

AutoQNN: An End-to-End Framework for Automatically Quantizing
Neural Networks

Cheng Gong1 (龚　成), Member, CCF, Ye Lu2, 3 (卢　冶), Senior Member, CCF
Su-Rong Dai2 (代素蓉), Student Member, CCF, Qian Deng2 (邓　倩)
Cheng-Kun Du2 (杜承昆), Student Member, CCF
and Tao Li2, 3, * (李　涛), Distinguished Member, CCF, Member, ACM

1 College of Software, Nankai University, Tianjin 300350, China
2 College of Computer Science, Nankai University, Tianjin 300350, China
3 State Key Laboratory of Processors, Institute of Computing Technology, Chinese Academy of Sciences

Beijing 100190, China

E-mail: cheng-gong@nankai.edu.cn; luye@nankai.edu.cn; daisurong@mail.nankai.edu.cn; dengqian@mail.nankai.edu.cn
dck@mail.nankai.edu.cn; litao@nankai.edu.cn

Received May 30, 2021; accepted December 26, 2022.

Abstract Exploring the expected quantizing scheme with suitable mixed-precision policy is the key to compress deep

neural networks (DNNs) in high efficiency and accuracy. This exploration implies heavy workloads for domain experts,

and an automatic compression method is needed. However, the huge search space of the automatic method introduces

plenty of computing budgets that make the automatic process challenging to be applied in real scenarios. In this paper, we

propose an end-to-end framework named AutoQNN, for automatically quantizing different layers utilizing different

schemes and bitwidths without any human labor. AutoQNN can seek desirable quantizing schemes and mixed-precision

policies for mainstream DNN models efficiently by involving three techniques: quantizing scheme search (QSS), quantiz-

ing precision learning (QPL), and quantized architecture generation (QAG). QSS introduces five quantizing schemes and

defines three new schemes as a candidate set for scheme search, and then uses the Differentiable Neural Architecture

Search (DNAS) algorithm to seek the layer- or model-desired scheme from the set. QPL is the first method to learn mixed-

precision policies by reparameterizing the bitwidths of quantizing schemes, to the best of our knowledge. QPL optimizes

both classification loss and precision loss of DNNs efficiently and obtains the relatively optimal mixed-precision model

within limited model size and memory footprint. QAG is designed to convert arbitrary architectures into corresponding

quantized ones without manual intervention, to facilitate end-to-end neural network quantization. We have implemented

AutoQNN and integrated it into Keras. Extensive experiments demonstrate that AutoQNN can consistently outperform

state-of-the-art quantization. For 2-bit weight and activation of AlexNet and ResNet18, AutoQNN can achieve the accura-

cy results of 59.75% and 68.86%, respectively, and obtain accuracy improvements by up to 1.65% and 1.74%, respectively,

compared with state-of-the-art methods. Especially, compared with the full-precision AlexNet and ResNet18, the 2-bit

models only slightly incur accuracy degradation by 0.26% and 0.76%, respectively, which can fulfill practical application

demands.

Keywords automatic quantization, mixed precision, quantizing scheme search, quantizing precision learning, quan-

tized architecture generation

Regular Paper

This work is partially supported by the China Postdoctoral Science Foundation under Grant No. 2022M721707, the National
Natural Science Foundation of China under Grant Nos. 62002175 and 62272248, the Special Funding for Excellent Enterprise Tech-
nology Correspondent of Tianjin under Grant No. 21YDTPJC00380, and the Open Project Foundation of Information Security Eval-
uation Center of Civil Aviation, Civil Aviation University of China, under Grant No. ISECCA-202102.

*Corresponding Author

Gong C, Lu Y, Dai SR et al. AutoQNN: An end-to-end framework for automatically quantizing neural networks. JOUR-

NAL OF COMPUTER SCIENCE AND TECHNOLOGY 39(2): 401−420 Mar. 2024. DOI: 10.1007/s11390-022-1632-9

©Institute of Computing Technology, Chinese Academy of Sciences 2024

https://doi.org/10.1007/s11390-022-1632-9
https://doi.org/10.1007/s11390-022-1632-9
https://doi.org/10.1007/s11390-022-1632-9
https://doi.org/10.1007/s11390-022-1632-9
https://doi.org/10.1007/s11390-022-1632-9
https://doi.org/10.1007/s11390-022-1632-9
https://doi.org/10.1007/s11390-022-1632-9

1 Introduction

The heavy computational burden immensely hin-

ders the deployment of deep neural networks (DNNs)

on resource-limited devices in real application scenar-

ios. Quantization is a technique which compresses

DNN weight and activation values from high-preci-

sion to low-precision. The low-precision weights and

activation occupy smaller memory bandwidth, regis-

ters, and computing units, thus significantly improv-

ing the computing performance. For example,

AlexNet with 32-bit floating-point (FP32) can only

achieve the performance of 1.93 TFLOPS on

RTX2080Ti due to the bandwidth constraints. How-

ever, the low-precision AlexNet with 16-bit floating-

point (FP16) can achieve the performance of 7.74

TFLOPS on the same device because the required

bandwidth is halved while the available computing

units are doubled①. The FP16 AlexNet is four times

faster than the FP32 one on RTX2080Ti GPU.

Therefore, quantization can reduce the computing

budgets in the DNN inference phases and enable the

DNN model deployment on resource-limited devices.

However, unreasonable quantizing strategies, such

as binary[2] and ternary[3], tend to seriously affect

DNN model accuracy[4, 5] and lead to customer frus-

tration. Lower bitwidth usually leads to higher com-

puting performance but larger accuracy degradation.

The quantization strategy selection dominates the

computing performance and inference accuracy of

models. In order to balance the computing perfor-

mance and inference accuracy, many previous investi-

gations have tried to select a unified bitwidth for all

layers in DNNs[6, 7] cautiously. However, many stud-

ies show that different layers of DNNs have different

sensitivities[8, 9] and computing budgets[10]. Using the

same bitwidth for different layers is hard to obtain

superior speed-up and accuracy. To strike a fine-

grained balance between efficiency and accuracy, it is

strongly demanded to explore desirable quantizing

schemes[11] and reasonable mixed-precision policies[10, 12]

for various neural architectures. The brute force ap-

proaches are not feasible for this exploration since the

search space grows exponentially with the number of

layers[8]. Heuristic explorations work in some scenar-

ios but greatly rely on the heavy workloads of do-

main experts[11]. Besides, it is impractical to find de-

sirable strategies for various neural architectures

through manual-participated heuristic explorations

because there are a large number of different neural

architectures, and the number of neural architectures

is still explosively increasing.

Therefore, it is expected to propose an automatic

DNN quantization without manual intervention. The

challenge of automatic quantization lies in efficiently

exploring the large search space exponentially increas-

ing with the number of layers in DNNs. Many stud-

ies made substantial efforts and gained tremendous

advances in this area, such as mixed-precision

(MixedP)[12], HAQ[10], AutoQB[13], and HAWQ[8]. Nev-

ertheless, there are still some issues that have not

been resolved well yet, as follows. Firstly, it is widely

acknowledged that different quantizing schemes can

impose an impact on the accuracy of quantized DNNs

even with the same quantizing bitwidth[4, 14, 15]. How-

ever, few studies investigate seeking quantizing

schemes for specific architectures, to the best of our

knowledge. Secondly, mixed-precision quantization is

an efficient way to improve the accuracy of quan-

tized DNNs without increasing the average

bitwidth[10, 12, 13]. The presented algorithms include re-

inforcement learning[10, 13], evolution-based search[16],

and hessian-aware methods[8, 9]. However, these algo-

rithms for mixed-precision search are highly complex

and inefficient in exploring the exponential search

space. The algorithms usually require lots of comput-

ing resources, making it challenging to deploy them in

online learning scenarios. Besides, these algorithms

can easily fall into sub-optimal solutions because they

usually skip the search steps of unusual bitwidths,

such as a bitwidth of 5[12], to reduce search time.

To address the above issues and challenges, we

propose AutoQNN, an end-to-end framework for au-

tomatically quantizing neural networks without man-

ual intervention. AutoQNN seeks desirable quantiz-

ing strategies for arbitrary architectures by involving

three techniques: quantizing scheme search (QSS),

quantizing precision learning (QPL), and quantized

architecture generation (QAG). The extensive experi-

ments demonstrate that AutoQNN has the ability to

find expected quantizing strategies within finite time

and consistently outperforms the state-of-the-art

quantization methods for various models on Ima-

geNet. Our contributions are summarised as follows.

402 J. Comput. Sci. & Technol., Mar. 2024, Vol.39, No.2

①The results are computed with the Roofline algorithm[1] using the memory access quantity and operations of an official
AlexNet model from the PyTorch community (https://github.com/pytorch/vision) and the peak performance and memory band-
width of RTX2080Ti GPU.

https://github.com/pytorch/vision

● We propose QSS to automatically find desir-

able quantizing schemes for weights and activation

with various distributions.

● We present QPL to efficiently learn the relative-

ly optimal mixed-precision policies by minimizing the

classification and precision losses.

● We design QAG to automatically convert the

computing graphs of arbitrary DNNs into quantized

architectures without manual intervention.

● Extensive experiments highlight that AutoQNN

can find the expected quantizing strategies to reduce

accuracy degradation with low bitwidth.

The rest of this paper is organized as follows. We

first discuss related work in Section 2 and then elabo-

rate QSS, QOL, and QAG in Section 3. Next we in-

troduce the end-to-end framework in Section 4, and

evaluate AutoQNN in Section 5 and Section 6. Final-

ly, we conclude this paper in Section 7.

2 Related Work

Quantization has been deeply investigated as an

efficient approach to boosting DNN computing effi-

ciency. In this section, we first introduce the related

quantizing schemes, and then describe the recent

mixed-precision quantizing strategies.

2.1 Quantizing Schemes

−

− −

Binary methods with only one bit, such as BC[17],

BNN[2], and Xnor-Net[18], prefer noticeable efficiency

improvement. They can compress DNN memory foot-

print by up to 32x and replace expensive multiplica-

tion with cheap bit-operations. However, the binary

methods significantly degrade accuracy, since the

low bitwidth loses much information. Ternary meth-

ods[3, 5, 19, 20] quantize the weights or activation of

DNNs into ternaries of { 1, 0, 1}, aiming at remedy-

ing the accuracy degradation of the binary methods

without introducing additional overheads. Quater-

nary methods[6, 7] quantize model weights into four

values of { 2, 1, 0, 1}. They reduce the model ac-

curacy degradation using the same two bits as the

ternary methods.

Despite the advanced computing efficiency of the

1-bit or 2-bit methods above, the low bitwidth can

significantly affect the model accuracy. This moti-

vates researchers to investigate high bitwidth fixed-

point quantization. The proposed method in [21]

abandons the last bits of the binary strings of values

and keeps the remaining bits as quantized fixed-point

values. T-DLA[22] quantizes values into low-precision

fixed-point values by reserving the first several signifi-

cant bits of the binary string of values and dropping

the others. However, it is challenging for fixed-point

quantization to handle the weights with a high dy-

namic range.

−

Zoom quantization methods handle the weights

with a high dynamic range by multiplying a full-preci-

sion scaling factor. For example, Dorefa-Net[4] and

STC[20] first zoom the weights into the range of [1,

1] by dividing the weights according to their maxi-

mum value, and then uniformly map them into con-

tinuous integers. Zoom quantization does not deal

with the outliers in weights, which increases the quan-

tization loss.

µ

Clip quantization eliminates the impact of out-

liers on zoom methods by estimating a reasonable

range. It truncates weights into the estimated range.

The key point of clip quantization is how to balance

clip-errors and project-errors[23–25]. PACT[26] reparam-

eterizes the clip threshold to learn a reasonable quan-

tizing range. HAQ[10] minimizes the KL-divergence be-

tween the original weight distribution and the quan-

tized weight distribution to seek the optimal clip

threshold. L2Q[7] seeks the optimal quantizing step-

size by minimizing the L2 distance between the origi-

nal values and the quantized ones.

