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Abstract    Exploring the expected quantizing scheme with suitable mixed-precision policy is the key to compress deep

neural networks (DNNs) in high efficiency and accuracy. This exploration implies heavy workloads for domain experts,

and an automatic  compression method is  needed.  However,  the  huge  search space  of  the  automatic  method introduces

plenty of computing budgets that make the automatic process challenging to be applied in real scenarios. In this paper, we

propose  an  end-to-end  framework  named  AutoQNN,  for  automatically  quantizing  different  layers  utilizing  different

schemes and bitwidths without any human labor. AutoQNN can seek desirable quantizing schemes and mixed-precision

policies for mainstream DNN models efficiently by involving three techniques: quantizing scheme search (QSS), quantiz-

ing precision learning (QPL), and quantized architecture generation (QAG). QSS introduces five quantizing schemes and

defines  three  new  schemes  as  a  candidate  set  for  scheme  search,  and  then  uses  the  Differentiable  Neural  Architecture

Search (DNAS) algorithm to seek the layer- or model-desired scheme from the set. QPL is the first method to learn mixed-

precision policies by reparameterizing the bitwidths of quantizing schemes, to the best of our knowledge. QPL optimizes

both  classification  loss  and  precision  loss  of  DNNs  efficiently  and  obtains  the  relatively  optimal  mixed-precision  model

within limited model size and memory footprint. QAG is designed to convert arbitrary architectures into corresponding

quantized ones without manual intervention, to facilitate end-to-end neural network quantization. We have implemented

AutoQNN and integrated it into Keras. Extensive experiments demonstrate that AutoQNN can consistently outperform

state-of-the-art quantization. For 2-bit weight and activation of AlexNet and ResNet18, AutoQNN can achieve the accura-

cy results of 59.75% and 68.86%, respectively, and obtain accuracy improvements by up to 1.65% and 1.74%, respectively,

compared  with  state-of-the-art  methods.  Especially,  compared  with  the  full-precision  AlexNet  and  ResNet18,  the  2-bit

models only slightly incur accuracy degradation by 0.26% and 0.76%, respectively, which can fulfill practical application

demands.
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1    Introduction

The  heavy  computational  burden  immensely  hin-

ders the deployment of deep neural networks (DNNs)

on resource-limited devices in real application scenar-

ios.  Quantization  is  a  technique  which  compresses

DNN  weight  and  activation  values  from  high-preci-

sion  to  low-precision.  The  low-precision  weights  and

activation  occupy  smaller  memory  bandwidth,  regis-

ters,  and computing  units,  thus  significantly  improv-

ing  the  computing  performance.  For  example,

AlexNet  with  32-bit  floating-point  (FP32)  can  only

achieve  the  performance  of  1.93  TFLOPS  on

RTX2080Ti  due  to  the  bandwidth  constraints.  How-

ever,  the  low-precision  AlexNet  with  16-bit  floating-

point  (FP16)  can  achieve  the  performance  of  7.74

TFLOPS  on  the  same  device  because  the  required

bandwidth  is  halved  while  the  available  computing

units  are doubled①.  The FP16 AlexNet is  four times

faster  than  the  FP32  one  on  RTX2080Ti  GPU.

Therefore,  quantization  can  reduce  the  computing

budgets in the DNN inference phases and enable the

DNN model deployment on resource-limited devices.

However, unreasonable quantizing strategies, such

as  binary[2] and  ternary[3],  tend  to  seriously  affect

DNN model  accuracy[4, 5] and  lead  to  customer  frus-

tration.  Lower  bitwidth  usually  leads  to  higher  com-

puting  performance  but  larger  accuracy  degradation.

The  quantization  strategy  selection  dominates  the

computing  performance  and  inference  accuracy  of

models.  In  order  to  balance  the  computing  perfor-

mance and inference accuracy, many previous investi-

gations have tried to select a unified bitwidth for all

layers  in  DNNs[6, 7] cautiously.  However,  many  stud-

ies show that different layers of DNNs have different

sensitivities[8, 9] and  computing  budgets[10].  Using  the

same  bitwidth  for  different  layers  is  hard  to  obtain

superior  speed-up  and  accuracy.  To  strike  a  fine-

grained balance between efficiency and accuracy, it is

strongly  demanded  to  explore  desirable  quantizing

schemes[11] and reasonable mixed-precision policies[10, 12]

for  various  neural  architectures.  The  brute  force  ap-

proaches are not feasible for this exploration since the

search space grows exponentially with the number of

layers[8].  Heuristic  explorations  work  in  some  scenar-

ios  but  greatly  rely  on  the  heavy  workloads  of  do-

main experts[11].  Besides,  it  is  impractical  to  find de-

sirable  strategies  for  various  neural  architectures

through  manual-participated  heuristic  explorations

because  there  are  a  large  number  of  different  neural

architectures, and the number of neural architectures

is still explosively increasing.

Therefore, it is expected to propose an automatic

DNN quantization without manual  intervention.  The

challenge  of  automatic  quantization  lies  in  efficiently

exploring the large search space exponentially increas-

ing with the number of  layers  in  DNNs.  Many stud-

ies  made  substantial  efforts  and  gained  tremendous

advances  in  this  area,  such  as  mixed-precision

(MixedP)[12], HAQ[10], AutoQB[13], and HAWQ[8]. Nev-

ertheless,  there  are  still  some  issues  that  have  not

been resolved well yet, as follows. Firstly, it is widely

acknowledged  that  different  quantizing  schemes  can

impose an impact on the accuracy of quantized DNNs

even with the same quantizing bitwidth[4, 14, 15]. How-

ever,  few  studies  investigate  seeking  quantizing

schemes  for  specific  architectures,  to  the  best  of  our

knowledge.  Secondly,  mixed-precision  quantization  is

an  efficient  way  to  improve  the  accuracy  of  quan-

tized  DNNs  without  increasing  the  average

bitwidth[10, 12, 13]. The presented algorithms include re-

inforcement  learning[10, 13],  evolution-based  search[16],

and  hessian-aware  methods[8, 9].  However,  these  algo-

rithms for  mixed-precision search are  highly  complex

and  inefficient  in  exploring  the  exponential  search

space. The algorithms usually require lots of comput-

ing resources, making it challenging to deploy them in

online  learning  scenarios.  Besides,  these  algorithms

can easily fall into sub-optimal solutions because they

usually  skip  the  search  steps  of  unusual  bitwidths,

such as a bitwidth of 5[12], to reduce search time.

To  address  the  above  issues  and  challenges,  we

propose  AutoQNN,  an  end-to-end  framework  for  au-

tomatically quantizing neural networks without man-

ual  intervention.  AutoQNN  seeks  desirable  quantiz-

ing strategies for arbitrary architectures by involving

three  techniques:  quantizing  scheme  search  (QSS),

quantizing  precision  learning  (QPL),  and  quantized

architecture generation (QAG). The extensive experi-

ments demonstrate that AutoQNN has the ability to

find expected quantizing  strategies  within  finite  time

and  consistently  outperforms  the  state-of-the-art

quantization  methods  for  various  models  on  Ima-

geNet. Our contributions are summarised as follows.

402 J. Comput. Sci. & Technol., Mar. 2024, Vol.39, No.2

 

①The  results  are  computed  with  the  Roofline  algorithm[1] using  the  memory  access  quantity  and  operations  of  an  official
AlexNet  model  from the  PyTorch  community  (https://github.com/pytorch/vision)  and  the  peak  performance  and  memory  band-
width of RTX2080Ti GPU.

https://github.com/pytorch/vision


● We  propose  QSS  to  automatically  find  desir-

able  quantizing  schemes  for  weights  and  activation

with various distributions.

