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Abstract    While  databases  are  widely-used  in  commercial  user-facing  services  that  have  stringent  quality-of-service

(QoS) requirement, it is crucial to ensure their good performance and minimize the hardware usage at the same time. Our

investigation shows that the optimal DBMS (database management system) software configuration varies for different us-

er request patterns (i.e.,  workloads) and hardware configurations. It is challenging to identify the optimal software and

hardware configurations for a database workload, because DBMSs have hundreds of tunable knobs, the effect of tuning a

knob depends on other knobs, and the dependency relationship changes under different hardware configurations. In this

paper, we propose SHA, a software and hardware auto-tuning system for DBMSs. SHA is comprised of a scaling-based per-

formance predictor, a reinforcement learning (RL) based software tuner, and a QoS-aware resource reallocator. The perfor-

mance  predictor  predicts  its  optimal  performance  with  different  hardware  configurations  and  identifies  the  minimum

amount of resources for satisfying its performance requirement. The software tuner fine-tunes the DBMS software knobs to

optimize the performance of the workload. The resource reallocator assigns the saved resources to other applications to im-

prove resource utilization without incurring QoS violation of the database workload. Experimental results show that SHA

improves the performance of database workloads by 9.9% on average compared with a state-of-the-art solution when the

hardware configuration is fixed, and improves 43.2% of resource utilization while ensuring the QoS.
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1    Introduction

Databases are widely used to collect, process, and

analyze  large  volume of  data,  and play  an outstand-

ing  role  in  the  development  of  the  software

industry[1–3].  It  is  important to ensure the quality-of-

service  (QoS)  of  the  online  databases  for  good  user

experience.

A  database  requires  both  well-tuned  DBMS

(database  management  system)  software  knobs  and

hardware resource configuration to achieve good per-

formance.  However,  it  is  challenging  to  achieve  the

above  goal  for  two  reasons.  On  the  one  hand,  a

DBMS often has a large amount of  parameters (e.g.,

MySQL has more than 300 tunable knobs) that con-

trol  the  runtime  operations[4].  For  instance,  MySQL

assumes  that  a  database  is  deployed  on  a  160  MB

RAM machine①,  leaving  most  of  today's  computers'

memory  unused,  and  the  default  configuration  is

based on this assumption. Inappropriate software con-

figuration results in the poor performance of database.

On the other hand, the amount of resources (e.g., the

number  of  cores  and  the  size  of  memory  space)  de-

manded  by  a  database  varies  depending  on  the

amount  of  its  access  load,  given  determined  QoS  re-

quirement.  Statically  assigning  all  the  resources  to  a
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database wastes resources that could be used by oth-

er applications, and hence degrades their performance.

It  is  challenging  to  tune  the  DBMS  software

knobs for a database to achieve the required QoS due

to the complex interactive relationship between differ-

ent  knobs.  Therefore,  when  end-users,  like  online

game providers, want to deploy databases on a data-

center, they usually need to hire expensive experts to

configure  the  database  knobs,  due  to  a  lack  of  the

knowledge for knob tuning. It is reported that 50% of

the  total  database  budget  is  spent  on  database  tun-

ing  and  maintenance,  while  database  experts  spend

almost 25% of their time on tuning[5].  Once the soft-

ware  knobs  are  determined,  these  knobs  will  not

change. However, the load of a database often experi-

ences  diurnal  pattern[6, 7].  It  is  more  cost-efficient  to

co-locate  the  database  with  batch  applications  that

have  no  QoS  requirement  when  the  load  of  the

database is low. Simply decreasing the amount of re-

sources allocated to a database at low load and allo-

cating  the  saved resources  to  other  applications  may

result in the QoS violation of the database. Therefore,

adjusting  the  hardware  configuration  is  equally  im-

portant.

Two  problems  have  to  be  resolved  to  guarantee

the QoS of a database while maximizing resource uti-

lization.  As  for  the  first  problem,  our  investigation

shows  that  the  optimal  software  configuration  for  a

database varies with both different load and different

hardware  resources.  It  is  necessary  to  tune  software

knobs and hardware allocation together when the load

of a database changes. As for the second problem, co-

located applications  contend for  the  shared resources

(e.g.,  memory  bandwidth),  and  the  contention  may

result in the QoS violation of the database.

Prior  work  has  proposed  methods  to  tune  either

software  or  hardware  knobs.  As  for  tuning  software

knobs,  machine learning is  often used to identify the

appropriate  software  configurations  for  different

databases,  assuming  fixed  hardware  allocation[4, 8–10].

However,  these  methods  can  get  stuck  in  local  opti-

ma, failing to make the best performance of the work-

load.  Meanwhile,  other  prior  work  (e.g.,  Quasar[11]

and Paragon[12]) adjusted hardware allocation at run-

time to maximize resource utilization while guarantee-

ing QoS of simple user-facing services without tuning

software knobs. However, they may not work well for

database applications because they ignore the impact

of software knobs.

A straightforward way to address the above prob-

lem is  combining  the  software  auto-tuning  and  QoS-

aware  hardware  allocation.  However,  a  state-of-the-

art auto-tuning technique requires a long time (more

than 30 minutes) to find appropriate software config-

urations under a fixed hardware allocation[8, 9], which

is too slow to catch up with the load change. There-

fore, they are only suitable for long-running databas-

es that have stable loads, and are not suitable for en-

suring the QoS of a large amount of online databases

with  the  diurnal  load  pattern  while  maximizing  re-

source utilization.

