources

to a database and only tuning software knobs usually

degrade their performance.

Other prior work (e.g., Quasar[11] and Paragon[12])

adjusts hardware allocation at runtime to maximize

utilization while guaranteeing QoS of simple user-fac-

ing applications, such as web search. But the above

work does not work well for databases because of ig-

noring software configurations. With the wide appli-

cation of database systems, it has been vital impor-

tant to auto-tune software configurations and opti-

mize hardware resource allocation to improve system

performance. However, very little work is done to con-

sider both optimizations.

3 Background and Motivation

In this section, we take MySQL as the representa-

tive DBMS to analyze the poor performance of a

database due to the inappropriate configuration of

software knobs, and the problem of shared resource

contention when co-locating applications to improve

resource utilization. Our study does not rely on any

specific feature of MySQL, and is applicable for other

DBMSs. The details of the experimental platform and

used benchmarks are described in Section 8.

3.1 Poor Performance of Default Software

Configuration

We use transactions per second (TPS) as the met-

ric to measure the performance of a database. Fig.1

shows the performance of three widely-used bench-

marks (TPC-C, Wikipedia, YCSB) with different soft-

Jin Li et al.: SHA: QoS-Aware Software and Hardware Auto-Tuning for Database Systems 371

ware configurations. In the figure, the “Default Con-

fig”, “Tuning Script”, and “Near-Optimal” bars show

the TPS of the databases when the software knobs

are configured to be the default configuration, the

configuration found by the recommended tuning

script②, and the near-optimal configuration (identi-

fied from 15 000 possible configurations), respectively.

Observed from Fig.1, the performance of a

database with the default software configuration is

much worse than its performance with the near-opti-

mal one. By tuning software knobs appropriately, we

can improve the database performance by 4.1x with

the same hardware. Although the tuning script identi-

fies relatively good software configuration for a

database, it is still far from the near-optimal. Note

that, due to different characteristics and user request

patterns of database workloads, the near-optimal soft-

ware configurations are different. It is necessary to

tune the DBMS software knobs for each individual

database workload.

Moreover, for a database that serves as the back-

end of an online service, when the load of the service

decreases, the required database performance decreas-

es. Fig.2(a) shows a database's performance when it is

allocated different amount of cores/memory space and

the software knobs are configured optimally. Ob-

served from Fig.2(a), when the load of a database de-

creases, it is possible to reduce the amount of re-

sources allocated to the database while still satisfying

its performance requirement. For instance, if the per-

formance target is 150 TPS at low load, we can allo-

cate only four cores and 4 GB RAM to the database,

and rely on software tuning to achieve the perfor-

mance target. The saved resources can be allocated to

the co-located batch applications without QoS re-

quirement for higher utilization.

Our investigation also shows that the optimal

software configuration for a database varies for differ-

ent hardware configurations. For instance, when the

available memory assigned to a database decreases

significantly, it is highly possible that smaller

“buffer_pool_size” may result in better performance.

Software knobs should be tuned again for a database

to achieve good performance if the hardware alloca-

tion changes.

3.2 Contention on Shared Resources

When reallocating resources (cores and memory

space) at low load for high utilization, a naive method

is allocating all the remaining resources to the co-lo-

cated batch applications. However, the contention on

shared resources (e.g., memory bandwidth) between

the co-located applications may seriously hurt the

performance of the database.

Fig.2(b) shows the performance of a database

when all the remaining resources are allocated to the

TPC-C
0

350

250

150

50

Wikipedia

Benchmark

YCSB

Default Configuration Tuning Script

Near-Optimal

T
h
ro

u
g
h
p
u
t

(T
P
S
)

Fig.1. Performance of the benchmarks with different software
configurations.

100

16

150

12 8

200

6Memory (GB)

250

8

Number o
f Cores

300

44 2
0 0

T
h
ro

u
g
h
p
u
t

(T
P
S
)

N
o
rm

a
li
z
e
d
 P

e
rf

o
rm

a
n
c
e

0.8

0.6

0.4

0.2

0.0

Co-Located Batch Application

bs fsipscfmcsddbt

(b)(a)

(4, 4, 158)

Fig.2. (a) Scaling surface of a YCSB workload. (b) Performance degradation when the YCSB workload is co-located with different
batch applications.

372 J. Comput. Sci. & Technol., Mar. 2024, Vol.39, No.2

②MySQLTuner. https://github.com/major/MySQLTuner-perl, Mar. 2024.

https://github.com/major/MySQLTuner-perl
https://github.com/major/MySQLTuner-perl
https://github.com/major/MySQLTuner-perl

x

y

co-located applications (the co-located batch applica-

tions are described in Section 8) normalized to their

solo-run performance with the same amount of re-

sources. In Fig.2(b), the -axis shows the co-located

batch applications and the -axis shows the normal-

ized performance of the database. As observed from

Fig.2(b), the performance of the database degrades

when it is co-located with the batch applications, and

different batch applications result in different perfor-

mance degradation. When allocating resources to

batch applications, it is challenging to maximize the

throughput of the batch applications while satisfying

the performance requirement of the database.

3.3 Opportunity and Challenges

According to the above analysis, there is an op-

portunity to significantly improve the database per-

formance and resource utilization, by jointly tuning

software knobs and assigning hardware resources.

There are three challenges which have to be resolved

to take the opportunity.

1) Performance Prediction Challenge. We should

predict the performance of a database with different

resources without profiling it extensively offline. How-

ever, there is not a simple and stable relationship be-

tween the performance and the amount of resources.

2) Software Auto-Tuning Challenge. We should

identify the optimal software configuration in a short

time because the load of a database may change

quickly. However, there are a large number of tun-

able knobs and the effect of tuning a knob varies for

different databases under different hardware configu-

rations.

3) Resource Reallocation Challenge. We should

limit the interference from batch applications to the

database when reallocating the saved resources.

4 Design of SHA

To resolve the three challenges, we propose SHA,

a runtime system composed of a scaling-based perfor-

mance predictor, an RL-based software tuner, and a

QoS-aware hardware reallocator. Fig.3 presents an

overview of SHA. The performance predictor identi-

fies the minimum amount of hardware resources for a

database based on runtime statistics so that it can

achieve the required performance. The RL-based soft-

ware tuner uses a pre-trained reinforcement learning

model to find the appropriate software configuration.