● We present QPL to efficiently learn the relative-

ly optimal mixed-precision policies by minimizing the

classification and precision losses.

● We  design  QAG  to  automatically  convert  the

computing  graphs  of  arbitrary  DNNs  into  quantized

architectures without manual intervention.

● Extensive experiments highlight that AutoQNN

can find the expected quantizing strategies to reduce

accuracy degradation with low bitwidth.

The rest of this paper is organized as follows. We

first discuss related work in Section 2 and then elabo-

rate  QSS,  QOL,  and QAG in Section 3.  Next  we in-

troduce  the  end-to-end  framework  in Section 4,  and

evaluate AutoQNN in Section 5 and Section 6. Final-

ly, we conclude this paper in Section 7. 

2    Related Work

Quantization  has  been  deeply  investigated  as  an

efficient  approach  to  boosting  DNN  computing  effi-

ciency.  In  this  section,  we  first  introduce  the  related

quantizing  schemes,  and  then  describe  the  recent

mixed-precision quantizing strategies. 

2.1    Quantizing Schemes

−

− −

Binary methods with only one bit, such as BC[17],

BNN[2],  and  Xnor-Net[18],  prefer  noticeable  efficiency

improvement. They can compress DNN memory foot-

print by up to 32x and replace expensive multiplica-

tion  with  cheap  bit-operations.  However,  the  binary

methods  significantly  degrade  accuracy,  since  the

low  bitwidth  loses  much  information.  Ternary  meth-

ods[3, 5, 19, 20] quantize  the  weights  or  activation  of

DNNs into ternaries of { 1, 0, 1}, aiming at remedy-

ing  the  accuracy  degradation  of  the  binary  methods

without  introducing  additional  overheads.  Quater-

nary  methods[6, 7] quantize  model  weights  into  four

values of { 2, 1, 0, 1}. They reduce the model ac-

curacy  degradation  using  the  same  two  bits  as  the

ternary methods.

Despite  the  advanced computing efficiency of  the

1-bit  or  2-bit  methods  above,  the  low  bitwidth  can

significantly  affect  the  model  accuracy.  This  moti-

vates  researchers  to  investigate  high  bitwidth  fixed-

point  quantization.  The  proposed  method  in  [21]

abandons the last bits of the binary strings of values

and keeps the remaining bits as quantized fixed-point

values.  T-DLA[22] quantizes  values  into  low-precision

fixed-point values by reserving the first several signifi-

cant bits of the binary string of values and dropping

the  others.  However,  it  is  challenging  for  fixed-point

quantization  to  handle  the  weights  with  a  high  dy-

namic range.

−

Zoom  quantization  methods  handle  the  weights

with a high dynamic range by multiplying a full-preci-

sion  scaling  factor.  For  example,  Dorefa-Net[4] and

STC[20] first zoom the weights into the range of [ 1,

1]  by  dividing  the  weights  according  to  their  maxi-

mum value,  and then uniformly map them into  con-

tinuous  integers.  Zoom  quantization  does  not  deal

with the outliers in weights, which increases the quan-

tization loss.

µ

Clip  quantization  eliminates  the  impact  of  out-

liers  on  zoom  methods  by  estimating  a  reasonable

range.  It  truncates  weights  into the estimated range.

The key point of  clip quantization is  how to balance

clip-errors and project-errors[23–25]. PACT[26] reparam-

eterizes the clip threshold to learn a reasonable quan-

tizing range. HAQ[10] minimizes the KL-divergence be-

tween the  original  weight  distribution and the  quan-

tized  weight  distribution  to  seek  the  optimal  clip

threshold. L2Q[7] seeks the optimal quantizing step-

size by minimizing the L2 distance between the origi-

nal values and the quantized ones.

Besides,  there  are  many  studies  concerning  non-

uniform  quantization,  such  as  power-of-two  (PoT)

quantization  and  residual  quantization.  PoT

methods[15, 27, 28] quantize values into the form of PoT,

thus  converting  the  multiplication  into  the

addition[27]. Residual methods[29–32] quantize the resid-

ual errors, which are produced by the last quantizing

process,  into  binaries  iteratively.  Similar  methods,

such as LQ-Nets[33], ABC-Net[34], and AutoQ[35], quan-

tize the weights/activation into the sum of several bi-

nary results. 

2.2    Mixed-Precision Strategies

Mixed  precision  is  well  known  as  an  efficient

quantizing  strategy,  which  quantizes  different  layers

with  different  bitwidths,  thus  achieving  high  accura-

cy  with  low  average  quantizing  bitwidth.  HAQ[10]

leverages reinforcement learning (RL) to automatical-

ly  determine  the  bitwidth  of  layers  of  DNNs  by  re-

ceiving the hardware accelerator's feedback in the de-

sign  loop.  The  mixed-precision  method  (MixedP)[12]
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formulates  mixed-precision  quantization  as  a  neural

architecture  search  problem.  AutoQB[13] introduces

deep  reinforcement  learning  (DRL)  to  automatically

explore  the  space  of  fine-grained  channel-level  net-

work quantization. The proposed method in [16] con-

verts each depth-wise convolution layer in MobileNet

to  several  group  convolution  layers  with  binarized

weights,  and  employs  the  evolution-based  search  to

explore  the  number  of  group  convolution  layers.

HAWQ[8] and  HAWQ-V2[9] employ  the  second-order

information,  i.e.,  top  Hessian  eigenvalue  and Hessian

trace of  weights/activation, to compute the sensitivi-

ties of  layers and then design a mixed-precision poli-

cy based on these sensitivities. BSQ[36] considers each

bit of the quantized weights as an independent train-

able variable and introduces a differentiable bit-spar-

sity regularizer for reducing precision. 

3    AutoQNN

In  this  section,  we  present  three  techniques  in-

volved  in  AutoQNN,  including  quantizing  scheme

search  (QSS),  quantizing  precision  learning  (QPL),

and quantized architecture generation (QAG). 

3.1    Quantizing Scheme Search

df ∈ Rd

dq ∈ Qd

R Q

We  elaborate  the  automatic  quantizing  scheme

search  in  this  subsection.  We  first  summarize  five

classical  quantizing  schemes,  then  propose  three  new

quantizing  schemes,  and  finally  take  the  eight

schemes  as  a  candidate  set.  We  will  seek  desirable

schemes from the candidate set for arbitrary architec-

tures.  For  ease  of  notation,  we  define  and

 as the original and quantized vectors, respec-

tively.  is  the real  space and  is  the set of  quan-

tized values. 

3.1.1    Candidate Schemes

We divide related quantization methods into eight

categories based on their quantizing processes and the

format  of  quantized  values:  binary,  ternary,  quater-

nary,  fixed  quantization  (FixedQ),  residual  quantiza-

tion (ResQ), zoom quantization (ZoomQ), clip quanti-

zation (ClipQ), and PoT quantization (PotQ).

The first  five  schemes can be realized easily,  and

thus we just refer to the existing methods.

Binary. The binary in [18] is summarized as: 

dq = α · sign(df) s.t. α = E(abs(df)).

sign(df) = (−1)Idf<0

df 1 −1

abs(df) = sign(df) · df df

E(·)

Here  maps  the  positive  elements

of  to  and  non-positive  ones  to .

 converts  the  elements  of  in-

to  their  absolute  values.  computes  the  expecta-

tion of input.