To ensure the QoS of a database and maximize re-

source  utilization,  we  propose  SHA,  a  software  and

hardware  auto-tuning  system  composed  of  a  scaling-

based  performance  predictor,  a  reinforcement  learn-

ing (RL) based software tuner and a QoS-aware hard-

ware reallocator. SHA reuses the training data collect-

ed  from  historical  tuning  process  to  adjust  new

DBMS deployments. The performance predictor lever-

ages  novel  scaling models  to  predict  the best  achiev-

able  performance  under  various  hardware  allocations

with  corresponding  appropriate  software  configura-

tions. Based on the predictor, SHA can quickly deter-

mine the minimum hardware resources required by a

database  while  its  QoS  is  satisfied.  The  RL-based

software tuner searches the optimal software configu-

ration using a reinforcement learning model once the

hardware  allocation  is  determined.  Meanwhile,  the

QoS-aware  hardware  reallocator  assigns  the  unused

hardware  resources  to  other  applications  carefully,

while  minimizing  the  contention  on  memory  band-

width and/or shared cache that may result in serious

performance  degradation  of  the  database  workload.

The main contributions of this paper are as follows.

1) We design a scaling-based performance predic-

tor, which can speed up the tuning process by reusing

the  data  collected  from  historical  experience  (repre-

sentative  workloads).  It  can  predict  the  achievable

performance  under  various  hardware  allocations  and

determine  the  minimum hardware  resources  required

by a database while its QoS is satisfied.

2) We propose an RL-based software tuner, which

can search for the optimal software configuration us-

ing  the  RL  model  and  achieve  the  best  performance

online with a very short time.

3) We implement a QoS-aware hardware realloca-

tor,  which can assign the  unused hardware  resources

to  other  applications  when  the  load  of  a  database  is
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low.  During  allocation,  it  considers  both  the  con-

tention  problem  of  the  memory  bandwidth  and  the

shared cache, so that the QoS of the database work-

load will not be affected.

Our  experiments  show  that  SHA  improves  the

performance  of  databases  by  9.9%  compared  with  a

state-of-the-art solution[8] when the hardware configu-

ration  is  fixed,  and  improves  43.2%  of  resource  uti-

lization while ensuring the QoS. Besides, SHA can de-

termine the optimal software and hardware configura-

tion  in  about  10  minutes,  while  others  usually  cost

more than 60 minutes.

The  remainder  of  this  paper  is  organized  as  fol-

lows. Section 2 discusses related work. We give a de-

scription  of  background and motivation  in Section 3.

Section 4 provides  an  overview  of  SHA,  followed  by

the details of building performance models in Section

5,  auto-tuning  software  and  hardware  configurations

in Section 6,  and  improving  hardware  utilization  in

Section 7. Section 8 presents our experimental evalua-

tion. Lastly, we conclude our work in Section 9. 

2    Related Work

There  has  been  some  existing  work[4, 8–10] on

database configuration auto-tuning. However, most of

the methods rely on trial-and-error or rule of thumb.

They  usually  firstly  create  a  copy  of  the  production

database on a test system, and run the workload with

different parameters to observe the performance until

it meets users' requirements[13]. Some tools (e.g., IBM

DB2[14]) recommend default parameter settings based

on users' answers to high-level questions provided by

the  system.  But  if  the  recommended  settings  cannot

satisfy the demand, these tools may not work well. In

addition,  some  techniques  are  limited  to  specific  pa-

rameter  (e.g.,  buffer  size)  tuning  using  control-theo-

retic  approaches[15, 16].  An  approach  called  SARD[5]

has been presented to generate a ranking of database

parameters based on their relative impacts on the sys-

tem performance,  but  it  can  be  inaccurate  when  the

parameters  have  non-monotonic  effects.  In  total,  all

these  methods  often  stick  in  a  local  optimal  result,

and thus  cannot  achieve good performance on global

parameters auto-tuning. On the contrary, our system

SHA is able to obtain the global optimal result.

Duan et  al.[4] proposed  an  automated  tool  called

iTuned  that  can  identify  good  settings  for  database

configuration  parameters.  They  used  an  adaptive

sampling  technique  to  pick  the  initial  experimental

settings,  and built  the  response  surface  to  search  for

the  best  configurations  with  the  Gaussian  process

method.  However,  iTuned  does  not  make  full  use  of

the  historical  data  collected  by  previous  tuning  pro-

cesses. On the basis of iTuned, another tool called Ot-

terTune[8, 9] was  proposed  for  database  configuration

auto-tuning.  The  authors[8, 9] considered  identifying

important  knobs  and  auto-tuning  configurations  by

reusing  training  data  gathered  from  previous  tuning

sessions.  They mapped the  target  database  workload

to  the  most  similar  historical  ones  based  on  the  ses-

sion's  metrics,  so that they can transfer  previous ex-

perience.  Then  they  used  Gaussian  Process  (GP)  re-

gression to recommend software configurations. How-

ever,  these  methods  consider  only  software  auto-tun-

ing. But usually in the real world, the amount of re-

sources  (e.g.,  the  number  of  cores  and  the  size  of

memory  space)  demanded  by  a  database  varies  de-

pending on the amount of its access load, and diverse

hardware  configurations  result  in  different  optimal

software  knobs.  Statically  assigning  all  the  resources

to a database and only tuning software knobs usually

degrade their performance.

Other prior work (e.g., Quasar[11] and Paragon[12])

adjusts  hardware  allocation  at  runtime  to  maximize

utilization while guaranteeing QoS of simple user-fac-

ing  applications,  such  as  web  search.  But  the  above

work does not work well for databases because of ig-

noring  software  configurations.  With  the  wide  appli-

cation  of  database  systems,  it  has  been  vital  impor-

tant  to  auto-tune  software  configurations  and  opti-

mize hardware resource allocation to improve system

performance. However, very little work is done to con-

sider both optimizations. 

3    Background and Motivation

In this section, we take MySQL as the representa-

tive  DBMS  to  analyze  the  poor  performance  of  a

database  due  to  the  inappropriate  configuration  of

software  knobs,  and  the  problem  of  shared  resource

contention  when  co-locating  applications  to  improve

resource  utilization.  Our  study  does  not  rely  on  any

specific feature of MySQL, and is applicable for other

DBMSs. The details of the experimental platform and

used benchmarks are described in Section 8. 