The QoS-aware hardware reallocator monitors the

performance of the database and reallocates the saved

resources to the co-located applications for higher uti-

lization while satisfying the QoS of the database.

w w

w

w

w

w

SHA performs software and hardware auto-tun-

ing for a database workload in four steps. 1)

runs with the default software and hardware configu-

rations for a short period, and SHA collects runtime

statistics (e.g., cache misses and instructions per sec-

ond). 2) Based on the statistics, the performance pre-

dictor puts into a cluster of representative databas-

es that shows similar runtime statistics. Based on the

scaling surfaces of representative databases built of-

fline, the predictor identifies the minimum amount of

hardware resources for . The scaling surface of a

workload reports the optimal performance it can

achieve under different hardware configurations if the

software knobs are optimally configured. 3) The soft-

ware tuner adopts reinforcement learning to identify

the optimal software configuration for in only a few

tries. 4) The hardware reallocator assigns the freed

hardware resources to maximize resource utilization

while ensuring the performance of .

Apart from the current design that tunes hard-

ware allocation and software knobs separately in two

Database

Server

(4) QoS-Aware Hardware Reallocator

User Requests

(1) Runtime Statistics

Ajust

Co-Located
 Apps

(2) Scaling-Based

Performance Predictor

...

Scaling Models

(3) RL-Based

Software Tuner

Fig.3. Overview of SHA.

Jin Li et al.: SHA: QoS-Aware Software and Hardware Auto-Tuning for Database Systems 373

steps, an alternative method is building a model that

can directly predict the performance of a database un-

der all the software and hardware configurations, so

that we can identify the optimal settings in a single

step. However, because the optimal software configu-

ration for a database is totally different under vari-

ous hardware configurations, too many training sam-

ples need to be collected to train the model. When

combined with software and hardware parameters,

the search space will grow exponentially. It is too

time-consuming to train such a precise unified model,

which is not practical to adopt this alternative

method in a real system.

5 Building Performance Prediction Models

In this section, we build performance models for

identifying the minimum amount of resources re-

quired by a database, and build RL-based software

tuning models.

12× 3 = 36

To collect training samples, we generate

 representative databases by adjusting the

configuration parameters of widely-used database gen-

erators TPC-C③, Wikipedia[17] and YCSB[18] respec-

tively. For these databases, we execute them with dif-

ferent hardware/software configurations, and collect

the runtime statistics and achieved performance.

5.1 Identifying Key Software Knobs

2300

In SHA, one goal is to tune the software knobs for

a database to achieve good performance online in a

short time to catch up with the quick load change.

While MySQL has more than 300 tunable knobs,

there are possible software configurations even if

each knob only has two possible values. To speed up

the tuning, we first identify the key software knobs

that affect a database's performance most.

db

db

For each database , we first select 20 potential

software knobs that tend to seriously affect its perfor-

mance according to the recommendation in MySQL's

official guideline④. We then profile by tuning the

20 potential software knobs and hardware configura-

tions. Based on the configurations of the knobs and

the corresponding performance, we adopt Lasso

(Least Absolute Shrinkage and Selection Operator)[19],

a regression analysis method that performs variable

X

y

selection in machine learning, to identify the key soft-

ware knobs. Adopting Lasso, potential knobs are

treated as independent variables () and the perfor-

mance metric TPS is treated as a dependent variable

(). Lasso works by adding an L1 penalty to the loss

function to shrink some weights and force others to

zero. It can be converted to the following optimiza-

tion problem[19],

min
β∈Rp

{
1

N
∥y −Xβ∥2

2

}
subject to ∥β∥1 ⩽ t.

Trying to minimize the cost function, Lasso re-

gression will automatically select those features that

are useful, discarding the useless or redundant fea-

tures. In Lasso regression, discarding a feature will

make its coefficient equal to 0. In this way, Lasso au-

tomatically identifies relevant features (i.e., those

with non-zero weights), and discards the others (i.e.,

those with zero weights).

According to Lasso regression, we identify eight

key software knobs for each representative database.

Using more tunable knobs increases the tuning time

significantly because the size of configuration space

grows exponentially with the number of knobs. But

using fewer would prevent SHA from finding the opti-

mal software configuration. This decision is support-

ed by our sensitivity study. The experimental result is

ignored due to the limited space. In addition, we also

use non-convex penalization[20] to identify the key

knobs and get similar results.

We observe that some representative databases

may have totally different key software knobs. For in-

stance, Table 1 shows the identified key software

knobs for two representative workloads. In this sce-

nario, it is challenging to identify the appropriate

software knobs to be tuned for a new database to

achieve good performance. After analyzing the profil-

ing result carefully, we find that the 36 representa-

tive databases can be classified into six clusters while

the databases in the same cluster share the same key

software knobs. If we can classify a new database in-

to the corresponding cluster, its key software knobs

can be identified.

When a new database starts to run, we can ob-

tain its hardware event statistics and its application-

level statistics. These runtime statistics highly corre-

late with the performance of a database. To verify

374 J. Comput. Sci. & Technol., Mar. 2024, Vol.39, No.2

③On-line transaction processing benchmark. http://www.tpc.org/tpcc/, Mar. 2024.

④MySQL server InnoDB startup configuration. https://dev.mysql.com/doc/refman/5.7/en/innodb-configuration.html, Mar.
2024.

http://www.tpc.org/tpcc/
https://dev.mysql.com/doc/refman/5.7/en/innodb-configuration.html
https://dev.mysql.com/doc/refman/5.7/en/innodb-configuration.html
https://dev.mysql.com/doc/refman/5.7/en/innodb-configuration.html

this assertion, we further analyze the runtime statis-

tics of the 36 representative databases. Using the run-

time statistics as the features, the analysis shows that

the Euclidean distance between databases in the same

cluster is much shorter than the distance between

databases in different clusters. It is reasonable to use

the runtime statistics to classify a new database into

an appropriate database cluster. Here we list 16

statistics that are used to perform the classification,

1) active_anon, 2) pgfault, 3) pgpgin, 4) dirty, 5)

node-loads, 6) cpu-cycles, 7) LLC-store-misses, 8)

node-load-misses, 9) cpuacct.usage, 10) cache-misses,

11) instructions per cycle, 12) memory.limit_in_bytes,

13) innodb_data_read, 14) innodb_data_written, 15)

innodb_log_waits, and 16) tps.

5.2 Building RL-Based Models for Tuning

Software Knobs

For each of the six database clusters, we build an

RL-based model for tuning the databases in the clus-

ter to achieve the optimal performance.

The tuning process can be viewed to be a prob-

lem that searches the optimal knob configuration

from a huge configuration space for a database to

achieve the best performance. It is too complex to

grasp by traditional machine learning approaches.

However, deep reinforcement learning has shown very

promising results in learning how to play complicated

games with enormous search spaces. Due to the vast

amount of configuration knobs and workload differ-

ences, the search space is huge as well and extremely

hard to overview, where deep learning can be perfect-

ly applied.

