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Abstract    Novel artificial intelligence (AI) technology has expedited various scientific research, e.g., cosmology, physics,

and bioinformatics,  inevitably  becoming  a  significant  category  of  workload  on  high-performance  computing  (HPC) sys-

tems. Existing AI benchmarks tend to customize well-recognized AI applications, so as to evaluate the AI performance of

HPC systems under the predefined problem size, in terms of datasets and AI models. However, driven by novel AI technol-

ogy, most of AI applications are evolving fast on models and datasets to achieve higher accuracy and be applicable to more

scenarios. Due to the lack of scalability on the problem size, static AI benchmarks might be under competent to help un-

derstand the performance trend of evolving AI applications on HPC systems, in particular, the scientific AI applications on

large-scale systems. In this paper, we propose a scalable evaluation methodology (SAIH) for analyzing the AI performance

trend of HPC systems with scaling the problem sizes of customized AI applications. To enable scalability, SAIH builds a

set of novel mechanisms for augmenting problem sizes. As the data and model constantly scale, we can investigate the

trend and range of AI performance on HPC systems, and further diagnose system bottlenecks. To verify our methodology,

we augment a cosmological AI application to evaluate a real HPC system equipped with GPUs as a case study of SAIH.

With data and model augment, SAIH can progressively evaluate the AI performance trend of HPC systems, e.g., increas-

ing from 5.2% to 59.6% of the peak theoretical hardware performance. The evaluation results are analyzed and summa-

rized into insight findings on performance issues. For instance, we find that the AI application constantly consumes the

I/O bandwidth of the shared parallel file system during its iteratively training model. If I/O contention exists, the shared

parallel file system might become a bottleneck.
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1    Introduction

In  recent  years,  AI,  especially  its  deep  learning

subset,  has  become  one  of  the  key  trends  in  HPC

(high-performance  computing).  Emerging  novel  AI

applications  have  expedited  various  scientific  discov-

eries,  such as  in  cosmology[1, 2],  physics[3, 4],  and can-

cer  diagnosis[5, 6].  Besides,  scientists  significantly  im-

prove domain results with AI technology on HPC sys-

tems over their traditional competitors[7].

To  support  AI  applications,  emerging  HPC  sys-

tems  are  designed  towards  exascale  computing  capa-

bility  with  better  AI  performance  in  consideration.

For  example,  Fugaku  in  Japan  exhibits  2.0x  mixed-

precision  exaFLOPS  with  ARM-based  many-core

CPUs  and  Summit  at  ORNL  has  1.4x  mixed-preci-
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sion exaFLOPS with NVIDIA GPU. While the theo-

retical  peak  performances  of  these  HPC  systems  are

appealing, their practical performances on supporting

AI training (HPC-AI performance) are still under in-

vestigation. In terms of traditional HPC benchmarks,

e.g., HPL and HPL-AI[8], they parallelly solve a com-

mon  task  in  the  HPC  domain,  the  linear  equation

,  which  is  rarely  adopted  in  AI  applications

and thus lacks convincible metrics on AI performance.

Compared with traditional HPC simulations, scientif-

ic AI applications are much more complex. HPC sim-

ulations typically consist of distinct execution phases,

such as  computation,  I/O and collective  communica-

tion. In contrast, the execution phases of AI applica-

tions  are  pipelined  and  encapsulated  by  higher  ab-

stractions and longer parallelism hierarchy, which in-

clude  co-designed  programming  models,  e.g.,  CUDA,

and  distributed  AI  frameworks,  e.g.,  Tensorflow  and

PyTorch. Such abstraction complexity leads to doubt

on the significance of profiling the AI performance by

traditional HPC benchmarks.

Moving  to  existing  AI  benchmarks  on  HPC  sys-

tems,  e.g.,  CORAL-2① and  MLPerf[9],  they  are  en-

deavoring to evaluate either the accuracy or the per-

formance  (FLOPS)  of  AI  models  in  the  hotspot  re-

search  domains  by  adopting  representative  AI  appli-

cations  with  static  data  and  models.  This  static

methodology  can  reflect  a  fixed  performance  relation

between  a  specific  application  and  an  HPC  system,

rather  than  a  range  of  performance  relations.  Al-

though MLPerf recently focuses on HPC systems, and

adds scientific AI applications, e.g., CosmoFlow[2] and

DeepCAM[7],  into  its  benchmark  suit,  the  main  idea

still  follows its  previous  version,  in  which both mod-

els and datasets are static.

Driven by novel AI technologies, most of AI appli-

cations  are  evolving  fast  on  their  problem configura-

tions including both models and datasets,  for achiev-

ing higher accuracy and being applicable to more sce-

narios. As proposed in NVIDIA GTC 2021②, AI mod-

el  sizes  are  growing exponentially,  on a  pace  of  dou-

bling every two and a half months. Due to the lack of

scalability  on  the  problem  size,  existing  AI  bench-

marks  might  be  incompetent  to  understand  the  per-

formance  trend  of  evolving  AI  applications  on  HPC

systems,  in  particular,  the  scientific  AI  applications

on  large-scale  systems.  For  instance,  in  our  evalua-

tion, we observe that the aggregate FLOPS of a par-

allel run of CosmoFlow (3D CNN) is significantly in-

creased (from 5.2% to 59.6% of peak theoretical  per-

formance) with the scaling datasets and AI models. It

reflects that a kind of AI workloads vary vastly in dif-

ferent configurations and the execution of a static ap-

plication can only provide a very partial understand-

ing.
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To understand the AI performance trend on HPC

systems in a more comprehensive way, we propose the

Scalable  Evaluation  Methodology  (SAIH).  Like  the

successful  HPL  LINPACK  benchmark  on  achieving

the data and computation scalability by adjusting the

size  of ,  SAIH  builds  a  set  of  novel  mecha-

nisms to satisfy the requirements of data and compu-

tation  scalability.  Additionally,  SAIH  takes  into  ac-

count the scientific significance of AI workloads by se-

lecting  and  building  representative  study  cases  from

domain-specific scientific AI applications. Specifically,

the contributions of SAIH are as follows.

● We propose SAIH with scientific significance to

evaluate and understand the AI performance range of

HPC  systems,  and  it  is  with  both  data  and  model

scalability to cover various problem sizes.

● We design a novel strategy for model scalabili-

ty.  By  creatively  incorporating  network  architecture

search  (NAS),  the  strategy  extends  the  original  AI

model  to  more  accurate  and  complex  models  with

scaling computation demands.

● We implement a cosmological AI application as

a prototype and rebuild it  to an SAIH instance with

data  and  computation  scalability.  We  apply  this  in-

stance to evaluate a real HPC system as a case study.

● We  summarize  the  performance  achievement

and  qualitative  evaluation  metrics  to  illustrate  that

the  SAIH  instance  can  profile  the  AI  performance

range  of  an  HPC  system  on  a  specific  scientific  do-

main  as  well  as  revealing  evaluation  findings  about

the potential performance issues.

