

SAIH: A Scalable Evaluation Methodology for Understanding AI
Performance Trend on HPC Systems

Jiang-Su Du (杜江溯), Dong-Sheng Li (李东升), Ying-Peng Wen (文英鹏), Jia-Zhi Jiang (江嘉治)
Dan Huang (黄　聃), Xiang-Ke Liao (廖湘科), Fellow, CCF
and Yu-Tong Lu* (卢宇彤), Distinguished Member, CCF

School of Computer Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China

E-mail: dujs@mail2.sysu.edu.cn; lidsh25@mail2.sysu.edu.cn; wenyp6@mail2.sysu.edu.cn; jiangjzh6@mail2.sysu.edu.cn
huangd79@mail.sysu.edu.cn; xkliao@nudt.edu.cn; luyutong@mail.sysu.edu.cn

Received August 16, 2021; accepted June 7, 2023.

Abstract Novel artificial intelligence (AI) technology has expedited various scientific research, e.g., cosmology, physics,

and bioinformatics, inevitably becoming a significant category of workload on high-performance computing (HPC) sys-

tems. Existing AI benchmarks tend to customize well-recognized AI applications, so as to evaluate the AI performance of

HPC systems under the predefined problem size, in terms of datasets and AI models. However, driven by novel AI technol-

ogy, most of AI applications are evolving fast on models and datasets to achieve higher accuracy and be applicable to more

scenarios. Due to the lack of scalability on the problem size, static AI benchmarks might be under competent to help un-

derstand the performance trend of evolving AI applications on HPC systems, in particular, the scientific AI applications on

large-scale systems. In this paper, we propose a scalable evaluation methodology (SAIH) for analyzing the AI performance

trend of HPC systems with scaling the problem sizes of customized AI applications. To enable scalability, SAIH builds a

set of novel mechanisms for augmenting problem sizes. As the data and model constantly scale, we can investigate the

trend and range of AI performance on HPC systems, and further diagnose system bottlenecks. To verify our methodology,

we augment a cosmological AI application to evaluate a real HPC system equipped with GPUs as a case study of SAIH.

With data and model augment, SAIH can progressively evaluate the AI performance trend of HPC systems, e.g., increas-

ing from 5.2% to 59.6% of the peak theoretical hardware performance. The evaluation results are analyzed and summa-

rized into insight findings on performance issues. For instance, we find that the AI application constantly consumes the

I/O bandwidth of the shared parallel file system during its iteratively training model. If I/O contention exists, the shared

parallel file system might become a bottleneck.

Keywords high-performance computing (HPC), deep learning, parallel computing, AI framework

1 Introduction

In recent years, AI, especially its deep learning

subset, has become one of the key trends in HPC

(high-performance computing). Emerging novel AI

applications have expedited various scientific discov-

eries, such as in cosmology[1, 2], physics[3, 4], and can-

cer diagnosis[5, 6]. Besides, scientists significantly im-

prove domain results with AI technology on HPC sys-

tems over their traditional competitors[7].

To support AI applications, emerging HPC sys-

tems are designed towards exascale computing capa-

bility with better AI performance in consideration.

For example, Fugaku in Japan exhibits 2.0x mixed-

precision exaFLOPS with ARM-based many-core

CPUs and Summit at ORNL has 1.4x mixed-preci-

Regular Paper

This work was supported by the National Natural Science Foundation of China under Grant No. U1811461, the Zhejiang Lab
under Grant No. 2021KC0AB04, the Program for Guangdong Introducing Innovative and Entrepreneurial Teams under Grant No.
2016ZT06D211, the Guangdong Provincial Natural Science Foundation of China under Grant No. 2018B030312002, and the Major
Program of Guangdong Basic and Applied Research of China under Grant No. 2019B030302002.

*Corresponding Author

Du JS, Li DS, Wen YP et al. SAIH: A scalable evaluation methodology for understanding AI performance trend on HPC

systems. JOURNAL OF COMPUTER SCIENCE AND TECHNOLOGY 39(2): 384−400 Mar. 2024. DOI: 10.1007/s11390-

023-1840-y

©Institute of Computing Technology, Chinese Academy of Sciences 2024

https://doi.org/10.1007/s11390-023-1840-y
https://doi.org/10.1007/s11390-023-1840-y
https://doi.org/10.1007/s11390-023-1840-y
https://doi.org/10.1007/s11390-023-1840-y
https://doi.org/10.1007/s11390-023-1840-y
https://doi.org/10.1007/s11390-023-1840-y
https://doi.org/10.1007/s11390-023-1840-y

Ax = b

sion exaFLOPS with NVIDIA GPU. While the theo-

retical peak performances of these HPC systems are

appealing, their practical performances on supporting

AI training (HPC-AI performance) are still under in-

vestigation. In terms of traditional HPC benchmarks,

e.g., HPL and HPL-AI[8], they parallelly solve a com-

mon task in the HPC domain, the linear equation

, which is rarely adopted in AI applications

and thus lacks convincible metrics on AI performance.

Compared with traditional HPC simulations, scientif-

ic AI applications are much more complex. HPC sim-

ulations typically consist of distinct execution phases,

such as computation, I/O and collective communica-

tion. In contrast, the execution phases of AI applica-

tions are pipelined and encapsulated by higher ab-

stractions and longer parallelism hierarchy, which in-

clude co-designed programming models, e.g., CUDA,

and distributed AI frameworks, e.g., Tensorflow and

PyTorch. Such abstraction complexity leads to doubt

on the significance of profiling the AI performance by

traditional HPC benchmarks.

Moving to existing AI benchmarks on HPC sys-

tems, e.g., CORAL-2① and MLPerf[9], they are en-

deavoring to evaluate either the accuracy or the per-

formance (FLOPS) of AI models in the hotspot re-

search domains by adopting representative AI appli-

cations with static data and models. This static

methodology can reflect a fixed performance relation

between a specific application and an HPC system,

rather than a range of performance relations. Al-

though MLPerf recently focuses on HPC systems, and

adds scientific AI applications, e.g., CosmoFlow[2] and

DeepCAM[7], into its benchmark suit, the main idea

still follows its previous version, in which both mod-

els and datasets are static.

Driven by novel AI technologies, most of AI appli-

cations are evolving fast on their problem configura-

tions including both models and datasets, for achiev-

ing higher accuracy and being applicable to more sce-

narios. As proposed in NVIDIA GTC 2021②, AI mod-

el sizes are growing exponentially, on a pace of dou-

bling every two and a half months. Due to the lack of

scalability on the problem size, existing AI bench-

marks might be incompetent to understand the per-

formance trend of evolving AI applications on HPC

systems, in particular, the scientific AI applications

on large-scale systems. For instance, in our evalua-

tion, we observe that the aggregate FLOPS of a par-

allel run of CosmoFlow (3D CNN) is significantly in-

creased (from 5.2% to 59.6% of peak theoretical per-

formance) with the scaling datasets and AI models. It

reflects that a kind of AI workloads vary vastly in dif-

ferent configurations and the execution of a static ap-

plication can only provide a very partial understand-

ing.

Ax = b

To understand the AI performance trend on HPC

systems in a more comprehensive way, we propose the

Scalable Evaluation Methodology (SAIH). Like the

successful HPL LINPACK benchmark on achieving

the data and computation scalability by adjusting the

size of , SAIH builds a set of novel mecha-

nisms to satisfy the requirements of data and compu-

tation scalability. Additionally, SAIH takes into ac-

count the scientific significance of AI workloads by se-

lecting and building representative study cases from

domain-specific scientific AI applications. Specifically,

the contributions of SAIH are as follows.

● We propose SAIH with scientific significance to

evaluate and understand the AI performance range of

HPC systems, and it is with both data and model

scalability to cover various problem sizes.

● We design a novel strategy for model scalabili-

ty. By creatively incorporating network architecture

search (NAS), the strategy extends the original AI

model to more accurate and complex models with

scaling computation demands.

● We implement a cosmological AI application as

a prototype and rebuild it to an SAIH instance with

data and computation scalability. We apply this in-

stance to evaluate a real HPC system as a case study.

● We summarize the performance achievement

and qualitative evaluation metrics to illustrate that

the SAIH instance can profile the AI performance

range of an HPC system on a specific scientific do-

main as well as revealing evaluation findings about

the potential performance issues.

The rest of this paper is organized as follows. We

present a survey on scientific AI applications and ex-

isting AI benchmarks along with related work in Sec-

tion 2. A comprehensive methodology on building

scalable AI evaluation is presented in Section 3. In

Section 4, we present a case study on building an

SAIH instance based on a cosmological AI applica-

tion. Section 5 presents the evaluation and analysis of

the cosmological SAIH instance on a real HPC sys-

tem. Finally, we conclude this work in Section 6.

Jiang-Su Du et al.: SAIH: Scalable Evaluation for AI Performance Trend on HPC Systems 385

①https://asc.llnl.gov/coral-2-benchmarks, Mar. 2024.

②https://www.nvidia.com/gtc/keynote/, Mar. 2024.

https://asc.llnl.gov/coral-2-benchmarks
https://asc.llnl.gov/coral-2-benchmarks
https://asc.llnl.gov/coral-2-benchmarks
https://asc.llnl.gov/coral-2-benchmarks
https://asc.llnl.gov/coral-2-benchmarks
https://www.nvidia.com/gtc/keynote/

2 Background and Related Work

2.1 Scientific AI Applications

In recent years, scientific AI applications are

emerging in various domains. In particle physics,

Kurth et al.[3] firstly attempted to deploy particle im-

age classification on many-core HPC systems and

achieved petaFLOPS performance. MENNDL[4]

adopts neural network search to find an optimal mod-

el for improving the understanding of the electron-

beam-matter interactions and real-time image-based

feedback, which enables a huge step beyond human

capacity towards nano-fabricating materials automati-

cally. In the domain of astronomy, cosmologists[1, 2]

take advantage of CNN models to estimate the uni-

versal states with higher accuracy than traditional

methods. The universal parameters are key factors

that determine the evolution of the whole universe

and the classification and discovery of astrophysical

objects. Medical imaging analysis is the science of

solving clinical problems by analyzing images generat-

ed in clinical practice. Deep learning techniques are

applied in computer aided diagnosis by analyzing the

signal data from CT, MRI, DR, etc., including image

segmentation[10], detection and classification of abnor-

mality[5, 6]. In bioinformatics, RNN-based deep learn-

ing techniques are widely used to detect and recog-

nize genomic patterns[11–13]. In climate changing and

weather analysis, CNN and RNN models are used to

detect the areas where the abnormal climate

changes[7, 14].