Besides, there are many studies concerning non-

uniform quantization, such as power-of-two (PoT)

quantization and residual quantization. PoT

methods[15, 27, 28] quantize values into the form of PoT,

thus converting the multiplication into the

addition[27]. Residual methods[29–32] quantize the resid-

ual errors, which are produced by the last quantizing

process, into binaries iteratively. Similar methods,

such as LQ-Nets[33], ABC-Net[34], and AutoQ[35], quan-

tize the weights/activation into the sum of several bi-

nary results.

2.2 Mixed-Precision Strategies

Mixed precision is well known as an efficient

quantizing strategy, which quantizes different layers

with different bitwidths, thus achieving high accura-

cy with low average quantizing bitwidth. HAQ[10]

leverages reinforcement learning (RL) to automatical-

ly determine the bitwidth of layers of DNNs by re-

ceiving the hardware accelerator's feedback in the de-

sign loop. The mixed-precision method (MixedP)[12]

Cheng Gong et al.: AutoQNN: A Framework Automatically Quantizing Neural Networks 403

formulates mixed-precision quantization as a neural

architecture search problem. AutoQB[13] introduces

deep reinforcement learning (DRL) to automatically

explore the space of fine-grained channel-level net-

work quantization. The proposed method in [16] con-

verts each depth-wise convolution layer in MobileNet

to several group convolution layers with binarized

weights, and employs the evolution-based search to

explore the number of group convolution layers.

HAWQ[8] and HAWQ-V2[9] employ the second-order

information, i.e., top Hessian eigenvalue and Hessian

trace of weights/activation, to compute the sensitivi-

ties of layers and then design a mixed-precision poli-

cy based on these sensitivities. BSQ[36] considers each

bit of the quantized weights as an independent train-

able variable and introduces a differentiable bit-spar-

sity regularizer for reducing precision.

3 AutoQNN

In this section, we present three techniques in-

volved in AutoQNN, including quantizing scheme

search (QSS), quantizing precision learning (QPL),

and quantized architecture generation (QAG).

3.1 Quantizing Scheme Search

df ∈ Rd

dq ∈ Qd

R Q

We elaborate the automatic quantizing scheme

search in this subsection. We first summarize five

classical quantizing schemes, then propose three new

quantizing schemes, and finally take the eight

schemes as a candidate set. We will seek desirable

schemes from the candidate set for arbitrary architec-

tures. For ease of notation, we define and

 as the original and quantized vectors, respec-

tively. is the real space and is the set of quan-

tized values.

3.1.1 Candidate Schemes

We divide related quantization methods into eight

categories based on their quantizing processes and the

format of quantized values: binary, ternary, quater-

nary, fixed quantization (FixedQ), residual quantiza-

tion (ResQ), zoom quantization (ZoomQ), clip quanti-

zation (ClipQ), and PoT quantization (PotQ).

The first five schemes can be realized easily, and

thus we just refer to the existing methods.

Binary. The binary in [18] is summarized as:

dq = α · sign(df) s.t. α = E(abs(df)).

sign(df) = (−1)Idf<0

df 1 −1

abs(df) = sign(df) · df df

E(·)

Here maps the positive elements

of to and non-positive ones to .

 converts the elements of in-

to their absolute values. computes the expecta-

tion of input.

Ternary. The ternary proposed in TWN[3] is reor-

ganized as follows:

dq = α ·
⌊⌊

df

2β
+

1

2

⌋⌉1

−1

s.t. α = E(abs({x|x ∈ df, x > β})),
β = 0.7E(abs(df)).

⌊·⌋ ⌊·⌉1−1

[−1, 1]

Here is the floor function, and truncates the

elements of a vector to the range of .

{−2, −1, 0, 1}
Quaternary. Quaternary quantizes weights into

four values of . The quaternary defini-

tion in [6] is summarized as follows:

dq = α ·

(⌊⌊
df

α

⌋⌉1

−2

+
1

2

)
s.t. α =

√
D(df).

D(·)Here computes the variance of input.

FixedQ. FixedQ quantizes values into low-preci-

sion fixed-point formats by dropping several bits of

the binary strings of values. The FixedQ in [22] is

summarized as follows:

dq = α ·
⌊
df

α
+

1

2

⌋
s.t. α = 2p, p = ⌊log2 (max (abs (df)))⌋ − (b− 2).

b max(·)
log2(·)

Here is bitwidth. finds the maximum ele-

ment of an input vector. calculates the loga-

rithm of a scalar with the base of 2.

ResQ. ResQ quantizes the residual errors, which

are the quantization errors produced by the last quan-

tizing process, into binaries iteratively. ResQ can be

defined as follows:

dq =
b∑

i=1

B(vi)

s.t. B(v) = E(abs(v)) · sign(v),

vi =

{
df, if i = 1,
vi−1 −B(vi−1), if i = 2, 3, . . . , b.

The remaining schemes, including ZoomQ, ClipQ,

and PotQ, are widely applied and have been realized

in a variety of ways. Here we propose three new defi-

nitions of them below.

ZoomQ. ZoomQ indicates a group of schemes that

uniformly map full-precision values into integers. It is

404 J. Comput. Sci. & Technol., Mar. 2024, Vol.39, No.2

usually realized by zooming and rounding operations.

The new definition of ZoomQ is given below.

dq = α ·
⌊⌊

df − β

α

⌋⌉2b−1

0

+ β +
α

2

s.t. α =
max(df)−min(df)

2b
, β = min(df).

min(·)

α df

α

Here returns the minimum element of an in-

put vector. The quantizing process of ZoomQ is

shown in Fig.1(a). We first compute a quantizing in-

terval width , and then map the full precision in-

to the integer vector based on the obtained .

ClipQ. ClipQ first truncates values into a target

range, and then uniformly maps the values to low-

precision representations. We define ClipQ as follows:

dq = α ·

(⌊⌊
df

α

⌋⌉2b−1−1

−2b−1

+
1

2

)
s.t. α = argmin

α

||df − dq||22.

α

df

α ∈ {1.283 2, 0.669 4, 0.357 0,

0.193 9, 0.105 6, 0.057 3, 0.030 8} b ∈ {2, 3, 4, 5,

6, 7, 8}

The quantizing process of ClipQ is drawn in Fig.1(b).

For simplicity, we compute optimal for each quan-

tizing bitwidth offline by assuming that satisfies

normal distribution[6, 7]. The optimal solutions under

different bitwidths are

 for

 .

PotQ. PotQ is a non-uniform quantizing scheme

that quantizes values into the form of PoT. We de-

fine PotQ as follows:

dq = α · sign(df) · 2e
s.t. e = v − Iv=0,

v =

⌊⌊
log2

(
abs (df)

α

)
+

1

2

⌋⌉2b−1−1

0

.

Iv=0 vHere maps all the zeros in into ones and the

non-zero values into zeros. The quantized values and

the quantizing process of PotQ are shown in Fig.1(c).

Assuming that the inputs are normally distributed,

we can obtain the optimal solutions offline that are

α ∈ {1.224 0, 0.518 1, 0.038 1} b ∈ {2, 3, 4} for ②.

The quantization loss comparisons of the above

candidate schemes handling different distributions are

shown in Fig.2, and the detailed comparisons of these

schemes are presented in Table 1. The results show

that the schemes perform widely divergent on differ-

ent distributions. No scheme can always achieve the

minimum quantization loss across various distribu-

tions. However, the weights and activation of each

layer in DNNs tend to distribute differently. This ob-

servation implies that employing an undesirable quan-

tizing scheme will make it difficult to fit the distribu-

tions and degrade the accuracy of DNNs. Therefore,

seeking desirable quantization for specific layers or

models is strongly demanded.

3.1.2 Seeking Scheme

G(V,E)

G′(V ′, E ′) G′ G

V ⊂ V ′

V ′ − V

N = |V ′ − V |

We denote the computing graph of a neural archi-

tecture as and the corresponding quantized

graph as . is generated from by

adding the quantizing vertices, that is, .

 is the set that consists of the quantizing ver-

tices. is the number of the added quan-

tizing vertices. We seek suitable schemes for these

quantizing vertices to reduce the accuracy degrada-

tion in quantization.

{Ql
1, Ql

2, Ql
3, . . . , Q

l
n}

vi, vj ∈ V ′ vl
q ∈ V ′ − V l⟨

vi, v
l
q

⟩
,
⟨
vl
q, vj

⟩
∈ E ′

vl
q Ql

k

df
l

dl
q

Ql
k dl

q = Ql
k(df

l)

We denote all the schemes introduced in Subsec-

tion 3.1.1 as a candidate set .

Let , be the -th quantizing

vertex, and . The implementa-

tion of should be a scheme selected from the

candidate set. Let and denote the original vec-

tor and quantized vector, respectively. A quantizing

process of the scheme is denoted as .

Ql
k

df
l

dl
q

Quantizing scheme search (QSS) is proposed to

seek a desirable quantizing scheme from the candi-

date set and quantize into with small accuracy

degradation. We employ the sampling way as de-

(a)

max(df)-min(df)

2+

(b)

(c)

Quantized
Position

C
li
p

C
li
p

C
li
p

C
li
p

2


2


 argmin||df-dq||
2
2 argmin||df-dq||

2
2

df df
df

3 2 1
-1

-1 1 2 3

Fig.1. Quantizing process of our proposed new schemes, including (a) zoom quantization, (b) clip quantization, and (c) PoT quanti-
zation.

Cheng Gong et al.: AutoQNN: A Framework Automatically Quantizing Neural Networks 405

②Since the intervals of quantized values in PotQ grow exponentially with the bitwidth increasing, the maximum bitwidth
should be less than or equal to 4[23].

θl = (θl1, θl2, . . . , θ
l
n)

T

Pθ

scribed in DNAS[12] to find desirable schemes. As

shown in Fig.3, we construct state parameters

 that correspond to the quantiz-

ing schemes, and sample a quantizing scheme with

the probabilities before each training phase. The

sampling process can be defined as follows:

dl
q = Ql

k(df
l)

s.t. k ∼ Pθl , Pθl = softmax(θl).

softmax(·)Here maps values into probabilities.

Unfortunately, the conventional sampling process

k ∼ Pθl

θl

 is non-differentiable, which means the sam-

pling result is hard to guide the optimization of state

parameters . Therefore, we employ the Gumbel-

Softmax[37] to realize a differentiable sampling process:

dl
q =Ql

k(df
l)

s.t. k = arg
k

max(Pθl+gl),

Pθl+gl = softmax(θl + gl), gl ∼ Gumbel(0, 1)n.
(1)

gl
k ∈ glHere is a value drawn from the Gumbel distri-

-2.5 0.0 2.5
0.0

0.2

Uniform

0.0

0.2

0.0

0.1

0.0

0.1

-2.5 0.0 2.5
0.0

0.2

Normal

0.0

0.5

0.0

0.2

0.00

0.05

-5 0 5

Logistic

0.0

2.0

0.0

1.0

0.0

0.2

Exponential

0.0

1.0

0.0

0.5

0.0

0.2

0 5

Lognormal

0.0

10.0

0.0

5.0

0.0

5.0

-5 0 5
0.0

0.2

0.0

0.2

0.0

0.2

T Q F Z C P R

F Z C P R

F Z C P R

F Z C P R

F Z C P R

F Z C P R

F Z C P R

F Z C P R

F Z C P R

F Z C P R

F Z C P R

T Q F Z C P R T Q F Z C P R T Q F Z C P R T Q F Z C P R

Fig.2. Quantization loss comparisons of candidate schemes across various data distributions and quantizing bits. The candidate
schemes include ternary (T), quaternary (Q), FixedQ (F), ZoomQ (Z), ClipQ (C), PotQ (P) and ResQ (R). Quantization loss is the
L2 distance between values before and after quantization. The first row shows different data distributions. The second line presents
2-bit quantization losses. The third line is 3-bit quantization losses, and the last line is 4-bit quantization losses.