Perf(S)

Perf(Θ)

In contrast to traditional supervised learning[21],

where a neural network is trained on a set of given in-

puts and expected outputs, in reinforcement learning,

the training process does not require any expected

outputs. As shown in Fig.4(a), the training is com-

pletely driven by so-called rewards, which tell the

learner whether a taken action leads to a positive or a

negative result on the input. Depending on the out-

come, the neural network is encouraged or discour-

aged to consider the action on this input in the fu-

ture. Defining rewards is a significant task and has a

major impact on the quality of learning. In our de-

sign, the goal is to improve the database performance

under specific hardware settings and workload condi-

tions. However, for each RL model, multiple work-

loads are used for training, and their performance

metrics are not the same. Therefore we need to de-

fine a unified reward function. (1) shows the reward

function used in training the RL model. Here

 represents the performance for the current

software settings, and represents the perfor-

mance for the default software parameters. Therefore,

the designed reward function can unify the perfor-

mance of different database workloads.

r(S) =
Perf(S)

Perf(Θ)
− 1. (1)

Fig.4(b) shows an example state diagram of the

Table 1. MySQL Key Knob Examples for Two Representative Workloads

Workload MySQL Key Knob Example

TPC-C workload-1 innodb_buffer_pool_size, innodb_thread_sleep_delay, innodb_flush_method, innodb_log_file_size,
innodb_thread_concurrency, innodb_max_dirty_pages_pct_lwm, innodb_read_ahead_threshold,
innodb_adaptive_max_sleep_delay

Wikipedia workload-1 innodb_buffer_pool_instances, innodb_buffer_pool_size, innodb_log_file_size, query_cache_size,
table_open_cache_instances, innodb_flush_method, thread_cache_size, key_buffer_size

Performance

QoS

Agent

Knobs

Observe State

Take

Action

Reward

-0.2 3.0 2.1 5.0

8.0 6.1 9.04.0

2.1 8.17.0

0.6 1.10.1 5.1

Buffer Pool Size

L
o
g
 F

il
e
 S

iz
e

1.6

(b)(a)

Fig.4. (a) RL diagram example. (b) RL state diagram.

Jin Li et al.: SHA: QoS-Aware Software and Hardware Auto-Tuning for Database Systems 375

(3, 3)

trained RL model. As a two-dimensional input model,

each cell represents a setting of two parameters. The

value of the parameter increases from left to right and

from top to bottom. The value in each cell indicates

the reward when the corresponding parameter setting

is chosen. We notice a maximum 1.8x performance

boost when choosing the configuration. In our

design, it is an 8-dimensional key knobs input model,

and we can obtain the best performance and the cor-

responding software knobs setting. During the model

training, when the performance of a certain state is

unknown, we need a two-minute time window to ob-

tain the performance of the state. Therefore, it takes

3 hours–4 hours to obtain the optimal software knobs

for a new database workload. However, for the repre-

sentative workloads, we can train the model offline.

When tuning software knobs for a new database on-

line, we can reuse representative workload models to

speed up the tuning process, which usually takes

about 10 minutes. We will discuss online tuning in

Section 6.

5.3 Building Scaling Models for Allocating

Hardware

For each of the six database clusters, we further

build a scaling model for determining the hardware

configuration for the databases in the cluster to

achieve the required performance.

For each representative database in a cluster, we

record its best performance improvement ratio (nor-

malized to the performance with the minimum hard-

ware setting and default software configuration) un-

der each hardware configuration and the correspond-

ing software configuration. Based on these statistics,

we can build a scaling surface for each representative

database. Fig.5 shows the scaling surface of an exam-

ple TPC-C representative database. To build a uni-

fied scaling model for a cluster, for each point in the

scaling surface, we average the speed-up ratio of all

the databases in the cluster. This operation is reason-

able because the scaling surfaces of the representative

databases are similar. Moreover, if there are more

types of allocable hardware resources in future, the

scaling model can incorporate the new types of re-

sources.

Based on the scaling models of the database clus-

ters, SHA is able to quickly predict the near-optimal

performance of a new workload under various hard-

ware resource configurations without profiling it care-

fully offline.

6 Auto-Tuning Software and Hardware

Configurations

w

w

w

w

w

Fig.6 shows the steps that SHA tunes software

and hardware configurations for a new database .

As shown in Fig.6, SHA first profiles for a short

time and classifies into one of the representative

database clusters. Then, SHA identifies the minimum

amount of hardware resources required by to

achieve the required performance based on the scal-

ing models of the corresponding database cluster. In

the third step, the RL-based software tuner of SHA is

adopted to fine tune the software knobs for to

achieve the best performance.

6.1 Identifying the Representative Database

Cluster

w

w

As we stated in Section 5, the features and data

access patterns of different databases are different.

For database , in order to accurately predict its per-

formance with different hardware resources and tune

the software knobs for it efficiently, SHA classifies

into a representative database cluster that shows sim-

ilar features.

w

w

wrep

w

We run with the default software configuration

and the minimum hardware resources, and collect the

16 runtime statistics. Based on runtime information,

we classify into a representative database cluster

 using the k-nearest neighbors algorithm (k-
NN)[22]. Then, SHA identifies the minimum amount of

required hardware resources and tunes software knobs

for according to the scaling model and the trained

RL model of the database cluster.

1.0
16

1.5

12 8

2.0

S
p
e
e
d
-
u
p

2.5

6M
emory (GB)

8

Number o
f Cores

3.0

4
4 2

0 0

Fig.5. Scaling model for a representative TPC-C workload.

376 J. Comput. Sci. & Technol., Mar. 2024, Vol.39, No.2

6.2 Two-Step Auto-Tuning

w

w

wrep Mscal w wrep

w

wrep

Algorithm 1 is used to tune the software and

hardware configurations for to achieve the re-

quired performance. And Table 2 describes symbols

used in the algorithm. As shown in Algorithm 1, in

the first step, SHA identifies the minimum amount of

hardware resources for (lines 2 and 3) so that it

can achieve the required performance according to

's scaling model . Because and are not

totally the same, it is possible that their optimal soft-

ware configurations under the same hardware alloca-

tion are slightly different. Therefore, in the second

step, once the hardware configuration is determined,

SHA uses RL to further search the optimal software

configuration for (line 4). We use the optimal soft-

ware configuration of in the current hardware

configuration as the start point of the reinforcement

learning search to minimize the search iterations.

w

w

w

In seldom cases, it is possible that 's perfor-

mance requirement cannot be satisfied with the iden-

tified hardware and software configurations. In this

case, SHA increases the amount of hardware re-

sources allocated to and searches for the optimal

software configuration again iteratively (lines 5–10).