Ternary. The ternary proposed in TWN[3] is reor-

ganized as follows: 

dq = α ·
⌊⌊

df

2β
+

1

2

⌋⌉1

−1

s.t. α = E(abs({x|x ∈ df, x > β})),
β = 0.7E(abs(df)).

⌊·⌋ ⌊·⌉1−1

[−1, 1]

Here  is the floor function, and  truncates the

elements of a vector to the range of  .

{−2, −1, 0, 1}
Quaternary.  Quaternary  quantizes  weights  into

four values of    . The quaternary defini-

tion in [6] is summarized as follows: 

dq = α ·

(⌊⌊
df

α

⌋⌉1

−2

+
1

2

)
s.t. α =

√
D(df).

D(·)Here  computes the variance of input.

FixedQ.  FixedQ  quantizes  values  into  low-preci-

sion  fixed-point  formats  by  dropping  several  bits  of

the  binary  strings  of  values.  The  FixedQ  in  [22]  is

summarized as follows: 

dq = α ·
⌊
df

α
+

1

2

⌋
s.t. α = 2p, p = ⌊log2 (max (abs (df)))⌋ − (b− 2).

b max(·)
log2(·)

Here  is  bitwidth.  finds  the  maximum  ele-

ment  of  an  input  vector.  calculates  the  loga-

rithm of a scalar with the base of 2.

ResQ.  ResQ  quantizes  the  residual  errors,  which

are the quantization errors produced by the last quan-

tizing  process,  into  binaries  iteratively.  ResQ  can  be

defined as follows: 

dq =
b∑

i=1

B(vi)

s.t. B(v) = E(abs(v)) · sign(v),

vi =

{
df, if i = 1,
vi−1 −B(vi−1), if i = 2, 3, . . . , b.

The remaining schemes, including ZoomQ, ClipQ,

and PotQ, are widely applied and have been realized

in a variety of ways. Here we propose three new defi-

nitions of them below.

ZoomQ. ZoomQ indicates a group of schemes that

uniformly map full-precision values into integers. It is
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usually realized by zooming and rounding operations.

The new definition of ZoomQ is given below. 

dq = α ·
⌊⌊

df − β

α

⌋⌉2b−1

0

+ β +
α

2

s.t. α =
max(df)−min(df)

2b
, β = min(df).

min(·)

α df

α

Here  returns  the  minimum  element  of  an  in-

put  vector.  The  quantizing  process  of  ZoomQ  is

shown in Fig.1(a). We first compute a quantizing in-

terval width , and then map the full precision  in-

to the integer vector based on the obtained .

ClipQ.  ClipQ  first  truncates  values  into  a  target

range,  and  then  uniformly  maps  the  values  to  low-

precision representations. We define ClipQ as follows: 

dq = α ·

(⌊⌊
df

α

⌋⌉2b−1−1

−2b−1

+
1

2

)
s.t. α = argmin

α

||df − dq||22.

α

df

α ∈ {1.283 2, 0.669 4, 0.357 0,

0.193 9, 0.105 6, 0.057 3, 0.030 8} b ∈ {2, 3, 4, 5,

6, 7, 8}

The quantizing process of ClipQ is drawn in Fig.1(b).

For simplicity, we compute optimal  for each quan-

tizing  bitwidth  offline  by  assuming  that  satisfies

normal  distribution[6, 7].  The  optimal  solutions  under

different  bitwidths  are   

    for    

  .

PotQ.  PotQ  is  a  non-uniform  quantizing  scheme

that  quantizes  values  into  the  form  of  PoT.  We  de-

fine PotQ as follows: 

dq = α · sign(df) · 2e
s.t. e = v − Iv=0,

v =

⌊⌊
log2

(
abs (df)

α

)
+

1

2

⌋⌉2b−1−1

0

.

Iv=0 vHere  maps  all  the  zeros  in  into  ones  and  the

non-zero values into zeros. The quantized values and

the quantizing process of PotQ are shown in Fig.1(c).

Assuming  that  the  inputs  are  normally  distributed,

we  can  obtain  the  optimal  solutions  offline  that  are

α ∈ {1.224 0, 0.518 1, 0.038 1} b ∈ {2, 3, 4}   for   ②.

The  quantization  loss  comparisons  of  the  above

candidate schemes handling different distributions are

shown in Fig.2, and the detailed comparisons of these

schemes  are  presented  in Table 1.  The  results  show

that  the  schemes  perform widely  divergent  on differ-

ent  distributions.  No  scheme  can  always  achieve  the

minimum  quantization  loss  across  various  distribu-

tions.  However,  the  weights  and  activation  of  each

layer in DNNs tend to distribute differently. This ob-

servation implies that employing an undesirable quan-

tizing scheme will make it difficult to fit the distribu-

tions  and  degrade  the  accuracy  of  DNNs.  Therefore,

seeking  desirable  quantization  for  specific  layers  or

models is strongly demanded. 

3.1.2    Seeking Scheme

G(V,E)

G′(V ′, E ′) G′ G

V ⊂ V ′

V ′ − V

N = |V ′ − V |

We denote the computing graph of a neural archi-

tecture  as  and  the  corresponding  quantized

graph  as .  is  generated  from  by

adding  the  quantizing  vertices,  that  is, .

 is the set that consists of the quantizing ver-

tices.  is the number of the added quan-

tizing  vertices.  We  seek  suitable  schemes  for  these

quantizing  vertices  to  reduce  the  accuracy  degrada-

tion in quantization.

{Ql
1, Ql

2, Ql
3, . . . , Q

l
n}

vi, vj ∈ V ′ vl
q ∈ V ′ − V l⟨

vi, v
l
q

⟩
,
⟨
vl
q, vj

⟩
∈ E ′

vl
q Ql

k

df
l

dl
q

Ql
k dl

q = Ql
k(df

l)

We denote  all  the  schemes  introduced in Subsec-

tion 3.1.1 as  a  candidate  set   .

Let ,  be  the -th  quantizing

vertex,  and .  The  implementa-

tion  of  should  be  a  scheme  selected  from  the

candidate set. Let  and  denote the original vec-

tor  and  quantized  vector,  respectively.  A  quantizing

process of the scheme  is denoted as .

Ql
k

df
l

dl
q

Quantizing  scheme  search  (QSS)  is  proposed  to

seek a desirable quantizing scheme  from the candi-

date set and quantize  into  with small accuracy

degradation.  We  employ  the  sampling  way  as  de-
 

 
  

 

(a)

max(df)-min(df)

2+
 

 

(b)

 

    

 

(c)

Quantized
Position

C
li
p

C
li
p

C
li
p

C
li
p

2


2


 argmin||df-dq||
2
2 argmin||df-dq||

2
2

df df
df

3 2 1
-1

-1 1 2 3

Fig.1.  Quantizing process of our proposed new schemes, including (a) zoom quantization, (b) clip quantization, and (c) PoT quanti-
zation.
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②Since  the  intervals  of  quantized  values  in  PotQ  grow  exponentially  with  the  bitwidth  increasing,  the  maximum  bitwidth
should be less than or equal to 4[23].