Table 1. Detailed Information of the Eight Candidate Schemes

Scheme Number of Bits TC SC Distribution Format Reference

Binary 1 O(n) O(n) – Binary [2, 17, 18]

Ternary 2 O(n) O(n) Normal Ternary [3, 5, 20]

Quaternary 2 O(n) O(n) Normal Quaternary [6, 7]

FixedQ 2–8 O(n) O(n) Uniform Fixed-point [21, 22]

ZoomQ 2–8 O(n) O(n) Uniform Integer [4]

Normal

ClipQ 2–8 O(n) O(n) Normal Integer [25, 26]

Logistic [10, 24]

Exponential [7]

PotQ 2–4 O(n) O(n) Log-normal PoT [15, 27, 28]

ResQ 2–8 O(nb) O(nb) Uniform Sum of binaries [29, 33, 34]

n bNote: TC is the time complexity of quantizing scheme. is the scale of input and is the number of quantizing bits. SC is the space
complexity of quantizing scheme. Distributions denote the distributions wanted by quantizing schemes as shown in Fig.2.

406 J. Comput. Sci. & Technol., Mar. 2024, Vol.39, No.2

dl
q θlk ∈ θl

argmax(·)

Ql
k(df

l)

bution. The sampling process in (1) is differentiable

and the gradients of with respect to can be

derived. However, the gradient of the “hard” sam-

pling process of is zero everywhere, and

the state parameters cannot be optimized. To solve

this problem, we introduce a “soft” sampling process

that adopts the expectation of . Finally, the

seeking scheme of QSS is defined as follows:

dl
q =

n∑
k=1

pl
kQ

l
k(df

l)

s.t. pl
k ∈ softmax

(
θl + gl

τ

)
, gl ∼ Gumbel(0, 1)n.

(2)

τ τ → ∞
Ql

k(df
l) pl

k dl
q

τ → 0

dl
q

τ

vl
q

τ

Here is a temperature coefficient. As , each

output of has the same weight and

equals the averaged outputs. Thus all of the state pa-

rameters can be optimized simultaneously. As ,

 is equivalent to the sampling result in (1). We

smoothly decay from a large value to 0 to select a

desirable quantizing scheme for . The decaying

strategy of is defined as follows:

τ = τ0 × (1− δ/∆)p. (3)

τ0 δ

∆ p

 is the initial temperature. is the current training

epoch and is the number of total training epochs.

is the exponential coefficient.

G′(V ′, E ′) L

L θl

Let the final loss of be . Since (2) is

differentiable, the gradients of with respect to

can be computed as follows:

∂L

∂θl
=

∂L

∂dl
q

∂dl
q

∂θl
.

θl

vl
q

It means that a gradient-descent algorithm can be

employed to optimize the state parameters . There-

fore, we can seek a quantizing scheme for each quan-

tizing vertex to minimize the loss of neural archi-

tecture, so as to improve accuracy.

θ

G′(V ′, E ′)

L θ

In addition, different quantizing schemes require

distinct accelerating implementations, such as the bit-

operations for binaries/ternaries, low-bit multiplica-

tion for fixed-point values, and shift operations for

PoTs. Implementing all of these operations is unrea-

sonable for resource-constrained devices. To simplify

the hardware implementation of accelerators, search-

ing for one shared quantizing scheme for all the ver-

tices in one neural architecture is still demanded. We

realize the coarse-grained QSS by maintaining and

sharing one group of state parameters for all quan-

tizing vertices in . In coarse-grained QSS,

the gradients of with respect to are computed as:

∂L

∂θ
=

N∑
l=1

∂L

∂dl
q

∂dl
q

∂θ
.

3.2 Quantizing Precision Learning

Quantizing precision, i.e., the bitwidth, is an es-

sential attribute of quantizing schemes and deter-

mines the number of quantized values. Selecting an

optimal precision for a specific quantizing scheme is

vital for balancing the efficiency and accuracy of

quantized DNNs. In this subsection, we reparameter-

ize the quantizing precision and learn the relatively

optimal mixed-precision model within a limited mod-

el size and memory footprint.

3.2.1 Bitwidth Reparameterization

b Q
|Q| = 2b

dq = Qk(df)

Let be the number of the quantizing bits and

be the quantized value set, and we have . A

general quantizing process of can be rep-

resented as two stages: 1) mapping the full-precision

weights or activation to the quantized values that be-

High-Precision Data
Low-Precision Data
Gradients

Accumulate

'( ' , ')

g

g

  

df

BTQF ZCPR

B

QSS

TQF ZCPR

1
dq

1 df


dq


vq


v

df 
  

1

...

...

...

...
...

...








L
∂
∂

 ∂
∂

Fig.3. Quantizing scheme search process. Reparameterization is adopted and we optimize the state parameters to seek desirable
quantizing schemes.

Cheng Gong et al.: AutoQNN: A Framework Automatically Quantizing Neural Networks 407

Qlong to , and then 2) scaling the quantized values

into a target range, as shown in Fig.4. Here we ex-

pand the general quantizing process as following for-

mulations.

dq/∈ , | |=2
|df|

-2 -1-4 -3 0

C
li
p

C
li
p

1 2 3

dq=q

q=(df/)

=

=
max(df)-min(df)

2

df∈ |df|

Fig.4. General quantizing process: mapping full-precision val-
ues to integers and then scaling these integers into a target
range.

dq = Qk(df) = αH

(
df

β

)
s.t. H : R|df| → Q|dq|, |Q| = 2b. (4)

|df| |dq| df

dq |df| = |dq| R
H

α β

Qk α

β df dq

Here and are the number of elements of

and , respectively, and . is the set of

real numbers. is a function that projects the vec-

tor with real values into that with quantized values.

 is the scaling factor and is the average step size

of the quantizing scheme . In general, varies lin-

early with to maintain a similar range of and ,

thereby reducing quantization loss.

α = λ× β.

λ = 1 α = β

β

b df

Typically, and [4, 7, 10, 38]. The average

step size can be calculated using the quantizing pre-

cision and the range of as follows:

β =
max(df)−min(df)

2b
.

L G′(V ′, E ′)

b

(∂L)/(∂b)

Therefore, the loss of is differentiable

with respect to the quantizing precision . The gradi-

ent can be calculated as follows:

∂L

∂b
=

∂L

∂dq

∂dq

∂α

∂α

∂β

∂β

∂b

= − ∂L

∂dq

max(df)−min(df)

2b(ln 2)−1

(
H

(
df

λα

)
− df

λα

)
.

(5)

H(·) H ′(·) = 1

We employ the straight through estimator (STE)[4] to

compute the differential of , i.e., . Based

L

b

b

on (5), we get the gradient of with respect to the

quantizing precision , which means that we can repa-

rameterize and employ the gradient-descent algo-

rithm to learn a reasonable quantizing precision.

3.2.2 Precision Loss

L

b

L

b

Generally, DNNs tend to learn high-precision

weights or activation by minimizing . It implies that

the values of the quantizing precision for DNNs will

be optimized to be great ones, such as 32 bits or 64

bits, instead of small ones. To learn a policy with low

average quantizing precision, we propose precision

loss , which measures the distance between the aver-

age quantizing precision and a target precision .

L = (E(B)− b)2

s.t. B =

{
bi|i = 1, 2, . . . ,

N∑
l=1

|dq(l)|

}
.

(6)

b

bi
G′(V ′, E ′) B

bi N = |V ′ − V |

L+ L b

 is the expected quantizing bitwidth of a neural ar-

chitecture, and preset before a precision learning

phase. is the bitwidth of one weight or activation

value in neural architecture . is the set

consisting of . is the number of quan-

tizing vertices as described in Subsection 3.1. The gra-

dient of with respect to is defined as follows:

gb =
∂L

∂b
+

∂L

∂b
.

3.3 Quantized Architecture Generation

G(V,E) V

vi ∈ V E

⟨vi, vj⟩ ∈ E di,j

vi vj Id(vi) Od(vi)

vi vi
Id(vi) = 0

vi
Id(vi) > 0

We denote the computing graph of a neural archi-

tecture as . is the set of the vertices and

 indicates a vertex. is the set of edges and

 indicates that there is a tensor flow-

ing from to . and compute the in-

degree and out-degree of , respectively. is a data

vertex when , such as input image, feature

map, and weight. is an operation vertex when

, such as convolution, batch normalization,

full-connection, and so on.

di,j

di,j

Ve ⊂ V

Let denote a tensor that flows into a time-

consuming and/or memory-consuming vertex, such as

the weight tensor of convolutional (Conv) vertices

and full-connected (FC) vertices. The target of quan-

tization is to reduce the precision of and shrink

the computing consumption of DNNs. These time-

consuming and/or memory-consuming vertices are

called expensive vertices. is the expensive ver-

408 J. Comput. Sci. & Technol., Mar. 2024, Vol.39, No.2

Ve = {vi|vi ∈ V, vi is Conv or FC}

tex set to be quantized. The Conv and FC vertices

occupy more than 99% of operations and memory

footprint in mainstream DNN architectures and appli-

cations. According to the above observations, we set

the Conv and FC vertices as the default expensive

vertices, that is, .

G(V,E)

G′(V ′, E ′)

G(V,E)

Ve

V ′ E ′ = {}
I = {vj|vi ∈ V ′, vj ∈ V − (V ′ ∩ V), ⟨vi, vj⟩ ∈ E}

I ̸= ϕ V ̸= V ′ ∩ V G = (V,E)

I

V ′

We design the quantized architecture generation

(QAG) algorithm to automatically reconstruct the

computing graph into its quantized counter-

part requiring less memory footprint and

few computing overheads. As shown in Algorithm 1,

for a specific DNN with computing graph

and the expensive vertex set , QAG first collects

the vertices with 0 in-degree as the initial vertex set

 and initializes the edge set . Let

, and

we have when , since is

a connected graph. Then we move the vertices from

to iteratively. During this process, we embed

quantizing vertices into the edges flowing into expen-

sive vertices.

G(V,E)

G′(V ′, E ′) |V |
Ve

G′(V ′, E ′)

G(V,E)

O(|V ||E|) O(|V |+ |E|)

The original can be automatically recon-

structed as within iterations, and the

tensors flowing into the expensive vertices of are

replaced with low-precision representations by embed-

ding quantizing vertices. Therefore, the new architec-

ture requires less computing budget than

. The average time and space complexity of

Algorithm 1 are and , respec-

tively.

4 End-to-End Framework

∆

The proposed QAG in Algorithm 1 can signifi-

cantly reduce the quantization workload and avoid

prone errors, so as to provide fast, cheap, and reli-

able quantized architecture generation. We finally im-

plement an end-to-end framework based on the three

techniques in AutoQNN, i.e., QAG, QSS, and QPL.

As shown in Fig.5 and Algorithm 2, AutoQNN is con-

structed with three stages corresponding to the three

techniques and takes a full-precision architecture as

input. AutoQNN first reconstructs the input architec-

ture into a quantized one through QAG. Then it

trains total epochs to seek desirable quantizing

schemes through QSS automatically. Finally, Auto-

QNN retrains/fine-tunes the quantized architecture

with QPL to converge.