It is also possible that the performance of with the

current hardware configuration exceeds the required

performance by a certain proportion (e.g., we use 1.2x

in our experiment), and SHA tries to reduce the hard-

ware configuration appropriately (lines 11–17).

7 QoS-Aware Resource Reallocation

If a database runs alone, the scaling-based perfor-

mance predictor and the RL-based software tuner can

identify the minimum required hardware resources

and the optimal software configuration for it. It is

more profitable to use the saved resource to run batch

applications without QoS requirement, so that the

hardware utilization can be improved.

Algorithm 1. Software and Hardware Auto-Tuning Configuration

T sc hc1: Inputs: (required QoS); (software configuration);

 (hardware configuration)

wrep

Mscal

2: Identify a representative database cluster and its scal-

 ing model

hc← sc0←3: {initial hardware}; {initial software configuration}
sc← RLsearch(hc, sc0)4:

performance(hc, sc) < T5: while do

hc← hc+∆(hc) sc← RLsearch(hc, sc)6: ; ;

performance(hc, sc) ⩾ T7: if then

(hc, sc, performance(hc, sc))8: return

9: end if

10: end while

performance(hc, sc) > 1.2× T11: while do

hc′ ← hc−∆(hc) sc′ ← RLsearch(hc
′, sc)12: ; ;

performance(hc′, sc′) < T13: if then

(hc, sc, performance(hc, sc))14: return

15: end if

hc← hc′ sc← sc′16: ;

17: end while

(hc, sc, performance(hc, sc))18: return

Table 2. Symbol Description for Algorithm 1

Symbol Description

wrep

w
Identified representative database cluster
for

Mscal wrep 's scaling model

RLsearch(hc, sc)

hc

Searching optimal software
configurations with the hardware setting

 using RL

performance(hc, sc)
(hc, sc)

Performance of database when setting
hardware and software configuration as

However, it is nontrivial to determine how many

free cores and megabytes of free DRAM should be al-

Database 

Classifying 
into a Cluster

Cluster-1

Representative Database Clusters
Scaling Models RL Models

Identifying

Minimum Resources

Tuning

Software Knobs

Selected Path

Potential Path

..
.

..
.

wFig.6. Tuning the software and hardware configurations for a database .

Jin Li et al.: SHA: QoS-Aware Software and Hardware Auto-Tuning for Database Systems 377

located to the batch applications. If too many free

cores are allocated to batch applications, the con-

tention on the shared resources (e.g., shared cache

and memory bandwidth) could degrade the perfor-

mance of the database, resulting in its QoS violation.

On the contrary, if too few free cores are allocated to

batch applications, the hardware is still not fully uti-

lized.

w

w

w

To solve the above problem, the QoS-aware re-

source reallocator in SHA adopts a feedback-based al-

gorithm to allocate the freed cores. For safety, SHA

identifies the “just-enough” hardware configuration

for database to achieve 1.5x of the target perfor-

mance (QoS), allocates the remaining hardware re-

sources (cores) to the background applications, and

observes whether the allocation would result in the

QoS violation. Here we initialize the system to

achieve 1.5x of the target performance (QoS) and al-

locate the remaining hardware resources, so as to re-

duce the reallocation times when Qos does not vio-

late as much as possible. If the QoS is satisfied, one

more core is reallocated from to the batch applica-

tion. The above reallocation iterates until no more

free cores can be allocated. If 's performance is

worse than the required QoS after the resource reallo-

cation, SHA decreases the number of cores allocated

to the batch application, and searches for the opti-

mal software configuration again adopting the RL-

based software tuner iteratively.

w

It is possible that some free cores are not allocat-

ed to any application, if allocating more cores to the

batch application results in serious performance

degradation of the co-located database. In this case,

the free cores can be either allocated to the database

 to improve its performance, or configured to run in

low power model to save energy.

8 Experimental Evaluation

8.1 Experimental Setup

We use MySQL (version 5.7.21) to be the repre-

sentative DBMS and evaluate SHA on a server that

has two Intel Xeon E5-2630 processors. Table 3 sum-

marizes the software and hardware setups of our ex-

perimental platform.

As shown in Table 4, we adopt three widely-used

database benchmark suites that cover a large spec-

trum of data access patterns and system demands to

evaluate SHA. Specifically, TPC-C⑤ is an industry

standard OLTP benchmark, with multiple transac-

tion types, and a more complex database and overall

execution structure. It consists of nine tables and five

concurrent transactions that portray the activity of a

wholesale supplier. TPC-C's transactions are more

complex and write-heavy than those in other bench-

marks, where 92% of TPC-C's issued transactions are

modifying tables. Wikipedia[17] is a web-based read-

heavy OLTP workload based on the popular on-line

encyclopedia. We can use the real schema, transac-

tions, and queries as used in the live website. In

Wikipedia workload, 92.2% of the transactions are

looking-up tables. YCSB[18], short for The Yahoo!

Cloud Serving Benchmark, is a collection of micro-

benchmarks that represent data management applica-

tions whose workload is simple but requires high scal-

ability. It is comprised of six OLTP transaction types

that access random tuples based on a Zipfian distribu-

tion. The database contains a single table with 10 at-

tributes.

17× 70%

We generate 17 different database workloads for

each of TPC-C, Wikipedia, and YCSB by modifying

their configuration parameters. For TPC-C/Wikipe-

dia/YCSB, we randomly choose 70% of the generat-

ed workloads (= 12) to train the models

and use the rest workloads (five workloads) to be the

test set. The workloads in the training set have differ-

ent read-write ratios, compute densities, and operat-

ing transactions, and thus simulate a spectrum of re-

al-system workloads. In the test set, TPC-1, ..., TPC-

5 are generated from TPC-C, WP-6, ..., WP-10 are

Table 3. Hardware and Software Specifications

Specification

Hardware CPU: Intel® Xeon® CPU E5-2630 v4,

12 cores, 30 MB of shared cache (16 ways)

Software DBMS: MySQL (version 5.7.21)

OS: CentOS 6.8 with kernel 2.6.32-642

Table 4. Benchmarks Used to Evaluate SHA

Benchmark Description

Databases TCP-C, an industry standard OLTP benchmark;

Wikipedia, web OLTP of on-line encyclopedia;

YCSB, the Yahoo! Cloud Serving Benchmark

Batch
applications
(PARSEC[23])

Blackscholes (bs), bodytrack (bt), dedup (dd),
ferret (cs), freqmine (fm), streamcluster (sc),
vips (ip), facesim (fs)

378 J. Comput. Sci. & Technol., Mar. 2024, Vol.39, No.2

⑤On-line transaction processing benchmark. http://www.tpc.org/tpcc/, Mar. 2024.

http://www.tpc.org/tpcc/

generated from Wikipedia, and YCSB-11, ..., YCSB-

15 are generated from YCSB.