2.2 AI Benchmarks

AI-based techniques are continuously driving vari-

ous application scenarios intelligent, which can be de-

ployed on diverse computing platforms, from large-

scale HPC systems to tiny mobile devices. To satisfy

the demands of evaluating the AI performance, scien-

tists and engineers have released a number of AI

benchmarks covering different application scenarios

and platforms.

MLPerf[9] is an AI benchmark suite targeting six

AI application scenarios, including recommendation,

speech recognition, reinforcement learning, image clas-

sification, object detection, and translation. Deep-

Bench③, released by Baidu, is a micro benchmark set

that evaluates basic operations involved in training

deep neural networks, including dense matrix multi-

plies, convolutions, recurrent layers, and all-reduce.

While, this benchmark lacks the component-level and

application-level evaluation cases. AI Matrix[15], re-

leased by Alibaba Group, aims to satisfy the needs of

fully characterizing the deep learning workloads in Al-

ibaba's e-commerce environment, including the tasks

in computer vision, recommendation, and language

processing. HPL-AI Mixed Precision Benchmark[16],

released by University of Tennessee, is opting for low-

precision (likely 16-bit) accuracy for LU (lower-upper)

factorization, and a sophisticated iteration to recover

the accuracy lost in factorization. Deep500[17] is a

modular benchmark infrastructure for high-perfor-

mance computing deep learning. It aims at evaluat-

ing different framework implementations and differ-

ent levels of operators. However, it only evaluates a

common image classification scenario on the Ima-

geNet[18] dataset, rather than typical scientific scenar-

ios. TBD Suite[19], developed by University of Toron-

to, is an end-to-end benchmark suite for neural work

training. Typically, this work currently covers six ma-

jor application domains and eight different state-of-

the-art models, e.g., image classification, speech recog-

nition. The above AI benchmarks provide evalua-

tions either for classic application scenarios or for the

computing operations in deep neural network (DNN)

models on data centers and mobile devices. However,

they have not covered the scientific AI applications

and HPC systems, the configurations of which are sig-

nificantly distinct from evaluation cases of existing AI

benchmark in both datasets and DNN models.

Recently, a number of well-recognized scientific AI

applications have been integrated into HPC bench-

mark suite for evaluating the performance of AI appli-

cation on HPC systems. For example, CORAL-2

benchmarks④ cover not only the traditional micro

benchmarks, HPC simulations and analysis, but also

emerging AI applications, which include the common

operations in CNN and RNN as well as the CAN-

DLE benchmark[6] for cancer diagnosis. In 2020, two

scientific applications, CosmoFlow[2] and DeepCAM[7]

with static models and datasets are included into

MLPerf, named as MLPerf-HPC[20], for evaluating the

AI performance of large HPC systems. In general,

HPC-AI500[21] follows a similar idea to MLPerf-HPC.

Moreover, in order to assure a fair ranking, it presents

386 J. Comput. Sci. & Technol., Mar. 2024, Vol.39, No.2

③https://svail.github.io/DeepBench/, Mar. 2024.

④https://asc.llnl.gov/coral-2-benchmarks, Mar. 2024.

https://svail.github.io/DeepBench/
https://asc.llnl.gov/coral-2-benchmarks
https://asc.llnl.gov/coral-2-benchmarks
https://asc.llnl.gov/coral-2-benchmarks
https://asc.llnl.gov/coral-2-benchmarks
https://asc.llnl.gov/coral-2-benchmarks

a new metric named Valid FLOPS, which imposes a

penalty on failing to achieve a target training quality.

While CORAL-2 benchmarks, MLPerf-HPC, and

HPC-AI500 are capable of distributedly evaluating

scientific AI applications with static scientific AI

models and datasets on HPC systems, they lack the

capability of scaling up problem sizes, which is criti-

cal to evaluating the potential AI performance of

large-scale HPC systems.

3 Methodology

In this section, we introduce the methodology of

SAIH. While scientific AI applications run on large-

scale HPC systems in data-parallel fashion via sophis-

ticate AI frameworks, such as MPI, Tensorflow and

PyTorch, the problem sizes are typically limited by

the static training datasets and AI models. Thus, we

intend to scale up problem sizes as well as the de-

mands on memory and computation resources by in-

tegrating the methods of data augment and AI model

augment. Our augment methods take the scientific

meaning into account, and higher resolution or high-

er accuracy can be achieved compared with original

applications. As shown in Fig.1, SAIH provides a set

of augment methods for transforming scientific AI ap-

plication into candidate benchmarks with the scalabil-

ity on problem sizes, and then evaluating the AI per-

formance of HPC systems.

3.1 Data Augment

The data augment method in SAIH is designed for

both achieving data scalability and keeping scientific

meaning. Thus, simulation can be a potential method

since it is naturally supported by many scientific ap-

plications. Besides, emerging generative adversarial

network (GAN)[22] is also a potential method.

Simulation. Many scientific applications simulate

natural phenomena and the runtime states of large re-

search facilities. To discover the scientific insights, the

outputs of these simulations are the raw data that

needs to be further processed by analysis techniques,

such as visualization tools and AI based analysis. To

efficiently generate hundreds and thousands of data

samples, we manage the initial parameters by a cen-

tralized parameter server to ensure parameters be-

tween different simulations randomly and uniquely.

The detailed procedure is in Algorithm 1.

Algorithm 1. Concurrently Generate Data by Simulation

N
N − 1

1: Start MPI-based program with total processes, one for
 parameter server and each of the () processes runs
 M instances of the simulation.
2: Initialize MPI.

rank = 03: if then
4: Initialize a centralized parameter server.
5: Randomly generate initial parameters for simulations.
6: else

M×
(N − 1)

7: Wait for parameter server ready and prepare
 parameters.

m < M8: while do
9: Load parameters from the server.
10: Initialize an instance of simulation.
11: Perform simulation.
12: Save generated data into the filesystem.

m = m+ 113:
14: end while
15: end if

Generative Adversarial Networks. GAN is anoth-

er method of generating training data with demand-

ed structures and properties for scientific applications.

We can use GAN to explore the space of possible da-

ta, tuning the generated data to have specific target

properties. In particular, GAN (CycleGAN) is used to

augment CT images and improve generalizability in

CT segmentation tasks[23]. GAN is also adopted to

augment 3D MRI data for medical image segmenta-

tion[24]. Besides augmenting biomedical datasets, GAN

can be also used to generate multi-sensor data for the

aerial object detection and semantic segmentation on

visual data, such as 3D Lidar reconstruction using the

ISPRS and DOTA datasets[25]. As shown in Fig.2,

GAN has a pair of components competing with each

other, where the generator model is responsible for

Scientific Data

Cosmology Data

Electron

Microscopy Data

Genome Data

…

Neural Network

Neural Architecture Search,

Manual Tuning,

Hyperparameter Search

Training

Evaluating

Scaling

Scaling

HPC Cluster

Simulation, GAN,

Data Transform

Loading

Data Augment:

Model Augment:

Fig.1. SAIH overview.

Jiang-Su Du et al.: SAIH: Scalable Evaluation for AI Performance Trend on HPC Systems 387

generating new synthetic data (e.g., the DNA se-

quence in the Genome). The discriminator model cal-

culates the similarity score between the generated da-

ta and the real data. Concretely, the GAN models are

different case by case. As iteratively training the

models, the accuracies of the two models are im-

proved. With the trained generator by GAN, we can

concurrently run it to generate a large amount of

training data.

3.2 Model Augment

SAIH can scale its computation demand by mod-

el augment, which in deep learning is mainly either by

AutoML[26] based techniques such as NAS, or manual-

ly adjusted by AI experts. With these two kinds of

model augment methods, generated candidate models

can satisfy both scalability and accuracy require-

ments. Although manually tuning is easier, it is time-

consuming and requires a lot of expert knowledge. In

SAIH, we adopt NAS as the fundamental of our mod-

el augment method and a new component is inserted

into NAS for selecting out the qualified models that

have customized computation demand.

As shown in Fig.3, NAS generally consists of three

main components: the search space, search strategy,

and accuracy evaluation. The search space contains

the architectures that can be selected. Users can set

hyperparameters to restrict the searching properties

of architectures for reducing the size of the search

space and simplify the search. The search strategy

specifies how to traverse in the search space, and of-

ten has exponential complexity, which motivates ex-

perts to design novel search optimizations or heuris-

tic algorithms to find the optimal or near-optimal

DNN models. The widely investigated optimizations

include evolution strategy (ES), reinforce learning

(RL), Bayesian optimization, etc. The accuracy evalu-

ation is estimating the performance of model architec-

ture, e.g., by performing a standard training and vali-

dation of the architecture on data. When the estima-

tion is evaluated and returned back, the search strate-

gy will decide the next searching architecture, or ac-

cept the model based on the accuracy.

In order to generate models with a demanded

computation cost, e.g., FLOPs, we design a novel

component, model filter, to filter models with a de-

manded range of computation costs. The model filter

is integrated as a supplement component of the search

strategy, enabling that SAIH explores models with a

specific range of computation costs. Due to the long

time of NAS, e.g., searching 20 000 neural networks

across 500 P100 GPUs over four days[27], in SAIH we

tend to place the model filter before the searching

strategy, preparing candidate DNN models with

scaled computation costs before training and evaluat-

ing. The model filter estimates the theoretical com-

puting cost of the candidate model as the filtering ba-

sis. We aggregate the number of multiply-accumulate

operations to represent the computation cost. It is

straightforward to count the number of multiply-ac-

cumulate operations in the forward pass, while it is

not for the backward pass, which is derived by the

forward pass. Here we adopt (1)⑤ for estimating the

computation cost of both the forward and backward

pass,

Computation = numAddMul × flopAddMul × FB,
(1)

numAddMul

flopAddMul

FB

where denotes the total number of add-

multiply operations in the forward pass of a model,

 is the number of FLOPs per add-multi-

ply, and is a constant of 3 for calculating both

forward and backward pass.

3.3 Performance and Qualitative Evaluation

Summary

AI applications have been emerging from various

scientific domains. These applications have two main

Generator

Generated

Data

Real

Data

Discriminator Scores

Noise

Vector

Fig.2. GAN for data augment.