θl = (θl1, θl2, . . . , θ
l
n)

T

Pθ

scribed  in  DNAS[12] to  find  desirable  schemes.  As

shown  in Fig.3,  we  construct  state  parameters

  that  correspond  to  the  quantiz-

ing  schemes,  and  sample  a  quantizing  scheme  with

the  probabilities  before  each  training  phase.  The

sampling process can be defined as follows: 

dl
q = Ql

k(df
l)

s.t. k ∼ Pθl , Pθl = softmax(θl).

softmax(·)Here  maps values into probabilities.

Unfortunately,  the  conventional  sampling  process

k ∼ Pθl

θl

 is  non-differentiable,  which  means  the  sam-

pling result is hard to guide the optimization of state

parameters .  Therefore,  we  employ  the  Gumbel-

Softmax[37] to realize a differentiable sampling process:
 

dl
q =Ql

k(df
l)

s.t. k = arg
k

max(Pθl+gl),

Pθl+gl = softmax(θl + gl), gl ∼ Gumbel(0, 1)n.
(1)

gl
k ∈ glHere  is a value drawn from the Gumbel distri-
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Fig.2.   Quantization  loss  comparisons  of  candidate  schemes  across  various  data  distributions  and  quantizing  bits.  The  candidate
schemes include ternary (T), quaternary (Q), FixedQ (F), ZoomQ (Z), ClipQ (C), PotQ (P) and ResQ (R). Quantization loss is the
L2 distance between values before and after quantization. The first row shows different data distributions. The second line presents
2-bit quantization losses. The third line is 3-bit quantization losses, and the last line is 4-bit quantization losses.

 

Table  1.    Detailed Information of the Eight Candidate Schemes

Scheme Number of Bits TC SC Distribution Format Reference

Binary 1 O(n) O(n) – Binary [2, 17, 18]

Ternary 2 O(n) O(n) Normal Ternary [3, 5, 20]

Quaternary 2 O(n) O(n) Normal Quaternary [6, 7]

FixedQ 2–8 O(n) O(n) Uniform Fixed-point [21, 22]

ZoomQ 2–8 O(n) O(n) Uniform Integer [4]

Normal

ClipQ 2–8 O(n) O(n) Normal Integer [25, 26]

Logistic [10, 24]

Exponential [7]

PotQ 2–4 O(n) O(n) Log-normal PoT [15, 27, 28]

ResQ 2–8 O(nb) O(nb) Uniform Sum of binaries [29, 33, 34]

n bNote: TC is the time complexity of quantizing scheme.  is the scale of input and  is the number of quantizing bits. SC is the space
complexity of quantizing scheme. Distributions denote the distributions wanted by quantizing schemes as shown in Fig.2.
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dl
q θlk ∈ θl

argmax(·)

Ql
k(df

l)

bution.  The  sampling  process  in  (1)  is  differentiable

and the gradients of  with respect to  can be

derived.  However,  the  gradient  of  the “hard” sam-

pling  process  of  is  zero  everywhere,  and

the  state  parameters  cannot  be  optimized.  To  solve

this problem, we introduce a “soft” sampling process

that  adopts  the  expectation  of .  Finally,  the

seeking scheme of QSS is defined as follows: 

dl
q =

n∑
k=1

pl
kQ

l
k(df

l)

s.t. pl
k ∈ softmax

(
θl + gl

τ

)
, gl ∼ Gumbel(0, 1)n.

(2)

τ τ → ∞
Ql

k(df
l) pl

k dl
q

τ → 0

dl
q

τ

vl
q

τ

Here  is  a temperature coefficient.  As ,  each

output  of  has  the  same  weight  and 

equals the averaged outputs. Thus all of the state pa-

rameters can be optimized simultaneously. As ,

 is  equivalent  to  the  sampling  result  in  (1).  We

smoothly decay  from a large value to 0 to select a

desirable  quantizing  scheme  for .  The  decaying

strategy of  is defined as follows: 

τ = τ0 × (1− δ/∆)p. (3)

τ0 δ

∆ p

 is the initial temperature.  is the current training

epoch and  is the number of total training epochs. 

is the exponential coefficient.

G′(V ′, E ′) L

L θl

Let  the  final  loss  of  be .  Since  (2)  is

differentiable,  the  gradients  of  with  respect  to 

can be computed as follows: 

∂L

∂θl
=

∂L

∂dl
q

∂dl
q

∂θl
.

θl

vl
q

It  means  that  a  gradient-descent  algorithm  can  be

employed to optimize the state parameters . There-

fore, we can seek a quantizing scheme for each quan-

tizing vertex  to minimize the loss of  neural  archi-

tecture, so as to improve accuracy.

θ

G′(V ′, E ′)

L θ

In  addition,  different  quantizing  schemes  require

distinct accelerating implementations, such as the bit-

operations  for  binaries/ternaries,  low-bit  multiplica-

tion  for  fixed-point  values,  and  shift  operations  for

PoTs.  Implementing  all  of  these  operations  is  unrea-

sonable  for  resource-constrained  devices.  To  simplify

the  hardware  implementation  of  accelerators,  search-

ing for one shared quantizing scheme for all  the ver-

tices in one neural architecture is still demanded. We

realize  the  coarse-grained  QSS  by  maintaining  and

sharing one group of state parameters  for all quan-

tizing  vertices  in .  In  coarse-grained  QSS,

the gradients of  with respect to  are computed as: 

∂L

∂θ
=

N∑
l=1

∂L

∂dl
q

∂dl
q

∂θ
.

 

3.2    Quantizing Precision Learning

Quantizing  precision,  i.e.,  the  bitwidth,  is  an  es-

sential  attribute  of  quantizing  schemes  and  deter-

mines  the  number  of  quantized  values.  Selecting  an

optimal  precision  for  a  specific  quantizing  scheme  is

vital  for  balancing  the  efficiency  and  accuracy  of

quantized DNNs. In this subsection, we reparameter-

ize  the  quantizing  precision  and  learn  the  relatively

optimal mixed-precision model within a limited mod-

el size and memory footprint. 

3.2.1    Bitwidth Reparameterization

b Q
|Q| = 2b

dq = Qk(df)

Let  be the number of the quantizing bits and 

be the quantized value set,  and we have .  A

general quantizing process of  can be rep-

resented  as  two stages:  1)  mapping  the  full-precision

weights or activation to the quantized values that be-
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Fig.3.   Quantizing  scheme  search  process.  Reparameterization  is  adopted  and  we  optimize  the  state  parameters  to  seek  desirable
quantizing schemes.
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Qlong  to ,  and  then  2)  scaling  the  quantized  values

into  a  target  range,  as  shown  in Fig.4.  Here  we  ex-

pand the  general  quantizing  process  as  following for-

mulations.
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|df|
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Fig.4.   General  quantizing  process:  mapping  full-precision  val-
ues  to  integers  and  then  scaling  these  integers  into  a  target
range.
  

dq = Qk(df) = αH

(
df

β

)
s.t. H : R|df| → Q|dq|, |Q| = 2b. (4)

|df| |dq| df

dq |df| = |dq| R
H

α β

Qk α

β df dq

Here  and  are  the  number  of  elements  of 

and ,  respectively,  and .  is  the  set  of

real  numbers.  is  a  function  that  projects  the  vec-

tor  with  real  values  into  that  with  quantized values.

 is the scaling factor and  is the average step size

of the quantizing scheme . In general,  varies lin-

early with  to maintain a similar range of  and ,

thereby reducing quantization loss. 

α = λ× β.

λ = 1 α = β

β

b df

Typically,  and [4, 7, 10, 38].  The  average

step size  can be calculated using the quantizing pre-

cision  and the range of  as follows: 

β =
max(df)−min(df)

2b
.