To evaluate the performance of SHA, we compare

the performance of databases with the default soft-

ware configuration, the recommended tuning script⑥,

OtterTune[9] and SHA. The tuning script is provided

for the users to configure the software knobs of

MySQL. Similar to SHA, OtterTune, a state-of-the-

art software auto-tuning tool, trains machine learn-

ing models to search for optimal software configura-

tions. However, it assumes that the hardware configu-

ration is fixed.

We use TPS as the metric to measure the perfor-

mance of a database.

8.2 Accuracy of the Scaling-Based

Performance Predicting

Nconf

Predi Reali

i

Err

To evaluate the prediction accuracy of the scaling-

based performance predictor, (2) calculates the error

of the prediction. In this equation, is the num-

ber of resource configurations, and and

are the predicted and real performance of a database

workload under the -th hardware resource configura-

tion respectively. The larger is, the lower the

prediction accuracy is.

Err =

Nconf∑
i=1

|Predi/Reali − 1|

Nconf
. (2)

Fig.7 shows the prediction errors of the database

workloads with the scaling-based performance predic-

tor. Observed from Fig.7, the prediction errors of all

the databases are smaller than 12%. As we show in

Section 5, different databases may have different key

software knobs, which highly correlate with the per-

formance of a database. The prediction is accurate be-

cause we carefully identify the key software knobs for

different databases to build the scaling models. It can

help reduce the possibility of overfitting.

Therefore, the scaling-based performance predic-

tor is able to accurately predict the optimal achiev-

able performance of a database under various hard-

ware configurations.

8.3 Effectiveness of Software Auto-Tuning

In this experiment, we fix the hardware configura-

tion and evaluate the effectiveness of the RL-based

software auto-tuning in identifying the appropriate

software configurations for different databases. With-

out loss of generality, we assign 8-core and 16 GB

memory to a database. Other hardware configura-

tions show similar results.

Fig.8 shows the performance of the databases in

the test set with default configuration, tuning script,

OtterTune, and SHA. Observed from Fig.8, SHA per-

forms the best for all the benchmarks. SHA improves

the performance of the benchmarks by 259.6% and

9.9% compared with the default configuration and Ot-

terTune, respectively. OtterTune performs worse than

SHA because it only refers to and reuses the informa-

tion of one most similar workload in the historical da-

ta repository. Therefore, OtterTune is often stuck in a

local optimal result. On the contrary, SHA is able to

obtain the global optimal result.

Fig.9 presents the performance improvement time-

line of TPC-C, Wikipedia and YCSB workload when

OtterTune and SHA are used to tune the knobs. Ob-

served from Fig.9, SHA converges much faster when

tuning software knobs. OtterTune needs more than 20

minutes to identify the appropriate software knobs

while SHA can do within seven minutes. SHA con-

verges fast because it has a better starting point to

tune the knobs compared with OtterTune, and the re-

inforcement learning avoids local optima by nature.

1 2 3 4 5 11 12 13 14 156

0.12

0.10

0.08

0.06

0.04

0.02

0.00

7 8 9 10

Workload ID

P
r
e
d
ic

t
io

n

E
r
r
o
r

Fig.7. Prediction errors of database workloads with the scaling-based performance predictor.

Jin Li et al.: SHA: QoS-Aware Software and Hardware Auto-Tuning for Database Systems 379

⑥MySQLTuner. https://github.com/major/MySQLTuner-perl, Mar. 2024.

https://github.com/major/MySQLTuner-perl
https://github.com/major/MySQLTuner-perl
https://github.com/major/MySQLTuner-perl

The reason why SHA starts from a better point is

that it refers to the tuning process of multiple similar

workloads in the same cluster. The fast convergence

of SHA makes it applicable for online databases that

experience the diurnal load pattern.

Moreover, observing from Fig.9, we can find that

SHA fine-tunes the software near the optimal once it

reaches the convergence state. This observation sup-

ports the assertion that SHA is able to identify the

near optimal configuration. On the contrary, as can

be seen from Fig.9(b), the performance of the

database with OtterTune has a relatively large im-

provement over time. The large improvement reflects

the action of turning from one local optimum to an-

other.

The RL-based software tuner of SHA is able to

identify better software configurations for databases

in a shorter time compared with state-of-the-art soft-

ware tuners.

8.4 Minimizing Resource Usage

Besides maximizing performance, SHA can also be

used to minimize the hardware resource usage of a

database when satisfying its performance require-

ment at low load. In this experiment, without loss of

generality, we assume that the target performance of

the databases at low load is 1/3 of their optimal per-

formance with all the cores[6, 7].

Fig.10 shows the number of cores needed by the

databases to achieve the required performance with

the default configuration, tuning script, OtterTune,

and SHA. We only report the number of cores be-

cause the impact of memory space changes is small in

103

1 2 3 4 5 11 12 13 14 156 7 8 9 10

Workload ID

1.0

0.8

0.6

0.4

0.2

0.0

T
h
ro

u
g
h
p
u
t

(T
P
S
)

SHAOtterTune

Default Configuration Tuning Script

Fig.8. Performance of the databases when we configure software knobs using the default configuration, tuning script, OtterTune and
SHA.

(a) (b) (c)

0 20 12040 60 80 100

Time (min)

0 20 12040 60 80 100

Time (min)

0 20 12040 60 80 100

Time (min)

OtterTune

SHA

OtterTune

SHA

OtterTune

SHA

700

650

600

550

500

450

T
h
ro

u
g
h
p
u
t

(T
P
S
)

T
h
ro

u
g
h
p
u
t

(T
P
S
)

T
h
ro

u
g
h
p
u
t

(T
P
S
)900

800

700

600

500

400

1 000

900

800

700

600

500

Fig.9. Performance improvement timeline of workload (a) TPC-C, (b) Wikipedia, and (c) YCSB when we tune software knobs us-
ing OtterTune and SHA.

8

6

4

2

0
1 2 3 4 5 11 12 13 14 156 7 8 9 10

Workload ID

SHAOtterTuneDefault Configuration Tuning Script

N
u
m

b
e
r

o
f
C

o
re

s

Fig.10. Number of cores needed to satisfy the performance requirements.