Search
Strategy

Search
Space ()

Accuracy



Evaluation

∈
Return
Accuracy
Estimation

ES, RL, Gradient-Based
and Bayesian
Optimization

Candidate
DNN

Models

Filtered by Accuracy
and Performance
Requirements

① ②

③
④



Fig.3. Network architecture search in SAIH.

388 J. Comput. Sci. & Technol., Mar. 2024, Vol.39, No.2

⑤https://openai.com/research/ai-and-compute, Mar. 2024.

https://openai.com/research/ai-and-compute
https://openai.com/research/ai-and-compute
https://openai.com/research/ai-and-compute
https://openai.com/research/ai-and-compute
https://openai.com/research/ai-and-compute

components: data and model. The data format and

the model architecture vary largely in different AI ap-

plications. When we apply SAIH to a domain case,

the evaluation can present not only the AI perfor-

mance on HPC systems, but also the performance

bottlenecks introduced by the characteristics of AI

applications and frameworks, in terms of data move-

ment, scalability, etc. Thus, as shown in Table 1, we

need to set a standard or metrics to summarize the

evaluation results of SAIH instances. The metrics ta-

ble typically includes three main sections, 1) the char-

acteristics of the SAIH study case, 2) AI performance

in terms of FLOPS range, speedup, etc., and 3) other

profiling results.

4 Case Study

In this section, we orchestrate a cosmological AI

application, CosmoFlow[2], as a case study of SAIH,

named as SAIH-cosmo. Then, we apply SAIH-cosmo

to an HPC system for understanding the relative AI

performance trend. We observe some findings stem-

ming from the convergence of the training model, per-

formance bottlenecks on the software stack and hard-

ware configurations and tuning. Such insights can

guide the HPC systems for tuning better AI perfor-

mance in the future.

4.1 Background

4.1.1 CosmoFlow

In the domain of cosmology, it is of great signifi-

cance to determine cosmological states, which can de-

scribe the evolution of the whole universe and the dis-

tribution features of matter and energy in a particu-

lar space. Enabled by AI technology, the CosmoFlow

project aims at providing a faster, cheaper, and more

accurate data processing workflow for cosmology re-

search. It employs 3D CNN to learn the mapping be-

tween the distribution of matters within a defined

space and three cosmological states, by training the

model on a large amount of simulated data. With the

trained model, cosmological states of a space can be

inferred faster and more accurately, compared with

traditional statistical methods.

4.1.2 HPC System Configuration

The system is a heterogeneous HPC cluster. Each

node of the cluster is equipped with two Intel® Xeon®

Gold 6132 CPUs (14 cores) operating at 256 GB

memory and four Tesla V100 SXM2 GPUs. Each Tes-

la V100 GPU has 16 GB HBM2 and can provide up

to 7.8 TFLOPS double-precision performance, 15.7

TFLOPS single-precision performance, and 125

TFLOPS half-precision performance. Tesla V100

GPUs are interconnected by NVLink within the node

and the nodes of the cluster are interconnected by In-

finiBand. The file system is Lustre for the persistence

of the training data.

4.2 Data Augment and Preprocessing

We use the simulation method for SAIH-cosmo,

which adopts a widely-accepted simulator of generat-

ing cosmological data, e.g., adopted by CosmoFlow[2].

Different from the static datasets in CosmoFlow of

MLPerf HPC, we produce the dataset of SAIH-cosmo

by modifying its simulation and make it scalable on

the dataset size, avoiding non-trivial data collecting,

Table 1. Performance and Qualitative Evaluation Metrics for SAIH Case Study

Metric Value

Domain HPC scientific domains, e.g., particle physics, astronomy, biomedical, climate, bioinformatics

Data augment Simulation, GAN, and data transformation

Model augment Manual tuning, hyperparameter search, and NAS

DNN model 2D CNN, 3D CNN, RNN, Transformer, etc.

Data format 1D genome, 2D image, 3D particle, 3D tomography, etc.

AI framework Tensorflow, PyTorch, Caffe, etc.

Dataset size Dataset size range in weak scaling

HPC system The hardware configurations of an HPC system on which SAIH is performed

FLOPs of AI model Computation demand range for the candidate AI models

FLOPS (ratio of theoretical FLOPS) Aggregate FLOPS achieved by performing SAIH instance on an HPC system

Singe GPU performance Single GPU performance range on data/node scaling

Speedup on node scaling Speedup range on strong scaling evaluation

Arithmetic intensity Range of arithmetic intensity of AI models

Accuracy/loss Range of accuracy/loss of AI models with data/node scaling

Jiang-Su Du et al.: SAIH: Scalable Evaluation for AI Performance Trend on HPC Systems 389

downloading, and preprocessing. The data is pro-

duced by N-body simulation, pyCOLA[28], of which

the initial parameters are randomly generated by

MUSIC[29].

ΩM σ8 Ns

ΩM

ΩM + Ωλ = 1 Ωλ

σ8

Ns

2563 5123 1 0243

In our case study, MUSIC randomly initializes

matter distribution based on three parameters, con-

sisting of , and , before the simulation runs.

There parameters can describe the cosmological state.

The three parameters are also kept as the label for its

corresponding simulation output. In detail, is the

proportion of matter in the universe. We assume a

flat geometry for universe, i.e., the sum of the contri-

butions of matter and dark energy to the energy den-

sity of the universe . is the propor-

tion of the dark energy. is the amplitude of mass

fluctuations in the universe at a distance scale of 8

Mpc3/h. is the scalar spectral index for the spa-

tial curvature of a comoving slice of the space time.

The simulation, pyCOLA, implements the comoving

lagrangian acceleration (COLA) method in the tem-

poral and spatial domains for the N-body simulations.

It simulates the evolution of physical particles from

the MUSIC initial conditions. The simulation result

describes the position information of a predefined 3-

dimensional space, such as , , and ,

which can be adjusted in the initial condition of MU-

SIC. Essentially, the three cosmological states are set

in the specific ranges, in which MUSIC can randomly

pick values based on the uniform distribution.

5123

0.25 < ΩM < 0.35 0.78 < σ8 < 0.95 0.9 <

Ns < 1.0

5123

We set the simulation cube relevant to 512

Mpc3/h cubic space as the leftmost cube in Fig.4 and

the three cosmological states are randomly generated

from , , and

. MUSIC and pyCOLA run on CPUs and

consume massive resources, in particular memory.

Based on our evaluation, the memory requirement for

an instance of the simulation with the space size of

 requires 17 GB memory for MUSIC and 20 GB

for pyCOLA. For a single-node execution, the concur-

rency of MUSIC and pyCOLA is constrained by

memory capacity. Since MUSIC and pyCOLA run in

series rather than in parallel, we can at most concur-

rently perform 12 simulations on each node. Further,

as in Algorithm 1, we employ multi-node execution to

further accelerate data augment. As each simulation

is independent, three cosmological states are random-

ly sampled within the predefined ranges via a third

party math library, GNU Scientific Library⑥.

d3

2× 2× 2

2563

After raw data is collected from pyCOLA simula-

tion, the data preprocessing is then performed to

transform the raw data to the training data that can

be directly fed into the 3D CNN model. The data is

transformed to volumetric form where a 3D his-

togram of voxels represents the normalized densi-

ty of the dark matter for each cube. As shown in

Fig.4, the resolution of voxel is Mpc3/h, and

the 512 Mpc3/h cube is transformed to voxel vol-

umes. Then, each volume is split into eight sub-vol-

umes labeled with the same cosmological states as in

the rightmost cube of Fig.4. Each sub-volume is 16

MB and stored in the HDF5 data format. For this

case study, we perform 12 632 simulations and create

101 088 sub-volumes as the total training dataset, tak-

ing around 1.6 TB storage. In SAIH-cosmo, we ex-

tract a portion of the dataset for weak and strong

scaling evaluations.

4.3 3D CNN Model Augment

Here we take advantage of both the manual de-

sign method and automated method. For the manual

design method, we adopt the 3D CNN model pro-

posed by Mathuriya et al.[2] as the smallest model

with the least computation cost. For the automated

method, we customize NAS to prepare another two

Numpy
Histogramdd

Number of Particles

in (2×2×2) Mpc3/h

Based on MUSIC (W, , ), pyCOLA
Simulates the Evolution of Particles

Set Cubic Space 512 Mpc3/h

Divide into 8
Sub-Volumes

(1283)

0.25 < W < 0.35,

0.78 <  < 0.95,

0.90 <  < 1.00

MUSIC pyCOLA

512

51
2

25
6

256

W

 

W

 

W

 

W

 

Fig.4. Data augment and preprocessing of the cosmological data.

390 J. Comput. Sci. & Technol., Mar. 2024, Vol.39, No.2

⑥https://www.gnu.org/software/gsl/, Mar. 2024.

https://www.gnu.org/software/gsl/

CNN models for SAIH-cosmo with incremental com-

putation costs and model accuracies. In details, we

generate them by our proposed filter-based model

augment method, which in this case adopts

DARTS[30] as its internal NAS strategy. DARTS is a

cell-based NAS technique with the gradient descent

search strategy. The gradient descent search strategy

is the non-differentiable approach and it is orders of

magnitude faster than other non-differentiable ap-

proaches. With the V100 GPU, DARTS only takes

about two GPU days for exploring the medium mod-

el in our experiments, while other techniques require

thousands of GPU days theoretically. DARTS is a

cell-based NAS technique, which searches the archi-

tecture of a cell and connects multiple identical cells

as the entire model. As shown in Fig.5(a), DARTS

initially assigns a number of feature maps (nodes) in a

cell, while edges between nodes are unknown. Then,

users define candidate operations for each edge based

on observations from previous models. Since each

edge normally has only one operation, DARTS intro-

duces the architecture possibility for each operation in

each edge and determines the operation in each edge

by gradient descent. Training DARTS on a small

dataset is adequate, which further accelerates the

searching process. As shown in Fig.5(c), in each itera-

tion, DARTS jointly learns the potential architec-

tures and the network weights, which have the same

target that improves the prediction accuracy. In this

way, the model constantly converges to the architec-

ture with a higher accuracy. Finally, DARTS selects

the most likely operation of each edge to determine

the final architecture.