L G′(V ′, E ′)

b

(∂L)/(∂b)

Therefore,  the  loss  of  is  differentiable

with respect to the quantizing precision . The gradi-

ent  can be calculated as follows: 

∂L

∂b
=

∂L

∂dq

∂dq

∂α

∂α

∂β

∂β

∂b

= − ∂L

∂dq

max(df)−min(df)

2b(ln 2)−1

(
H

(
df

λα

)
− df

λα

)
.

(5)

H(·) H ′(·) = 1

We employ the straight through estimator (STE)[4] to

compute the differential of , i.e., . Based

L

b

b

on (5),  we get  the gradient  of  with respect  to the

quantizing precision , which means that we can repa-

rameterize  and  employ  the  gradient-descent  algo-

rithm to learn a reasonable quantizing precision. 

3.2.2    Precision Loss

L

b

L

b

Generally,  DNNs  tend  to  learn  high-precision

weights or activation by minimizing . It implies that

the values of the quantizing precision  for DNNs will

be  optimized to  be  great  ones,  such as  32 bits  or  64

bits, instead of small ones. To learn a policy with low

average  quantizing  precision,  we  propose  precision

loss , which measures the distance between the aver-

age quantizing precision and a target precision . 

L = (E(B)− b)2

s.t. B =

{
bi|i = 1, 2, . . . ,

N∑
l=1

|dq(l)|

}
.

(6)

b

bi
G′(V ′, E ′) B

bi N = |V ′ − V |

L+ L b

 is  the expected quantizing bitwidth of  a neural  ar-

chitecture,  and  preset  before  a  precision  learning

phase.  is  the  bitwidth  of  one  weight  or  activation

value  in  neural  architecture .  is  the  set

consisting of .  is the number of quan-

tizing vertices as described in Subsection 3.1. The gra-

dient of  with respect to  is defined as follows: 

gb =
∂L

∂b
+

∂L

∂b
.

 

3.3    Quantized Architecture Generation

G(V,E) V

vi ∈ V E

⟨vi, vj⟩ ∈ E di,j

vi vj Id(vi) Od(vi)

vi vi
Id(vi) = 0

vi
Id(vi) > 0

We denote the computing graph of a neural archi-

tecture  as .  is  the  set  of  the  vertices  and

 indicates  a  vertex.  is  the  set  of  edges  and

 indicates  that  there  is  a  tensor  flow-

ing from  to .  and  compute the in-

degree and out-degree of , respectively.  is a data

vertex when ,  such as  input image,  feature

map,  and  weight.  is  an  operation  vertex  when

,  such as  convolution,  batch normalization,

full-connection, and so on.

di,j

di,j

Ve ⊂ V

Let  denote  a  tensor  that  flows  into  a  time-

consuming and/or memory-consuming vertex, such as

the  weight  tensor  of  convolutional  (Conv)  vertices

and full-connected (FC) vertices. The target of quan-

tization  is  to  reduce  the  precision  of  and  shrink

the  computing  consumption  of  DNNs.  These  time-

consuming  and/or  memory-consuming  vertices  are

called expensive vertices.  is the expensive ver-
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Ve = {vi|vi ∈ V, vi is Conv or FC}

tex  set  to  be  quantized.  The  Conv  and  FC  vertices

occupy  more  than  99%  of  operations  and  memory

footprint in mainstream DNN architectures and appli-

cations.  According  to  the  above  observations,  we  set

the  Conv  and  FC  vertices  as  the  default  expensive

vertices, that is, .

G(V,E)

G′(V ′, E ′)

G(V,E)

Ve

V ′ E ′ = {}
I = {vj|vi ∈ V ′, vj ∈ V − (V ′ ∩ V ), ⟨vi, vj⟩ ∈ E}

I ̸= ϕ V ̸= V ′ ∩ V G = (V,E)

I

V ′

We  design  the  quantized  architecture  generation

(QAG)  algorithm  to  automatically  reconstruct  the

computing graph  into its  quantized counter-

part  requiring  less  memory  footprint  and

few  computing  overheads.  As  shown  in Algorithm 1,

for  a  specific  DNN  with  computing  graph 

and  the  expensive  vertex  set ,  QAG  first  collects

the vertices  with 0 in-degree as  the initial  vertex set

 and  initializes  the  edge  set .  Let

,  and

we have  when , since  is

a connected graph. Then we move the vertices from 

to  iteratively.  During  this  process,  we  embed

quantizing vertices into the edges flowing into expen-

sive vertices.

G(V,E)

G′(V ′, E ′) |V |
Ve

G′(V ′, E ′)

G(V,E)

O(|V ||E|) O(|V |+ |E|)

The original  can be automatically recon-

structed  as  within  iterations,  and  the

tensors  flowing  into  the  expensive  vertices  of  are

replaced with low-precision representations by embed-

ding quantizing vertices. Therefore, the new architec-

ture  requires  less  computing  budget  than

.  The  average  time  and  space  complexity  of

Algorithm 1 are  and ,  respec-

tively. 

4    End-to-End Framework

∆

The  proposed  QAG  in Algorithm 1 can  signifi-

cantly  reduce  the  quantization  workload  and  avoid

prone  errors,  so  as  to  provide  fast,  cheap,  and  reli-

able quantized architecture generation. We finally im-

plement an end-to-end framework based on the three

techniques  in  AutoQNN,  i.e.,  QAG,  QSS,  and  QPL.

As shown in Fig.5 and Algorithm 2, AutoQNN is con-

structed with three stages corresponding to the three

techniques  and  takes  a  full-precision  architecture  as

input. AutoQNN first reconstructs the input architec-

ture  into  a  quantized  one  through  QAG.  Then  it

trains  total  epochs  to  seek  desirable  quantizing

schemes  through  QSS  automatically.  Finally,  Auto-

QNN  retrains/fine-tunes  the  quantized  architecture

with QPL to converge.

Algorithm 1. Quantized Architecture Generation (QAG)

G(V,E)

Ve ⊂ V

Input: computing  graph ,  expensive  vertex  set  

G′(V ′, E′)Output: quantized architecture 

V ′ ← {vi|vi ∈ V, Id(vi) = 0}1: 

E′ ← {}2: 

I ← {vj |vi ∈ V ′, vj ∈ V − (V ′ ∩ V ), ⟨vi, vj⟩ ∈ E}3: 

I ̸= ϕ4: while  do

vj ∈ I5: 　　for  do

I ′ ← {vk|vk ∈ V, ⟨vk, vj⟩ ∈ E}6: 　　　　

I ′ ⊆ V ′7: 　　　　if  then

V ′ ← V ′ ∪ {vj}8: 　　　　　　

vk ∈ I ′9: 　　　　　　for  do

vj ∈ Ve10: 　　　　　　　　if  then

vqk11: 　　　　　　　　　　create quantizing vertex 

V ′ ← V ′ ∪ {vqk}12: 　　　　　　　　　　

E′ ← E′ ∪ {⟨vk, vqk⟩ , ⟨vqk , vj⟩}13: 　　　　　　　　　　

14: 　　　　　　　　else

E′ ← E′ ∪ {⟨vk, vj⟩}15: 　　　　　　　　　　

16: 　　　　　　　　end if

17: 　　　　　　end for

18: 　　　　end if

19: 　　end for

I ← {vj |vi ∈ V ′, vj ∈ V − (V ′ ∩ V ), ⟨vi, vj⟩ ∈ E}20: 　　
21: end while

Algorithm 2. AutoQNN Framework

G(V,E)