Algorithm 1. Quantized Architecture Generation (QAG)

G(V,E)

Ve ⊂ V

Input: computing graph , expensive vertex set

G′(V ′, E′)Output: quantized architecture

V ′ ← {vi|vi ∈ V, Id(vi) = 0}1:

E′ ← {}2:

I ← {vj |vi ∈ V ′, vj ∈ V − (V ′ ∩ V), ⟨vi, vj⟩ ∈ E}3:

I ̸= ϕ4: while do

vj ∈ I5: 　　for do

I ′ ← {vk|vk ∈ V, ⟨vk, vj⟩ ∈ E}6: 　　　　

I ′ ⊆ V ′7: 　　　　if then

V ′ ← V ′ ∪ {vj}8: 　　　　　　

vk ∈ I ′9: 　　　　　　for do

vj ∈ Ve10: 　　　　　　　　if then

vqk11: 　　　　　　　　　　create quantizing vertex

V ′ ← V ′ ∪ {vqk}12: 　　　　　　　　　　

E′ ← E′ ∪ {⟨vk, vqk⟩ , ⟨vqk , vj⟩}13: 　　　　　　　　　　

14: 　　　　　　　　else

E′ ← E′ ∪ {⟨vk, vj⟩}15: 　　　　　　　　　　

16: 　　　　　　　　end if

17: 　　　　　　end for

18: 　　　　end if

19: 　　end for

I ← {vj |vi ∈ V ′, vj ∈ V − (V ′ ∩ V), ⟨vi, vj⟩ ∈ E}20: 　　
21: end while

Algorithm 2. AutoQNN Framework

G(V,E)

Ve ⊂ V Q X
∆

Input: computing architecture , expensive vertices

, candidate quantizing schemes , dataset , training

epochs

G′(V ′, E′)Output: quantized architecture

G′(V ′, E′)1: Generating with Algorithm 1
δ = 1 ∆2: for to do

τ3: 　　Decaying with (3)

G′ X θ4: 　　Training on with respect to weights and
5: end for
6: Sampling the quantizing schemes

b G′ X7: Training the weights and of on to converge

5 Evaluation

In order to train DNN models and evaluate their

performance conveniently, we implement AutoQNN

and integrate it into Keras③ (v2.2.4). Furthermore,

we implement the eight candidate quantizing schemes

presented in Subsection 3.1. For ease of notation, we

use the combination of the scheme name and bitwidth

to denote one quantizing strategy. For example, “P-

3” indicates a PotQ quantizer with a bitwidth of 3.

All quantized architectures are automatically con-

structed by AutoQNN in our experiments. In addi-

tion, respecting that most DNNs have employed Re-

LU[39] to eliminate the negative elements of activa-

Cheng Gong et al.: AutoQNN: A Framework Automatically Quantizing Neural Networks 409

③https://github.com/fchollet/keras, Mar. 2024.

https://github.com/fchollet/keras

tion, we do not use binary, ternary, or quaternary

schemes in activation quantization.

5.1 Image Classification

Image classification provides the basic cues for

many computer vision tasks, and thus the results of

image classification are representative for the evalua-

tion of quantization. For a fair comparison with the

state-of-the-art quantization[23, 25], we quantize the

weights and activation of all layers except the first

and last layers.

5.1.1 Dataset and Models

We conduct experiments with widely used models

on the ImageNet[40] dataset, including AlexNet[41],

ResNet18[31], ResNet50[31], MobileNets[42], Mo-

bileNetV2[43], and InceptionV3[44]. To make a fair

comparison and ensure reproducibility, the full-preci-

sion models used in our experiments refer to the full-

precision pre-trained models obtained from open

sources. Specifically, AlexNet refers to [45], and

ResNet18 cites from literature [46]. Other models are

obtained from official Keras community④. Referenced

accuracy results of the full-precision models used in

our experiments are also from the open-source results,

and no further fine-tuning is made. The data argu-

mentation of ImageNet can be found here⑤.

5.1.2 Baseline Methods

We select the state-of-the-art fixed-precision quan-

tizers including TWNs[3], TTQ[14], INQ[28], ENN[15],

×

×

×

High-Precision Data Low-Precision Data



 

df
1

q
1

dq
1

df


g

g

BTQFZCPR

BTQFZCPR

Steps :

1 Input Full-Precision Model

2 Generate Quantized Model

3 Seek Quantizing Schemes

4 Learn Mixed-Precision Strategies

1 2 3 4

(, ) '( ' , ')

QSS










vq


vq


vq


vq


dq


v

b

b

b

L

...
...

...

...

...

1=

1=

2=

1=

2=

=

= =

2=

Epoch 1 Epoch 2 Epoch 10

...

...

..
. ...

vq


vq


vq


...

...

...

...

Epoch 1 Epoch 2 Epoch 10

BTQF ZCPR BTQF ZCPR BTQF ZCPR

BTQF ZCPR BTQF ZCPR BTQF ZCPR

BTQF ZCPR BTQF ZCPR BTQF ZCPR

1 1 1

2 2 2

  

(b)

(a) (c)

G(V,E)
G′(V ′, E′)

Fig.5. End-to-end neural network quantization. Input is a full-precision architecture and output is the efficient quantized
architecture with desirable quantizing strategies. (a) Generating a quantized architecture with QAG. (b) Seeking quantiz-
ing schemes with QSS. (c) Learning precision with QPL.

410 J. Comput. Sci. & Technol., Mar. 2024, Vol.39, No.2

④https://github.com/fchollet/keras, Mar. 2024.

⑤https://github.com/tensorflow/models, Mar. 2024.

https://github.com/fchollet/keras
https://github.com/tensorflow/models

µL2Q[7], VecQ[6], TSQ[24], DSQ[47], PACT[26], Dorefa-

Net[4], LQ-Nets[33], QIL[25], APoT[23], BRQ and

TRQ[32], and BCGD[48], and mixed-precision quantiza-

tion methods including MixedP[12], AutoQB-QBN and

AutoQB-BBN[13], HAQ[10], BSQ[36], HAWQ[8] and

HAWQ-V2[9], as the baselines for comparison.

5.1.3 Quantizing Strategy Search

For quantizing scheme search, we configure all the

candidate schemes with the same low bitwidth of 3,

since low-bitwidth quantization can highlight the dif-

ference among candidate schemes, ensuring the ro-

bustness of searching results. We train the models

with coarse-grained QSS by 10 epochs to find desir-

able quantizing schemes. Then, based on the found

quantizing schemes, we train 60 epochs to learn a rea-

sonable quantizing precision for each layer.

The quantizing strategies found by QSS and QPL

are shown in Table 2. On both AlexNet and

ResNet18, PotQ is the desirable scheme for weight

quantization, and ClipQ is the scheme for activation

quantization. The reason for the results is that most

of the weights are Log-Normal distributed, and PotQ

is the best one for handling this distribution, as de-

scribed in Subsection 3.1. The activation distribu-

tions of ResNet18 and AlexNet are mostly bell-

shaped, and ClipQ performs well on bell-shaped dis-

tributions, such as normal, logistic, and exponential

distributions described in Subsection 3.1. Therefore,

PotQ and ClipQ are selected as the solutions for the

weight and activation quantization, respectively.

Besides, QPL learns mixed-precision strategies.

For a fair comparison with state-of-the-art fixed-preci-

sion schemes, we compute the average bitwidth for

representing weights and activation of models as con-

ditions in our experiments, since the models with the

same average bitwidth consume the same memory

footprint and storage in model inference.

5.1.4 Comparison with State-of-the-Art

Quantization

We compare AutoQNN with state-of-the-art fixed-

precision quantization across various quantizing bits

and the results are shown in Table 3. The results

show that AutoQNN can consistently outperform the

compared methods with much higher inference accu-

racies. At extreme conditions with only 2 bits for

weights and activation, the accuracy of AutoQNN on

AlexNet is 59.75%, slightly lower than the accuracy of

the referenced full-precision AlexNet by 0.26%. The

accuracy also exceeds that of QIL by 1.65%, and out-

performs that of VecQ by 1.27%. Besides, AutoQNN

achieves an accuracy of 68.84% on ResNet18 using

only 2 bits for all weights and activation. The result

is slightly less than the accuracy of the referenced

full-precision model by 0.76% and exceeds APoT and

VecQ by 1.74% and 0.61%, respectively. AutoQNN

achieves the highest accuracy results of 61.85% and

62.63% when quantizing AlexNet into a 3-bit model

and a 4-bit model correspondingly. AutoQNN also re-

alizes the best results of 69.88% and 70.36% when

quantizing the weights and activation of ResNet18 in-

to 3 bits and 4 bits correspondingly. It is worth not-

ing that the results of quantized models may exceed

the specific referenced accuracy results by fine-tuning.

Still, quantization may harm accuracy, and the quan-

tized models cannot perform better than full-preci-

sion models in accuracy theoretically.

The experiments demonstrate that AutoQNN can

automatically seek desirable quantizing strategies to

reduce accuracy degradation under the different con-

ditions of model size and memory footprint, thus

achieving a new balance between accuracy and effi-

ciency in DNN quantization.

Table 2. Optimal Quantizing Strategies for AlexNet and ResNet18

Model Notation (W/A) Quantizing Bits of Layer Weights Quantizing Bits of Layer Activation Average Bits (W/A)

AlexNet P-2/C-2 4, 4, 4, 4, 2, 2 2, 2, 2, 2, 3, 3 2.13/2.01

P-3/C-3 4, 4, 4, 4, 3, 3 3, 3, 4, 3, 4, 4 3.06/3.20

P-4/C-4 4, 4, 4, 4, 4, 4 3, 3, 3, 5, 5, 5 4.00/4.05

ResNet18 P-2/C-2 4, 3, 4, 4, 3, 3, 4, 4, 2, 2, 3, 2, 3, 2, 2, 3, 3, 2, 2, 2, 2.13/2.49

4, 2, 2, 2, 2, 2, 2, 4, 2, 2 3, 3, 2, 3, 3, 3, 3, 3, 3, 3

P-3/C-3 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 3, 3, 2, 2, 4, 4, 2, 2, 3, 2.94/3.07

4, 4, 4, 4, 4, 4, 2, 4, 3, 2 4, 4, 2, 3, 4, 5, 6, 4, 5, 4

P-4/C-4 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 4, 5, 3, 3, 4, 4, 3, 3, 3, 4.00/4.08

4, 4, 4, 4, 4, 4, 4, 4, 4, 4 5, 6, 3, 4, 5, 7, 7, 5, 7, 6

Note: The first and last layers are not quantized. W/A denotes the results for weights and activation, respectively. The maximum
quantizing bitwidth of PotQ is 4.

Cheng Gong et al.: AutoQNN: A Framework Automatically Quantizing Neural Networks 411

5.1.5 Comparison with Mixed-Precision Schemes

We verify that the proposed AutoQNN can out-

perform state-of-the-art mixed-precision schemes and

gain higher accuracy in DNN quantization in this ex-

periment. According to the results in Subsection 5.1.4,

we employ PotQ for weight quantization and ClipQ

for activation quantization. We seek reasonable

mixed-precision policies by QPL and compare them

with the mixed-precision schemes under the same av-

erage bitwidth condition.

The comparison results are shown in Table 4.

Compared with MixedP[12] on ResNet18, AutoQNN

achieves a higher accuracy of 68.84% with the lower

Table 3. Accuracy Comparison with State-of-the-Art Methods

QB Method W/A AlexNet ResNet18

Top 1 Top 5 Top 1 Top 5

32 Referenced 32/32 60.01 81.90 69.60 89.24

2 TWNs 2/32 57.50 79.80 61.80 84.20

TTQ 2/32 57.50 79.70 66.60 87.20

INQ 2/32 – – 66.02 87.12

ENN 2/32 58.20 80.60 67.00 87.50

µL2Q 2/32 – – 65.60 86.12

VecQ 2/32 58.48 80.55 68.23 88.10

TSQ 2/2 58.00 80.50 – –

DSQ 2/2 – – 65.17 –
PACT 2/2 55.00 77.70 64.40 85.60

Dorefa-Net 2/2 46.40 76.80 62.60 84.40

LQ-Nets 2/2 57.40 80.10 64.90 85.90

QIL 2/2 58.10 – 65.70 –

APoT 2/2 – – 67.10 87.20

BRQ 2/2 – – 64.40 –

TRQ 2/2 – – 63.00 –
AutoQNN P-2/C-2 59.75 81.72 68.84 88.50

3 INQ 3/32 – – 68.08 88.36

ENN-2 3/32 59.20 81.80 67.50 87.90

ENN-4 3/32 60.00 82.40 68.00 88.30

VecQ 3/32 58.71 80.74 68.79 88.45

DSQ 3/3 – – 68.66 –
PACT 3/3 55.60 78.00 68.10 88.20

Dorefa-Net 3/3 45.00 77.80 67.50 87.60

ABC-Net 3/3 – – 61.00 83.20

LQ-Nets 3/3 – – 68.20 87.90

QIL 3/3 61.30 – 69.20 –

APoT 3/3 – – 69.70 88.90

BRQ 3/3 – – 66.10 –
AutoQNN P-3/C-3 61.85 83.47 69.88 89.07

4 INQ 4/32 – – 68.89 89.01

µL2Q 4/32 – – 65.92 86.72

VecQ 4/32 58.89 80.88 68.96 88.52

DSQ 4/4 – – 69.56 –
PACT 4/4 55.70 78.00 69.20 89.00

Dorefa-Net 4/4 45.10 77.50 68.10 88.10

LQ-Nets 4/4 – – 69.30 88.80

QIL 4/4 62.00 – 70.10 –

BCGD 4/4 – – 67.36 87.76

TRQ 4/4 – – 65.50 –
AutoQNN P-4/C-4 62.63 83.93 70.36 89.43

Note: QB is the quantizing bitwidth. W/A denotes the weight/activation bitwidth. The sign - indicates that the results cannot be
found. The best results are underlined.