N = 7

3× 3

5× 5 3× 3 5× 5

3× 3

3× 3

Our 3D convolutional cell consists of

nodes, and operation candidates include and

 3D separable convolutions, and 3D

dilated separable convolutions, 3D max pooling,

 average pooling, identity, and zero. For each

convolution operation, a batch-norm layer and the

Leakey Relu activation function are followed behind

based on observations from the smallest model. Since

a single sample in our dataset is larger than experi-

ments in DARTS, we set our model with 16 cells. Re-

duction cells (stride=2) are the 1st, 5th, and 13th

cells, and three FC layers are composed as in the

small model. For the other hyperparameters, we

adopt the default setting in the cifar-10 example of

DARTS[30].

101.6× 106

374.2× 106

The performance filter is placed before the origi-

nal searching strategy in DARTS. The channel num-

ber of convolution layers is a hyperparameter in

DARTS and it largely influences the computation

cost. With a predefined computation cost, the perfor-

mance filter can estimate the channel number of con-

volution layers for the formal searching process. The

performance filter evaluates the forward pass of mod-

els by using PyTorch-OpCounter⑦ and calculating

the overall training cost by the aforementioned for-

mula in (1). We set the candidate models with 4

TFLOPs (medium) or 16 TFLOPs (large) in the per-

formance filter. Eventually, the medium model has

 parameters and the training process of a

single sample requires about 4.15 TFLOPs, which

largely exceeds that of the small model. As for the

large model, it has parameters and takes

(a)

?

? ?

?

?
?

0 0 0 0

1 1 1 1

2 2 2 2

3 3 3 3

(b) (c) (d)

Initializing
Architecture
Possibility

Defining
Candidate
Operation

Jointly
Training

Argmax()

Fig.5. DARTS in SAIH-cosmo. (a) Assigning feature maps. (b) Defining candidate operations for each edge. (c) Learning the poten-
tial architectures and the network weights jointly. (d) Selecting the final architecture.

Jiang-Su Du et al.: SAIH: Scalable Evaluation for AI Performance Trend on HPC Systems 391

⑦https://github.com/Lyken17/pytorch-OpCounter, Mar. 2024.

https://github.com/Lyken17/pytorch-OpCounter
https://github.com/Lyken17/pytorch-OpCounter
https://github.com/Lyken17/pytorch-OpCounter

16.2 TFLOPs for training with a single sample. No-

tably, we can store model architectures searched for

using in other HPC systems.

4.4 Parallelized Training

Training a CNN model generally requires itera-

tive traversals over the dataset to improve the accu-

racy of the model and make it finally converge. We

adopt the commonly-used data parallelism for the

training process of SAIH-cosmo on the target HPC

system. Data parallelism allocates a training task on a

minibatch of samples to an available computational

devices (GPU or CPU core). Each device keeps a

copy of the target model and performs the training

process independently on its own samples. After fin-

ishing the forward and backward propagations, the

weights are updated by performing the allreduce oper-

ation on all devices. We adopt NVIDIA NCCL as the

collective data movement backend, which transmits

data through NVLink and Infiniband.

β1 = 0.9 β2 = 0.999 ϵ̂ = 10−8

Batch size, which determines the number of sam-

ples parallelly trained in a GPU, is critical for data

parallelism. The larger the batch size, the less the

number of allreduce operations required for each

epoch. This results in less communication overheads.

However, the batch size is limited by two factors, i.e.,

memory capacity and model convergence. In terms of

memory capacity, increasing the batch size leads to a

proportional growth of memory capacity. In order to

maximize the performance of an HPC system and in-

vestigate the bottleneck when it is fully loaded on the

GPU device, we tune the batch size for each model.

Thus, the batch sizes of the small model, medium

model and large model in each GPU are set to 10, 4

and 1, respectively. As for the convergence problem,

it is mainly solved by optimizing machine learning al-

gorithms, such as gradient-based optimization, e.g.,

momentum, Adagrad and Adam[31]. Here we adopt

Adam as our gradient optimizer. Adam designs the

adaptive learning rate for accelerating stochastic opti-

mization. We set hyperparameters of Adam with

, , . Then we further com-

bine Adam with LARS[32]. LARS adaptively adjusts

the learning rate for each layer and it enables better

convergence in an extremely large batch size.

5 Evaluation

5.1 Experimental Setup

SAIH-cosmo is implemented in PyTorch v1.5.0

n = 1, 2, 4, 8, 16, 32

d = 64, 32, 16, 8, 4, 2, 1

and the DistributedDataParallel class of PyTorch is

used for data parallelism. We perform both node scal-

ing and data scaling executions on SAIH-cosmo with

different models to understand 3D CNN training on

the HPC system. Meanwhile, we further investigate

their arithmetic intensity by the NVIDIA profiling

tool (nvprof) and mixed precision training by Nvidia
apex. Overall, as shown in Table 2, for each model,

the node scaling training uses 1/32 of the complete

dataset (101 088 samples) and runs on 1, 2, 4, 8, 16,

and 32 nodes of the cluster (). The

data scaling training uses four nodes and the training

dataset size scales from 1/64 to 1/1 of the complete

dataset (). To illustrate the

model convergence, we execute each training with 60

epochs. Notably, it is optional for SAIH users to ig-

nore the convergence and only focus on performance

trends, which can largely reduce the evaluation costs,

from days to a few hours.

Table 2. Experimental Settings

Node Scaling Data Scaling

Data Node Data Node

Small model 1/32 n 1/d 4

Medium model 1/32 n 1/d 4

Large model 1/32 n 1/d 4

5.2 Model Accuracy

Training an accurate DNN model is the funda-

mental requirement for an AI application. The losses

of the three models show a rapid decrease within the

first epoch and then show different trends. We

demonstrate the losses after each epoch of the three

models in Fig.6, which shows that a larger model can

generally provide better accuracy.

Besides, we additionally find that a larger model

in SAIH-cosmo has more stable convergence in multi-

node training. For the small model, the losses of three

cosmological states decrease with significant fluctua-

tions, and it fails to converge within 60 epochs. In

contrast, the medium and large models converge

much more stable. At the beginning of the training

phase, the losses of the medium model initially go up

and then decrease rapidly, while those of the large

model converges constantly and steadily. Also, in the

final epochs, the large model achieves with the best

losses.

Although we apply the LARS algorithm[32], in-

creasing the number of GPUs to 16 (4 nodes) influ-

392 J. Comput. Sci. & Technol., Mar. 2024, Vol.39, No.2

ences the convergence of the AI models. As shown in

Fig.6(d), the small model displays wider fluctuations

in losses, severely damaging the convergence, which is

also consistent with the results of CosmoFlow[2]. In

terms of the medium model, it also shows more rough

converging process compared with the 1-node execu-

tion, and slightly impairs the final accuracy. On the

contrary, distributed training contributes to positive

impact on the large model. Increasing the number of

nodes makes the large model converges to a better re-

sult.

While we adopt the simplified NAS in SAIH-cos-

mo with a narrow searching space, our automatically

generated models achieve significant improvement as

the computation demand increases, which validates

its applicability as well as the preservation of scientif-

ic meaning.

Finding 1. Overall, the models augmented by NAS

lead to better accuracy and better convergence. Be-

sides, with progressively increasing the sizes of mod-

els, we find that the convergences of larger models are

more steady in multi-node training.

5.3 Evaluation with GPU Node Scaling

The evaluation with GPU node scaling follows the

definition of strong scaling, which concerns the accel-

eration for a fixed problem size with respect to the

number of GPU devices, and is limited by the frac-

tion of the serial part in a program that is not

amenable to parallelization. When fixing the data size

(1/32 dataset) and scaling up the number of GPUs

from 4 to 128, it displays different performance scala-

bility for these models as shown in Figs.7(a)–7(c).

The average FLOPS of a single GPU are shown in

Fig.8(a).

We first discuss on the average performance of

each GPU, which varies largely in different model

sizes. With four GPUs, the medium model shows the

best performance at 9.21 TFLOPS for each GPU,

achieving 58.66% peak performance of Tesla V100. In

comparison, the large model executes with lower aver-

age FLOPS. The small model has only achieved about

800 GFLOPS on each GPU, which is much lower

than the other two models.

As shown in Table 3, the arithmetic intensity of

the small model is much lower than those of the oth-

er two models. Here ``Read Times'' and ``Write

Times'' represent the number of memory read access-

es and memory write accesses respectively. Also, we

can notice that the computation demand of the small

model is several orders of magnitude lower than those

of the other two models. To profile the memory us-

age of each model, we find that the gap of the memo-

ry footprint between the small model and other two

models is not so large as the computation demand. In

details, the weights and intermediate results of the

medium and large models are only 3.79x and 7.46x

more than those of the small model, respectively. In

comparison, the computation demands are 67.25x and

257.97x higher than those of the small model, respec-

tively. When we adjust the batch sizes of the three

models to saturate the GPU memory, the small mod-

el cannot train with an extremely large batch size to

make full use of all computing units, resulting in a

much lower arithmetic intensity than the other mod-

 0 10 20 30 40 50 60
 0.00
 0.02
 0.04
 0.06
 0.08
 0.10
 0.12
 0.14

L
o
ss

 R
a
te

Number of Epochs

(a)

 0 10 20 30 40 50 60
 0.00
 0.02
 0.04
 0.06
 0.08
 0.10
 0.12
 0.14

L
o
ss

 R
a
te

 0.00
 0.02
 0.04
 0.06
 0.08
 0.10
 0.12
 0.14

L
o
ss

 R
a
te

 0.00
 0.02
 0.04
 0.06
 0.08
 0.10
 0.12
 0.14

L
o
ss

 R
a
te

 0.00
 0.02
 0.04
 0.06
 0.08
 0.10
 0.12
 0.14

L
o
ss

 R
a
te

 0.00
 0.02
 0.04
 0.06
 0.08
 0.10
 0.12
 0.14

L
o
ss

 R
a
te

Number of Epochs

(b)

 0 10 20 30 40 50 60

Number of Epochs

(c)

 0 10 20 30 40 50 60

Number of Epochs

(d)

 0 10 20 30 40 50 60

Number of Epochs

(e)

 0 10 20 30 40 50 60

Number of Epochs

(f)

W  W  W 

W W W 

Fig.6. Loss change in 1/32 dataset. (a) Small model in 1 node. (b) Medium model in 1 node. (c) Large model in 1 node. (d) Small
model in 4 nodes. (e) Medium model in 4 nodes. (f) Large model in 4 nodes.