Ve ⊂ V Q X
∆

Input: computing  architecture ,  expensive  vertices

,  candidate  quantizing  schemes ,  dataset ,  training

epochs 

G′(V ′, E′)Output: quantized architecture 

G′(V ′, E′)1: Generating  with Algorithm 1
δ = 1 ∆2: for  to  do

τ3: 　　Decaying  with (3)

G′ X θ4: 　　Training  on  with respect to weights and 
5: end for
6: Sampling the quantizing schemes

b G′ X7: Training the weights and  of  on  to converge
 

5    Evaluation

In order to train DNN models and evaluate their

performance  conveniently,  we  implement  AutoQNN

and  integrate  it  into  Keras③ (v2.2.4).  Furthermore,

we implement the eight candidate quantizing schemes

presented in Subsection 3.1.  For ease of  notation,  we

use the combination of the scheme name and bitwidth

to  denote  one  quantizing  strategy.  For  example, “P-

3” indicates  a  PotQ  quantizer  with  a  bitwidth  of  3.

All  quantized  architectures  are  automatically  con-

structed  by  AutoQNN  in  our  experiments.  In  addi-

tion,  respecting  that  most  DNNs have  employed Re-

LU[39] to  eliminate  the  negative  elements  of  activa-

Cheng Gong et al.: AutoQNN: A Framework Automatically Quantizing Neural Networks 409

 

③https://github.com/fchollet/keras, Mar. 2024.

https://github.com/fchollet/keras


tion,  we  do  not  use  binary,  ternary,  or  quaternary

schemes in activation quantization.
 

5.1    Image Classification

Image  classification  provides  the  basic  cues  for

many  computer  vision  tasks,  and  thus  the  results  of

image classification are representative for the evalua-

tion  of  quantization.  For  a  fair  comparison  with  the

state-of-the-art  quantization[23, 25],  we  quantize  the

weights  and  activation  of  all  layers  except  the  first

and last layers.
 

5.1.1    Dataset and Models

We conduct experiments with widely used models

on  the  ImageNet[40] dataset,  including  AlexNet[41],

ResNet18[31],  ResNet50[31],  MobileNets[42],  Mo-

bileNetV2[43],  and  InceptionV3[44].  To  make  a  fair

comparison and ensure  reproducibility,  the  full-preci-

sion models used in our experiments refer to the full-

precision  pre-trained  models  obtained  from  open

sources.  Specifically,  AlexNet  refers  to  [45],  and

ResNet18 cites from literature [46]. Other models are

obtained from official Keras community④. Referenced

accuracy  results  of  the  full-precision  models  used  in

our experiments are also from the open-source results,

and  no  further  fine-tuning  is  made.  The  data  argu-

mentation of ImageNet can be found here⑤.
 

5.1.2    Baseline Methods

We select the state-of-the-art fixed-precision quan-

tizers  including  TWNs[3],  TTQ[14],  INQ[28],  ENN[15],
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Fig.5.  End-to-end neural network quantization. Input is a full-precision architecture  and output is the efficient quantized
architecture  with desirable quantizing strategies. (a) Generating a quantized architecture with QAG. (b) Seeking quantiz-
ing schemes with QSS. (c) Learning precision with QPL.

410 J. Comput. Sci. & Technol., Mar. 2024, Vol.39, No.2

 

④https://github.com/fchollet/keras, Mar. 2024.
 

⑤https://github.com/tensorflow/models, Mar. 2024.

https://github.com/fchollet/keras
https://github.com/tensorflow/models


µL2Q[7],  VecQ[6],  TSQ[24],  DSQ[47],  PACT[26],  Dorefa-

Net[4],  LQ-Nets[33],  QIL[25],  APoT[23],  BRQ  and

TRQ[32], and BCGD[48], and mixed-precision quantiza-

tion methods including MixedP[12], AutoQB-QBN and

AutoQB-BBN[13],  HAQ[10],  BSQ[36],  HAWQ[8] and

HAWQ-V2[9], as the baselines for comparison. 

5.1.3    Quantizing Strategy Search

For quantizing scheme search, we configure all the

candidate  schemes  with  the  same  low  bitwidth  of  3,

since low-bitwidth quantization can highlight the dif-

ference  among  candidate  schemes,  ensuring  the  ro-

bustness  of  searching  results.  We  train  the  models

with  coarse-grained  QSS  by  10  epochs  to  find  desir-

able  quantizing  schemes.  Then,  based  on  the  found

quantizing schemes, we train 60 epochs to learn a rea-

sonable quantizing precision for each layer.

The quantizing strategies found by QSS and QPL

are  shown  in Table 2.  On  both  AlexNet  and

ResNet18,  PotQ  is  the  desirable  scheme  for  weight

quantization,  and ClipQ is  the  scheme for  activation

quantization.  The reason for  the results  is  that  most

of the weights are Log-Normal distributed, and PotQ

is  the  best  one  for  handling  this  distribution,  as  de-

scribed  in Subsection 3.1.  The  activation  distribu-

tions  of  ResNet18  and  AlexNet  are  mostly  bell-

shaped,  and  ClipQ  performs  well  on  bell-shaped  dis-

tributions,  such  as  normal,  logistic,  and  exponential

distributions  described  in Subsection 3.1.  Therefore,

PotQ and ClipQ are selected as the solutions for the

weight and activation quantization, respectively.

Besides,  QPL  learns  mixed-precision  strategies.

For a fair comparison with state-of-the-art fixed-preci-

sion  schemes,  we  compute  the  average  bitwidth  for

representing weights and activation of models as con-

ditions in our experiments, since the models with the

same  average  bitwidth  consume  the  same  memory

footprint and storage in model inference.
 

5.1.4    Comparison with State-of-the-Art

Quantization

We compare AutoQNN with state-of-the-art fixed-

precision  quantization  across  various  quantizing  bits

and  the  results  are  shown  in Table 3.  The  results

show that AutoQNN can consistently outperform the

compared  methods  with  much  higher  inference  accu-

racies.  At  extreme  conditions  with  only  2  bits  for

weights and activation, the accuracy of AutoQNN on

AlexNet is 59.75%, slightly lower than the accuracy of

the  referenced  full-precision  AlexNet  by  0.26%.  The

accuracy also exceeds that of QIL by 1.65%, and out-

performs that of  VecQ by 1.27%. Besides,  AutoQNN

achieves  an  accuracy  of  68.84%  on  ResNet18  using

only 2 bits for all  weights and activation. The result

is  slightly  less  than  the  accuracy  of  the  referenced

full-precision model by 0.76% and exceeds APoT and

VecQ  by  1.74%  and  0.61%,  respectively.  AutoQNN

achieves  the  highest  accuracy  results  of  61.85%  and

62.63%  when  quantizing  AlexNet  into  a  3-bit  model

and a 4-bit model correspondingly. AutoQNN also re-

alizes  the  best  results  of  69.88%  and  70.36%  when

quantizing the weights and activation of ResNet18 in-

to 3 bits and 4 bits correspondingly. It is worth not-

ing  that  the  results  of  quantized  models  may  exceed

the specific referenced accuracy results by fine-tuning.

Still, quantization may harm accuracy, and the quan-

tized  models  cannot  perform  better  than  full-preci-

sion models in accuracy theoretically.