412 J. Comput. Sci. & Technol., Mar. 2024, Vol.39, No.2

74.76%

74.90%
76.15%

0.99%

average bitwidths of 2.16/2.49 for weight and activa-

tion quantization. AutoQNN outperforms AutoQB-

QBN[13] and AutoQB-BBN[13] by 2.25% and 6.47%

improvements in model accuracy, respectively, under

even lower average bitwidths of 2.94/3.07. When we

employ AutoQNN to quantize models, including Mo-

bileNets, MobileNetV2, and ResNet50, into the same

size as that in HAQ[10], we can gain accuracy im-

provements by 12.74%, 3.02%, and 4.13%, respective-

ly. Besides, there are 1.05% and 0.59% accuracy im-

provements on InceptionV3 by AutoQNN, compared

with HAWQ[8] and HAWQ-V2[9], respectively. On In-

ceptionV3, AutoQNN with 2.69/4 achieves higher ac-

curacy (76.57% vs 75.90%) using even lower activa-

tion bitwidth compared with BSQ with 2.48/6, and

also uses lower weight and activation bitwidth to

achieve similar accuracy (76.57% vs 76.60%) to BSQ

with 2.81/6. The top 1 accuracy of BSQ[36] with 2.3/4

on ResNet50 over ImageNet achieves 75.16%, which

slightly exceeds the accuracy result of Auto-

QNN with 2.27/32. The reason is that the referenced

pre-trained ResNet50 in PyTorch has relatively high-

er accuracy than that in Keras. The ResNet50 from

the Keras community has an accuracy of , but

that in the PyTorch community is up to . Ac-

cording to the referenced accuracy, the accuracy drop

of AutoQNN is only 0.14%, while that of BSQ is up

to . These comprehensive comparison results

highlight that AutoQNN can obtain better mixed-pre-

cision policies for various mainstream architectures

and surpass the state-of-the-art methods.

5.2 Evaluation on LSTM

We conduct two long-short-term-memory

(LSTM)[49] experiments in this subsection to verify

the effectiveness of AutoQNN on natural language

processing (NLP) applications. The baseline methods

include EffectiveQ[50], QNNs[51], LP-RNNs[52], Bal-

ancedQ[53], and HitNet[54]. We employ AutoQNN to

search different quantization policies for four weight

matrices and one output state in LSTMs, as did in

HitNet. The experimental results show that Auto-

QNN can find the appropriate quantizing strategies

for different weights and activation in LSTMs.

5.2.1 Experiments on Text Classification

We first evaluate AutoQNN on the text classifica-

tion task over the subset of the THCUNews dataset⑥,

which contains 50k pieces of news for 10 categories.

We use the model with one word embedding layer,

one LSTM layer (with 512 hidden units), and two ful-

ly-connected layers (with 256 and 128 hidden units,

respectively) as an evaluated model, and employ accu-

racy to measure model performance. We quantize the

weights and activation of the embedding, LSTM, and

fully-connected layers in the evaluated model.

94.53%
0.99%

95.46%

The results are shown in Table 5. AutoQNN finds

that ZoomQ and PotQ are the best quantizing

schemes for weight and activation quantization, re-

spectively. The accuracy of the quantized model us-

ing 2-bit weights and 2-bit activation achieves

, slightly lower than the full-precision result by

. When increasing the quantizing bitwidth to 3,

the model accuracy achieves , which is very

close to the accuracy of the full-precision model. This

experiment shows that AutoQNN can be applied to

text classification tasks to preserve the accuracy of

quantized recurrent neural networks (RNNs).

5.2.2 Experiments on Penn TreeBank

We further evaluate AutoQNN on the sequence

prediction task over the penn treebank (PTB)

Table 4. Accuracy Comparison with Mixed-Precision Quan-
tization

Model Method W/A Accuracy (%)

ResNet18 MixedP >2.00/4.00 68.65

AutoQNN 2.13/2.49 68.84

ResNet18 AutoQB-QBN 3.12/3.29 67.63

AutoQB-BBN 3.06/3.27 63.41

AutoQNN 2.94/3.07 69.88

MobileNets HAQ 2.16/32.00 57.14

AutoQNN 2.28/32.00 69.88

MobileNetV2 HAQ 2.27/32.00 66.75

AutoQNN 2.30/32.00 69.77

ResNet50 HAQ 2.06/32.00 70.63

BSQ 2.30/4.00 75.16

AutoQNN 2.27/32.00 74.76

InceptionV3 HAWQ 2.60/4.00 75.52

HAWQ-V2 2.61/4.00 75.98

BSQ 2.48/6.00 75.90

BSQ 2.81/6.00 76.60

AutoQNN 2.69/4.00 76.57

Note: W/A indicates the average bitwidth for weight and
activation, respectively. The best results are underlined.

Cheng Gong et al.: AutoQNN: A Framework Automatically Quantizing Neural Networks 413

⑥https://github.com/thunlp/THUCTC, Mar. 2024.

https://github.com/thunlp/THUCTC

1.0× 10−3

dataset[55], which contains 10k unique words. We use

an open model implementation for evaluation, and its

source codes can be found here⑦. For a fair compari-

son, we modify the open model and use one embed-

ding layer with 300 outputs and one LSTM layer with

300 hidden units, as did in [50]. We train the full-pre-

cision model for 100 epochs with the Adam

optimizer[56] and a learning rate of . Then,

we adopt AutoQNN to search for the best quantizing

strategy for the full-precision model and quantize the

weights and activation of its embedding and LSTM

layers. Specifically, we employ the coarse-grained QSS

to seek a shared quantizing scheme and use QPL to

learn a mixed-precision policy. Model performance is

measured in the perplexity per word (PPW) metric,

as used in [50–54].

The comparison results are shown in Table 6. Au-

toQNN employs the 2.48-bit ResQ for weight quanti-

zation and the 2.28-bit ClipQ for activation quantiza-

tion, and achieves a competitive PPW result, outper-

forming previous methods, including EffectiveQ[50],

QNNs[51], LP-RNNs[52], and BalancedQ[53]. The result

of AutoQNN is slightly higher than that of HitNet[54],

because we use an inaccurate full-precision model

with a compressed embedding layer. Another reason

is that the candidate schemes in AutoQNN are de-

signed for CNNs and are not adapted to RNNs. For

example, the activation function applied in RNNs is

(−1, 1)

[0, +∞)

tanh, and its output range is . In contrast, the

activation range of CNN is usually . There-

fore, applying truncation for RNN's outputs in quan-

tization is harmful to model performance. Neverthe-

less, AutoQNN can still find the best quantizing

strategies for RNNs to preserve PPW.

6 Ablation Study

In this section, we perform two ablation studies

including QSS validation and QPL validation.

6.1 QSS Validation

We evaluate the attainable accuracy of quantized

models to verify that QSS can find desirable quantiz-

ing schemes for DNNs⑧. To do this, we take all can-

didate schemes as baselines and conduct two experi-

ments: layer-wised search and model-wised search.

6.1.1 Settings

The widely verified Cifar10[57] and VGG-like[58] are

used in this experiment. The data augmentation of

Cifar10 in [59] is employed. To highlight the discrimi-

nation of results, we fix the quantizing bitwidth as 3

for the multi-bit schemes such as ClipQ and PotQ.

We train VGG-like on Cifar10 for 300 epochs with an

Table 5. Accuracy (%) of LSTM Model on THCUNews

Method Weight Quantization Activation Quantization Average Bits of Weights Average Bits of Activation Accuracy

Full-precision – – 32.00 32.00 95.52

AutoQNN ZoomQ PotQ 2.00 2.01 94.53

2.00 3.01 95.03

3.01 3.02 95.46

Table 6. PPW Results of Different Quantization Methods on PTB

Method Weight Quantization Activation Quantization Average Bits of Weights Average Bits of Activation PPW

EffectiveQ – – 2.00 2.00 152.0

– – 2.00 3.00 142.0

– – 3.00 3.00 120.0

QNNs – – 2.00 3.00 220.0

LP-RNNs – – 2.00 2.00 152.2

BalancedQ – – 2.00 2.00 126.0

– – 2.00 3.00 123.0

HitNet TTQ BTQ 2.00 2.00 110.3

AutoQNN ResQ ClipQ 2.48 2.28 116.7

414 J. Comput. Sci. & Technol., Mar. 2024, Vol.39, No.2

⑦https://github.com/adventuresinML/adventures-in-ml-code, Mar. 2024.

⑧More experimental results can be found in our supplementary materials. https://github.com/JCST-supplementary/Paper-Sup-
plementary/blob/main/supplementary-materials.pdf, Mar. 2024.

https://github.com/adventuresinML/adventures-in-ml-code
https://github.com/adventuresinML/adventures-in-ml-code
https://github.com/adventuresinML/adventures-in-ml-code
https://github.com/adventuresinML/adventures-in-ml-code
https://github.com/adventuresinML/adventures-in-ml-code
https://github.com/adventuresinML/adventures-in-ml-code
https://github.com/adventuresinML/adventures-in-ml-code
https://github.com/JCST-supplementary/Paper-Supplementary/blob/main/supplementary-materials.pdf
https://github.com/JCST-supplementary/Paper-Supplementary/blob/main/supplementary-materials.pdf
https://github.com/JCST-supplementary/Paper-Supplementary/blob/main/supplementary-materials.pdf
https://github.com/JCST-supplementary/Paper-Supplementary/blob/main/supplementary-materials.pdf
https://github.com/JCST-supplementary/Paper-Supplementary/blob/main/supplementary-materials.pdf
https://github.com/JCST-supplementary/Paper-Supplementary/blob/main/supplementary-materials.pdf
https://github.com/JCST-supplementary/Paper-Supplementary/blob/main/supplementary-materials.pdf
https://github.com/JCST-supplementary/Paper-Supplementary/blob/main/supplementary-materials.pdf

initial learning rate of 0.1, and decay the learning rate

to 0.01 and 0.001 at 250 epochs and 290 epochs, re-

spectively.

6.1.2 Layer-Wised Search

We present layer-wised search processes in Fig.6,

which draws the changes of sampling probabilities of

different candidate schemes during 150 training

epochs. All the schemes have the same sampling prob-

abilities at the beginning of a training phase. The sum

of the probabilities at each epoch equals 1. For the

weight quantization of the seven layers of VGG-like,

the search processes of different layers tend to be sim-

ilar, i.e., the probability of P-3 gradually grows with

the training epoch increasing, while that of other

schemes decreases. The results imply that P-3 con-

tributes less training loss during model training than

the other schemes. Therefore, QSS finds that P-3 is

the desirable quantizing scheme among all candidate

schemes. Similarly, for the activation quantization of

VGG-like, QSS has found that R-3 owns the highest

sampling probability at the first layer because R-3

can reserve the features in the first layer well. Be-

sides, C-3 achieves the highest sampling probabilities

at the rest six layers since C-3 can eliminate outliers

and contribute robust training results. Finally, QSS

finds the desirable quantizing schemes of {P-3, P-3,

P-3, P-3, P-3, P-3, P-3} and {R-3, C-3, C-3, C-3, C-3,

C-3, C-3} for the weight and activation quantization

of VGG-like, respectively.

Next, we generate a quantized architecture with

the found schemes above and fine tune it for another

150 epochs to converge, as described in Algorithm 2.