The rest of this paper is organized as follows. We

present a survey on scientific AI applications and ex-

isting AI benchmarks along with related work in Sec-

tion 2.  A  comprehensive  methodology  on  building

scalable  AI  evaluation  is  presented  in Section 3.  In

Section 4,  we  present  a  case  study  on  building  an

SAIH  instance  based  on  a  cosmological  AI  applica-

tion. Section 5 presents the evaluation and analysis of

the  cosmological  SAIH  instance  on  a  real  HPC  sys-

tem. Finally, we conclude this work in Section 6. 
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2    Background and Related Work
 

2.1    Scientific AI Applications

In  recent  years,  scientific  AI  applications  are

emerging  in  various  domains.  In  particle  physics,

Kurth et al.[3] firstly attempted to deploy particle im-

age  classification  on  many-core  HPC  systems  and

achieved  petaFLOPS  performance.  MENNDL[4]

adopts neural network search to find an optimal mod-

el  for  improving  the  understanding  of  the  electron-

beam-matter  interactions  and  real-time  image-based

feedback,  which  enables  a  huge  step  beyond  human

capacity towards nano-fabricating materials automati-

cally.  In  the  domain  of  astronomy,  cosmologists[1, 2]

take  advantage  of  CNN models  to  estimate  the  uni-

versal  states  with  higher  accuracy  than  traditional

methods.  The  universal  parameters  are  key  factors

that  determine  the  evolution  of  the  whole  universe

and  the  classification  and  discovery  of  astrophysical

objects.  Medical  imaging  analysis  is  the  science  of

solving clinical problems by analyzing images generat-

ed  in  clinical  practice.  Deep  learning  techniques  are

applied in computer aided diagnosis by analyzing the

signal data from CT, MRI, DR, etc., including image

segmentation[10], detection and classification of abnor-

mality[5, 6].  In  bioinformatics,  RNN-based  deep  learn-

ing  techniques  are  widely  used  to  detect  and  recog-

nize  genomic  patterns[11–13].  In  climate  changing  and

weather analysis,  CNN and RNN models are used to

detect  the  areas  where  the  abnormal  climate

changes[7, 14]. 

2.2    AI Benchmarks

AI-based techniques are continuously driving vari-

ous application scenarios intelligent, which can be de-

ployed  on  diverse  computing  platforms,  from  large-

scale HPC systems to tiny mobile devices. To satisfy

the demands of evaluating the AI performance, scien-

tists  and  engineers  have  released  a  number  of  AI

benchmarks  covering  different  application  scenarios

and platforms.

MLPerf[9] is  an  AI  benchmark  suite  targeting  six

AI  application  scenarios,  including  recommendation,

speech recognition, reinforcement learning, image clas-

sification,  object  detection,  and  translation.  Deep-

Bench③, released by Baidu, is a micro benchmark set

that  evaluates  basic  operations  involved  in  training

deep  neural  networks,  including  dense  matrix  multi-

plies,  convolutions,  recurrent  layers,  and  all-reduce.

While, this benchmark lacks the component-level and

application-level  evaluation  cases.  AI  Matrix[15],  re-

leased by Alibaba Group, aims to satisfy the needs of

fully characterizing the deep learning workloads in Al-

ibaba's  e-commerce  environment,  including  the  tasks

in  computer  vision,  recommendation,  and  language

processing.  HPL-AI  Mixed  Precision  Benchmark[16],

released by University of Tennessee, is opting for low-

precision (likely 16-bit) accuracy for LU (lower-upper)

factorization, and a sophisticated iteration to recover

the  accuracy  lost  in  factorization.  Deep500[17] is  a

modular  benchmark  infrastructure  for  high-perfor-

mance  computing  deep  learning.  It  aims  at  evaluat-

ing  different  framework  implementations  and  differ-

ent  levels  of  operators.  However,  it  only  evaluates  a

common  image  classification  scenario  on  the  Ima-

geNet[18] dataset, rather than typical scientific scenar-

ios. TBD Suite[19], developed by University of Toron-

to, is an end-to-end benchmark suite for neural work

training. Typically, this work currently covers six ma-

jor  application  domains  and  eight  different  state-of-

the-art models, e.g., image classification, speech recog-

nition.  The  above  AI  benchmarks  provide  evalua-

tions either for classic application scenarios or for the

computing operations in deep neural  network (DNN)

models on data centers and mobile devices. However,

they  have  not  covered  the  scientific  AI  applications

and HPC systems, the configurations of which are sig-

nificantly distinct from evaluation cases of existing AI

benchmark in both datasets and DNN models.

Recently, a number of well-recognized scientific AI

applications  have  been  integrated  into  HPC  bench-

mark suite for evaluating the performance of AI appli-

cation  on  HPC  systems.  For  example,  CORAL-2

benchmarks④ cover  not  only  the  traditional  micro

benchmarks,  HPC simulations  and  analysis,  but  also

emerging AI applications, which include the common

operations  in  CNN  and  RNN  as  well  as  the  CAN-

DLE benchmark[6] for  cancer  diagnosis.  In  2020,  two

scientific  applications,  CosmoFlow[2] and DeepCAM[7]

with  static  models  and  datasets  are  included  into

MLPerf, named as MLPerf-HPC[20], for evaluating the

AI  performance  of  large  HPC  systems.  In  general,

HPC-AI500[21] follows a similar idea to MLPerf-HPC.

Moreover, in order to assure a fair ranking, it presents
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a new metric  named Valid  FLOPS,  which imposes  a

penalty on failing to achieve a target training quality.

While  CORAL-2  benchmarks,  MLPerf-HPC,  and

HPC-AI500  are  capable  of  distributedly  evaluating

scientific  AI  applications  with  static  scientific  AI

models  and  datasets  on  HPC systems,  they  lack  the

capability  of  scaling up problem sizes,  which is  criti-

cal  to  evaluating  the  potential  AI  performance  of

large-scale HPC systems.
 

3    Methodology

In  this  section,  we  introduce  the  methodology  of

SAIH.  While  scientific  AI  applications  run  on  large-

scale HPC systems in data-parallel fashion via sophis-

ticate  AI  frameworks,  such  as  MPI,  Tensorflow  and

PyTorch,  the  problem  sizes  are  typically  limited  by

the static training datasets and AI models. Thus, we

intend  to  scale  up  problem  sizes  as  well  as  the  de-

mands on memory and computation resources  by in-

tegrating the methods of data augment and AI model

augment.  Our  augment  methods  take  the  scientific

meaning into account,  and higher resolution or high-

er  accuracy  can  be  achieved  compared  with  original

applications. As shown in Fig.1, SAIH provides a set

of augment methods for transforming scientific AI ap-

plication into candidate benchmarks with the scalabil-

ity on problem sizes, and then evaluating the AI per-

formance of HPC systems.
 

3.1    Data Augment

The data augment method in SAIH is designed for

both achieving  data  scalability  and keeping scientific

meaning. Thus, simulation can be a potential method

since it is naturally supported by many scientific ap-

plications.  Besides,  emerging  generative  adversarial

network (GAN)[22] is also a potential method.

Simulation.  Many  scientific  applications  simulate

natural phenomena and the runtime states of large re-

search facilities. To discover the scientific insights, the

outputs  of  these  simulations  are  the  raw  data  that

needs to be further processed by analysis  techniques,

such as visualization tools and AI based analysis. To

efficiently  generate  hundreds  and  thousands  of  data

samples,  we manage the initial  parameters  by a cen-

tralized  parameter  server  to  ensure  parameters  be-

tween  different  simulations  randomly  and  uniquely.

The detailed procedure is in Algorithm 1.

Algorithm 1. Concurrently Generate Data by Simulation

N
N − 1

1:  Start  MPI-based  program  with  total  processes,  one  for
  parameter  server  and  each  of  the  ( )  processes  runs
  M instances of the simulation.
2:   Initialize MPI.

rank = 03:   if  then
4:   Initialize a centralized parameter server.
5:   Randomly generate initial parameters for simulations.
6:   else

M×
(N − 1)

7:   Wait  for  parameter  server  ready  and  prepare 
   parameters.

m < M8:   while  do
9:   Load parameters from the server.
10:   Initialize an instance of simulation.
11:   Perform simulation.
12:   Save generated data into the filesystem.

m = m+ 113:  
14:   end while
15: end if

Generative  Adversarial  Networks.  GAN  is  anoth-

er  method  of  generating  training  data  with  demand-

ed structures and properties for scientific applications.