3.1    Poor  Performance  of  Default  Software

Configuration

We use transactions per second (TPS) as the met-

ric  to  measure  the  performance  of  a  database. Fig.1

shows  the  performance  of  three  widely-used  bench-

marks (TPC-C, Wikipedia, YCSB) with different soft-
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ware configurations.  In the figure,  the “Default  Con-

fig”, “Tuning Script”, and “Near-Optimal” bars show

the  TPS  of  the  databases  when  the  software  knobs

are  configured  to  be  the  default  configuration,  the

configuration  found  by  the  recommended  tuning

script②,  and  the  near-optimal  configuration  (identi-

fied from 15 000 possible configurations), respectively.

Observed  from Fig.1,  the  performance  of  a

database  with  the  default  software  configuration  is

much worse than its performance with the near-opti-

mal one. By tuning software knobs appropriately, we

can  improve  the  database  performance  by  4.1x  with

the same hardware. Although the tuning script identi-

fies  relatively  good  software  configuration  for  a

database,  it  is  still  far  from  the  near-optimal.  Note

that, due to different characteristics and user request

patterns of database workloads, the near-optimal soft-

ware  configurations  are  different.  It  is  necessary  to

tune  the  DBMS  software  knobs  for  each  individual

database workload.

Moreover, for a database that serves as the back-

end of an online service, when the load of the service

decreases, the required database performance decreas-

es. Fig.2(a) shows a database's performance when it is

allocated different amount of cores/memory space and

the  software  knobs  are  configured  optimally.  Ob-

served from Fig.2(a), when the load of a database de-

creases,  it  is  possible  to  reduce  the  amount  of  re-

sources allocated to the database while still satisfying

its performance requirement. For instance, if the per-

formance target is 150 TPS at low load, we can allo-

cate only four cores and 4 GB RAM to the database,

and  rely  on  software  tuning  to  achieve  the  perfor-

mance target. The saved resources can be allocated to

the  co-located  batch  applications  without  QoS  re-

quirement for higher utilization.

Our  investigation  also  shows  that  the  optimal

software configuration for a database varies for differ-

ent  hardware  configurations.  For  instance,  when  the

available  memory  assigned  to  a  database  decreases

significantly,  it  is  highly  possible  that  smaller

“buffer_pool_size” may  result  in  better  performance.

Software knobs should be tuned again for a database

to  achieve  good  performance  if  the  hardware  alloca-

tion changes. 

3.2    Contention on Shared Resources

When  reallocating  resources  (cores  and  memory

space) at low load for high utilization, a naive method

is  allocating all  the remaining resources  to  the co-lo-

cated batch applications. However, the contention on

shared  resources  (e.g.,  memory  bandwidth)  between

the  co-located  applications  may  seriously  hurt  the

performance of the database.

Fig.2(b)  shows  the  performance  of  a  database

when all the remaining resources are allocated to the
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co-located applications (the co-located batch applica-

tions  are  described  in Section 8)  normalized  to  their

solo-run  performance  with  the  same  amount  of  re-

sources.  In Fig.2(b),  the -axis  shows  the  co-located

batch  applications  and  the -axis  shows  the  normal-

ized  performance  of  the  database.  As  observed  from

Fig.2(b),  the  performance  of  the  database  degrades

when it is co-located with the batch applications, and

different batch applications result  in different perfor-

mance  degradation.  When  allocating  resources  to

batch  applications,  it  is  challenging  to  maximize  the

throughput of  the batch applications while  satisfying

the performance requirement of the database. 

3.3    Opportunity and Challenges

According  to  the  above  analysis,  there  is  an  op-

portunity  to  significantly  improve  the  database  per-

formance  and  resource  utilization,  by  jointly  tuning

software  knobs  and  assigning  hardware  resources.

There are three challenges which have to be resolved

to take the opportunity.

1) Performance  Prediction  Challenge.  We  should

predict  the  performance  of  a  database  with  different

resources without profiling it extensively offline. How-

ever, there is not a simple and stable relationship be-

tween the performance and the amount of resources.

2) Software  Auto-Tuning  Challenge.  We  should

identify the optimal software configuration in a short

time  because  the  load  of  a  database  may  change

quickly.  However,  there  are  a  large  number  of  tun-

able knobs and the effect of tuning a knob varies for

different  databases  under  different  hardware  configu-

rations.

3) Resource  Reallocation  Challenge.  We  should

limit  the  interference  from  batch  applications  to  the

database when reallocating the saved resources. 

4    Design of SHA

To resolve the three challenges, we propose SHA,

a runtime system composed of a scaling-based perfor-

mance  predictor,  an  RL-based  software  tuner,  and  a

QoS-aware  hardware  reallocator. Fig.3 presents  an

overview  of  SHA.  The  performance  predictor  identi-

fies the minimum amount of hardware resources for a

database  based  on  runtime  statistics  so  that  it  can

achieve the required performance. The RL-based soft-

ware  tuner  uses  a  pre-trained  reinforcement  learning

model to find the appropriate software configuration.

The  QoS-aware  hardware  reallocator  monitors  the

performance of the database and reallocates the saved

resources to the co-located applications for higher uti-

lization while satisfying the QoS of the database.

w w

w

w

w

w

SHA  performs  software  and  hardware  auto-tun-

ing  for  a  database  workload  in  four  steps.  1) 

runs with the default software and hardware configu-

rations  for  a  short  period,  and SHA collects  runtime

statistics (e.g.,  cache misses and instructions per sec-

ond). 2) Based on the statistics, the performance pre-

dictor puts  into a cluster of representative databas-

es that shows similar runtime statistics. Based on the

scaling  surfaces  of  representative  databases  built  of-

fline, the predictor identifies the minimum amount of

hardware  resources  for .  The  scaling  surface  of  a

workload  reports  the  optimal  performance  it  can

achieve under different hardware configurations if the

software knobs are optimally configured. 3) The soft-

ware  tuner  adopts  reinforcement  learning  to  identify

the optimal software configuration for  in only a few

tries.  4)  The  hardware  reallocator  assigns  the  freed

hardware  resources  to  maximize  resource  utilization

while ensuring the performance of .