The experiments demonstrate that AutoQNN can

automatically  seek  desirable  quantizing  strategies  to

reduce accuracy degradation under the different  con-

ditions  of  model  size  and  memory  footprint,  thus

achieving  a  new  balance  between  accuracy  and  effi-

ciency in DNN quantization.
 

 

Table  2.    Optimal Quantizing Strategies for AlexNet and ResNet18

Model Notation (W/A) Quantizing Bits of Layer Weights Quantizing Bits of Layer Activation Average Bits (W/A)

AlexNet P-2/C-2 4, 4, 4, 4, 2, 2 2, 2, 2, 2, 3, 3 2.13/2.01

P-3/C-3 4, 4, 4, 4, 3, 3 3, 3, 4, 3, 4, 4 3.06/3.20

P-4/C-4 4, 4, 4, 4, 4, 4 3, 3, 3, 5, 5, 5 4.00/4.05

ResNet18 P-2/C-2 4, 3, 4, 4, 3, 3, 4, 4, 2, 2, 3, 2, 3, 2, 2, 3, 3, 2, 2, 2, 2.13/2.49

4, 2, 2, 2, 2, 2, 2, 4, 2, 2 3, 3, 2, 3, 3, 3, 3, 3, 3, 3

P-3/C-3 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 3, 3, 2, 2, 4, 4, 2, 2, 3, 2.94/3.07

4, 4, 4, 4, 4, 4, 2, 4, 3, 2 4, 4, 2, 3, 4, 5, 6, 4, 5, 4

P-4/C-4 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 4, 5, 3, 3, 4, 4, 3, 3, 3, 4.00/4.08

4, 4, 4, 4, 4, 4, 4, 4, 4, 4 5, 6, 3, 4, 5, 7, 7, 5, 7, 6

Note: The first and last layers are not quantized. W/A denotes the results for weights and activation, respectively. The maximum
quantizing bitwidth of PotQ is 4.
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5.1.5    Comparison with Mixed-Precision Schemes

We  verify  that  the  proposed  AutoQNN  can  out-

perform  state-of-the-art  mixed-precision  schemes  and

gain higher accuracy in DNN quantization in this ex-

periment. According to the results in Subsection 5.1.4,

we  employ  PotQ  for  weight  quantization  and  ClipQ

for  activation  quantization.  We  seek  reasonable

mixed-precision  policies  by  QPL  and  compare  them

with the mixed-precision schemes under the same av-

erage bitwidth condition.

The  comparison  results  are  shown  in Table 4.

Compared  with  MixedP[12] on  ResNet18,  AutoQNN

achieves  a  higher  accuracy  of  68.84% with  the  lower

 

Table  3.    Accuracy Comparison with State-of-the-Art Methods

QB Method W/A AlexNet ResNet18

Top 1 Top 5 Top 1 Top 5

32 Referenced 32/32 60.01 81.90 69.60 89.24

2 TWNs 2/32 57.50 79.80 61.80 84.20

TTQ 2/32 57.50 79.70 66.60 87.20

INQ 2/32 – – 66.02 87.12

ENN 2/32 58.20 80.60 67.00 87.50

µL2Q 2/32 – – 65.60 86.12

VecQ 2/32 58.48 80.55 68.23 88.10

TSQ 2/2 58.00 80.50 – –

DSQ 2/2 – – 65.17 –
PACT 2/2 55.00 77.70 64.40 85.60

Dorefa-Net 2/2 46.40 76.80 62.60 84.40

LQ-Nets 2/2 57.40 80.10 64.90 85.90

QIL 2/2 58.10 – 65.70 –

APoT 2/2 – – 67.10 87.20

BRQ 2/2 – – 64.40 –

TRQ 2/2 – – 63.00 –
AutoQNN P-2/C-2 59.75 81.72 68.84 88.50

3 INQ 3/32 – – 68.08 88.36

ENN-2 3/32 59.20 81.80 67.50 87.90

ENN-4 3/32 60.00 82.40 68.00 88.30

VecQ 3/32 58.71 80.74 68.79 88.45

DSQ 3/3 – – 68.66 –
PACT 3/3 55.60 78.00 68.10 88.20

Dorefa-Net 3/3 45.00 77.80 67.50 87.60

ABC-Net 3/3 – – 61.00 83.20

LQ-Nets 3/3 – – 68.20 87.90

QIL 3/3 61.30 – 69.20 –

APoT 3/3 – – 69.70 88.90

BRQ 3/3 – – 66.10 –
AutoQNN P-3/C-3 61.85 83.47 69.88 89.07

4 INQ 4/32 – – 68.89 89.01

µL2Q 4/32 – – 65.92 86.72

VecQ 4/32 58.89 80.88 68.96 88.52

DSQ 4/4 – – 69.56 –
PACT 4/4 55.70 78.00 69.20 89.00

Dorefa-Net 4/4 45.10 77.50 68.10 88.10

LQ-Nets 4/4 – – 69.30 88.80

QIL 4/4 62.00 – 70.10 –

BCGD 4/4 – – 67.36 87.76

TRQ 4/4 – – 65.50 –
AutoQNN P-4/C-4 62.63 83.93 70.36 89.43

Note: QB is the quantizing bitwidth. W/A denotes the weight/activation bitwidth. The sign - indicates that the results cannot be
found. The best results are underlined.
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74.76%

74.90%
76.15%

0.99%

average bitwidths of 2.16/2.49 for weight and activa-

tion  quantization.  AutoQNN  outperforms  AutoQB-

QBN[13] and  AutoQB-BBN[13] by  2.25%  and  6.47%

improvements  in  model  accuracy,  respectively,  under

even  lower  average  bitwidths  of  2.94/3.07.  When  we

employ AutoQNN to quantize models,  including Mo-

bileNets,  MobileNetV2,  and ResNet50,  into the same

size  as  that  in  HAQ[10],  we  can  gain  accuracy  im-

provements by 12.74%, 3.02%, and 4.13%, respective-

ly.  Besides,  there  are  1.05% and 0.59% accuracy  im-

provements  on  InceptionV3  by  AutoQNN,  compared

with HAWQ[8] and HAWQ-V2[9], respectively. On In-

ceptionV3, AutoQNN with 2.69/4 achieves higher ac-

curacy  (76.57%  vs  75.90%)  using  even  lower  activa-

tion  bitwidth  compared  with  BSQ  with  2.48/6,  and

also  uses  lower  weight  and  activation  bitwidth  to

achieve similar accuracy (76.57% vs 76.60%) to BSQ

with 2.81/6. The top 1 accuracy of BSQ[36] with 2.3/4

on  ResNet50  over  ImageNet  achieves  75.16%,  which

slightly  exceeds  the  accuracy  result  of  Auto-

QNN with 2.27/32. The reason is that the referenced

pre-trained ResNet50 in PyTorch has relatively high-

er  accuracy  than  that  in  Keras.  The  ResNet50  from

the Keras community has an accuracy of , but

that in the PyTorch community is up to . Ac-

cording to the referenced accuracy, the accuracy drop

of  AutoQNN is  only 0.14%, while  that of  BSQ is  up

to .  These  comprehensive  comparison  results

highlight that AutoQNN can obtain better mixed-pre-

cision  policies  for  various  mainstream  architectures

and surpass the state-of-the-art methods. 