Jiang-Su Du et al.: SAIH: Scalable Evaluation for AI Performance Trend on HPC Systems 393

els with more computation demands. In this way, the

small model is limited by GPU memory capacity and

the small batch size cannot saturate the computing

unit. Besides, we also observe that the memory foot-

print mainly comes from intermediate results rather

than weights in 3D CNN, where the memory foot-

print of intermediate result is about 30x larger than

those of the weights in these three models.

As for the large model, although it has the largest

GPU memory footprint and computation demand, the

counter-intuitive observation is that it has lower

arithmetic intensity than the medium model. Table 4

and Table 5 list the arithmetic intensity of top-10

kernels sorted by the number of memory access.

%MemAcc is the percentage distribution of memory

access of kernels. ``ID'' is a unique ID for each kernel

in the CNN model, which is executed on GPU. First,

the types and percentages of kernels in the large mod-

el are quite different from those in the medium model.

In the large model, the kernel with 66.53% memory

accesses holds only 516 arithmetic intensity, while the

top-3 kernels in the medium model have 1.8x higher

weighted aggregate arithmetic intensity than those in

the large model, i.e., 2 183 compared with 1 210. This

 0

 20

 40

 60

 80

4 8 16 32 64 128
 0

 200

 400

 600

 800

F
in

is
h
 T

im
e
/
E
p
o
ch

 (
s)

T
F
L
O

P
S

T
F
L
O

P
S

T
F
L
O

P
S

T
F
L
O

P
S

T
F
L
O

P
S

T
F
L
O

P
S

Number of GPUs

Time/Epoch
TFLOPS

Time/Epoch
TFLOPS

Time/Epoch
TFLOPS

Time/Epoch
TFLOPS

Time/Epoch
TFLOPS

Time/Epoch
TFLOPS

(a)

 0

 100

 200

 300

 400

4 8 16 32 64 128
 0

 200

 400

 600

 800

F
in

is
h
 T

im
e
/
E
p
o
ch

 (
s)

Number of GPUs

(b)

 0.0

 0.4

 0.8

 1.2

 1.6

4 8 16 32 64 128
 0

 200

 400

 600

 800

F
in

is
h
 T

im
e
/
E
p
o
ch

 (
s)

Number of GPUs

(c)

 0

 200

 400

 600

 800

 0

 10

 20

 30

 40

F
in

is
h
 T

im
e
/
E
p
o
ch

 (
s)

Fraction of Training Dataset

(d)

 0.0

 0.6

 1.2

 1.8

 2.4

 0

 50

 100

 150

 200

F
in

is
h
 T

im
e
/
E
p
o
ch

 (
s)

Fraction of Training Dataset

(e)

 0.0

 0.6

 1.2

 1.8

 2.4

 0

 50

 100

 150

 200

F
in

is
h
 T

im
e
/
E
p
o
ch

 (
s)

Fraction of Training Dataset

(f)

2-1 202-22-32-42-52-6 2-1 202-22-32-42-52-6 2-1 202-22-32-42-52-6

103

103
104

Fig.7. Performance evaluation with node and data scaling. (a) Small model in node scaling. (b) Medium model in node scaling.
(c) Large model in node scaling. (d) Small model in data scaling. (e) Medium model in data scaling. (f) Large model in data scaling.

 0

 2

 4

 6

 8

 10

T
F
L
O

P
S

T
F
L
O

P
S

Number of GPUs

Small

Medium

Large

Small Medium Large

(a) (b)

 0

 2

 4

 6

 8

 10

 12

Fraction of Training Dataset

2-1 202-22-32-42-52-622 23 24 25 26 27

Fig.8. Average TFLOPS per GPU. (a) GPU node scaling. (b) Data scaling.

Table 3. Arithmetic Intensity Analysis with 4 GPUs and
1/32 Dataset

Model
Size

Batch
Size

FLOPs Read
Times

Write
Times

Intensity

Small 10 6.90× 1010 1.00× 107 7.53× 107 808

Medium 4 4.64× 1012 1.15× 109 7.09× 108 2 500

Large 1 1.78× 1013 7.13× 109 5.21× 109 1 442

394 J. Comput. Sci. & Technol., Mar. 2024, Vol.39, No.2

is due to the higher internal thread-level parallelism

in the medium model than that in the large model. In

addition, the fact that the 3D feature map of the

large model is bigger than that of the medium model

results in more strided memory access, further de-

creasing the arithmetic intensity.

Finding 2. For 3D CNN models, the ratio of mem-

ory footprint and computation amount is not stable

but changes in a wide range. Besides, the models with

more layers and weights are not always leading to

higher GPU performance and TFLOPS, which are in-

stead significantly determined by the arithmetic in-

tensity of AI models.

Then we analyze the performance scalability of

the distributed training. When scaling the training to

128 Tesla V100 GPUs, the small model achieves 112.3

aggregate TFLOPS; the medium model achieves up to

797.1 TFLOPS; and the large model achieves 379.2

TFLOPS. From 4 GPUs to 128 GPUs, the speedups

of these three models are 25.6x, 22.2x, and 13.45x re-

spectively. Since the training procedure contains com-

O(parameters+ nodes)

putation and communication in each iteration, the

larger model has weaker scalability due to both the

larger communication overhead of each iteration and

the smaller batch size limited by the GPU memory

capacity. On the one hand, communications among

GPUs adopt allreduce to collectively aggregate gradi-

ents with time complexity.

The hyperparameter, batch size, does not change the

total number of gradients in the model to be commu-

nicated, since the gradients in a minibatch of samples

will be aggregated locally within a GPU before per-

forming inter-node communications. On the other

hand, the larger batch size can reduce the number of

communication operations in one epoch, leading to

relatively less communication overheads. The 16 GB

HBM of a single Tesla V100 GPU, which is larger

than most of other GPUs' memory capacity, can only

contain one input sample trained on the large model,

which occupies more than 13 GB memory. Thus, the

larger model has a smaller batch size, resulting in

weaker parallelism. A large batch size plays a key role

in increasing parallel efficiency, which is also stressed

in You et al.[32].

Finding 3. Besides saturating computation units

by high parallelism, a large batch size can further im-

prove the performance scalability by reducing I/O fre-

quency and overhead.

5.4 Evaluation with Data Scaling

In this subsection, we further investigate the data

scaling, which fixes the number of nodes to 4 and

scale the training dataset from the fraction 1/64 to

1/1 of the complete dataset and the performance is il-

lustrated in Figs.7(d)–7(f). The average TFLOPS per

GPU is in Fig.8(b).

Overall, in data scaling, there are two major fac-

tors that affect the aggregate performance, data load-

ing in memory hierarchy and communication for allre-

duce. For communication, since the number of com-

munication-intensive operation, allreduce, changes

proportionally to the computation, it almost has no

impact on the ration of communication time and the

overall evaluation time. Thus, we here mainly focus

on data loading. In terms of the medium model and

the large model, their performances fluctuate in a lim-

ited range, and that of the large model is wider. As

for the small model, when the data volume is 1/64,

1/32, 1/16, 1/8, and 1/4, the average FLOPS is very

stable at around 800 GFLOPS, while there is a de-

crease to about 520 GFLOPS with the 1/2 and 1/1

Table 4. Profiling Results of CNN Kernels

Medium Model Large Model

ID %MemAcc Intensity ID %MemAcc Intensity

0 26.76 922 0 66.52 516

1 26.31 5 201 1 13.57 6 391

2 15.06 3 777 5 2.18 5

3 5.68 19 10 1.57 19

4 3.41 1 11 1.46 4

5 3.40 36 3 1.46 4

6 2.90 2 7 1.46 4

7 2.90 8 6 1.10 8

8 1.75 0 12 1.02 1

9 1.15 12 13 0.94 36

Note: These dominant values are marked in bold.

Table 5. Kernels in Cosmological CNN Model

ID Kernel

0 scudnn_128x64_stridedB_splitK_small_nn_v1

1 scudnn_128x64_stridedB_splitK_medium_nn_v1

2 scudnn_128x128_stridedB_splitK_small_nn_v1

3 implicit_convolveNd_sgemm(int1024)

4 convolveNd_wgrad_engine

5 implicit_convolveNd_sgemm(int512)

6 bn_bw_1C11_kernelnew

7 bn_fw_tr_1C11_kernel_NCHW

8 setOutputKernel

9 vectorized_elementwise_kernelGLOBAL__N__57_tmpxft

10 convolveNd_wgrad_engine(int = 8)

11 convolveNd_wgrad_engine(int = 7)

12 vectorized_elementwise_kerneladd_kernel_cuda

13 vectorized_elementwise_kernelgpu_kernel_with_scalars

Jiang-Su Du et al.: SAIH: Scalable Evaluation for AI Performance Trend on HPC Systems 395

datasets, and this observation is more obvious in

Fig.7(d). Investigating the breakdown, for all of the

three models, we observe that there is a long data

loading time at the beginning of each epoch, and un-

expected data loading time when training with the

1/1 or 1/2 datasets. As the small model has the

shorter computation time and larger fraction of data

loading time, we can observe that the overall perfor-

mance decrease is more obvious.

The data loader in PyTorch endeavors to load all

training data into GPU node memory. At the begin-

ning of each epoch, the execution of data loading re-

sults in a large amount of idle time for computing

units, as well as heavily stressing the shared file sys-

tem. Zooming into the unexpected data loading time,

the data loader in PyTorch has a prefetch strategy

from node memory to GPU memory, while it lacks an

efficient data prefetch strategy from the file system to

node memory. The entire dataset takes 1.6 TB stor-

age, while each node of the cluster has only 256 GB

memory capacity. In this way, four nodes fail to load

the entire 1/1 and 1/2 dataset into memory. It has to

wait for data in the swap area to be loaded before

continuing the training procedure, leading to unex-

pected data swapping overhead. For example, the per-

centage of data loading time in the small model in-

creases from 2.83% to about 20% as the dataset scales

from 1/4 to 1/1, resulting in 31.2% reduction in over-

all FLOPS.

Finding 4. Different from traditional HPC applica-

tions, AI training demands I/O throughout during the

whole training procedure for accessing input training

data and intermediate data. Thus, a local storage sys-

tem on each compute node is recommended for stag-

ing the training and intermediate data.