380 J. Comput. Sci. & Technol., Mar. 2024, Vol.39, No.2

our experiment. As observed from Fig.10, while all

the cores should be allocated to the database by de-

fault, the tuning script, OtterTune, and SHA allocate

1–2, 3–4, and 5–6 fewer cores to a database respec-

tively in the case of meeting the performance require-

ment.

Note that, due to the assumption of fixed hard-

ware allocation, OtterTune requires to sweep through

the hardware resource configurations to identify the

appropriate one, and it needs 20 minutes to find the

appropriate software configuration with a given hard-

ware configuration. Therefore, it is not applicable for

online databases with fast-changing loads. On the

contrary, SHA can directly identify the appropriate

hardware configuration based on the performance pre-

diction model in five minutes.

8.5 Improving Resource Utilization

In this subsection, we evaluate the effectiveness of

SHA in maximizing resource utilization while satisfy-

ing the performance requirement of the databases. We

still use TPC-C, Wikipedia and YCSB as the online

databases, and benchmarks that have different char-

acters (listed in Table 4) in PARSEC[23] as the co-lo-

cated batch applications to perform the evaluation.

We assume that the required performance is 1/3 of

the peak performance due to fewer user requests at

low load. Since the original OtterTune does not real-

locate resources, we combine OtterTune with the re-

source reallocator in SHA, and report the perfor-

mance of the enhanced OtterTune.

Fig.11 shows the average number of cores that can

be safely reallocated to the batch applications at low

load for different benchmarks with OtterTune and

SHA. Observed from Fig.11, more cores can be reallo-

cated to the co-located batch applications with SHA

(43.2%) compared with OtterTune (25.5%). On aver-

age, SHA improves 17.7% of the resource utilization

compared with OtterTune.

Wikipedia workloads only need 2–3 cores to fulfill

their performance requirement at low load if they run

alone (Fig.10), and not all the cores can be reallocat-

ed to the batch applications at co-location as shown

in Fig.11(b). This is because the contention on shared

resources (e.g., memory bandwidth) results in the per-

formance degradation of the database workload. The

resource reallocator of SHA solves this problem by it-

eratively determining the number of cores that can be

safely allocated to the batch applications.

To conclude, the QoS-aware resource reallocator

in SHA is able to improve resource utilization while

satisfying the performance requirement of online

databases.

9 Conclusions

In this paper, we proposed SHA, a software and

hardware auto-tuning system for DBMS. It can help

database administrators automatically tune software

parameters to achieve optimal system performance

with fixed hardware resources. The application of the

scaling-based performance predictor and the reinforce-

ment learning module allows it to predict the mini-

mum hardware overhead to meet system require-

ments in the shortest amount of time. Furthermore,

we devised a QoS-aware resource allocator to reallo-

cate the saved hardware resource to other applica-

tions to improve resource utilization without incur-

ring QoS violation of the database workload. Experi-

ments showed that SHA improves the performance of

databases by 9.9% on average compared with a state-

of-the-art solution when the hardware configuration is

fixed, and improves 43.2% of resource utilization

while ensuring the QoS. Overall, SHA is a hybrid

model that tunes both database hardware and soft-

ware configurations simultaneously, which can great-

ly assist in the deployment and maintenance of the

database system.

(a)

5

4

3

2

1

0

5

4

3

2

1

0

5

4

3

2

1

0

(b) (c)

Co-Located Batch Application

bs fsipscfmcsddbt

Co-Located Batch Application

bs fsipscfmcsddbt

Co-Located Batch Application

bs fsipscfmcsddbt

OtterTune SHA OtterTune SHAOtterTune
SHA

A
v
e
ra

g
e
 N

u
m

b
e
r

o
f

C
o
re

s
R

e
a
ll
o
c
a
te

d

A
v
e
ra

g
e
 N

u
m

b
e
r

o
f

C
o
re

s
R

e
a
ll
o
c
a
te

d

A
v
e
ra

g
e
 N

u
m

b
e
r

o
f

C
o
re

s
R

e
a
ll
o
c
a
te

d

Fig.11. Number of cores allocated to the batch applications for workload (a) TPC-C, (b) Wikipedia, and (c) YCSB.

Jin Li et al.: SHA: QoS-Aware Software and Hardware Auto-Tuning for Database Systems 381

Conflict of Interest Min-Yi Guo is an editori-

al board member for Journal of Computer Science

and Technology and was not involved in the editorial

review of this article. All authors declare that there

are no other competing interests.

References

 Laney D. 3D data management: Controlling data volume,

velocity, and variety. META Group Research Note, 2001.

https://www.bibsonomy.org/bibtex/742811cb00b303

261f79a98e9b80bf49, Mar. 2024.

[1]

 Russom P. Big data analytics. TDWI best practices re-

port. Fourth Quarter, 2011. https://vivomente.com/wp-

content/uploads/2016/04/big-data-analytics-white-paper.

pdf, Mar. 2024.

[2]

 Grad B, Bergin T J. Guest editors' introduction: History

of database management systems. IEEE Annals of the

History of Computing, 2009, 31(4): 3–5. DOI: 10.1109/

MAHC.2009.99.

[3]

 Duan S, Thummala V, Babu S. Tuning database configu-

ration parameters with iTuned. Proceedings of the VLDB

Endowment, 2009, 2(1): 1246–1257. DOI: 10.14778/1687627.

1687767.

[4]

 Debnath B K, Lilja D J, Mokbel M F. SARD: A statisti-

cal approach for ranking database tuning parameters. In

Proc. the 24th International Conference on Data Engi-

neering Workshop, Apr. 2008, pp.11–18. DOI: 10.1109/

ICDEW.2008.4498279.

[5]

 Barroso L A, Hölzle U. The Datacenter as a Computer:

An Introduction to the Design of Warehouse-Scale Ma-

chines. Springer Cham, 2009. DOI: 10.1007/978-3-031-

01722-3.

[6]

 Dean J, Barroso L A. The tail at scale. Communications

of the ACM, 2013, 56(2): 74–80. DOI: 10.1145/2408776.

2408794.

[7]

 Zhang B H, Van Aken D, Wang J, Dai T, Jiang S L, Lao

J, Sheng S Y, Pavlo A, Gordon G J. A demonstration of

the OtterTune automatic database management system

tuning service. Proceedings of the VLDB Endowment,

2018, 11(12): 1910–1913. DOI: 10.14778/3229863.3236222.

[8]

 Van Aken D, Pavlo A, Gordon G J, Zhang B H. Auto-

matic database management system tuning through large-

scale machine learning. In Proc. the 2017 ACM Interna-

tional Conference on Management of Data, May 2017,

pp.1009–1024. DOI: 10.1145/3035918.3064029.