Apart  from  the  current  design  that  tunes  hard-

ware allocation and software knobs separately in two
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Fig.3.  Overview of SHA.
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steps, an alternative method is building a model that

can directly predict the performance of a database un-

der  all  the  software  and  hardware  configurations,  so

that  we  can  identify  the  optimal  settings  in  a  single

step. However, because the optimal software configu-

ration  for  a  database  is  totally  different  under  vari-

ous hardware configurations,  too many training sam-

ples  need  to  be  collected  to  train  the  model.  When

combined  with  software  and  hardware  parameters,

the  search  space  will  grow  exponentially.  It  is  too

time-consuming to train such a precise unified model,

which  is  not  practical  to  adopt  this  alternative

method in a real system. 

5    Building Performance Prediction Models

In  this  section,  we  build  performance  models  for

identifying  the  minimum  amount  of  resources  re-

quired  by  a  database,  and  build  RL-based  software

tuning models.

12× 3 = 36

To  collect  training  samples,  we  generate

 representative databases by adjusting the

configuration parameters of widely-used database gen-

erators  TPC-C③,  Wikipedia[17] and  YCSB[18] respec-

tively. For these databases, we execute them with dif-

ferent  hardware/software  configurations,  and  collect

the runtime statistics and achieved performance. 

5.1    Identifying Key Software Knobs

2300

In SHA, one goal is to tune the software knobs for

a  database  to  achieve  good  performance  online  in  a

short  time  to  catch  up  with  the  quick  load  change.

While  MySQL  has  more  than  300  tunable  knobs,

there are  possible software configurations even if

each knob only has two possible values. To speed up

the  tuning,  we  first  identify  the  key  software  knobs

that affect a database's performance most.

db

db

For each database ,  we first select 20 potential

software knobs that tend to seriously affect its perfor-

mance according to the recommendation in MySQL's

official  guideline④.  We then profile  by  tuning  the

20  potential  software  knobs  and  hardware  configura-

tions.  Based  on  the  configurations  of  the  knobs  and

the  corresponding  performance,  we  adopt  Lasso

(Least Absolute Shrinkage and Selection Operator)[19],

a  regression  analysis  method  that  performs  variable

X

y

selection in machine learning, to identify the key soft-

ware  knobs.  Adopting  Lasso,  potential  knobs  are

treated as independent variables ( ) and the perfor-

mance metric TPS is treated as a dependent variable

( ). Lasso works by adding an L1 penalty to the loss

function  to  shrink  some  weights  and  force  others  to

zero.  It  can  be  converted  to  the  following  optimiza-

tion problem[19], 

min
β∈Rp

{
1

N
∥y −Xβ∥2

2

}
subject to ∥β∥1 ⩽ t.

Trying  to  minimize  the  cost  function,  Lasso  re-

gression  will  automatically  select  those  features  that

are  useful,  discarding  the  useless  or  redundant  fea-

tures.  In  Lasso  regression,  discarding  a  feature  will

make its coefficient equal to 0. In this way, Lasso au-

tomatically  identifies  relevant  features  (i.e.,  those

with non-zero weights),  and discards  the others  (i.e.,

those with zero weights).

According  to  Lasso  regression,  we  identify  eight

key  software  knobs  for  each  representative  database.

Using  more  tunable  knobs  increases  the  tuning  time

significantly  because  the  size  of  configuration  space

grows  exponentially  with  the  number  of  knobs.  But

using fewer would prevent SHA from finding the opti-

mal  software  configuration.  This  decision  is  support-

ed by our sensitivity study. The experimental result is

ignored due to the limited space. In addition, we also

use  non-convex  penalization[20] to  identify  the  key

knobs and get similar results.

We  observe  that  some  representative  databases

may have totally different key software knobs. For in-

stance, Table 1 shows  the  identified  key  software

knobs  for  two  representative  workloads.  In  this  sce-

nario,  it  is  challenging  to  identify  the  appropriate

software  knobs  to  be  tuned  for  a  new  database  to

achieve good performance. After analyzing the profil-

ing  result  carefully,  we  find  that  the  36  representa-

tive databases can be classified into six clusters while

the databases in the same cluster share the same key

software knobs. If we can classify a new database in-

to  the  corresponding  cluster,  its  key  software  knobs

can be identified.

When  a  new  database  starts  to  run,  we  can  ob-

tain its hardware event statistics and its application-

level  statistics.  These  runtime statistics  highly  corre-

late  with  the  performance  of  a  database.  To  verify
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③On-line transaction processing benchmark. http://www.tpc.org/tpcc/, Mar. 2024.
 

④MySQL  server  InnoDB  startup  configuration. https://dev.mysql.com/doc/refman/5.7/en/innodb-configuration.html,  Mar.
2024.

http://www.tpc.org/tpcc/
https://dev.mysql.com/doc/refman/5.7/en/innodb-configuration.html
https://dev.mysql.com/doc/refman/5.7/en/innodb-configuration.html
https://dev.mysql.com/doc/refman/5.7/en/innodb-configuration.html


this  assertion,  we  further  analyze  the  runtime statis-

tics of the 36 representative databases. Using the run-

time statistics as the features, the analysis shows that

the Euclidean distance between databases in the same

cluster  is  much  shorter  than  the  distance  between

databases in different clusters. It is reasonable to use

the runtime statistics to classify a new database into

an  appropriate  database  cluster.  Here  we  list  16

statistics  that  are  used  to  perform  the  classification,

1)  active_anon,  2)  pgfault,  3)  pgpgin,  4)  dirty,  5)

node-loads,  6)  cpu-cycles,  7)  LLC-store-misses,  8)

node-load-misses,  9)  cpuacct.usage,  10)  cache-misses,

11) instructions per cycle, 12) memory.limit_in_bytes,

13)  innodb_data_read,  14)  innodb_data_written,  15)

innodb_log_waits, and 16) tps. 