Finding 5. A large dataset with frequent data ac-

cesses can make memory hierarchy become a bottle-

neck. Thus, with scaling scientific datasets, SAIH-cos-

mo probes the performance capability of memory hi-

erarchy, which is critical to the evaluation of the

overall AI performance on HPC systems.

5.5 Mixed Precision Results

Theoretically, Tesla V100 claims 15.7 TFLOPS of

single-precision (FP32) performance and 125 TFLOPS

half-precision (FP16) performance by utilizing its nov-

el tensor core architecture. We evaluate the perfor-

mance of SAIH-cosmo under the mixed precision set-

ting by employing NVIDIA apex with optimization

level O1. However, as shown in Table 6, the mixed

precision evaluations, i.e., Apex[O1], can only achieve

up to 1.76x speedup for the three models compared

with the FP32 execution, i.e., Apex[O0]. This is sig-

nificantly lower than the theoretical peak perfor-

mance.

Table 6. Execution Time in 1/32 Dataset with Different
Precision Levels

Precision Level Description Execution Time (s)

Small Medium Large

Apex[O0] Pure FP32 18.71 364.06 2 497.2

Apex[O1] Mixed precision 19.46 205.38 1 867.9

tensor_precision_fu_utilization

We adopt nvprof with turning on the

 metrics to diagnose

the counter-intuitive performance gap. While accord-

ing to the NVIDIA official document, only cudnn⑧

newer than version 8.0.2 can be compatible with Py-

Torch and enable it to utilize tensor core architecture

for training 3D convolution with mixed precision. Our

results show that the tensor core is under a very low

utilization only contributing around 4.4% of the en-

tire execution, which results in an extremely limited

performance gain on SAIH-cosmo. Also, through pro-

filing on individual kernels, we find that cudnn is inef-

ficient in some outlier mixed-precision 3D convolu-

tions, e.g., the situation with a small number of chan-

nels requires high memory access overhead, and it is

easy to improve. To further take advantage of the

tensor core architecture, the instruction-level restric-

tions under high-level AI frameworks and convolu-

tion libraries, e.g., the input size and memory

layout[33], have to be resolved, in particular for per-

forming 3D convolutions, which are not optimized so

well as the 2D convolutions commonly used in

hotspot AI research areas.

Finding 6. AI related libraries, like cudnn and

cublas, are released with the capability of supporting

low-precision and mixed-precision training operations

on novel architectures, e.g., tensor core. However,

without customized by AI system experts, the mixed

precision is not well prepared in a plug-and-play man-

ner for supporting accelerating common AI opera-

tions on AI frameworks, e.g., conv3d in PyTorch.

5.6 Comparison and Summary

This subsection is going to compare SAIH with

other methods and illustrate our contributions. Table 7

presents features of representative benchmarks. No-

396 J. Comput. Sci. & Technol., Mar. 2024, Vol.39, No.2

⑧https://developer.nvidia.com/cudnn, Mar. 2024.

https://developer.nvidia.com/cudnn

tably, SAIH is an evaluation methodology rather than

an AI benchmark with a defined AI model and

dataset, e.g., HPL-AI and HPC-AI500. It is different

from existing benchmarking methods on evaluation

target (AI performance trend via both strong scaling

and weak scaling evaluations), evaluation settings

(varying model sizes and dataset sizes) and evalua-

tion testcases (cosmological AI applications). Specifi-

cally, in our testcase, we adopt unique evaluation set-

tings such as both strong scaling and weak scaling

evaluations with varying model sizes and dataset

sizes. Thus, it could not directly compare our method

with existing benchmarks, and we make a qualitative

comparison between SAIH and four representative

benchmarks, i.e., HPL-AI[16], Deep500[17], MLPerf-

HPC[20] and HPC-AI500[21], to illustrate that our

SAIH is effective and can bring new insights for next-

generation HPC systems.

At first, SAIH has a different positioning from the

benchmark projects. The benchmark projects mainly

focus on the AI performance of the same job in differ-

ent infrastructures and rank different infrastructures,

while SAIH aims at demonstrating the performance

changes when AI applications scale up and under-

standing the requirements of AI applications for sub-

systems, e.g., I/O, compute unit, and communicate.

In detail, HPL-AI can represent the traditional HPC

benchmarks. It measures and compares the mixed-

precision performance of HPC systems by solving

mixed-precision linear equations. Notably, HPL-AI

provides the scalability as our SAIH and can derive

the maximum performance of HPC systems. However,

it mainly investigates the computation of an HPC

system and can hardly represent the practical AI per-

formance of an HPC system. In comparison, the data

and model augment methods in our SAIH keep the

scientific meaning when scaling AI applications, mak-

ing our evaluation with practical significance.

Deep500 which is a modular benchmark infras-

tructure can be integrated into most evaluation meth-

ods. It characterizes many fine-grained metrics, e.g.,

utilization of computing devices, collective communi-

cation, and IO, into modules and can be used to help

evaluate different framework implementations and

multiple levels of operators. In fact, the implementa-

tion of Deep500 is difficult to be integrated into large-

scale AI applications and our SAIH includes many

metrics defined in Deep500.

MLPerf-HPC is an emerging benchmark focusing

on the intersection of scientific AI applications and

HPC systems. MLPerf-HPC rewrites the CosmoFlow

(as our SAIH) and a weather analysis AI application.

Compared with SAIH, it mainly adopts the static

dataset and model architecture and takes the tradi-

tional time-to-solution metric as the main criterion for

ranking HPC systems, lacking scalability. Compared

with SAIH, it lacks the weak scaling evaluation,

which is important in the HPC filed. Thus, it cannot

investigate the performance changes dynamically and

help understand the AI performance trends as our

SAIH.

At last, for HPC-AI 500, in order to further as-

sure equivalence, it presents a new metric named

valid FLOPS, which imposes a penalty on failing to

achieve a target training quality. It selects the image

classification and extreme weather analysis as tasks.

Besides, its core idea is similar to MLPerf-HPC. The

findings of our SAIH are different from those of

MLPerf-HPC and HPC-AI500, and can illustrate the

AI capability and performance trend of HPC systems

in both strong and weak scaling evaluation.

Through the evaluation and comparison, we no-

tice that the main idea of SAIH does not overlap with

those of existing methods. SAIH provides a feasible

solution to make AI application evaluation scalable

and can investigate many novel findings. Particularly,

with the SAIH-cosmo, we evaluate the AI perfor-

mance for an important type of models, 3D CNN, on

a heterogeneous HPC cluster. The evaluation with

scaling problem size helps us diagnose some emerging

system performance bottlenecks and investigate the

potential AI performance of the HPC system. More-

Table 7. SAIH and Representative Benchmarks

Name Positioning Metric Application Domain Target

HPL-AI[8] Benchmark FLOPS, FLOPS/Watt Linear equations Measure mixed-precision
performance of HPC systems

Deep500[17] Benchmark Throughput, time to
solution

Any AI applications in theory Help evaluate framework
implementations

MLPerf-HPC[20] Benchmark Time to solution Cosmology and weather analysis Speed up the training time

HPC-AI500[21] Benchmark Valid FLOPS ImageNet and weather analysis Speed up the training time

SAIH Evaluation method
(mainly vertical
comparison)

FLOPS as scaling,
scalability

Cosmology Understand AI performance trend
and guide the design for emerging
HPC systems

Jiang-Su Du et al.: SAIH: Scalable Evaluation for AI Performance Trend on HPC Systems 397

over, we illustrate the performance details of SAIH-

cosmo and quantify its evaluation on the HPC sys-

tem in Table 8.

Table 8. Performance and Qualitative Evaluation Summary
of SAIH-cosmo

Metric Value

Domain Cosmology

Data augment Simulation

Model augment NAS

DNN model 3D CNN

Data format 3D particle

AI framework PyTorch

Dataset size (TB) [0.025, 1.600]

HPC system GPU cluster with 32
nodes, 4 Tesla V100
GPUs/node

FLOPs of AI model [69G, 16.2T]

FLOPS (ratio of theoretical
FLOPS)

[69.6 TFLOPS (5.2%),
797.1 TFLOPS (59.6%)]

Singe GPU performance (TFLOPS) [0.51, 9.21]

Speedup on strong scaling [13.45x, 25.60x]

Arithmetic intensity [838, 2 501]

Accuracy/loss [0.024 75, 0.067 54]

6 Conclusions

In this paper, a novel scalable methodology,

SAIH, was proposed for better understanding AI per-

formance trend of HPC systems. Based on the

methodology, we implemented a testcase SAIH-cos-

mo. SAIH-cosmo is transformed from a cosmological

AI application and it is with data and computation

scalability. Through evaluating SAIH-cosmo on a re-

al HPC system, we successfully diagnosed many new

insight findings as data and computation scaling

large. For example, we found that the convergences of

larger models are more steady in multi-node training,

which cannot be noticed if there is not a range of in-

cremental models. In this way, with SAIH, we can not

only diagnose existing system performance bottle-

necks, but also guide emerging HPC systems towards

better AI support. In future work, we plan to en-

hance SAIH in the following aspects: 1) building new

representative SAIH instances in various scientific do-

mains, e.g., RNN application in genome analysis, and

2) creating fine-grained profiling components so as to

identify performance bottlenecks on HPC systems.

Conflict of Interest The authors declare that

they have no conflict of interest.

References

 Ravanbakhsh S, Oliva J B, Fromenteau S, Price L, Ho S,[1]

Schneider J G, Póczos B. Estimating cosmological param-

eters from the dark matter distribution. In Proc. the 33rd

International Conference on Machine Learning, Jun. 2016,

pp.2407–2416.
 Mathuriya A, Bard D, Mendygral P, Meadows L, Arne-

mann J, Shao L, He S Y, Kärnä T, Moise D, Pennycook S

J, Maschhoff K, Sewall J, Kumar N, Ho S, Ringenburg M

F, Prabhat P, Lee V. CosmoFlow: Using deep learning to

learn the universe at scale. In Proc. the International

Conference for High Performance Computing, Network-

ing, Storage and Analysis, Nov. 2018, pp.819–829. DOI: 10.

1109/SC.2018.00068.