We can use GAN to explore the space of possible da-

ta,  tuning  the  generated  data  to  have  specific  target

properties. In particular, GAN (CycleGAN) is used to

augment  CT  images  and  improve  generalizability  in

CT  segmentation  tasks[23].  GAN  is  also  adopted  to

augment  3D  MRI  data  for  medical  image  segmenta-

tion[24]. Besides augmenting biomedical datasets, GAN

can be also used to generate multi-sensor data for the

aerial object detection and semantic segmentation on

visual data, such as 3D Lidar reconstruction using the

ISPRS  and  DOTA  datasets[25].  As  shown  in Fig.2,

GAN has a pair  of  components competing with each

other,  where  the  generator  model  is  responsible  for
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generating  new  synthetic  data  (e.g.,  the  DNA  se-

quence in the Genome). The discriminator model cal-

culates the similarity score between the generated da-

ta and the real data. Concretely, the GAN models are

different  case  by  case.  As  iteratively  training  the

models,  the  accuracies  of  the  two  models  are  im-

proved. With the trained generator by GAN, we can

concurrently  run  it  to  generate  a  large  amount  of

training data. 

3.2    Model Augment

SAIH can scale its computation demand by mod-

el augment, which in deep learning is mainly either by

AutoML[26] based techniques such as NAS, or manual-

ly  adjusted  by  AI  experts.  With  these  two  kinds  of

model augment methods, generated candidate models

can  satisfy  both  scalability  and  accuracy  require-

ments. Although manually tuning is easier, it is time-

consuming and requires a lot of expert knowledge. In

SAIH, we adopt NAS as the fundamental of our mod-

el augment method and a new component is inserted

into  NAS  for  selecting  out  the  qualified  models  that

have customized computation demand.

As shown in Fig.3, NAS generally consists of three

main  components:  the  search  space,  search  strategy,

and  accuracy  evaluation.  The  search  space  contains

the  architectures  that  can  be  selected.  Users  can  set

hyperparameters  to  restrict  the  searching  properties

of  architectures  for  reducing  the  size  of  the  search

space  and  simplify  the  search.  The  search  strategy

specifies how to traverse in the search space, and of-

ten  has  exponential  complexity,  which  motivates  ex-

perts  to  design  novel  search  optimizations  or  heuris-

tic  algorithms  to  find  the  optimal  or  near-optimal

DNN  models.  The  widely  investigated  optimizations

include  evolution  strategy  (ES),  reinforce  learning

(RL), Bayesian optimization, etc. The accuracy evalu-

ation is estimating the performance of model architec-

ture, e.g., by performing a standard training and vali-

dation of the architecture on data. When the estima-

tion is evaluated and returned back, the search strate-

gy will  decide the next searching architecture,  or  ac-

cept the model based on the accuracy.

In  order  to  generate  models  with  a  demanded

computation  cost,  e.g.,  FLOPs,  we  design  a  novel

component,  model  filter,  to  filter  models  with  a  de-

manded range of computation costs. The model filter

is integrated as a supplement component of the search

strategy,  enabling  that  SAIH explores  models  with  a

specific  range  of  computation  costs.  Due  to  the  long

time  of  NAS,  e.g.,  searching 20 000 neural  networks

across 500 P100 GPUs over four days[27], in SAIH we

tend  to  place  the  model  filter  before  the  searching

strategy,  preparing  candidate  DNN  models  with

scaled computation costs before training and evaluat-

ing.  The  model  filter  estimates  the  theoretical  com-

puting cost of the candidate model as the filtering ba-

sis. We aggregate the number of multiply-accumulate

operations  to  represent  the  computation  cost.  It  is

straightforward  to  count  the  number  of  multiply-ac-

cumulate  operations  in  the  forward  pass,  while  it  is

not  for  the  backward  pass,  which  is  derived  by  the

forward pass.  Here we adopt (1)⑤ for  estimating the

computation  cost  of  both  the  forward  and  backward

pass, 

Computation = numAddMul × flopAddMul × FB,
(1)

numAddMul

flopAddMul

FB

where  denotes the total number of add-

multiply  operations  in  the  forward  pass  of  a  model,

 is the number of FLOPs per add-multi-

ply,  and  is  a  constant  of  3  for  calculating  both

forward and backward pass. 

3.3    Performance  and  Qualitative  Evaluation

Summary

AI  applications  have  been  emerging  from various

scientific domains. These applications have two main
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components:  data  and  model.  The  data  format  and

the model architecture vary largely in different AI ap-

plications.  When  we  apply  SAIH  to  a  domain  case,

the  evaluation  can  present  not  only  the  AI  perfor-

mance  on  HPC  systems,  but  also  the  performance

bottlenecks  introduced  by  the  characteristics  of  AI

applications and frameworks,  in terms of  data move-

ment, scalability, etc. Thus, as shown in Table 1, we

need  to  set  a  standard  or  metrics  to  summarize  the

evaluation results of SAIH instances. The metrics ta-

ble typically includes three main sections, 1) the char-

acteristics of the SAIH study case, 2) AI performance

in terms of FLOPS range, speedup, etc., and 3) other

profiling results. 

4    Case Study

In  this  section,  we  orchestrate  a  cosmological  AI

application,  CosmoFlow[2],  as  a  case  study  of  SAIH,

named  as  SAIH-cosmo.  Then,  we  apply  SAIH-cosmo

to an HPC system for  understanding the  relative  AI

performance  trend.  We  observe  some  findings  stem-

ming from the convergence of the training model, per-

formance bottlenecks on the software stack and hard-

ware  configurations  and  tuning.  Such  insights  can

guide  the  HPC  systems  for  tuning  better  AI  perfor-

mance in the future. 

4.1    Background
 

4.1.1    CosmoFlow

In the domain of cosmology, it is of great signifi-

cance to determine cosmological states, which can de-

scribe the evolution of the whole universe and the dis-

tribution features  of  matter  and energy in a particu-

lar space. Enabled by AI technology, the CosmoFlow

project aims at providing a faster, cheaper, and more

accurate  data  processing  workflow  for  cosmology  re-

search. It employs 3D CNN to learn the mapping be-

tween  the  distribution  of  matters  within  a  defined

space  and  three  cosmological  states,  by  training  the

model on a large amount of simulated data. With the

trained  model,  cosmological  states  of  a  space  can  be

inferred  faster  and  more  accurately,  compared  with

traditional statistical methods. 

4.1.2    HPC System Configuration

The system is a heterogeneous HPC cluster. Each

node of the cluster is equipped with two Intel® Xeon®

Gold  6132  CPUs  (14  cores)  operating  at  256  GB

memory and four Tesla V100 SXM2 GPUs. Each Tes-

la V100 GPU has 16 GB HBM2 and can provide up

to  7.8  TFLOPS  double-precision  performance,  15.7

TFLOPS  single-precision  performance,  and  125

TFLOPS  half-precision  performance.  Tesla  V100

GPUs are interconnected by NVLink within the node

and the nodes of the cluster are interconnected by In-

finiBand. The file system is Lustre for the persistence

of the training data. 