[9]

 Zhu Y Q, Liu J X, Guo M Y, Ma W L, Bao Y G. ACTS

in need: Automatic configuration tuning with scalability

guarantees. In Proc. the 8th Asia-Pacific Workshop on

Systems, Sept. 2017, Article No. 14. DOI: 10.1145/3124680.

3124730.

[10]

 Delimitrou C, Kozyrakis C. Quasar: Resource-efficient

and QoS-aware cluster management. ACM SIGPLAN No-

tices, 2014, 49(4): 127–144. DOI: 10.1145/2644865.2541941.

[11]

 Delimitrou C, Kozyrakis C. Paragon: QoS-aware schedul-

ing for heterogeneous datacenters. ACM SIGPLAN No-

tices, 2013, 48(4): 77–88. DOI: 10.1145/2499368.2451125.

[12]

 Weikum G, Moenkeberg A, Hasse C, Zabback P. Self-tun-

ing database technology and information services: From

wishful thinking to viable engineering. In Proc. the 28th

International Conference on Very Large Databases, Bern-

stein P A, Ioannidis Y E, Ramakrishnan R, Papadias D

(eds.), Elsevier, 2002, pp.20–31. DOI: 10.1016/B978-

155860869-6/50011-1.

[13]

 Kwan E, Lightstone S, Storm A, Wu L. Automatic con-

figuration for IBM® DB2 universal databaseTM. IBM Per-

formance Technical Report, 2002. https://wwwiti.cs.uni-

magdeburg.de/~eike/selftuning/sources/automatic_config-

uration_for_db2.pdf, Mar. 2022.

[14]

 Tran D N, Huynh P C, Tay Y C, Tung A K H. A new

approach to dynamic self-tuning of database buffers.

ACM Trans. Storage, 2008, 4(1): Article No. 3. DOI: 10.

1145/1353452.1353455.

[15]

 Storm A J, Garcia-Arellano C, Lightstone S S, Diao Y X,

Surendra M. Adaptive self-tuning memory in DB2. In

Proc. the 32nd International Conference on Very Large

Data Bases, Sept. 2006, pp.1081–1092. https://www.vldb.

org/conf/2006/p1081-storm.pdf, Mar. 2024.

[16]

 Difallah D E, Pavlo A, Curino C, Cudre-Mauroux P.

OLTP-Bench: An extensible testbed for benchmarking re-

lational databases. Proceedings of the VLDB Endowment,

2013, 7(4): 277–288. DOI: 10.14778/2732240.2732246.

[17]

 Cooper B F, Silberstein A, Tam E, Ramakrishnan R,

Sears R. Benchmarking cloud serving systems with

YCSB. In Proc. the 1st ACM Symposium on Cloud Com-

puting, Jun. 2010, pp.143–154. DOI: 10.1145/1807128.1807

152.

[18]

 Tibshirani R. Regression shrinkage and selection via the

lasso. Journal of the Royal Statistical Society: Series B

(Methodological), 1996, 58(1): 267–288. DOI: 10.1111/j.

2517-6161.1996.tb02080.x.

[19]

 Zhang Z H, Li J. Compound Poisson processes, latent

shrinkage priors and Bayesian nonconvex penalization.

Bayesian Analysis, 2015, 10(2): 247–274. DOI: 10.1214/

14-BA892.

[20]

 Caruana R, Niculescu-Mizil A. An empirical comparison

of supervised learning algorithms. In Proc. the 23rd Inter-

national Conference on Machine Learning, Jun. 2006,

pp.161–168. DOI: 10.1145/1143844.1143865.

[21]

 Bishop C M. Pattern Recognition and Machine Learning.

Springer, 2006.

[22]

 Bienia C. Benchmarking modern multiprocessors [Ph.D.

Thesis]. Princeton University, 2011.

[23]