[2]

 Kurth T, Zhang J, Satish N, Racah E, Mitliagkas I, Pat-

wary M M A, Malas T, Sundaram N, Bhimji W,

Smorkalov M, Deslippe J, Shiryaev M, Sridharan S, Prab-

hat, Dubey P. Deep learning at 15PF: Supervised and se-

mi-supervised classification for scientific data. In Proc.

the International Conference for High Performance Com-

puting, Networking, Storage and Analysis, Nov. 2017, Ar-

ticle No. 7. DOI: 10.1145/3126908.3126916.

[3]

 Patton R M, Johnston J T, Young S R, Schuman C D,

March D D, Potok T E, Rose D C, Lim S H, Karnowski

T P, Ziatdinov M A, Kalinin S V. 167-PFlops deep learn-

ing for electron microscopy: From learning physics to

atomic manipulation. In Proc. the International Confer-

ence for High Performance Computing, Networking, Stor-

age and Analysis, Nov. 2018, pp.638–648. DOI: 10.1109/SC.

2018.00053.

[4]

 Balaprakash P, Egele R, Salim M, Wild S, Vishwanath V,

Xia F F, Brettin T, Stevens R. Scalable reinforcement-

learning-based neural architecture search for cancer deep

learning research. In Proc. the International Conference

for High Performance Computing, Networking, Storage

and Analysis, Nov. 2019, Article No. 37. DOI: 10.1145/

3295500.3356202.

[5]

 Wozniak J M, Jain R, Balaprakash P, Ozik J, Collier N

T, Bauer J, Xia F F, Brettin T, Stevens R, Mohd-Yusof

J, Cardona C G, Van Essen B, Baughman M.

CANDLE/Supervisor: A workflow framework for ma-

chine learning applied to cancer research. BMC Bioinfor-

matics, 2018, 19(18): Article No. 491. DOI: 10.1186/

s12859-018-2508-4.

[6]

 Kurth T, Treichler S, Romero J, Mudigonda M, Luehr N,

Phillips E, Mahesh A, Matheson M, Deslippe J, Fatica M,

Prabhat P, Houston M. Exascale deep learning for cli-

mate analytics. In Proc. the International Conference for

High Performance Computing, Networking, Storage and

Analysis, Nov. 2018, pp.649–660. DOI: 10.1109/SC.2018.

00054.

[7]

 Dongarra J J. The LINPACK benchmark: An explana-

tion. In Proc. the 1st International Conference on Super-

computing, Jun. 1987, pp.456–474. DOI: 10.1007/3-540-

18991-2_27.

[8]

 Mattson P, Cheng C, Diamos G F, Coleman C, Micikevi-

cius P, Patterson D A, Tang H L, Wei G Y, Bailis P, Bit-

torf V, Brooks D, Chen D H, Dutta D, Gupta U, Hazel-

wood K M, Hock A, Huang X Y, Kang D, Kanter D, Ku-

mar N, Liao J, Narayanan D, Oguntebi T, Pekhimenko

G, Pentecost L, Reddi V J, Robie T, John T S, Wu J, Xu

[9]

398 J. Comput. Sci. & Technol., Mar. 2024, Vol.39, No.2

https://doi.org/10.1109/SC.2018.00068
https://doi.org/10.1109/SC.2018.00068
https://doi.org/10.1145/3126908.3126916
https://doi.org/10.1109/SC.2018.00053
https://doi.org/10.1109/SC.2018.00053
https://doi.org/10.1145/3295500.3356202
https://doi.org/10.1145/3295500.3356202
https://doi.org/10.1186/s12859-018-2508-4
https://doi.org/10.1186/s12859-018-2508-4
https://doi.org/10.1186/s12859-018-2508-4
https://doi.org/10.1186/s12859-018-2508-4
https://doi.org/10.1186/s12859-018-2508-4
https://doi.org/10.1186/s12859-018-2508-4
https://doi.org/10.1186/s12859-018-2508-4
https://doi.org/10.1186/s12859-018-2508-4
https://doi.org/10.1109/SC.2018.00054
https://doi.org/10.1109/SC.2018.00054
https://doi.org/10.1007/3-540-18991-2_27
https://doi.org/10.1007/3-540-18991-2_27
https://doi.org/10.1007/3-540-18991-2_27
https://doi.org/10.1007/3-540-18991-2_27
https://doi.org/10.1007/3-540-18991-2_27
https://doi.org/10.1007/3-540-18991-2_27
https://doi.org/10.1007/3-540-18991-2_27
https://doi.org/10.1007/3-540-18991-2_27
https://doi.org/10.1007/3-540-18991-2_27

L J, Young C, Zaharia M. MLPerf training benchmark. In

Proc. Machine Learning and Systems, Mar. 2020, pp.336–
349. DOI: 10.48550/arXiv.1910.01500.

 Zhang L, Ji Q. A bayesian network model for automatic

and interactive image segmentation. IEEE Trans. Image

Processing, 2011, 20(9): 2582–2593. DOI: 10.1109/TIP.

2011.2121080.

[10]

 Shen Z, Bao W Z, Huang D S. Recurrent neural network

for predicting transcription factor binding sites. Scientific

Reports, 2018, 8(1): Article No. 15270. DOI: 10.1038/

s41598-018-33321-1.

[11]

 Trabelsi A, Chaabane M, Ben-Hur A. Comprehensive

evaluation of deep learning architectures for prediction of

DNA/RNA sequence binding specificities. Bioinformatics,

2019, 35(14): i269–i277. DOI: 10.1093/bioinformatics/btz

339.

[12]

 Lyu C, Chen B, Ren Y F, Ji D H. Long short-term mem-

ory RNN for biomedical named entity recognition. BMC

Bioinformatics, 2017, 18(1): Article No. 462. DOI: 10.

1186/s12859-017-1868-5.

[13]

 Karpatne A, Kumar V. Big data in climate: Opportuni-

ties and challenges for machine learning. In Proc. the 23rd

ACM SIGKDD International Conference on Knowledge

Discovery and Data Mining, Aug. 2017, pp.21–22. DOI: 10.

1145/3097983.3105810.

[14]

 Zhang W, Wei W, Xu L J, Jin L L, Li C. AI matrix: A

deep learning benchmark for Alibaba data centers. arXiv:

1909.10562, 2019. http://arxiv.org/abs/1909.1056, Mar.

2024.

[15]

 Haidar A, Tomov S, Dongarra J, Higham N J. Harness-

ing GPU tensor cores for fast FP16 arithmetic to speed

up mixed-precision iterative refinement solvers. In Proc.

the International Conference for High Performance Com-

puting, Networking, Storage and Analysis, Nov. 2018,

pp.603–613. DOI: 10.1109/SC.2018.00050.

[16]

 Ben-Nun T, Besta M, Huber S, Ziogas A N, Peter D,

Hoefler T. A modular benchmarking infrastructure for

high-performance and reproducible deep learning. In Proc.

the 2019 IEEE International Parallel and Distributed Pro-

cessing Symposium, May 2019, pp.66–77. DOI: 10.1109/

IPDPS.2019.00018.

[17]

 Deng J, Dong W, Socher R, Li L J, Li K, Fei-Fei L. Ima-

geNet: A large-scale hierarchical image database. In Proc.

the 2009 IEEE Conference on Computer Vision and Pat-

tern Recognition, Jun. 2009, pp.248–255. DOI: 10.1109/

CVPR.2009.5206848.

[18]

 Zhu H Y, Akrout M, Zheng B J, Pelegris A, Phanishayee

A, Schroeder B, Pekhimenko G. TBD: Benchmarking and

analyzing deep neural network training. arXiv: 1803.

06905, 2018. http://arxiv.org/abs/1803.06905, Mar. 2024.

[19]

 Farrell S, Emani M, Balma J, Drescher L, Drozd A, Fink

A, Fox G C, Kanter D, Kurth T, Mattson P, Mu D W,

Ruhela A, Sato K, Shirahata K, Tabaru T, Tsaris A,

Balewski J, Cumming B, Danjo T, Domke J, Fukai T,

Fukumoto N, Fukushi T, Gerofi B, Honda T, Imamura T,

Kasagi A, Kawakami K, Kudo S, Kuroda A, Martinasso

M, Matsuoka S, Mendonça H, Minami K, Ram P, Sawa-

da T, Shankar M, John T S, Tabuchi A, Vishwanath V,

Wahib M, Yamazaki M, Yin J Q. MLPerf HPC: A holis-

[20]

tic benchmark suite for scientific machine learning on

HPC systems. arXiv: 2110.11466, 2021. https://arxiv.org/

abs/2110.11466, Mar. 2024.

 Jiang Z H, Gao W L, Tang F, Wang L, Xiong X W, Luo

C J, Lan C X, Li H X, Zhan J F. HPC AI500 v2.0: The

methodology, tools, and metrics for benchmarking HPC

AI systems. In Proc. the 2021 IEEE International Confer-

ence on Cluster Computing, Sept. 2021, pp.47–58. DOI:

10.1109/Cluster48925.2021.00022.

[21]

 Goodfellow I, Pouget-Abadie J, Mirza M et al. Genera-

tive adversarial nets. In Proc. Advances in Neural Infor-

mation Processing Systems, Dec. 2014.

[22]

 Sandfort V, Yan K, Pickhardt P J, Summers R M. Data

augmentation using generative adversarial networks (Cy-

cleGAN) to improve generalizability in CT segmentation

tasks. Scientific Reports, 2019, 9(1): Article No. 16884.

DOI: 10.1038/s41598-019-52737-x.

[23]

 Sun Y, Yuan P S, Sun Y M. MM-GAN: 3D MRI data

augmentation for medical image segmentation via genera-

tive adversarial networks. In Proc. the 2020 IEEE Inter-

national Conference on Knowledge Graph, Aug. 2020,

pp.227–234. DOI: 10.1109/ICBK50248.2020.00041.

[24]

 Milz S, Rüdiger T, Süss S. Aerial GANeration: Towards

realistic data augmentation using conditional GANs. In

Proc. the European Conference on Computer Vision,

Sept. 2018, pp.59–72. DOI: 10.1007/978-3-030-11012-3_5.

[25]

 Jin H F, Song Q Q, Hu X. Auto-keras: An efficient neu-

ral architecture search system. In Proc. the 25th ACM

SIGKDD International Conference on Knowledge Discov-

ery & Data Mining, Jul. 2019, pp.1946–1956. DOI: 10.

1145/3292500.3330648.