4.2    Data Augment and Preprocessing

We  use  the  simulation  method  for  SAIH-cosmo,

which adopts a widely-accepted simulator of generat-

ing cosmological data, e.g., adopted by CosmoFlow[2].

Different  from  the  static  datasets  in  CosmoFlow  of

MLPerf HPC, we produce the dataset of SAIH-cosmo

by  modifying  its  simulation  and  make  it  scalable  on

the  dataset  size,  avoiding  non-trivial  data  collecting,
 

Table  1.    Performance and Qualitative Evaluation Metrics for SAIH Case Study

Metric Value

Domain HPC scientific domains, e.g., particle physics, astronomy, biomedical, climate, bioinformatics

Data augment Simulation, GAN, and data transformation

Model augment Manual tuning, hyperparameter search, and NAS

DNN model 2D CNN, 3D CNN, RNN, Transformer, etc.

Data format 1D genome, 2D image, 3D particle, 3D tomography, etc.

AI framework Tensorflow, PyTorch, Caffe, etc.

Dataset size Dataset size range in weak scaling

HPC system The hardware configurations of an HPC system on which SAIH is performed

FLOPs of AI model Computation demand range for the candidate AI models

FLOPS (ratio of theoretical FLOPS) Aggregate FLOPS achieved by performing SAIH instance on an HPC system

Singe GPU performance Single GPU performance range on data/node scaling

Speedup on node scaling Speedup range on strong scaling evaluation

Arithmetic intensity Range of arithmetic intensity of AI models

Accuracy/loss Range of accuracy/loss of AI models with data/node scaling
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downloading,  and  preprocessing.  The  data  is  pro-

duced  by  N-body  simulation,  pyCOLA[28],  of  which

the  initial  parameters  are  randomly  generated  by

MUSIC[29].

ΩM σ8 Ns

ΩM

ΩM + Ωλ = 1 Ωλ

σ8

Ns

2563 5123 1 0243

In  our  case  study,  MUSIC  randomly  initializes

matter  distribution  based  on  three  parameters,  con-

sisting of ,  and , before the simulation runs.

There parameters can describe the cosmological state.

The three parameters are also kept as the label for its

corresponding simulation output. In detail,  is the

proportion  of  matter  in  the  universe.  We  assume  a

flat geometry for universe, i.e., the sum of the contri-

butions of matter and dark energy to the energy den-

sity  of  the  universe .  is  the  propor-

tion of  the dark energy.  is  the amplitude of  mass

fluctuations  in  the  universe  at  a  distance  scale  of  8

Mpc3/h.  is  the  scalar  spectral  index  for  the  spa-

tial  curvature  of  a  comoving  slice  of  the  space  time.

The  simulation,  pyCOLA,  implements  the  comoving

lagrangian  acceleration  (COLA)  method  in  the  tem-

poral and spatial domains for the N-body simulations.

It  simulates  the  evolution  of  physical  particles  from

the  MUSIC  initial  conditions.  The  simulation  result

describes  the  position  information  of  a  predefined  3-

dimensional  space,  such  as , ,  and ,

which can be adjusted in the initial condition of MU-

SIC. Essentially, the three cosmological states are set

in the specific ranges, in which MUSIC can randomly

pick values based on the uniform distribution.

5123

0.25 < ΩM < 0.35 0.78 < σ8 < 0.95 0.9 <

Ns < 1.0

5123

We set  the  simulation  cube  relevant  to  512

Mpc3/h cubic space as the leftmost cube in Fig.4 and

the three cosmological states are randomly generated

from , ,  and 

.  MUSIC  and  pyCOLA  run  on  CPUs  and

consume  massive  resources,  in  particular  memory.

Based on our evaluation, the memory requirement for

an  instance  of  the  simulation  with  the  space  size  of

 requires 17 GB memory for MUSIC and 20 GB

for pyCOLA. For a single-node execution, the concur-

rency  of  MUSIC  and  pyCOLA  is  constrained  by

memory capacity. Since MUSIC and pyCOLA run in

series rather than in parallel, we can at most concur-

rently perform 12 simulations on each node. Further,

as in Algorithm 1, we employ multi-node execution to

further  accelerate  data  augment.  As  each  simulation

is independent, three cosmological states are random-

ly  sampled  within  the  predefined  ranges  via  a  third

party math library, GNU Scientific Library⑥.

d3

2× 2× 2

2563

After raw data is collected from pyCOLA simula-

tion,  the  data  preprocessing  is  then  performed  to

transform the raw data to the training data that can

be directly fed into the 3D CNN model.  The data is

transformed  to  volumetric  form  where  a  3D  his-

togram of  voxels  represents  the  normalized  densi-

ty  of  the  dark  matter  for  each  cube.  As  shown  in

Fig.4, the resolution of voxel is  Mpc3/h, and

the 512 Mpc3/h cube is transformed to  voxel vol-

umes.  Then,  each  volume  is  split  into  eight  sub-vol-

umes labeled with the same cosmological states as in

the  rightmost  cube  of Fig.4.  Each  sub-volume  is  16

MB  and  stored  in  the  HDF5  data  format.  For  this

case study, we perform 12 632 simulations and create

101 088 sub-volumes as the total training dataset, tak-

ing  around  1.6  TB  storage.  In  SAIH-cosmo,  we  ex-

tract  a  portion  of  the  dataset  for  weak  and  strong

scaling evaluations. 

4.3    3D CNN Model Augment

Here  we  take  advantage  of  both  the  manual  de-

sign method and automated method. For the manual

design  method,  we  adopt  the  3D  CNN  model  pro-

posed  by  Mathuriya et  al.[2] as  the  smallest  model

with  the  least  computation  cost.  For  the  automated

method,  we  customize  NAS  to  prepare  another  two
 

Numpy
Histogramdd

Number of Particles

in (2×2×2) Mpc3/h

Based on MUSIC (W, , ), pyCOLA
Simulates the Evolution of Particles

Set Cubic Space 512 Mpc3/h

Divide into 8
Sub-Volumes

(1283)

0.25 < W < 0.35,

0.78 <  < 0.95,

0.90 <  < 1.00

MUSIC pyCOLA

512
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W

  
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Fig.4.  Data augment and preprocessing of the cosmological data.
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CNN models  for  SAIH-cosmo  with  incremental  com-

putation  costs  and  model  accuracies.  In  details,  we

generate  them  by  our  proposed  filter-based  model

augment  method,  which  in  this  case  adopts

DARTS[30] as its internal NAS strategy. DARTS is a

cell-based  NAS  technique  with  the  gradient  descent

search strategy. The gradient descent search strategy

is  the  non-differentiable  approach  and  it  is  orders  of

magnitude  faster  than  other  non-differentiable  ap-

proaches.  With  the  V100  GPU,  DARTS  only  takes

about two GPU days for exploring the medium mod-

el  in  our  experiments,  while  other  techniques  require

thousands  of  GPU  days  theoretically.  DARTS  is  a

cell-based  NAS  technique,  which  searches  the  archi-

tecture  of  a  cell  and connects  multiple  identical  cells

as  the  entire  model.  As  shown  in Fig.5(a),  DARTS

initially assigns a number of feature maps (nodes) in a

cell,  while  edges  between  nodes  are  unknown.  Then,

users define candidate operations for each edge based

on  observations  from  previous  models.  Since  each

edge normally has only one operation, DARTS intro-

duces the architecture possibility for each operation in

each edge and determines the operation in each edge

by  gradient  descent.  Training  DARTS  on  a  small

dataset  is  adequate,  which  further  accelerates  the

searching process. As shown in Fig.5(c), in each itera-

tion,  DARTS  jointly  learns  the  potential  architec-

tures and the network weights,  which have the same

target  that improves the prediction accuracy.  In this

way, the model constantly converges to the architec-

ture  with  a  higher  accuracy.  Finally,  DARTS selects

the  most  likely  operation  of  each  edge  to  determine

the final architecture.