5.2    Building  RL-Based  Models  for  Tuning

Software Knobs

For each of the six database clusters, we build an

RL-based model for tuning the databases in the clus-

ter to achieve the optimal performance.

The  tuning  process  can  be  viewed  to  be  a  prob-

lem  that  searches  the  optimal  knob  configuration

from  a  huge  configuration  space  for  a  database  to

achieve  the  best  performance.  It  is  too  complex  to

grasp  by  traditional  machine  learning  approaches.

However, deep reinforcement learning has shown very

promising results in learning how to play complicated

games with enormous search spaces.  Due to the vast

amount  of  configuration  knobs  and  workload  differ-

ences, the search space is huge as well and extremely

hard to overview, where deep learning can be perfect-

ly applied.

Perf(S)

Perf(Θ)

In  contrast  to  traditional  supervised  learning[21],

where a neural network is trained on a set of given in-

puts and expected outputs, in reinforcement learning,

the  training  process  does  not  require  any  expected

outputs.  As  shown  in Fig.4(a),  the  training  is  com-

pletely  driven  by  so-called  rewards,  which  tell  the

learner whether a taken action leads to a positive or a

negative  result  on  the  input.  Depending  on  the  out-

come,  the  neural  network  is  encouraged  or  discour-

aged  to  consider  the  action  on  this  input  in  the  fu-

ture. Defining rewards is a significant task and has a

major  impact  on  the  quality  of  learning.  In  our  de-

sign, the goal is to improve the database performance

under specific hardware settings and workload condi-

tions.  However,  for  each  RL  model,  multiple  work-

loads  are  used  for  training,  and  their  performance

metrics  are  not  the  same.  Therefore  we  need  to  de-

fine  a  unified  reward  function.  (1)  shows  the  reward

function  used  in  training  the  RL  model.  Here

 represents  the  performance  for  the  current

software settings, and  represents the perfor-

mance for the default software parameters. Therefore,

the  designed  reward  function  can  unify  the  perfor-

mance of different database workloads. 

r(S) =
Perf(S)

Perf(Θ)
− 1. (1)

Fig.4(b)  shows  an  example  state  diagram  of  the

 

Table  1.    MySQL Key Knob Examples for Two Representative Workloads

Workload MySQL Key Knob Example

TPC-C workload-1 innodb_buffer_pool_size, innodb_thread_sleep_delay, innodb_flush_method, innodb_log_file_size,
innodb_thread_concurrency, innodb_max_dirty_pages_pct_lwm, innodb_read_ahead_threshold,
innodb_adaptive_max_sleep_delay

Wikipedia workload-1 innodb_buffer_pool_instances, innodb_buffer_pool_size, innodb_log_file_size, query_cache_size,
table_open_cache_instances, innodb_flush_method, thread_cache_size, key_buffer_size
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Fig.4.  (a) RL diagram example. (b) RL state diagram.
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(3, 3)

trained RL model. As a two-dimensional input model,

each cell represents a setting of two parameters. The

value of the parameter increases from left to right and

from top to bottom. The value in each cell  indicates

the reward when the corresponding parameter setting

is  chosen.  We  notice  a  maximum  1.8x  performance

boost  when  choosing  the  configuration.  In  our

design, it is an 8-dimensional key knobs input model,

and we can obtain the best performance and the cor-

responding software  knobs  setting.  During the  model

training,  when  the  performance  of  a  certain  state  is

unknown, we need a two-minute time window to ob-

tain the performance of the state. Therefore, it takes

3 hours–4 hours to obtain the optimal software knobs

for a new database workload. However, for the repre-

sentative  workloads,  we  can  train  the  model  offline.

When tuning software  knobs  for  a  new database  on-

line,  we can reuse  representative  workload models  to

speed  up  the  tuning  process,  which  usually  takes

about  10  minutes.  We  will  discuss  online  tuning  in

Section 6. 

5.3    Building  Scaling  Models  for  Allocating

Hardware

For  each  of  the  six  database  clusters,  we  further

build  a  scaling  model  for  determining  the  hardware

configuration  for  the  databases  in  the  cluster  to

achieve the required performance.

For each representative  database in  a  cluster,  we

record  its  best  performance  improvement  ratio  (nor-

malized to the performance with the minimum hard-

ware  setting  and  default  software  configuration)  un-

der each hardware configuration and the correspond-

ing  software  configuration.  Based  on  these  statistics,

we can build a scaling surface for each representative

database. Fig.5 shows the scaling surface of an exam-

ple  TPC-C  representative  database.  To  build  a  uni-

fied scaling model for a cluster, for each point in the

scaling  surface,  we  average  the  speed-up  ratio  of  all

the databases in the cluster. This operation is reason-

able because the scaling surfaces of the representative

databases  are  similar.  Moreover,  if  there  are  more

types  of  allocable  hardware  resources  in  future,  the

scaling  model  can  incorporate  the  new  types  of  re-

sources.

Based on the scaling models of the database clus-

ters,  SHA is able to quickly predict the near-optimal

performance  of  a  new  workload  under  various  hard-

ware resource configurations without profiling it care-

fully offline. 

6    Auto-Tuning Software and Hardware

Configurations

w

w

w

w

w

Fig.6 shows  the  steps  that  SHA  tunes  software

and  hardware  configurations  for  a  new  database .

As  shown  in Fig.6,  SHA  first  profiles  for  a  short

time  and  classifies  into  one  of  the  representative

database clusters. Then, SHA identifies the minimum

amount  of  hardware  resources  required  by  to

achieve  the  required  performance  based  on  the  scal-

ing  models  of  the  corresponding  database  cluster.  In

the third step, the RL-based software tuner of SHA is

adopted  to  fine  tune  the  software  knobs  for  to

achieve the best performance.
 

6.1    Identifying  the  Representative  Database

Cluster

w

w

As we  stated  in  Section  5,  the  features  and  data

access  patterns  of  different  databases  are  different.