[26]

 Liu C X, Zoph B, Neumann M, Shlens J, Hua W, Li L J,

Li F F, Yuille A, Huang J, Murphy K. Progressive neural

architecture search. In Proc. the 15th European Confer-

ence on Computer Vision, Sept. 2018, pp.19–35. DOI: 10.

1007/978-3-030-01246-5_2.

[27]

 Tassev S, Eisenstein D J, Wandelt B D, Zaldarriaga M.

sCOLA: The N-body COLA method extended to the spa-

tial domain. arXiv: 1502.07751, 2015. https://arxiv.org/

abs/1502.07751, Mar. 2024.

[28]

 Hahn O, Abel T. Multi-scale initial conditions for cosmo-

logical simulations. Monthly Notices of the Royal Astro-

nomical Society, 2011, 415(3): 2101–2121. DOI: 10.1111/j.

1365-2966.2011.18820.x.

[29]

 Liu H X, Simonyan K, Yang Y M. DARTS: Differen-

tiable architecture search. arXiv: 1806.09055, 2018. https://

doi.org/10.48550/arXiv.1806.09055, Mar. 2024.

[30]

 Kingma D P, Ba J. Adam: A method for stochastic opti-

mization. arXiv: 1412.6980, 2015. https://arxiv.org/abs/

1412.6980, Mar. 2024.

[31]

 You Y, Zhang Z, Hsieh C J, Demmel J, Keutzer K. Ima-

geNet training in minutes. In Proc. the 47th Internation-

al Conference on Parallel Processing, Aug. 2018, Article

No. 1. DOI: 10.1145/3225058.3225069.

[32]

 Yan D, Wang W, Chu X W. Demystifying tensor cores to

optimize half-precision matrix multiply. In Proc. the 2020

IEEE International Parallel and Distributed Processing

Symposium, May 2020, pp.634–643. DOI: 10.1109/

IPDPS47924.2020.00071.

[33]

Jiang-Su Du et al.: SAIH: Scalable Evaluation for AI Performance Trend on HPC Systems 399

https://doi.org/10.48550/arXiv.1910.01500
https://doi.org/10.1109/TIP.2011.2121080
https://doi.org/10.1109/TIP.2011.2121080
https://doi.org/10.1038/s41598-018-33321-1
https://doi.org/10.1038/s41598-018-33321-1
https://doi.org/10.1038/s41598-018-33321-1
https://doi.org/10.1038/s41598-018-33321-1
https://doi.org/10.1038/s41598-018-33321-1
https://doi.org/10.1038/s41598-018-33321-1
https://doi.org/10.1038/s41598-018-33321-1
https://doi.org/10.1038/s41598-018-33321-1
https://doi.org/10.1093/bioinformatics/btz339
https://doi.org/10.1093/bioinformatics/btz339
https://doi.org/10.1186/s12859-017-1868-5
https://doi.org/10.1186/s12859-017-1868-5
https://doi.org/10.1186/s12859-017-1868-5
https://doi.org/10.1186/s12859-017-1868-5
https://doi.org/10.1186/s12859-017-1868-5
https://doi.org/10.1186/s12859-017-1868-5
https://doi.org/10.1186/s12859-017-1868-5
https://doi.org/10.1186/s12859-017-1868-5
https://doi.org/10.1186/s12859-017-1868-5
https://doi.org/10.1145/3097983.3105810
https://doi.org/10.1145/3097983.3105810
http://arxiv.org/abs/1909.1056
https://doi.org/10.1109/SC.2018.00050
https://doi.org/10.1109/IPDPS.2019.00018
https://doi.org/10.1109/IPDPS.2019.00018
https://doi.org/10.1109/CVPR.2009.5206848
https://doi.org/10.1109/CVPR.2009.5206848
http://arxiv.org/abs/1803.06905
https://arxiv.org/abs/2110.11466
https://arxiv.org/abs/2110.11466
https://doi.org/10.1109/Cluster48925.2021.00022
https://doi.org/10.1038/s41598-019-52737-x
https://doi.org/10.1038/s41598-019-52737-x
https://doi.org/10.1038/s41598-019-52737-x
https://doi.org/10.1038/s41598-019-52737-x
https://doi.org/10.1038/s41598-019-52737-x
https://doi.org/10.1038/s41598-019-52737-x
https://doi.org/10.1038/s41598-019-52737-x
https://doi.org/10.1109/ICBK50248.2020.00041
https://doi.org/10.1007/978-3-030-11012-3_5
https://doi.org/10.1007/978-3-030-11012-3_5
https://doi.org/10.1007/978-3-030-11012-3_5
https://doi.org/10.1007/978-3-030-11012-3_5
https://doi.org/10.1007/978-3-030-11012-3_5
https://doi.org/10.1007/978-3-030-11012-3_5
https://doi.org/10.1007/978-3-030-11012-3_5
https://doi.org/10.1007/978-3-030-11012-3_5
https://doi.org/10.1007/978-3-030-11012-3_5
https://doi.org/10.1007/978-3-030-11012-3_5
https://doi.org/10.1007/978-3-030-11012-3_5
https://doi.org/10.1145/3292500.3330648
https://doi.org/10.1145/3292500.3330648
https://doi.org/10.1007/978-3-030-01246-5_2
https://doi.org/10.1007/978-3-030-01246-5_2
https://doi.org/10.1007/978-3-030-01246-5_2
https://doi.org/10.1007/978-3-030-01246-5_2
https://doi.org/10.1007/978-3-030-01246-5_2
https://doi.org/10.1007/978-3-030-01246-5_2
https://doi.org/10.1007/978-3-030-01246-5_2
https://doi.org/10.1007/978-3-030-01246-5_2
https://doi.org/10.1007/978-3-030-01246-5_2
https://doi.org/10.1007/978-3-030-01246-5_2
https://doi.org/10.1007/978-3-030-01246-5_2
https://doi.org/10.1007/978-3-030-01246-5_2
https://arxiv.org/abs/1502.07751
https://arxiv.org/abs/1502.07751
https://doi.org/10.1111/j.1365-2966.2011.18820.x
https://doi.org/10.1111/j.1365-2966.2011.18820.x
https://doi.org/10.1111/j.1365-2966.2011.18820.x
https://doi.org/10.1111/j.1365-2966.2011.18820.x
https://doi.org/10.48550/arXiv.1806.09055
https://doi.org/10.48550/arXiv.1806.09055
https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1412.6980
https://doi.org/10.1145/3225058.3225069
https://doi.org/10.1109/IPDPS47924.2020.00071
https://doi.org/10.1109/IPDPS47924.2020.00071

Jiang-Su Du received his B.S. de-

gree in spatial information and digital

technology from Wuhan University,

Wuhan, in 2016, and his M.S. degree

in high-performance computing from

the University of Edinburgh, Edin-

burgh, in 2017. He is currently a

Ph.D. candidate at the School of Computer Science and

Engineering, Sun Yat-sen University, Guangzhou. His

research interests focus on the intersection of the high

performance computing and the artificial intelligence.

Dong-Sheng Li received his B.S. de-

gree in computer science and technolo-

gy from Wenzhou University, Wen-

zhou, in 2019, and he is now a Master

student at the School of Computer

Science and Engineering, Sun Yat-sen

University, Guangzhou. His research

interests include high performance computing and ma-

chine learning.

Ying-Peng Wen is a Ph.D. student

at the School of Computer Science and

Engineering, Sun Yat-sen University,

Guangzhou. Before that, he received

his B.S. degree in mathematical sci-

ences from Xiamen University, Xia-

men, in 2016. His research interests in-

clude computer vision, neural architecture search, dis-

tributed computing, and reinforcement learning.

Jia-Zhi Jiang received his B.S. and

M.S. degrees in computer science and

technology from the South China Uni-

versity of Technology, Guangzhou, in

2013 and 2016 respectively. He is cur-

rently working toward his Ph.D. de-

gree with the School of Computer Sci-

ence and Engineering, Sun Yat-sen University,

Guangzhou. His research interests focus on parallel and

distributed computing of deep learning models.

Dan Huang currently is an asso-

ciate professor in the School of Com-

puter Science and Engineering, Sun

Yat-sen University, Guangzhou. He re-

ceived his Ph.D. degree in computer

engineering at University of Central

Florida, Orlando, in 2018. Before that,

he received his B.S. degree from Jilin University,

Changchun, in 2007, and his M.S. degree from South-

east University, Nanjing, 2010, both in computer sci-

ence and technology. His research interests are the I/O

of distributed system, scientific data management, paral-

lel programming model, distributed storage systems, in-

memory computing, and virtualization technology.

Xiang-Ke Liao received his B.S. de-

gree from Tsinghua University, Bei-

jing, in 1985, and his M.S. degree from

National University of Defense Tech-

nology, Changsha, in 1988, both in

computer science. Currently he is a

full professor at the School of Comput-

er Science and Engineering, Sun Yat-sen University,

Guangzhou. His research interests include high-perfor-

mance computing systems, operating systems, and paral-

lel and distributed computing. Prof. Liao is a fellow of

CCF and an academician of Chinese Academy of Engi-

neering.

Yu-Tong Lu received her B.S. M.S.

and Ph.D. degrees all in computer sci-

ence from the National University of

Defense Technology, Changsha. She is

now a professor at the School of Com-

puter Science and Engineering, Sun

Yat-sen University, Guangzhou. Her

research interests include parallel system management,

high-speed communication, distributed file systems, and

advanced programming environments with MPI (mes-

sage passing interface).

400 J. Comput. Sci. & Technol., Mar. 2024, Vol.39, No.2

	1 Introduction
	2 Background and Related Work
	2.1 Scientific AI Applications
	2.2 AI Benchmarks

	3 Methodology
	3.1 Data Augment
	3.2 Model Augment
	3.3 Performance and Qualitative Evaluation Summary

	4 Case Study
	4.1 Background
	4.1.1 CosmoFlow
	4.1.2 HPC System Configuration

	4.2 Data Augment and Preprocessing
	4.3 3D CNN Model Augment
	4.4 Parallelized Training

	5 Evaluation
	5.1 Experimental Setup
	5.2 Model Accuracy
	5.3 Evaluation with GPU Node Scaling
	5.4 Evaluation with Data Scaling
	5.5 Mixed Precision Results
	5.6 Comparison and Summary

	6 Conclusions
	Conflict of Interest
	References