382 J. Comput. Sci. & Technol., Mar. 2024, Vol.39, No.2

https://www.bibsonomy.org/bibtex/742811cb00b303261f79a98e9b80bf49
https://www.bibsonomy.org/bibtex/742811cb00b303261f79a98e9b80bf49
https://vivomente.com/wp-content/uploads/2016/04/big-data-analytics-white-paper.pdf
https://vivomente.com/wp-content/uploads/2016/04/big-data-analytics-white-paper.pdf
https://vivomente.com/wp-content/uploads/2016/04/big-data-analytics-white-paper.pdf
https://vivomente.com/wp-content/uploads/2016/04/big-data-analytics-white-paper.pdf
https://vivomente.com/wp-content/uploads/2016/04/big-data-analytics-white-paper.pdf
https://vivomente.com/wp-content/uploads/2016/04/big-data-analytics-white-paper.pdf
https://vivomente.com/wp-content/uploads/2016/04/big-data-analytics-white-paper.pdf
https://vivomente.com/wp-content/uploads/2016/04/big-data-analytics-white-paper.pdf
https://vivomente.com/wp-content/uploads/2016/04/big-data-analytics-white-paper.pdf
https://vivomente.com/wp-content/uploads/2016/04/big-data-analytics-white-paper.pdf
https://vivomente.com/wp-content/uploads/2016/04/big-data-analytics-white-paper.pdf
https://vivomente.com/wp-content/uploads/2016/04/big-data-analytics-white-paper.pdf
https://doi.org/10.1109/MAHC.2009.99
https://doi.org/10.1109/MAHC.2009.99
https://doi.org/10.14778/1687627.1687767
https://doi.org/10.14778/1687627.1687767
https://doi.org/10.1109/ICDEW.2008.4498279
https://doi.org/10.1109/ICDEW.2008.4498279
https://doi.org/10.1007/978-3-031-01722-3
https://doi.org/10.1007/978-3-031-01722-3
https://doi.org/10.1007/978-3-031-01722-3
https://doi.org/10.1007/978-3-031-01722-3
https://doi.org/10.1007/978-3-031-01722-3
https://doi.org/10.1007/978-3-031-01722-3
https://doi.org/10.1007/978-3-031-01722-3
https://doi.org/10.1007/978-3-031-01722-3
https://doi.org/10.1007/978-3-031-01722-3
https://doi.org/10.1145/2408776.2408794
https://doi.org/10.1145/2408776.2408794
https://doi.org/10.14778/3229863.3236222
https://doi.org/10.1145/3035918.3064029
https://doi.org/10.1145/3124680.3124730
https://doi.org/10.1145/3124680.3124730
https://doi.org/10.1145/2644865.2541941
https://doi.org/10.1145/2499368.2451125
https://doi.org/10.1016/B978-155860869-6/50011-1
https://doi.org/10.1016/B978-155860869-6/50011-1
https://doi.org/10.1016/B978-155860869-6/50011-1
https://doi.org/10.1016/B978-155860869-6/50011-1
https://doi.org/10.1016/B978-155860869-6/50011-1
https://doi.org/10.1016/B978-155860869-6/50011-1
https://doi.org/10.1016/B978-155860869-6/50011-1
https://wwwiti.cs.uni-magdeburg.de/~eike/selftuning/sources/automatic_configuration_for_db2.pdf
https://wwwiti.cs.uni-magdeburg.de/~eike/selftuning/sources/automatic_configuration_for_db2.pdf
https://wwwiti.cs.uni-magdeburg.de/~eike/selftuning/sources/automatic_configuration_for_db2.pdf
https://wwwiti.cs.uni-magdeburg.de/~eike/selftuning/sources/automatic_configuration_for_db2.pdf
https://wwwiti.cs.uni-magdeburg.de/~eike/selftuning/sources/automatic_configuration_for_db2.pdf
https://wwwiti.cs.uni-magdeburg.de/~eike/selftuning/sources/automatic_configuration_for_db2.pdf
https://wwwiti.cs.uni-magdeburg.de/~eike/selftuning/sources/automatic_configuration_for_db2.pdf
https://wwwiti.cs.uni-magdeburg.de/~eike/selftuning/sources/automatic_configuration_for_db2.pdf
https://wwwiti.cs.uni-magdeburg.de/~eike/selftuning/sources/automatic_configuration_for_db2.pdf
https://wwwiti.cs.uni-magdeburg.de/~eike/selftuning/sources/automatic_configuration_for_db2.pdf
https://wwwiti.cs.uni-magdeburg.de/~eike/selftuning/sources/automatic_configuration_for_db2.pdf
https://wwwiti.cs.uni-magdeburg.de/~eike/selftuning/sources/automatic_configuration_for_db2.pdf
https://doi.org/10.1145/1353452.1353455
https://doi.org/10.1145/1353452.1353455
https://doi.org/10.1145/1353452.1353455
https://doi.org/10.1145/1353452.1353455
https://www.vldb.org/conf/2006/p1081-storm.pdf
https://www.vldb.org/conf/2006/p1081-storm.pdf
https://www.vldb.org/conf/2006/p1081-storm.pdf
https://www.vldb.org/conf/2006/p1081-storm.pdf
https://doi.org/10.14778/2732240.2732246
https://doi.org/10.1145/1807128.1807152
https://doi.org/10.1145/1807128.1807152
https://doi.org/10.1111/j.2517-6161.1996.tb02080.x
https://doi.org/10.1111/j.2517-6161.1996.tb02080.x
https://doi.org/10.1111/j.2517-6161.1996.tb02080.x
https://doi.org/10.1111/j.2517-6161.1996.tb02080.x
https://doi.org/10.1214/14-BA892
https://doi.org/10.1214/14-BA892
https://doi.org/10.1214/14-BA892
https://doi.org/10.1214/14-BA892
https://doi.org/10.1145/1143844.1143865

Jin Li is now a Ph.D. student in

the Department of Computer Science

of Shanghai Jiao Tong University,

Shanghai. He received his B.S. degree

in computer science from East China

University of Science and Technology,

Shanghai, in 2012. In 2015 and 2016,

he was a visiting student in the Department of Comput-

er Science, Carnegie Mellon University, Pittsburgh. His

research interests include machine learning and data

mining, particularly, statistical methods and deep learn-

ing techniques for real-world applications, such as face

recognition, software auto-tuning, and recommender sys-

tems.

Quan Chen received his B.S. de-

gree in computer science from the

Tongji University, Shanghai, in 2007,

and his M.S. and Ph.D. degrees in

computer science from the Shanghai

Jiao Tong University, Shanghai, in

2009, and 2014 respectively. From

2014 to 2016, he was a postdoctoral researcher in the

Department of Computer Science, University of Michi-

gan-Ann Arbor. He is now a tenure-track associate pro-

fessor in the Department of Computer Science and Engi-

neering, Shanghai Jiao Tong University, Shanghai. His

research interests include parallel and distributed pro-

cessing, task scheduling, cloud computing, datacenter

management and accelerator management.

Xiao-Xin Tang received his B.S. de-

gree in computer science from the

South China University of Technolo-

gy, Guangzhou, in 2010. He received

his Ph.D. degree in the Department of

Computer Science and Engineering,

Shanghai Jiao Tong University,

Shanghai. In 2013 and 2014, he was a visiting student in

the Department of Computer Science, University of Ota-

go, Otago. Currently, he is a lecturer in the Depart-

ment of Computer Science, Shanghai University of Fi-

nance and Economics, Shanghai. His research interests

include heterogeneous computing, parallel algorithms,

blockchain and financial computing.

Min-Yi Guo received his B.S. and

M.E. degrees in computer science from

Nanjing University, Nanjing, and his

Ph.D. degree in information science

from the University of Tsukuba,

Tsukuba, in 1982, 1986, and 1998 re-

spectively. From 1998 to 2000, he was

a research associate of NEC Soft, Ltd. He was a visiting

professor in the Department of Computer Science, Geor-

gia Institute of Technology, Aflanta. In addition, he was

a full professor with The University of Aizu, Aizuwaka-

matsu, and is the head of the Department of Computer

Science and Engineering, Shanghai Jiao Tong Universi-

ty, Shanghai. He is a fellow of CCF and IEEE and has

published more than 200 papers in well-known confer-

ences and journals. His main interests include automat-

ic parallelization and data-parallel languages, bioinfor-

matics, compiler optimization, and high-performance

computing.

Jin Li et al.: SHA: QoS-Aware Software and Hardware Auto-Tuning for Database Systems 383

	1 Introduction
	2 Related Work
	3 Background and Motivation
	3.1 Poor Performance of Default Software Configuration
	3.2 Contention on Shared Resources
	3.3 Opportunity and Challenges

	4 Design of SHA
	5 Building Performance Prediction Models
	5.1 Identifying Key Software Knobs
	5.2 Building RL-Based Models for Tuning Software Knobs
	5.3 Building Scaling Models for Allocating Hardware

	6 Auto-Tuning Software and Hardware Configurations
	6.1 Identifying the Representative Database Cluster
	6.2 Two-Step Auto-Tuning

	7 QoS-Aware Resource Reallocation
	8 Experimental Evaluation
	8.1 Experimental Setup
	8.2 Accuracy of the Scaling-Based Performance Predicting
	8.3 Effectiveness of Software Auto-Tuning
	8.4 Minimizing Resource Usage
	8.5 Improving Resource Utilization

	9 Conclusions
	Conflict of Interest
	References