N = 7

3× 3

5× 5 3× 3 5× 5

3× 3

3× 3

Our  3D  convolutional  cell  consists  of 

nodes,  and  operation  candidates  include  and

 3D separable convolutions,  and  3D

dilated separable convolutions,  3D max pooling,

 average  pooling,  identity,  and  zero.  For  each

convolution  operation,  a  batch-norm  layer  and  the

Leakey  Relu  activation  function  are  followed  behind

based on observations from the smallest model. Since

a  single  sample  in  our  dataset  is  larger  than  experi-

ments in DARTS, we set our model with 16 cells. Re-

duction  cells  (stride=2)  are  the  1st,  5th,  and  13th

cells,  and  three  FC  layers  are  composed  as  in  the

small  model.  For  the  other  hyperparameters,  we

adopt  the  default  setting  in  the  cifar-10  example  of

DARTS[30].

101.6× 106

374.2× 106

The  performance  filter  is  placed  before  the  origi-

nal searching strategy in DARTS. The channel num-

ber  of  convolution  layers  is  a  hyperparameter  in

DARTS  and  it  largely  influences  the  computation

cost. With a predefined computation cost, the perfor-

mance filter can estimate the channel number of con-

volution  layers  for  the  formal  searching  process.  The

performance filter evaluates the forward pass of mod-

els  by  using  PyTorch-OpCounter⑦ and  calculating

the  overall  training  cost  by  the  aforementioned  for-

mula  in  (1).  We  set  the  candidate  models  with  4

TFLOPs (medium) or 16 TFLOPs (large) in the per-

formance  filter.  Eventually,  the  medium  model  has

 parameters  and  the  training  process  of  a

single  sample  requires  about  4.15  TFLOPs,  which

largely  exceeds  that  of  the  small  model.  As  for  the

large model,  it  has  parameters  and takes
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1 1 1 1
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Argmax()

Fig.5.  DARTS in SAIH-cosmo. (a) Assigning feature maps. (b) Defining candidate operations for each edge. (c) Learning the poten-
tial architectures and the network weights jointly. (d) Selecting the final architecture.
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16.2  TFLOPs  for  training  with  a  single  sample.  No-

tably,  we  can  store  model  architectures  searched  for

using in other HPC systems. 

4.4    Parallelized Training

Training  a  CNN  model  generally  requires  itera-

tive traversals  over the dataset to improve the accu-

racy  of  the  model  and  make  it  finally  converge.  We

adopt  the  commonly-used  data  parallelism  for  the

training  process  of  SAIH-cosmo  on  the  target  HPC

system. Data parallelism allocates a training task on a

minibatch  of  samples  to  an  available  computational

devices  (GPU  or  CPU  core).  Each  device  keeps  a

copy  of  the  target  model  and  performs  the  training

process  independently  on  its  own  samples.  After  fin-

ishing  the  forward  and  backward  propagations,  the

weights are updated by performing the allreduce oper-

ation on all devices. We adopt NVIDIA NCCL as the

collective  data  movement  backend,  which  transmits

data through NVLink and Infiniband.

β1 = 0.9 β2 = 0.999 ϵ̂ = 10−8

Batch size, which determines the number of sam-

ples  parallelly  trained  in  a  GPU,  is  critical  for  data

parallelism.  The  larger  the  batch  size,  the  less  the

number  of  allreduce  operations  required  for  each

epoch.  This  results  in  less  communication overheads.

However, the batch size is limited by two factors, i.e.,

memory capacity and model convergence. In terms of

memory capacity, increasing the batch size leads to a

proportional  growth of  memory capacity.  In order to

maximize the performance of an HPC system and in-

vestigate the bottleneck when it is fully loaded on the

GPU device,  we  tune  the  batch  size  for  each  model.

Thus,  the  batch  sizes  of  the  small  model,  medium

model and large model in each GPU are set to 10, 4

and  1,  respectively.  As  for  the  convergence  problem,

it is mainly solved by optimizing machine learning al-

gorithms,  such  as  gradient-based  optimization,  e.g.,

momentum,  Adagrad  and  Adam[31].  Here  we  adopt

Adam  as  our  gradient  optimizer.  Adam  designs  the

adaptive learning rate for accelerating stochastic opti-

mization.  We  set  hyperparameters  of  Adam  with

, , .  Then we further com-

bine  Adam  with  LARS[32].  LARS  adaptively  adjusts

the learning rate for each layer and it enables better

convergence in an extremely large batch size. 

5    Evaluation
 

5.1    Experimental Setup

SAIH-cosmo  is  implemented  in  PyTorch  v1.5.0

n = 1, 2, 4, 8, 16, 32

d = 64, 32, 16, 8, 4, 2, 1

and  the DistributedDataParallel class  of  PyTorch  is

used for data parallelism. We perform both node scal-

ing and data scaling executions on SAIH-cosmo with

different  models  to  understand  3D  CNN  training  on

the  HPC  system.  Meanwhile,  we  further  investigate

their  arithmetic  intensity  by  the  NVIDIA  profiling

tool  (nvprof)  and mixed precision  training  by Nvidia
apex.  Overall,  as  shown  in Table 2,  for  each  model,

the  node  scaling  training  uses  1/32  of  the  complete

dataset (101 088 samples) and runs on 1,  2,  4,  8,  16,

and 32 nodes of the cluster ( ). The

data scaling training uses four nodes and the training

dataset  size  scales  from 1/64  to  1/1  of  the  complete

dataset  ( ).  To  illustrate  the

model convergence, we execute each training with 60

epochs.  Notably,  it  is  optional  for  SAIH users  to  ig-

nore  the  convergence  and  only  focus  on  performance

trends, which can largely reduce the evaluation costs,

from days to a few hours.
 
 

Table  2.    Experimental Settings

Node Scaling Data Scaling

Data Node Data Node

Small model 1/32 n 1/d 4

Medium model 1/32 n 1/d 4

Large model 1/32 n 1/d 4
 

5.2    Model Accuracy

Training  an  accurate  DNN  model  is  the  funda-

mental requirement for an AI application. The losses

of the three models show a rapid decrease within the

first  epoch  and  then  show  different  trends.  We

demonstrate  the  losses  after  each  epoch  of  the  three

models in Fig.6, which shows that a larger model can

generally provide better accuracy.

Besides,  we  additionally  find  that  a  larger  model

in SAIH-cosmo has more stable convergence in multi-

node training. For the small model, the losses of three

cosmological  states  decrease  with  significant  fluctua-

tions,  and  it  fails  to  converge  within  60  epochs.  In

contrast,  the  medium  and  large  models  converge

much  more  stable.  At  the  beginning  of  the  training

phase, the losses of the medium model initially go up

and  then  decrease  rapidly,  while  those  of  the  large

model converges constantly and steadily. Also, in the

final  epochs,  the  large  model  achieves  with  the  best

losses.