For database , in order to accurately predict its per-

formance  with  different  hardware  resources  and tune

the software knobs for it efficiently, SHA classifies 

into a representative database cluster that shows sim-

ilar features.

w

w

wrep

w

We run  with the default software configuration

and the minimum hardware resources, and collect the

16  runtime  statistics.  Based  on  runtime  information,

we  classify  into  a  representative  database  cluster

 using  the k-nearest  neighbors  algorithm  (k-
NN)[22]. Then, SHA identifies the minimum amount of

required hardware resources and tunes software knobs

for  according to the scaling model and the trained

RL model of the database cluster.
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Fig.5.  Scaling model for a representative TPC-C workload.
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6.2    Two-Step Auto-Tuning

w

w

wrep Mscal w wrep

w

wrep

Algorithm 1 is  used  to  tune  the  software  and

hardware  configurations  for  to  achieve  the  re-

quired  performance.  And Table 2 describes  symbols

used  in  the  algorithm.  As  shown  in Algorithm 1,  in

the first step, SHA identifies the minimum amount of

hardware  resources  for  (lines  2  and  3)  so  that  it

can  achieve  the  required  performance  according  to

's scaling model . Because  and  are not

totally the same, it is possible that their optimal soft-

ware  configurations  under  the  same hardware  alloca-

tion  are  slightly  different.  Therefore,  in  the  second

step,  once  the  hardware  configuration  is  determined,

SHA uses  RL to  further  search  the  optimal  software

configuration for  (line 4). We use the optimal soft-

ware  configuration  of  in  the  current  hardware

configuration  as  the  start  point  of  the  reinforcement

learning search to minimize the search iterations.

w

w

w

In  seldom  cases,  it  is  possible  that 's  perfor-

mance requirement cannot be satisfied with the iden-

tified  hardware  and  software  configurations.  In  this

case,  SHA  increases  the  amount  of  hardware  re-

sources  allocated  to  and  searches  for  the  optimal

software  configuration  again  iteratively  (lines  5–10).

It is also possible that the performance of  with the

current  hardware  configuration  exceeds  the  required

performance by a certain proportion (e.g., we use 1.2x

in our experiment), and SHA tries to reduce the hard-

ware configuration appropriately (lines 11–17). 

7    QoS-Aware Resource Reallocation

If a database runs alone, the scaling-based perfor-

mance predictor and the RL-based software tuner can

identify  the  minimum  required  hardware  resources

and  the  optimal  software  configuration  for  it.  It  is

more profitable to use the saved resource to run batch

applications  without  QoS  requirement,  so  that  the

hardware utilization can be improved.

Algorithm 1. Software and Hardware Auto-Tuning Configuration

T sc hc1: Inputs:  (required  QoS);  (software  configuration); 

  (hardware configuration)

wrep

Mscal

2:  Identify  a  representative  database  cluster  and  its  scal-

  ing model 

hc← sc0←3: {initial  hardware}; {initial  software  configuration}
sc← RLsearch(hc, sc0)4: 

performance(hc, sc) < T5: while  do

hc← hc+∆(hc) sc← RLsearch(hc, sc)6:   ; ;

performance(hc, sc) ⩾ T7:   if  then

(hc, sc, performance(hc, sc))8:   return 

9:   end if

10: end while

performance(hc, sc) > 1.2× T11: while  do

hc′ ← hc−∆(hc) sc′ ← RLsearch(hc
′, sc)12:   ; ;

performance(hc′, sc′) < T13:   if  then

(hc, sc, performance(hc, sc))14:   return 

15:   end if

hc← hc′ sc← sc′16:   ; 

17: end while

(hc, sc, performance(hc, sc))18: return 

 
 

Table  2.    Symbol Description for Algorithm 1

Symbol Description

wrep

w
Identified representative database cluster
for 

Mscal wrep 's scaling model

RLsearch(hc, sc)

hc

Searching optimal software
configurations with the hardware setting

 using RL

performance(hc, sc)
(hc, sc)

Performance of database when setting
hardware and software configuration as

 

However,  it  is  nontrivial  to  determine  how many

free cores and megabytes of free DRAM should be al-
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wFig.6.  Tuning the software and hardware configurations for a database .
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located  to  the  batch  applications.  If  too  many  free

cores  are  allocated  to  batch  applications,  the  con-

tention  on  the  shared  resources  (e.g.,  shared  cache

and  memory  bandwidth)  could  degrade  the  perfor-

mance of the database, resulting in its QoS violation.

On the contrary, if too few free cores are allocated to

batch applications, the hardware is still not fully uti-

lized.

w

w

w

To  solve  the  above  problem,  the  QoS-aware  re-

source reallocator in SHA adopts a feedback-based al-

gorithm to  allocate  the  freed  cores.  For  safety,  SHA

identifies  the “just-enough” hardware  configuration

for  database  to  achieve  1.5x  of  the  target  perfor-

mance  (QoS),  allocates  the  remaining  hardware  re-

sources  (cores)  to  the  background  applications,  and

observes  whether  the  allocation  would  result  in  the

QoS  violation.  Here  we  initialize  the  system  to

achieve 1.5x of the target performance (QoS) and al-

locate the remaining hardware resources, so as to re-

duce  the  reallocation  times  when  Qos  does  not  vio-

late  as  much as  possible.  If  the  QoS is  satisfied,  one

more core is reallocated from  to the batch applica-

tion.  The  above  reallocation  iterates  until  no  more

free  cores  can  be  allocated.  If 's  performance  is

worse than the required QoS after the resource reallo-

cation,  SHA decreases  the  number  of  cores  allocated

to  the  batch  application,  and  searches  for  the  opti-

mal  software  configuration  again  adopting  the  RL-

based software tuner iteratively.

w

It is possible that some free cores are not allocat-

ed to any application, if  allocating more cores to the

batch  application  results  in  serious  performance

degradation  of  the  co-located  database.  In  this  case,

the free cores can be either allocated to the database

 to improve its performance, or configured to run in

low power model to save energy. 