The accuracy comparison is shown in Fig.7. QSS is

denoted as QSS-F. B-1/3 denotes employing 1-bit bi-

nary for weight quantization and 3-bit ClipQ for acti-

vation quantization, respectively. The accuracy of

QSS-F achieves 93.07%, which constantly outper-

forms that of candidate schemes by 2.70% on average,

and only incurs 0.42% accuracy degradation com-

pared with the full-precision result (denoted as FP32).

The result verifies that QSS is able to seek desirable

quantizing schemes for different layers to gain high

accuracy.

6.1.3 Model-Wised Search

We employ the coarse-grained QSS to find shared

quantizing schemes for all layers of VGG-like. Specifi-

cally, respecting that the distributions of weights and

activation are usually diverse, we seek two shared

schemes for the weight and activation quantization in

this experiment, respectively. The search process for

weight quantization is shown in Fig.8(a), and that for

activation quantization is shown in Fig.8(b). Similar

to the layer-wised results above, QSS finds that C-3

and P-3 are the desirable quantizing schemes for

weight quantization, and C-3 is the desirable one for

activation quantization. Therefore, we take C-3/C-3

and P-3/C-3 as two desirable quantizing strategies.

C-3/C-3 employs C-3 for both weight and activation

quantization. P-3/C-3 adopts P-3 for weight quanti-

Conv1

B-1 T-2 Q-2 F-3 Z-3 C-3 P-3 R-3

Conv2 Conv3 Conv4 Conv5 Conv6 FC7

F-3 Z-3 C-3 P-3 R-3

0
Number of Epochs Number of Epochs Number of Epochs Number of Epochs Number of Epochs Number of Epochs Number of Epochs

150

P-3

P-3 P-3 P-3 P-3

P-3
P-3

R-3

C-3 C-3 C-3
C-3 C-3

C-3

1

0

1

150 50 100 150 50 100 150 50 100 150 50 100 150 50 100 150 50 100 150

50 100 150 50 100 150 50 100 150 50 100 150 50 100 150 50 100 150

50 100

50 100

Number of Epochs Number of Epochs Number of Epochs Number of Epochs Number of Epochs Number of Epochs Number of Epochs

(b)

(a)

Fig.6. Changes of sampling probabilities of candidate schemes in the training phase of VGG-like. The x-axis is the number of train-
ing epochs (total number of 150 epochs) and the y-axis is the sampling probabilities of schemes (the sum of the probabilities is 1).
(a) Quantizing scheme search processes for the weights of different layers. (b) Quantizing scheme search processes for the activation
of different layers.

Cheng Gong et al.: AutoQNN: A Framework Automatically Quantizing Neural Networks 415

zation and uses C-3 for activation quantization.

Since the shared quantizing schemes may not

meet the requirements of some layers inevitably, mod-

el-wised search sacrifices some accuracy to obtain the

unified quantizing schemes. However, QSS still

presents competitive results compared with baselines.

As shown in Table 7, the accuracy of C-3/C-3

achieves 92.48%, which is only slightly lower than the

results of P-3/3 and R-3/3. The accuracy of P-3/C-3

achieves 92.90%, which outperforms that of P-3/3 and

R-3/3 by 0.34% and 0.18%, respectively. These re-

sults demonstrate that QSS is able to find expected

quantizing schemes from a candidate set efficiently,

thus improving the accuracy of quantized models

without requiring more bits and avoiding heavy man-

ual workloads.

6.2 QPL Validation

In this subsection, we verify that QPL can find

reasonable mixed-precision policies for VGG-like and

reduce the performance degradation of the quantized

model within a limited model size and memory foot-

print.

We take ClipQ as the quantizing scheme for veri-

fying QPL, since clip quantization is the most widely

used scheme. We still utilize Cifar10 and VGG-like

for evaluations. In addition, we set a target expected

bit of 3 for precision loss in this experiment to high-

light comparison results.

We train 150 epochs to learn optimal mixed-preci-

sion policies for VGG-like. Fig.9(a) presents the quan-

4 096× 1 024

tizing bit changes of weight quantization with the

number of epochs. We finally obtain the mixed-preci-

sion policy of {7, 8, 6, 6, 7, 5, 2} for the weight quan-

tization of different layers, and the average bitwidth

of this policy is 2.82. There are parame-

ters in the full-connected layer FC7, which occupy

over 90% of the VGG-like parameters and have a lot

0 50 100 150 200 250 300

Number of Epochs

0.5

0.6

0.7

0.8

0.9

V
a
li
d
a
ti
o
n
 A

c
c
u
ra

c
y

FP32: 0.934 9

Searching Sampled

B-1/3: 0.908 3

T-2/3: 0.919 7

Q-2/3: 0.920 7

F-3/3: 0.788 6

Z-3/3: 0.914 4

C-3/3: 0.924 8

P-3/3: 0.925 6

R-3/3: 0.927 2

QSS-F: 0.930 7

Fig.7. Validation accuracy curves in model training. QSS-F de-
notes the result of the model quantized with the layer-wised
search scheme.

150
0.0

0.2

0.4

0.6

0.8

1.0

P
ro

b
a
b
il
it
y

B-1

T-2

Q-2

F-3

Z-3

C-3

P-3

R-3

P-3

C-3

50 100

Number of Epochs

(a)

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

b
a
b
il
it
y

15050 100

F-3

Z-3

C-3

P-3

R-3

C-3

Number of Epochs

(b)

Fig.8. Changes of shared sampling probabilities in model-wised
search. (a) Quantizing scheme search for the weights in VGG-
like. (b) Quantizing scheme search for the activation in VGG-
like.

Table 7. Accuracy Comparison in Model-Wised Search (C-
3/C-3 and P-3/C-3)

Name Method Accuracy (%)

Normal quantization B-1/3 90.83

T-2/3 91.97

Q-2/3 92.07

F-3/3 78.86

Z-3/3 91.44

P-3/3 92.56

R-3/3 92.72

Model-wised search C-3/C-3 92.48

P-3/C-3 92.90

Note: The best results are underlined.

416 J. Comput. Sci. & Technol., Mar. 2024, Vol.39, No.2

of redundancy. Therefore, QPL obtains the bitwidth

of 2 for FC7 to balance the classification and preci-

sion losses. The convolutional layers use a small num-

ber of parameters to extract features and have less re-

dundancy. Consequently, QPL learns high bitwidths

to reduce the classification loss, such as the 7 and 8

bits for Conv1 and Conv2, respectively, as shown in

Fig.9(a). The mixed-precision learning process of acti-

vation quantization is shown in Fig.9(b). QPL learns

the mixed-precision policy of {2, 3, 3, 4, 5, 4, 6} and

the average bitwidth of this policy is 3.08. The accu-

racy comparison is shown in Fig.9(c). Compared with

ClipQ (denoted as C-3/3), the accuracy of the learned

mixed-precision policy (denoted as C-2.82/3.08)

achieves 93.03%, which outperforms C-3/3 by 0.55%.

L

The results above demonstrate that QPL is able

to learn relatively optimal mixed-precision policies to

balance the classification and precision losses of

DNNs. QPL employs the classification loss to reduce

the model redundancy and proposes the precision loss

 in (6) to constrain the model size and memory foot-

print, thus improving the accuracy and efficiency of

quantized DNNs.

7 Conclusions

In this paper, we proposed AutoQNN, an end-to-

end framework aiming at automatically quantizing

neural networks. Differing from manual-participated

heuristic explorations with heavy workloads of do-

main experts, AutoQNN could efficiently explore the

search space of automatic quantization and provide

appropriate quantizing strategies for arbitrary DNN

architectures. It automatically sought desirable quan-

tizing schemes and learned relatively optimal mixed-

precision policies for efficiently compressing DNNs.

Compared with full-precision models, the quantized

models using AutoQNN achieved competitive classifi-

cation accuracy with a much smaller model size and

memory footprint. Compared with state-of-the-art

competitors: DSQ[47], QIL[25], BCGD[48], and TRQ[32],

the comprehensive evaluations on AlexNet and

ResNet18 demonstrated that AutoQNN obtained ac-

curacy improvements by up to 1.65% and 1.74%, re-

spectively.

Conflict of Interest The authors declare that

they have no conflict of interest.

References

 Williams S, Waterman A, Patterson D. Roofline: An in-[1]

3

2

4

5

6

7

8

Q
u
a
n
ti
z
in

g
 B

it

0 20 40 60 80 100 120 140

Number of Epochs

(b)

L1(256, 32, 32, 64): 2

L2(256, 32, 32, 64): 3

L3(256, 16, 16, 128): 3

L4(256, 16, 16, 128): 4

L5(256, 8, 8, 256): 5

L6(256, 8, 8, 256): 4

L7(256, 1 024): 6

Average Bits: 3.08

0 20 40 60 80 100 120 140

Number of Epochs

3

4

5

6

7

8

Q
u
a
n
ti
z
in

g
 B

it

(a)

Conv1(3, 3, 3, 64): 7

Conv2(3, 3, 64, 64): 8

Conv3(3, 3, 64, 128): 6

Conv4(3, 3, 128, 128): 6

Conv5(3, 3, 128, 256): 7

Conv6(3, 3, 256, 256): 5

FC7(4 096, 1 024): 2

Average Bits: 2.82

0.86

0.87

0.88

0.89

0.90

0.91

0.92

0.93

0.94

0.95

0.96

V
a
li
d
a
ti
o
n
 A

c
c
u
ra

c
y

0 50 100 150 200 250 300

Number of Epochs

(c)

FP32: 0.934 9

C-3/3: 0.924 8

C-2.82/3.08: 0.930 3

i i

Fig.9. Learning process of QPL and the final validation accura-
cy comparison of quantized VGG-like. Conv and FC denote the
convolutional layers and full-connected layers of the model, re-
spectively, and the content in brackets after them indicate the
shape of the layer weight. L indicates the -th layer of the
model, and the content in brackets after them indicate the
shape of the layer activation. (a) Bit changes of weight quanti-
zation. (b) Bit changes of activation quantization. (c) Accura-
cy results.

Cheng Gong et al.: AutoQNN: A Framework Automatically Quantizing Neural Networks 417

sightful visual performance model for multicore architec-

tures. Communications of the ACM, 2009, 52(4): 65–76.

DOI: 10.1145/1498765.1498785.

 Hubara I, Courbariaux M, Soudry D, El-Yaniv R, Bengio

Y. Binarized neural networks. In Proc. the 30th Int. Conf.

Neural Information Processing Systems, Dec. 2016,

pp.4114–4122. DOI: 10.5555/3157382.3157557.

[2]

 Li F F, Liu B, Wang X X, Zhang B, Yan J C. Ternary

weight networks. arXiv: 1605.04711, 2022. https://doi.org/

10.48550/arXiv.1605.04711, Mar. 2024.

[3]

 Zhou S C, Wu Y X, Ni Z K, Zhou X Y, Wen H, Zou Y H.

DoReFa-Net: Training low bitwidth convolutional neural

networks with low bitwidth gradients. arXiv: 1606.06160,

2018. https://doi.org/10.48550/arXiv.1606.06160, Mar.

2024.

[4]

 Lin Z H, Courbariaux M, Memisevic R, Bengio Y. Neural

networks with few multiplications. arXiv: 1510.03009, 2016.

https://doi.org/10.48550/arXiv.1510.03009, Mar. 2024.

[5]

 Gong C, Chen Y, Lu Y, Li T, Hao C, Chen D M. VecQ:

Minimal loss DNN model compression with vectorized

weight quantization. IEEE Trans. Computers, 2020,

70(5): 696–710. DOI: 10.1109/TC.2020.2995593.

[6]

 Gong C, Li T, Lu Y, Hao C, Zhang X F, Chen D M,

Chen Y. μL2Q: An ultra-low loss quantization method for

DNN compression. In Proc. the 2019 International Joint

Conference on Neural Networks, Jul. 2019. DOI: 10.1109/

ijcnn.2019.8851699.

[7]

 Dong Z, Yao Z W, Gholami A, Mahoney M, Keutzer K.