Although  we  apply  the  LARS  algorithm[32],  in-

creasing  the  number  of  GPUs  to  16  (4  nodes)  influ-
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ences the convergence of the AI models. As shown in

Fig.6(d),  the  small  model  displays  wider  fluctuations

in losses, severely damaging the convergence, which is

also  consistent  with  the  results  of  CosmoFlow[2].  In

terms of the medium model, it also shows more rough

converging  process  compared  with  the  1-node  execu-

tion,  and  slightly  impairs  the  final  accuracy.  On  the

contrary,  distributed  training  contributes  to  positive

impact on the large model.  Increasing the number of

nodes makes the large model converges to a better re-

sult.

While  we adopt the simplified NAS in SAIH-cos-

mo with a narrow searching space, our automatically

generated  models  achieve  significant  improvement  as

the  computation  demand  increases,  which  validates

its applicability as well as the preservation of scientif-

ic meaning.

Finding 1. Overall, the models augmented by NAS

lead  to  better  accuracy  and  better  convergence.  Be-

sides,  with  progressively  increasing  the  sizes  of  mod-

els, we find that the convergences of larger models are

more steady in multi-node training. 

5.3    Evaluation with GPU Node Scaling

The evaluation with GPU node scaling follows the

definition of strong scaling, which concerns the accel-

eration  for  a  fixed  problem  size  with  respect  to  the

number  of  GPU  devices,  and  is  limited  by  the  frac-

tion  of  the  serial  part  in  a  program  that  is  not

amenable to parallelization. When fixing the data size

(1/32  dataset)  and  scaling  up  the  number  of  GPUs

from 4 to 128, it displays different performance scala-

bility  for  these  models  as  shown  in Figs.7(a)–7(c).

The  average  FLOPS  of  a  single  GPU  are  shown  in

Fig.8(a).

We  first  discuss  on  the  average  performance  of

each  GPU,  which  varies  largely  in  different  model

sizes. With four GPUs, the medium model shows the

best  performance  at  9.21  TFLOPS  for  each  GPU,

achieving 58.66% peak performance of Tesla V100. In

comparison, the large model executes with lower aver-

age FLOPS. The small model has only achieved about

800  GFLOPS  on  each  GPU,  which  is  much  lower

than the other two models.

As  shown  in Table 3,  the  arithmetic  intensity  of

the small model is much lower than those of the oth-

er  two  models.  Here  ``Read  Times''  and  ``Write

Times'' represent the number of memory read access-

es  and  memory  write  accesses  respectively.  Also,  we

can notice that the computation demand of the small

model is several orders of magnitude lower than those

of  the  other  two  models.  To  profile  the  memory  us-

age of each model, we find that the gap of the memo-

ry  footprint  between  the  small  model  and  other  two

models is not so large as the computation demand. In

details,  the  weights  and  intermediate  results  of  the

medium  and  large  models  are  only  3.79x  and  7.46x

more  than  those  of  the  small  model,  respectively.  In

comparison, the computation demands are 67.25x and

257.97x higher than those of the small model, respec-

tively.  When  we  adjust  the  batch  sizes  of  the  three

models to saturate the GPU memory, the small mod-

el cannot train with an extremely large batch size to

make  full  use  of  all  computing  units,  resulting  in  a

much lower arithmetic intensity than the other mod-
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Fig.6.  Loss change in 1/32 dataset. (a) Small model in 1 node. (b) Medium model in 1 node. (c) Large model in 1 node. (d) Small
model in 4 nodes. (e) Medium model in 4 nodes. (f) Large model in 4 nodes.
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els with more computation demands. In this way, the

small model is limited by GPU memory capacity and

the  small  batch  size  cannot  saturate  the  computing

unit.  Besides, we also observe that the memory foot-

print  mainly  comes  from  intermediate  results  rather

than  weights  in  3D  CNN,  where  the  memory  foot-

print  of  intermediate  result  is  about  30x  larger  than

those of the weights in these three models.

As for the large model, although it has the largest

GPU memory footprint and computation demand, the

counter-intuitive  observation  is  that  it  has  lower

arithmetic intensity than the medium model. Table 4

and Table 5 list  the  arithmetic  intensity  of  top-10

kernels  sorted  by  the  number  of  memory  access.

%MemAcc  is  the  percentage  distribution  of  memory

access of kernels. ``ID'' is a unique ID for each kernel

in the CNN model, which is executed on GPU. First,

the types and percentages of kernels in the large mod-

el are quite different from those in the medium model.

In  the  large  model,  the  kernel  with  66.53%  memory

accesses holds only 516 arithmetic intensity, while the

top-3  kernels  in  the  medium model  have  1.8x  higher

weighted aggregate arithmetic intensity than those in

the large model, i.e., 2 183 compared with 1 210. This
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Fig.7.   Performance  evaluation  with  node  and  data  scaling.  (a)  Small  model  in  node  scaling.  (b)  Medium model  in  node  scaling.
(c) Large model in node scaling. (d) Small model in data scaling. (e) Medium model in data scaling. (f) Large model in data scaling.
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Table   3.      Arithmetic  Intensity  Analysis  with  4  GPUs  and
1/32 Dataset

Model
Size

Batch
Size

FLOPs Read
Times

Write
Times

Intensity

Small 10 6.90× 1010 1.00× 107 7.53× 107 808

Medium 4 4.64× 1012 1.15× 109 7.09× 108 2 500

Large 1 1.78× 1013 7.13× 109 5.21× 109 1 442
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is  due  to  the  higher  internal  thread-level  parallelism

in the medium model than that in the large model. In

addition,  the  fact  that  the  3D  feature  map  of  the

large model is bigger than that of the medium model

results  in  more  strided  memory  access,  further  de-

creasing the arithmetic intensity.

Finding 2. For 3D CNN models, the ratio of mem-

ory  footprint  and  computation  amount  is  not  stable

but changes in a wide range. Besides, the models with

more  layers  and  weights  are  not  always  leading  to

higher GPU performance and TFLOPS, which are in-

stead  significantly  determined  by  the  arithmetic  in-

tensity of AI models.

Then  we  analyze  the  performance  scalability  of

the distributed training. When scaling the training to

128 Tesla V100 GPUs, the small model achieves 112.3

aggregate TFLOPS; the medium model achieves up to

797.1  TFLOPS;  and  the  large  model  achieves  379.2

TFLOPS. From 4 GPUs to 128 GPUs, the speedups

of these three models are 25.6x, 22.2x, and 13.45x re-

spectively. Since the training procedure contains com-

O(parameters+ nodes)

putation  and  communication  in  each  iteration,  the

larger  model  has  weaker  scalability  due  to  both  the

larger  communication overhead of  each iteration and

the  smaller  batch  size  limited  by  the  GPU  memory

capacity.  On  the  one  hand,  communications  among

GPUs adopt allreduce to collectively aggregate gradi-

ents  with  time  complexity.

The hyperparameter, batch size,  does not change the

total number of gradients in the model to be commu-

nicated, since the gradients in a minibatch of samples

will  be  aggregated  locally  within  a  GPU  before  per-

forming  inter-node  communications.  On  the  other

hand, the larger batch size can reduce the number of

communication  operations  in  one  epoch,  leading  to

relatively  less  communication  overheads.  The  16  GB

HBM  of  a  single  Tesla  V100  GPU,  which  is  larger

than most of other GPUs' memory capacity, can only

contain one input sample trained on the large model,

which occupies more than 13 GB memory. Thus, the

larger  model  has  a  smaller  batch  size,  resulting  in

weaker parallelism. A large batch size plays a key role

in increasing parallel efficiency, which is also stressed

in You et al.[32].

Finding 3.  Besides  saturating  computation  units

by high parallelism, a large batch size can further im-

prove the performance scalability by reducing I/O fre-

quency and overhead. 