8    Experimental Evaluation
 

8.1    Experimental Setup

We use  MySQL (version  5.7.21)  to  be  the  repre-

sentative  DBMS and  evaluate  SHA on  a  server  that

has two Intel Xeon E5-2630 processors. Table 3 sum-

marizes  the software  and hardware setups of  our  ex-

perimental platform.

As shown in Table 4, we adopt three widely-used

database  benchmark  suites  that  cover  a  large  spec-

trum of data access patterns and system demands to

evaluate  SHA.  Specifically,  TPC-C⑤ is  an  industry

standard  OLTP  benchmark,  with  multiple  transac-

tion types, and a more complex database and overall

execution structure. It consists of nine tables and five

concurrent transactions that portray the activity of a

wholesale  supplier.  TPC-C's  transactions  are  more

complex  and  write-heavy  than  those  in  other  bench-

marks, where 92% of TPC-C's issued transactions are

modifying  tables.  Wikipedia[17] is  a  web-based  read-

heavy  OLTP workload  based  on  the  popular  on-line

encyclopedia.  We  can  use  the  real  schema,  transac-

tions,  and  queries  as  used  in  the  live  website.  In

Wikipedia  workload,  92.2%  of  the  transactions  are

looking-up  tables.  YCSB[18],  short  for  The  Yahoo!

Cloud  Serving  Benchmark,  is  a  collection  of  micro-

benchmarks that represent data management applica-

tions whose workload is simple but requires high scal-

ability. It is comprised of six OLTP transaction types

that access random tuples based on a Zipfian distribu-

tion. The database contains a single table with 10 at-

tributes.

17× 70%

We  generate  17  different  database  workloads  for

each of  TPC-C,  Wikipedia,  and YCSB by modifying

their  configuration  parameters.  For  TPC-C/Wikipe-

dia/YCSB,  we  randomly  choose  70% of  the  generat-

ed  workloads  (  =  12)  to  train  the  models

and use the rest workloads (five workloads) to be the

test set. The workloads in the training set have differ-

ent  read-write  ratios,  compute  densities,  and  operat-

ing transactions, and thus simulate a spectrum of re-

al-system workloads. In the test set, TPC-1, ..., TPC-

5  are  generated  from  TPC-C,  WP-6,  ...,  WP-10  are

 

Table  3.    Hardware and Software Specifications

Specification

Hardware CPU: Intel® Xeon® CPU E5-2630 v4,

12 cores, 30 MB of shared cache (16 ways)

Software DBMS: MySQL (version 5.7.21)

OS: CentOS 6.8 with kernel 2.6.32-642

 

Table  4.    Benchmarks Used to Evaluate SHA

Benchmark Description

Databases TCP-C, an industry standard OLTP benchmark;

Wikipedia, web OLTP of on-line encyclopedia;

YCSB, the Yahoo! Cloud Serving Benchmark

Batch
applications
(PARSEC[23])

Blackscholes (bs), bodytrack (bt), dedup (dd),
ferret (cs), freqmine (fm), streamcluster (sc),
vips (ip), facesim (fs)
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⑤On-line transaction processing benchmark. http://www.tpc.org/tpcc/, Mar. 2024.

http://www.tpc.org/tpcc/


generated  from Wikipedia,  and  YCSB-11,  ...,  YCSB-

15 are generated from YCSB.

To evaluate the performance of SHA, we compare

the  performance  of  databases  with  the  default  soft-

ware configuration, the recommended tuning script⑥,

OtterTune[9] and SHA. The tuning script is  provided

for  the  users  to  configure  the  software  knobs  of

MySQL.  Similar  to  SHA,  OtterTune,  a  state-of-the-

art  software  auto-tuning  tool,  trains  machine  learn-

ing  models  to  search  for  optimal  software  configura-

tions. However, it assumes that the hardware configu-

ration is fixed.

We use TPS as the metric to measure the perfor-

mance of a database. 

8.2    Accuracy of the Scaling-Based

Performance Predicting

Nconf

Predi Reali

i

Err

To evaluate the prediction accuracy of the scaling-

based  performance  predictor,  (2)  calculates  the  error

of  the  prediction.  In  this  equation,  is  the  num-

ber  of  resource  configurations,  and  and 

are the predicted and real performance of a database

workload under the -th hardware resource configura-

tion  respectively.  The  larger  is,  the  lower  the

prediction accuracy is. 

Err =

Nconf∑
i=1

|Predi/Reali − 1|

Nconf
. (2)

Fig.7 shows the  prediction  errors  of  the  database

workloads with the scaling-based performance predic-

tor.  Observed from Fig.7,  the prediction errors  of  all

the  databases  are  smaller  than  12%.  As  we  show  in

Section 5,  different databases may have different key

software  knobs,  which  highly  correlate  with  the  per-

formance of a database. The prediction is accurate be-

cause we carefully identify the key software knobs for

different databases to build the scaling models. It can

help reduce the possibility of overfitting.

Therefore,  the  scaling-based  performance  predic-

tor  is  able  to  accurately  predict  the  optimal  achiev-

able  performance  of  a  database  under  various  hard-

ware configurations. 

8.3    Effectiveness  of  Software  Auto-Tuning

In this experiment, we fix the hardware configura-

tion  and  evaluate  the  effectiveness  of  the  RL-based

software  auto-tuning  in  identifying  the  appropriate

software configurations for different databases. With-

out  loss  of  generality,  we  assign  8-core  and  16  GB

memory  to  a  database.  Other  hardware  configura-

tions show similar results.

Fig.8 shows  the  performance  of  the  databases  in

the test  set  with default  configuration,  tuning script,

OtterTune, and SHA. Observed from Fig.8, SHA per-

forms the best for all the benchmarks. SHA improves

the  performance  of  the  benchmarks  by  259.6%  and

9.9% compared with the default configuration and Ot-

terTune, respectively. OtterTune performs worse than

SHA because it only refers to and reuses the informa-

tion of one most similar workload in the historical da-

ta repository. Therefore, OtterTune is often stuck in a

local optimal result. On the contrary, SHA is able to

obtain the global optimal result.