HAWQ: Hessian aware quantization of neural networks

with mixed-precision. In Proc. the 2019 IEEE/CVF Inter-

national Conference on Computer Vision, Oct. 27–Nov. 2,

2019, pp.293–302. DOI: 10.1109/iccv.2019.00038.

[8]

 Dong Z, Yao Z W, Arfeen D, Gholami A, Mahoney M W,

Keutzer K. HAWQ-V2: Hessian aware trace-weighted

quantization of neural networks. In Proc. the 34th Confer-

ence on Neural Information Processing Systems, Dec.

2020.

[9]

 Wang K, Liu Z J, Lin Y J, Lin J, Han S. HAQ: Hard-

ware-aware automated quantization with mixed precision.

In Proc. the 2019 IEEE/CVF Conference on Computer

Vision and Pattern Recognition, Jun. 2019, pp.8604–8612.

DOI: 10.1109/cvpr.2019.00881.

[10]

 Lin D D, Talathi S S, Annapureddy V S. Fixed point

quantization of deep convolutional networks. In Proc. the

33rd International Conference on International Confer-

ence on Machine Learning, Jun. 2016, pp.2849–2858. DOI:

10.5555/3045390.3045690.

[11]

 Wu B C, Wang Y H, Zhang P Z, Tian Y D, Vajda P,

Keutzer K. Mixed precision quantization of convnets

via differentiable neural architecture search. arXiv:

1812.00090, 2018. https://doi.org/10.48550/arXiv.1812.

00090, Mar. 2024.

[12]

 Lou Q, Liu L, Kim M, Jiang L. AutoQB: AutoML for

network quantization and binarization on mobile devices.

arXiv: 1902.05690v1, 2020. https://doi.org/10.48550/arXiv.

1902.05690, Mar. 2024.

[13]

 Zhu C Z, Han S, Mao H Z, Dally W J. Trained ternary[14]

quantization. arXiv: 1612.01064, 2017. https://doi.org/10.

48550/arXiv.1612.01064, Mar. 2024.

 Leng C, Dou Z S, Li H, Zhu S H, Jin R. Extremely low

bit neural network: Squeeze the last bit out with ADMM.

In Proc. the 32nd AAAI Conference on Artificial Intelli-

gence, Feb. 2018, pp.3466–3473. DOI: 10.1609/aaai.v32i1.

11713.

[15]

 Phan H, Liu Z C, Huynh D, Savvides M, Cheng K T,

Shen Z Q. Binarizing mobilenet via evolution-based

searching. In Proc. the 2020 IEEE/CVF Conference on

Computer Vision and Pattern Recognition, Jun. 2020,

pp.13417–13426. DOI: 10.1109/CVPR42600.2020.01343.

[16]

 Courbariaux M, Bengio Y, David J P. BinaryConnect:

Training deep neural networks with binary weights dur-

ing propagations. arXiv: 1511.00363, 2016. https://doi.

org/10.48550/arXiv.1511.00363, Mar. 2024.

[17]

 Rastegari M, Ordonez V, Redmon J, Farhadi A. XNOR-

Net: ImageNet classification using binary convolutional

neural networks. In Proc. the 14th European Conference

on Computer Vision, Oct. 2016, pp.525–542. DOI: 10.1007/

978-3-319-46493-0_32.

[18]

 Alemdar H, Leroy V, Prost-Boucle A, Pétrot F. Ternary

neural networks for resource-efficient AI applications. In

Proc. the 2017 International Joint Conference on Neural

Networks, May 2017, pp.2547–2554. DOI: 10.1109/ijcnn.

2017.7966166.

[19]

 Jin C R, Sun H M, Kimura S. Sparse ternary connect:

Convolutional neural networks using ternarized weights

with enhanced sparsity. In Proc. the 23rd Asia and South

Pacific Design Automation Conference, Jan. 2018, pp.190–

195. DOI: 10.1109/aspdac.2018.8297304.

[20]

 Gysel P. Ristretto: Hardware-oriented approximation of

convolutional neural networks. arXiv: 1605.06402, 2016.

https://doi.org/10.48550/arXiv.1605.06402, Mar. 2024.

[21]

 Chen Y, Zhang K, Gong C, Hao C, Zhang X F, Li T,

Chen D M. T-DLA: An open-source deep learning acceler-

ator for ternarized DNN models on embedded FPGA. In

Proc. the 2019 IEEE Computer Society Annual Sympo-

sium on VLSI, Jul. 2019, pp.13–18. DOI: 10.1109/isvlsi.

2019.00012.

[22]

 Li Y H, Dong X, Wang W. Additive powers-of-two quan-

tization: An efficient non-uniform discretization for neu-

ral networks. arXiv: 1909.13144, 2020. https://doi.org/10.

48550/arXiv.1909.13144, Mar. 2024.

[23]

 Wang P S, Hu Q H, Zhang Y F, Zhang C J, Liu Y,

Cheng J. Two-step quantization for low-bit neural net-

works. In Proc. the 2018 IEEE/CVF Conference on Com-

puter Vision and Pattern Recognition, Jun. 2018, pp.4376–

4384. DOI: 10.1109/cvpr.2018.00460.

[24]

 Jung S, Son C, Lee S, Son J, Han J J, Kwak Y, Hwang S

J, Choi C. Learning to quantize deep networks by opti-

mizing quantization intervals with task loss. In Proc. the

2019 IEEE/CVF Conference on Computer Vision and

Pattern Recognition, Jun. 2019, pp.4345–4354. DOI: 10.

1109/CVPR.2019.00448.

[25]

 Choi J, Wang Z, Venkataramani S, Chuang P I J, Srini-

vasan V, Gopalakrishnan K. PACT: Parameterized clip-

[26]

418 J. Comput. Sci. & Technol., Mar. 2024, Vol.39, No.2

https://doi.org/10.1145/1498765.1498785
https://doi.org/10.5555/3157382.3157557
https://doi.org/10.5555/3157382.3157557
https://doi.org/10.5555/3157382.3157557
https://doi.org/10.48550/arXiv.1605.04711
https://doi.org/10.48550/arXiv.1605.04711
https://doi.org/10.48550/arXiv.1606.06160
https://doi.org/10.48550/arXiv.1510.03009
https://doi.org/10.1109/TC.2020.2995593
https://doi.org/10.1109/ijcnn.2019.8851699
https://doi.org/10.1109/ijcnn.2019.8851699
https://doi.org/10.1109/iccv.2019.00038
https://doi.org/10.1109/cvpr.2019.00881
https://doi.org/10.5555/3045390.3045690
https://doi.org/10.48550/arXiv.1812.00090
https://doi.org/10.48550/arXiv.1812.00090
https://doi.org/10.48550/arXiv.1902.05690
https://doi.org/10.48550/arXiv.1902.05690
https://doi.org/10.48550/arXiv.1612.01064
https://doi.org/10.48550/arXiv.1612.01064
https://doi.org/10.1609/aaai.v32i1.11713
https://doi.org/10.1609/aaai.v32i1.11713
https://doi.org/10.1109/CVPR42600.2020.01343
https://doi.org/10.48550/arXiv.1511.00363
https://doi.org/10.48550/arXiv.1511.00363
https://doi.org/10.1007/978-3-319-46493-0_32
https://doi.org/10.1007/978-3-319-46493-0_32
https://doi.org/10.1007/978-3-319-46493-0_32
https://doi.org/10.1007/978-3-319-46493-0_32
https://doi.org/10.1007/978-3-319-46493-0_32
https://doi.org/10.1007/978-3-319-46493-0_32
https://doi.org/10.1007/978-3-319-46493-0_32
https://doi.org/10.1007/978-3-319-46493-0_32
https://doi.org/10.1007/978-3-319-46493-0_32
https://doi.org/10.1007/978-3-319-46493-0_32
https://doi.org/10.1007/978-3-319-46493-0_32
https://doi.org/10.1007/978-3-319-46493-0_32
https://doi.org/10.1109/ijcnn.2017.7966166
https://doi.org/10.1109/ijcnn.2017.7966166
https://doi.org/10.1109/aspdac.2018.8297304
https://doi.org/10.48550/arXiv.1605.06402
https://doi.org/10.1109/isvlsi.2019.00012
https://doi.org/10.1109/isvlsi.2019.00012
https://doi.org/10.48550/arXiv.1909.13144
https://doi.org/10.48550/arXiv.1909.13144
https://doi.org/10.1109/cvpr.2018.00460
https://doi.org/10.1109/CVPR.2019.00448
https://doi.org/10.1109/CVPR.2019.00448

ping activation for quantized neural networks. arXiv:

1805.06085, 2018. https://doi.org/10.48550/arXiv.1805.

06085, Mar. 2024.

 Miyashita D, Lee E H, Murmann B. Convolutional neu-

ral networks using logarithmic data representation. arXiv:

1603.01025, 2016. https://doi.org/10.48550/arXiv.1603.

01025, Mar. 2024.

[27]

 Zhou A J, Yao A B, Guo Y W, Xu L, Chen Y R. Incre-

mental network quantization: Towards lossless CNNs

with low-precision weights. arXiv: 1702.03044, 2017.

https://doi.org/10.48550/arXiv.1702.03044, Mar. 2024.

[28]

 Ghasemzadeh M, Samragh M, Koushanfar F. ReBNet:

Residual binarized neural network. In Proc. the 26th

IEEE Annual International Symposium on Field-Pro-

grammable Custom Computing Machines, Apr. 29–May 1,

2018, pp.57–64. DOI: 10.1109/fccm.2018.00018.

[29]

 Li Z F, Ni B B, Zhang W J, Yang X K, Gao W. Perfor-

mance guaranteed network acceleration via high-order

residual quantization. In Proc. the 2017 IEEE Interna-

tional Conference on Computer Vision, Oct. 2017, pp.2603–

2611. DOI: 10.1109/iccv.2017.282.

[30]

 He K M, Zhang X Y, Ren S Q, Sun J. Deep residual

learning for image recognition. In Proc. the 2016 IEEE

Conference on Computer Vision and Pattern Recognition,

Jun. 2016, pp.770–778. DOI: 10.1109/cvpr.2016.90.

[31]

 Li Z F, Ni B B, Yang X K, Zhang W J, Gao W. Residual

quantization for low bit-width neural networks. IEEE

Trans. Multimedia, 2023, 25: 214–227. DOI: 10.1109/

TMM.2021.3124095.

[32]

 Zhang D Q, Yang J L, Ye D Q Z, Hua G. LQ-Nets:

Learned quantization for highly accurate and compact

deep neural networks. In Proc. the 15th European Confer-

ence on Computer Vision, Sept. 2018, pp.373–390. DOI:

10.1007/978-3-030-01237-3_23.

[33]

 Lin X F, Zhao C, Pan W. Towards accurate binary con-

volutional neural network. In Proc. the 31st Conference

on Neural Information Processing Systems, Dec. 2017,

pp.345–353.

[34]

 Lou Q, Guo F, Kim M, Liu L T, Jiang L. AutoQ: Auto-

mated kernel-wise neural network quantization. In Proc.

the 8th Int. Conf. Learning Representations, Apr. 2020.

[35]

 Yang H R, Duan L, Chen Y R, Li H. BSQ: Exploring bit-

level sparsity for mixed-precision neural network quanti-

zation. In Proc. the 9th International Conference on

Learning Representations, May 2021.

[36]

 Maddison C J, Mnih A, Teh Y W. The concrete distribu-

tion: A continuous relaxation of discrete random vari-

ables. arXiv: 1611.00712, 2017. https://doi.org/10.48550/

arXiv.1611.00712, Mar. 2024.

[37]

 Jacob B, Kligys S, Chen B, Zhu M L, Tang M, Howard

A, Adam H, Kalenichenko D. Quantization and training

of neural networks for efficient integer-arithmetic-only in-

ference. In Proc. the 2018 IEEE/CVF Conference on

Computer Vision and Pattern Recognition, Jun. 2018,

pp.2704–2713. DOI: 10.1109/cvpr.2018.00286.

[38]

 Nair V, Hinton G E. Rectified linear units improve re-

stricted Boltzmann machines. In Proc. the 27th Int. Conf.