5.4    Evaluation with Data Scaling

In this subsection, we further investigate the data

scaling,  which  fixes  the  number  of  nodes  to  4  and

scale  the  training  dataset  from  the  fraction  1/64  to

1/1 of the complete dataset and the performance is il-

lustrated in Figs.7(d)–7(f). The average TFLOPS per

GPU is in Fig.8(b).

Overall,  in data scaling,  there are two major fac-

tors that affect the aggregate performance, data load-

ing in memory hierarchy and communication for allre-

duce.  For  communication,  since  the  number  of  com-

munication-intensive  operation,  allreduce,  changes

proportionally  to  the  computation,  it  almost  has  no

impact on the ration of communication time and the

overall  evaluation  time.  Thus,  we  here  mainly  focus

on  data  loading.  In  terms  of  the  medium model  and

the large model, their performances fluctuate in a lim-

ited  range,  and  that  of  the  large  model  is  wider.  As

for  the  small  model,  when  the  data  volume  is  1/64,

1/32, 1/16, 1/8, and 1/4, the average FLOPS is very

stable  at  around  800  GFLOPS,  while  there  is  a  de-

crease  to  about  520  GFLOPS  with  the  1/2  and  1/1

 

Table  4.    Profiling Results of CNN Kernels

Medium Model Large Model

ID %MemAcc Intensity ID %MemAcc Intensity

0 26.76 922 0 66.52 516

1 26.31 5 201 1 13.57 6 391

2 15.06 3 777 5 2.18 5

3 5.68 19 10 1.57 19

4 3.41 1 11 1.46 4

5 3.40 36 3 1.46 4

6 2.90 2 7 1.46 4

7 2.90 8 6 1.10 8

8 1.75 0 12 1.02 1

9 1.15 12 13 0.94 36

Note: These dominant values are marked in bold.

 

Table  5.    Kernels in Cosmological CNN Model

ID Kernel

0 scudnn_128x64_stridedB_splitK_small_nn_v1

1 scudnn_128x64_stridedB_splitK_medium_nn_v1

2 scudnn_128x128_stridedB_splitK_small_nn_v1

3 implicit_convolveNd_sgemm(int1024)

4 convolveNd_wgrad_engine

5 implicit_convolveNd_sgemm(int512)

6 bn_bw_1C11_kernelnew

7 bn_fw_tr_1C11_kernel_NCHW

8 setOutputKernel

9 vectorized_elementwise_kernelGLOBAL__N__57_tmpxft

10 convolveNd_wgrad_engine(int = 8)

11 convolveNd_wgrad_engine(int = 7)

12 vectorized_elementwise_kerneladd_kernel_cuda

13 vectorized_elementwise_kernelgpu_kernel_with_scalars
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datasets,  and  this  observation  is  more  obvious  in

Fig.7(d).  Investigating  the  breakdown,  for  all  of  the

three  models,  we  observe  that  there  is  a  long  data

loading time at the beginning of each epoch, and un-

expected  data  loading  time  when  training  with  the

1/1  or  1/2  datasets.  As  the  small  model  has  the

shorter  computation time and larger  fraction of  data

loading time, we can observe that the overall  perfor-

mance decrease is more obvious.

The data loader in PyTorch endeavors to load all

training data into GPU node memory. At the begin-

ning of each epoch, the execution of data loading re-

sults  in  a  large  amount  of  idle  time  for  computing

units,  as well  as heavily stressing the shared file sys-

tem. Zooming into the unexpected data loading time,

the  data  loader  in  PyTorch  has  a  prefetch  strategy

from node memory to GPU memory, while it lacks an

efficient data prefetch strategy from the file system to

node  memory.  The  entire  dataset  takes  1.6  TB stor-

age,  while  each node of  the cluster  has  only 256 GB

memory capacity. In this way, four nodes fail to load

the entire 1/1 and 1/2 dataset into memory. It has to

wait  for  data  in  the  swap  area  to  be  loaded  before

continuing  the  training  procedure,  leading  to  unex-

pected data swapping overhead. For example, the per-

centage  of  data  loading  time  in  the  small  model  in-

creases from 2.83% to about 20% as the dataset scales

from 1/4 to 1/1, resulting in 31.2% reduction in over-

all FLOPS.

Finding 4. Different from traditional HPC applica-

tions, AI training demands I/O throughout during the

whole  training  procedure  for  accessing  input  training

data and intermediate data. Thus, a local storage sys-

tem on each compute node is recommended for stag-

ing the training and intermediate data.

Finding 5. A large dataset with frequent data ac-

cesses  can  make  memory  hierarchy  become  a  bottle-

neck. Thus, with scaling scientific datasets, SAIH-cos-

mo probes  the performance capability  of  memory hi-

erarchy,  which  is  critical  to  the  evaluation  of  the

overall AI performance on HPC systems. 

5.5    Mixed Precision Results

Theoretically, Tesla V100 claims 15.7 TFLOPS of

single-precision (FP32) performance and 125 TFLOPS

half-precision (FP16) performance by utilizing its nov-

el  tensor  core  architecture.  We  evaluate  the  perfor-

mance of SAIH-cosmo under the mixed precision set-

ting  by  employing  NVIDIA  apex  with  optimization

level  O1.  However,  as  shown  in Table 6,  the  mixed

precision evaluations, i.e., Apex[O1], can only achieve

up  to  1.76x  speedup  for  the  three  models  compared

with  the  FP32  execution,  i.e.,  Apex[O0].  This  is  sig-

nificantly  lower  than  the  theoretical  peak  perfor-

mance.
 
 

Table   6.      Execution  Time  in  1/32  Dataset  with  Different
Precision Levels

Precision Level Description Execution Time (s)

Small Medium Large

Apex[O0] Pure FP32 18.71 364.06 2 497.2

Apex[O1] Mixed precision 19.46 205.38 1 867.9
 

tensor_precision_fu_utilization

We  adopt nvprof with  turning  on  the

 metrics  to  diagnose

the counter-intuitive  performance gap.  While  accord-

ing  to  the  NVIDIA  official  document,  only  cudnn⑧

newer than version 8.0.2 can be compatible with Py-

Torch and enable it to utilize tensor core architecture

for training 3D convolution with mixed precision. Our

results show that the tensor core is under a very low

utilization  only  contributing  around  4.4%  of  the  en-

tire  execution,  which  results  in  an  extremely  limited

performance gain on SAIH-cosmo. Also, through pro-

filing on individual kernels, we find that cudnn is inef-

ficient  in  some  outlier  mixed-precision  3D  convolu-

tions, e.g., the situation with a small number of chan-

nels  requires  high memory access  overhead,  and it  is

easy  to  improve.  To  further  take  advantage  of  the

tensor  core  architecture,  the  instruction-level  restric-

tions  under  high-level  AI  frameworks  and  convolu-

tion  libraries,  e.g.,  the  input  size  and  memory

layout[33],  have  to  be  resolved,  in  particular  for  per-

forming 3D convolutions, which are not optimized so

well  as  the  2D  convolutions  commonly  used  in

hotspot AI research areas.

Finding 6.  AI  related  libraries,  like  cudnn  and

cublas, are released with the capability of supporting

low-precision  and mixed-precision  training  operations

on  novel  architectures,  e.g.,  tensor  core.  However,

without customized by AI system experts,  the mixed

precision is not well prepared in a plug-and-play man-

ner  for  supporting  accelerating  common  AI  opera-

tions on AI frameworks, e.g., conv3d in PyTorch. 