Fig.9 presents the performance improvement time-

line of TPC-C, Wikipedia and YCSB workload when

OtterTune and SHA are used to tune the knobs. Ob-

served  from Fig.9,  SHA converges  much  faster  when

tuning software knobs. OtterTune needs more than 20

minutes  to  identify  the  appropriate  software  knobs

while  SHA  can  do  within  seven  minutes.  SHA  con-

verges  fast  because  it  has  a  better  starting  point  to

tune the knobs compared with OtterTune, and the re-

inforcement  learning  avoids  local  optima  by  nature.
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⑥MySQLTuner. https://github.com/major/MySQLTuner-perl, Mar. 2024.

https://github.com/major/MySQLTuner-perl
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The  reason  why  SHA  starts  from  a  better  point  is

that it refers to the tuning process of multiple similar

workloads  in  the  same  cluster.  The  fast  convergence

of SHA makes it applicable for online databases that

experience the diurnal load pattern.

Moreover, observing from Fig.9, we can find that

SHA fine-tunes the software near the optimal once it

reaches  the  convergence  state.  This  observation  sup-

ports  the  assertion  that  SHA  is  able  to  identify  the

near  optimal  configuration.  On  the  contrary,  as  can

be  seen  from Fig.9(b),  the  performance  of  the

database  with  OtterTune  has  a  relatively  large  im-

provement over time. The large improvement reflects

the action of  turning from one local  optimum to an-

other.

The  RL-based  software  tuner  of  SHA  is  able  to

identify  better  software  configurations  for  databases

in a shorter time compared with state-of-the-art soft-

ware tuners. 

8.4    Minimizing Resource Usage

Besides maximizing performance, SHA can also be

used  to  minimize  the  hardware  resource  usage  of  a

database  when  satisfying  its  performance  require-

ment at low load. In this experiment, without loss of

generality, we assume that the target performance of

the databases at low load is 1/3 of their optimal per-

formance with all the cores[6, 7].

Fig.10 shows  the  number  of  cores  needed  by  the

databases  to  achieve  the  required  performance  with

the  default  configuration,  tuning  script,  OtterTune,

and  SHA.  We  only  report  the  number  of  cores  be-

cause the impact of memory space changes is small in
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our  experiment.  As  observed  from Fig.10,  while  all

the  cores  should be  allocated to  the  database  by de-

fault, the tuning script, OtterTune, and SHA allocate

1–2,  3–4,  and  5–6  fewer  cores  to  a  database  respec-

tively in the case of meeting the performance require-

ment.

Note  that,  due  to  the  assumption  of  fixed  hard-

ware allocation, OtterTune requires to sweep through

the  hardware  resource  configurations  to  identify  the

appropriate one,  and it  needs 20 minutes to find the

appropriate software configuration with a given hard-

ware configuration. Therefore, it is not applicable for

online  databases  with  fast-changing  loads.  On  the

contrary,  SHA  can  directly  identify  the  appropriate

hardware configuration based on the performance pre-

diction model in five minutes. 

8.5    Improving Resource Utilization

In this subsection, we evaluate the effectiveness of

SHA in maximizing resource utilization while satisfy-

ing the performance requirement of the databases. We

still  use  TPC-C,  Wikipedia  and  YCSB as  the  online

databases,  and  benchmarks  that  have  different  char-

acters (listed in Table 4) in PARSEC[23] as the co-lo-

cated  batch  applications  to  perform  the  evaluation.

We  assume  that  the  required  performance  is  1/3  of

the  peak  performance  due  to  fewer  user  requests  at

low load. Since the original OtterTune does not real-

locate  resources,  we combine OtterTune with the re-

source  reallocator  in  SHA,  and  report  the  perfor-

mance of the enhanced OtterTune.

Fig.11 shows the average number of cores that can

be safely reallocated to the batch applications at low

load  for  different  benchmarks  with  OtterTune  and

SHA. Observed from Fig.11, more cores can be reallo-

cated  to  the  co-located  batch  applications  with  SHA

(43.2%) compared with OtterTune (25.5%). On aver-

age,  SHA improves  17.7%  of  the  resource  utilization

compared with OtterTune.

Wikipedia workloads only need 2–3 cores to fulfill

their performance requirement at low load if they run

alone (Fig.10), and not all the cores can be reallocat-

ed  to  the  batch  applications  at  co-location  as  shown

in Fig.11(b). This is because the contention on shared

resources (e.g., memory bandwidth) results in the per-

formance  degradation of  the  database  workload.  The

resource reallocator of SHA solves this problem by it-

eratively determining the number of cores that can be

safely allocated to the batch applications.

To  conclude,  the  QoS-aware  resource  reallocator

in  SHA is  able  to  improve  resource  utilization  while

satisfying  the  performance  requirement  of  online

databases. 

9    Conclusions

In  this  paper,  we  proposed  SHA,  a  software  and

hardware  auto-tuning  system for  DBMS.  It  can  help

database  administrators  automatically  tune  software

parameters  to  achieve  optimal  system  performance

with fixed hardware resources. The application of the

scaling-based performance predictor and the reinforce-

ment  learning  module  allows  it  to  predict  the  mini-

mum  hardware  overhead  to  meet  system  require-

ments  in  the  shortest  amount  of  time.  Furthermore,

we  devised  a  QoS-aware  resource  allocator  to  reallo-

cate  the  saved  hardware  resource  to  other  applica-

tions  to  improve  resource  utilization  without  incur-

ring QoS violation of the database workload. Experi-

ments showed that SHA improves the performance of

databases by 9.9% on average compared with a state-

of-the-art solution when the hardware configuration is

fixed,  and  improves  43.2%  of  resource  utilization

while  ensuring  the  QoS.  Overall,  SHA  is  a  hybrid

model  that  tunes  both  database  hardware  and  soft-

ware  configurations  simultaneously,  which  can  great-

ly  assist  in  the  deployment  and  maintenance  of  the

database system. 
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