[39]

Machine Learning, Jun. 2010, pp.807–814.

 Deng J, Dong W, Socher R, Li L J, Li K, Fei-Fei L. Ima-

geNet: A large-scale hierarchical image database. In Proc.

the 2009 IEEE Conference on Computer Vision and Pat-

tern Recognition, Jun. 2009, pp.248–255. DOI: 10.1109/

cvpr.2009.5206848.

[40]

 Krizhevsky A, Sutskever I, Hinton G E. ImageNet classifi-

cation with deep convolutional neural networks. In Proc.

the 25th Int. Conf. Neural Information Processing Sys-

tems, Dec. 2012, pp.1097–1105. DOI: 10.5555/2999134.

2999257.

[41]

 Howard A G, Zhu M L, Chen B, Kalenichenko D, Wang

W J, Weyand T, Andreetto M, Adam H. MobileNets: Ef-

ficient convolutional neural networks for mobile vision ap-

plications. arXiv: 1704.04861, 2017. https://doi.org/10.

48550/arXiv.1704.04861, Mar. 2024.

[42]

 Sandler M, Howard A, Zhu M L, Zhmoginov A, Chen L

C. Mobilenetv2: Inverted residuals and linear bottlenecks.

In Proc. the 2018 IEEE/CVF Conference on Computer

Vision and Pattern Recognition, Jun. 2018, pp.4510–4520.

DOI: 10.1109/cvpr.2018.00474.

[43]

 Szegedy C, Vanhoucke V, Ioffe S, Shlens J, Wojna Z. Re-

thinking the inception architecture for computer vision. In

Proc. the 2016 IEEE Conference on Computer Vision and

Pattern Recognition, Jun. 2016, pp.2818–2826. DOI: 10.

1109/CVPR.2016.308.

[44]

 Simon M, Rodner E, Denzler J. ImageNet pre-trained

models with batch normalization. arXiv: 1612.01452,

2016. https://doi.org/10.48550/arXiv.1612.01452, Mar.

2024.

[45]

 Gross S, Wilber M. Training and investigating residual

nets. Facebook AI Research, 2016. https://torch.ch/blog/

2016/02/04/resnets.html, Mar. 2024.

[46]

 Gong R H, Liu X L, Jiang S H, Li T X, Hu P, Lin J Z,

Yu F W, Yan J J. Differentiable soft quantization: Bridg-

ing full-precision and low-bit neural networks. In Proc.

the 2019 IEEE/CVF International Conference on Com-

puter Vision, Oct. 27–Nov. 2, 2019, pp.4851–4860. DOI:

10.1109/iccv.2019.00495.

[47]

 Yin P H, Zhang S, Lyu J C, Osher S, Qi Y Y, Xin J.

Blended coarse gradient descent for full quantization of

deep neural networks. arXiv: 1808.05240, 2019. https://

doi.org/10.48550/arXiv.1808.05240, Mar. 2024.

[48]

 Hochreiter S, Schmidhuber J. Long short-term memory.

Neural Computation, 1997, 9(8): 1735–1780. DOI: 10.1162/

neco.1997.9.8.1735.

[49]

 He Q Y, Wen H, Zhou S C, Wu Y X, Yao C, Zhou X Y,

Zou Y H. Effective quantization methods for recurrent

neural networks. arXiv: 1611.10176, 2016. https://doi.org/

10.48550/arXiv.1611.10176, Mar. 2024.

[50]

 Hubara I, Courbariaux M, Soudry D, El-Yaniv R, Bengio

Y. Quantized neural networks: Training neural networks

with low precision weights and activations. The Journal

of Machine Learning Research, 2017, 18(1): 6869–6898.

[51]

 Kapur S, Mishra A, Marr D. Low precision RNNs: Quan-

tizing RNNs without losing accuracy. arXiv: 1710.07706,

[52]

Cheng Gong et al.: AutoQNN: A Framework Automatically Quantizing Neural Networks 419

https://doi.org/10.48550/arXiv.1805.06085
https://doi.org/10.48550/arXiv.1805.06085
https://doi.org/10.48550/arXiv.1603.01025
https://doi.org/10.48550/arXiv.1603.01025
https://doi.org/10.48550/arXiv.1702.03044
https://doi.org/10.1109/fccm.2018.00018
https://doi.org/10.1109/iccv.2017.282
https://doi.org/10.1109/cvpr.2016.90
https://doi.org/10.1109/TMM.2021.3124095
https://doi.org/10.1109/TMM.2021.3124095
https://doi.org/10.1007/978-3-030-01237-3_23
https://doi.org/10.1007/978-3-030-01237-3_23
https://doi.org/10.1007/978-3-030-01237-3_23
https://doi.org/10.1007/978-3-030-01237-3_23
https://doi.org/10.1007/978-3-030-01237-3_23
https://doi.org/10.1007/978-3-030-01237-3_23
https://doi.org/10.1007/978-3-030-01237-3_23
https://doi.org/10.1007/978-3-030-01237-3_23
https://doi.org/10.1007/978-3-030-01237-3_23
https://doi.org/10.1007/978-3-030-01237-3_23
https://doi.org/10.1007/978-3-030-01237-3_23
https://doi.org/10.48550/arXiv.1611.00712
https://doi.org/10.48550/arXiv.1611.00712
https://doi.org/10.1109/cvpr.2018.00286
https://doi.org/10.1109/cvpr.2009.5206848
https://doi.org/10.1109/cvpr.2009.5206848
https://doi.org/10.5555/2999134.2999257
https://doi.org/10.5555/2999134.2999257
https://doi.org/10.48550/arXiv.1704.04861
https://doi.org/10.48550/arXiv.1704.04861
https://doi.org/10.1109/cvpr.2018.00474
https://doi.org/10.1109/CVPR.2016.308
https://doi.org/10.1109/CVPR.2016.308
https://doi.org/10.48550/arXiv.1612.01452
https://torch.ch/blog/2016/02/04/resnets.html
https://torch.ch/blog/2016/02/04/resnets.html
https://doi.org/10.1109/iccv.2019.00495
https://doi.org/10.48550/arXiv.1808.05240
https://doi.org/10.48550/arXiv.1808.05240
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.48550/arXiv.1611.10176
https://doi.org/10.48550/arXiv.1611.10176

2017. https://doi.org/10.48550/arXiv.1710.07706, Mar.

2024.

 Zhou S C, Wang Y Z, Wen H, He Q Y, Zou Y H. Bal-

anced quantization: An effective and efficient approach to

quantized neural networks. Journal of Computer Science

and Technology, 2017, 32(4): 667–682. DOI: 10.1007/

s11390-017-1750-y.

[53]

 Wang P Q, Xie X F, Deng L, Li G Q, Wang D S, Xie Y.

HitNet: Hybrid ternary recurrent neural network. In Proc.

the 32nd Conference on Neural Information Processing

Systems, Dec. 2018, pp.602–612.

[54]

 Taylor A, Marcus M, Santorini B. The Penn Treebank:

An overview. In Treebanks, Abeillé A (ed.), Springer,

2003, pp.5–22. DOI: 10.1007/978-94-010-0201-1_1.

[55]

 Kingma D P, Ba J. Adam: A method for stochastic opti-

mization. In Proc. the 3rd International Conference on

Learning Representations, May 2015.

[56]

 Krizhevsky A, Hinton G. Learning multiple layers of fea-

tures from tiny images. Technical Report TR-2009, Uni-

versity of Toronto, 2009. https://learning2hash.github.io/

publications/cifar2009learning/, Mar. 2024.

[57]

 Simonyan K, Zisserman A. Very deep convolutional net-

works for large-scale image recognition. In Proc. the 3rd

Int. Conf. Learning Representations, May 2015.

[58]

 Lee C Y, Xie S N, Gallagher P W, Zhang Z Y, Tu Z W.

Deeply-supervised nets. In Proc. the 18th Int. Conf. Arti-

ficial Intelligence and Statistics, May 2015, pp.562–570.

[59]

Cheng Gong received his B.S. and

Ph.D. degrees in computer science and

technology from Nankai University,

Tianjin, in 2016 and 2022, respective-

ly. He is a postdoctoral fellow at the

College of Software, Nankai Universi-

ty, Tianjin. His main research inter-

ests include neural network compression, heterogeneous

computing, and machine learning.

Ye Lu received his B.S. and Ph.D.

degrees from Nankai University, Tian-

jin, in 2010 and 2015, respectively. He

is an associate professor at the Col-

lege of Computer Science of the same

university. His main research interests

include DNN FPGA accelerator,

blockchian virtual machine, embedded system, and In-

ternet of Things.

Su-Rong Dai received her B.S. de-

gree in computer science and technolo-

gy from Nankai University, Tianjin, in

2020. She is currently working toward

her Ph.D. degree in the same universi-

ty. Her main research interests in-

clude computer architecture, compiler

design, and blockchain virtual machine.

Qian Deng received her B.S. de-

gree in computer science and technolo-

gy from Nankai University, Tianjin, in

2020. She is working toward her M.S.

degree in the same university. Her

main research interests include com-

puter vision and artificial intelligence.

Cheng-Kun Du received his B.S.

degree from Nankai University, Tian-

jin, in 2020. He is currently working

toward his M.S. degree in the same

university. His main research interests

include heterogeneous computing and

machine learning.

Tao Li received his Ph.D. degree in

computer science from Nankai Univer-

sity, Tianjin, in 2007. He a professor

of the College of Computer Science of

the same university. His main re-

search interests include heterogeneous

computing, machine learning, and

blockchain system.

420 J. Comput. Sci. & Technol., Mar. 2024, Vol.39, No.2

https://doi.org/10.48550/arXiv.1710.07706
https://doi.org/10.1007/s11390-017-1750-y
https://doi.org/10.1007/s11390-017-1750-y
https://doi.org/10.1007/s11390-017-1750-y
https://doi.org/10.1007/s11390-017-1750-y
https://doi.org/10.1007/s11390-017-1750-y
https://doi.org/10.1007/s11390-017-1750-y
https://doi.org/10.1007/s11390-017-1750-y
https://doi.org/10.1007/s11390-017-1750-y
https://doi.org/10.1007/978-94-010-0201-1_1
https://doi.org/10.1007/978-94-010-0201-1_1
https://doi.org/10.1007/978-94-010-0201-1_1
https://doi.org/10.1007/978-94-010-0201-1_1
https://doi.org/10.1007/978-94-010-0201-1_1
https://doi.org/10.1007/978-94-010-0201-1_1
https://doi.org/10.1007/978-94-010-0201-1_1
https://doi.org/10.1007/978-94-010-0201-1_1
https://doi.org/10.1007/978-94-010-0201-1_1
https://doi.org/10.1007/978-94-010-0201-1_1
https://doi.org/10.1007/978-94-010-0201-1_1
https://learning2hash.github.io/publications/cifar2009learning/
https://learning2hash.github.io/publications/cifar2009learning/

	1 Introduction
	2 Related Work
	2.1 Quantizing Schemes
	2.2 Mixed-Precision Strategies

	3 AutoQNN
	3.1 Quantizing Scheme Search
	3.1.1 Candidate Schemes
	3.1.2 Seeking Scheme

	3.2 Quantizing Precision Learning
	3.2.1 Bitwidth Reparameterization
	3.2.2 Precision Loss

	3.3 Quantized Architecture Generation

	4 End-to-End Framework
	5 Evaluation
	5.1 Image Classification
	5.1.1 Dataset and Models
	5.1.2 Baseline Methods
	5.1.3 Quantizing Strategy Search
	5.1.4 Comparison with State-of-the-Art Quantization
	5.1.5 Comparison with Mixed-Precision Schemes

	5.2 Evaluation on LSTM
	5.2.1 Experiments on Text Classification
	5.2.2 Experiments on Penn TreeBank

	6 Ablation Study
	6.1 QSS Validation
	6.1.1 Settings
	6.1.2 Layer-Wised Search
	6.1.3 Model-Wised Search

	6.2 QPL Validation

	7 Conclusions
	Conflict of Interest
	References