5.6    Comparison and Summary

This  subsection  is  going  to  compare  SAIH  with

other methods and illustrate our contributions. Table 7

presents  features  of  representative  benchmarks.  No-
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tably, SAIH is an evaluation methodology rather than

an  AI  benchmark  with  a  defined  AI  model  and

dataset,  e.g.,  HPL-AI and HPC-AI500.  It  is  different

from  existing  benchmarking  methods  on  evaluation

target (AI performance trend via both strong scaling

and  weak  scaling  evaluations),  evaluation  settings

(varying  model  sizes  and  dataset  sizes)  and  evalua-

tion  testcases  (cosmological  AI  applications).  Specifi-

cally, in our testcase, we adopt unique evaluation set-

tings  such  as  both  strong  scaling  and  weak  scaling

evaluations  with  varying  model  sizes  and  dataset

sizes. Thus, it could not directly compare our method

with existing benchmarks, and we make a qualitative

comparison  between  SAIH  and  four  representative

benchmarks,  i.e.,  HPL-AI[16],  Deep500[17],  MLPerf-

HPC[20] and  HPC-AI500[21],  to  illustrate  that  our

SAIH is effective and can bring new insights for next-

generation HPC systems.

At first, SAIH has a different positioning from the

benchmark  projects.  The  benchmark  projects  mainly

focus on the AI performance of the same job in differ-

ent infrastructures and rank different infrastructures,

while  SAIH  aims  at  demonstrating  the  performance

changes  when  AI  applications  scale  up  and  under-

standing the requirements of AI applications for sub-

systems,  e.g.,  I/O,  compute  unit,  and  communicate.

In detail,  HPL-AI can represent the traditional  HPC

benchmarks.  It  measures  and  compares  the  mixed-

precision  performance  of  HPC  systems  by  solving

mixed-precision  linear  equations.  Notably,  HPL-AI

provides  the  scalability  as  our  SAIH  and  can  derive

the maximum performance of HPC systems. However,

it  mainly  investigates  the  computation  of  an  HPC

system and can hardly represent the practical AI per-

formance of an HPC system. In comparison, the data

and  model  augment  methods  in  our  SAIH  keep  the

scientific meaning when scaling AI applications, mak-

ing our evaluation with practical significance.

Deep500  which  is  a  modular  benchmark  infras-

tructure can be integrated into most evaluation meth-

ods.  It  characterizes  many  fine-grained  metrics,  e.g.,

utilization  of  computing  devices,  collective  communi-

cation, and IO, into modules and can be used to help

evaluate  different  framework  implementations  and

multiple  levels  of  operators.  In fact,  the implementa-

tion of Deep500 is difficult to be integrated into large-

scale  AI  applications  and  our  SAIH  includes  many

metrics defined in Deep500.

MLPerf-HPC  is  an  emerging  benchmark  focusing

on  the  intersection  of  scientific  AI  applications  and

HPC systems.  MLPerf-HPC rewrites  the  CosmoFlow

(as our SAIH) and a weather analysis AI application.

Compared  with  SAIH,  it  mainly  adopts  the  static

dataset  and  model  architecture  and  takes  the  tradi-

tional time-to-solution metric as the main criterion for

ranking  HPC  systems,  lacking  scalability.  Compared

with  SAIH,  it  lacks  the  weak  scaling  evaluation,

which is important in the HPC filed. Thus, it cannot

investigate the performance changes dynamically and

help  understand  the  AI  performance  trends  as  our

SAIH.

At  last,  for  HPC-AI  500,  in  order  to  further  as-

sure  equivalence,  it  presents  a  new  metric  named

valid  FLOPS,  which  imposes  a  penalty  on  failing  to

achieve a target training quality. It selects the image

classification  and  extreme  weather  analysis  as  tasks.

Besides, its core idea is similar to MLPerf-HPC. The

findings  of  our  SAIH  are  different  from  those  of

MLPerf-HPC and HPC-AI500,  and can illustrate the

AI capability and performance trend of HPC systems

in both strong and weak scaling evaluation.

Through  the  evaluation  and  comparison,  we  no-

tice that the main idea of SAIH does not overlap with

those  of  existing  methods.  SAIH  provides  a  feasible

solution  to  make  AI  application  evaluation  scalable

and can investigate many novel findings. Particularly,

with  the  SAIH-cosmo,  we  evaluate  the  AI  perfor-

mance for an important type of models, 3D CNN, on

a  heterogeneous  HPC  cluster.  The  evaluation  with

scaling problem size helps us diagnose some emerging

system  performance  bottlenecks  and  investigate  the

potential  AI  performance  of  the  HPC system.  More-

 

Table  7.    SAIH and Representative Benchmarks

Name Positioning Metric Application Domain Target

HPL-AI[8] Benchmark FLOPS, FLOPS/Watt Linear equations Measure mixed-precision
performance of HPC systems

Deep500[17] Benchmark Throughput, time to
solution

Any AI applications in theory Help evaluate framework
implementations

MLPerf-HPC[20] Benchmark Time to solution Cosmology and weather analysis Speed up the training time

HPC-AI500[21] Benchmark Valid FLOPS ImageNet and weather analysis Speed up the training time

SAIH Evaluation method
(mainly vertical
comparison)

FLOPS as scaling,
scalability

Cosmology Understand AI performance trend
and guide the design for emerging
HPC systems

Jiang-Su Du et al.: SAIH: Scalable Evaluation for AI Performance Trend on HPC Systems 397



over,  we  illustrate  the  performance  details  of  SAIH-

cosmo  and  quantify  its  evaluation  on  the  HPC  sys-

tem in Table 8.
  
Table  8.    Performance and Qualitative Evaluation Summary
of SAIH-cosmo

Metric Value

Domain Cosmology

Data augment Simulation

Model augment NAS

DNN model 3D CNN

Data format 3D particle

AI framework PyTorch

Dataset size (TB) [0.025, 1.600]

HPC system GPU cluster with 32
nodes, 4 Tesla V100
GPUs/node

FLOPs of AI model [69G, 16.2T]

FLOPS (ratio of theoretical
FLOPS)

[69.6 TFLOPS (5.2%),
797.1 TFLOPS (59.6%)]

Singe GPU performance (TFLOPS) [0.51, 9.21]

Speedup on strong scaling [13.45x, 25.60x]

Arithmetic intensity [838, 2 501]

Accuracy/loss [0.024 75, 0.067 54]
 

6    Conclusions

In  this  paper,  a  novel  scalable  methodology,

SAIH, was proposed for better understanding AI per-

formance  trend  of  HPC  systems.  Based  on  the

methodology,  we  implemented  a  testcase  SAIH-cos-

mo.  SAIH-cosmo  is  transformed  from  a  cosmological

AI  application  and  it  is  with  data  and  computation

scalability.  Through evaluating  SAIH-cosmo on a  re-

al  HPC system, we successfully diagnosed many new

insight  findings  as  data  and  computation  scaling

large. For example, we found that the convergences of

larger models are more steady in multi-node training,

which cannot be noticed if there is not a range of in-

cremental models. In this way, with SAIH, we can not

only  diagnose  existing  system  performance  bottle-

necks, but also guide emerging HPC systems towards

better  AI  support.  In  future  work,  we  plan  to  en-

hance SAIH in the following aspects: 1) building new

representative SAIH instances in various scientific do-

mains, e.g., RNN application in genome analysis, and

2) creating fine-grained profiling components so as to

identify performance bottlenecks on HPC systems. 
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