5.2    Evaluation on LSTM

We  conduct  two  long-short-term-memory

(LSTM)[49] experiments  in  this  subsection  to  verify

the  effectiveness  of  AutoQNN  on  natural  language

processing (NLP) applications.  The baseline  methods

include  EffectiveQ[50],  QNNs[51],  LP-RNNs[52],  Bal-

ancedQ[53],  and  HitNet[54].  We  employ  AutoQNN  to

search  different  quantization  policies  for  four  weight

matrices  and  one  output  state  in  LSTMs,  as  did  in

HitNet.  The  experimental  results  show  that  Auto-

QNN  can  find  the  appropriate  quantizing  strategies

for different weights and activation in LSTMs. 

5.2.1    Experiments on Text Classification

We first evaluate AutoQNN on the text classifica-

tion task over the subset of the THCUNews dataset⑥,

which  contains  50k  pieces  of  news  for  10  categories.

We  use  the  model  with  one  word  embedding  layer,

one LSTM layer (with 512 hidden units), and two ful-

ly-connected  layers  (with  256  and  128  hidden  units,

respectively) as an evaluated model, and employ accu-

racy to measure model performance. We quantize the

weights and activation of the embedding, LSTM, and

fully-connected layers in the evaluated model.

94.53%
0.99%

95.46%

The results are shown in Table 5. AutoQNN finds

that  ZoomQ  and  PotQ  are  the  best  quantizing

schemes  for  weight  and  activation  quantization,  re-

spectively.  The  accuracy  of  the  quantized  model  us-

ing  2-bit  weights  and  2-bit  activation  achieves

, slightly lower than the full-precision result by

. When increasing the quantizing bitwidth to 3,

the  model  accuracy  achieves ,  which  is  very

close to the accuracy of the full-precision model. This

experiment  shows  that  AutoQNN  can  be  applied  to

text  classification  tasks  to  preserve  the  accuracy  of

quantized recurrent neural networks (RNNs). 

5.2.2    Experiments on Penn TreeBank

We  further  evaluate  AutoQNN  on  the  sequence

prediction  task  over  the  penn  treebank  (PTB)

 

Table  4.    Accuracy Comparison with Mixed-Precision Quan-
tization

Model Method W/A Accuracy (%)

ResNet18 MixedP >2.00/4.00 68.65

AutoQNN 2.13/2.49 68.84

ResNet18 AutoQB-QBN 3.12/3.29 67.63

AutoQB-BBN 3.06/3.27 63.41

AutoQNN 2.94/3.07 69.88

MobileNets HAQ 2.16/32.00 57.14

AutoQNN 2.28/32.00 69.88

MobileNetV2 HAQ 2.27/32.00 66.75

AutoQNN 2.30/32.00 69.77

ResNet50 HAQ 2.06/32.00 70.63

BSQ 2.30/4.00 75.16

AutoQNN 2.27/32.00 74.76

InceptionV3 HAWQ 2.60/4.00 75.52

HAWQ-V2 2.61/4.00 75.98

BSQ 2.48/6.00 75.90

BSQ 2.81/6.00 76.60

AutoQNN 2.69/4.00 76.57

Note:  W/A  indicates  the  average  bitwidth  for  weight  and
activation, respectively. The best results are underlined.
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1.0× 10−3

dataset[55],  which contains 10k unique words. We use

an open model implementation for evaluation, and its

source codes can be found here⑦. For a fair compari-

son,  we  modify  the  open  model  and  use  one  embed-

ding layer with 300 outputs and one LSTM layer with

300 hidden units, as did in [50]. We train the full-pre-

cision  model  for  100  epochs  with  the  Adam

optimizer[56] and  a  learning  rate  of .  Then,

we adopt AutoQNN to search for the best quantizing

strategy for the full-precision model and quantize the

weights  and  activation  of  its  embedding  and  LSTM

layers. Specifically, we employ the coarse-grained QSS

to  seek  a  shared  quantizing  scheme and  use  QPL to

learn  a  mixed-precision  policy.  Model  performance  is

measured  in  the  perplexity  per  word  (PPW)  metric,

as used in [50–54].

The comparison results are shown in Table 6. Au-

toQNN employs the 2.48-bit ResQ for weight quanti-

zation and the 2.28-bit ClipQ for activation quantiza-

tion, and achieves a competitive PPW result, outper-

forming  previous  methods,  including  EffectiveQ[50],

QNNs[51],  LP-RNNs[52],  and  BalancedQ[53].  The  result

of AutoQNN is slightly higher than that of HitNet[54],

because  we  use  an  inaccurate  full-precision  model

with  a  compressed  embedding  layer.  Another  reason

is  that  the  candidate  schemes  in  AutoQNN  are  de-

signed for  CNNs and are  not  adapted to  RNNs.  For

example,  the  activation  function  applied  in  RNNs  is

(−1, 1)

[0, +∞)

tanh, and its output range is  . In contrast, the

activation  range  of  CNN is  usually  .  There-

fore, applying truncation for RNN's outputs in quan-

tization  is  harmful  to  model  performance.  Neverthe-

less,  AutoQNN  can  still  find  the  best  quantizing

strategies for RNNs to preserve PPW. 

6    Ablation Study

In  this  section,  we  perform  two  ablation  studies

including QSS validation and QPL validation. 

6.1    QSS Validation

We evaluate the attainable accuracy of quantized

models to verify that QSS can find desirable quantiz-

ing schemes for DNNs⑧. To do this, we take all can-

didate  schemes  as  baselines  and  conduct  two  experi-

ments: layer-wised search and model-wised search. 

6.1.1    Settings

The widely verified Cifar10[57] and VGG-like[58] are

used  in  this  experiment.  The  data  augmentation  of

Cifar10 in [59] is employed. To highlight the discrimi-

nation of results, we fix the quantizing bitwidth as 3

for  the  multi-bit  schemes  such  as  ClipQ  and  PotQ.

We train VGG-like on Cifar10 for 300 epochs with an

 

Table  5.    Accuracy (%) of LSTM Model on THCUNews

Method Weight Quantization Activation Quantization Average Bits of Weights Average Bits of Activation Accuracy

Full-precision – – 32.00 32.00 95.52

AutoQNN ZoomQ PotQ 2.00 2.01 94.53

2.00 3.01 95.03

3.01 3.02 95.46

 

Table  6.    PPW Results of Different Quantization Methods on PTB

Method Weight Quantization Activation Quantization Average Bits of Weights Average Bits of Activation PPW

EffectiveQ – – 2.00 2.00 152.0

– – 2.00 3.00 142.0

– – 3.00 3.00 120.0

QNNs – – 2.00 3.00 220.0

LP-RNNs – – 2.00 2.00 152.2

BalancedQ – – 2.00 2.00 126.0

– – 2.00 3.00 123.0

HitNet TTQ BTQ 2.00 2.00 110.3

AutoQNN ResQ ClipQ 2.48 2.28 116.7
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⑦https://github.com/adventuresinML/adventures-in-ml-code, Mar. 2024.
 

⑧More experimental results can be found in our supplementary materials. https://github.com/JCST-supplementary/Paper-Sup-
plementary/blob/main/supplementary-materials.pdf, Mar. 2024.
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initial learning rate of 0.1, and decay the learning rate

to  0.01  and 0.001  at  250  epochs  and 290  epochs,  re-

spectively. 

6.1.2    Layer-Wised Search

We present  layer-wised  search  processes  in Fig.6,

which draws the changes of  sampling probabilities  of

different  candidate  schemes  during  150  training

epochs. All the schemes have the same sampling prob-

abilities at the beginning of a training phase. The sum

of  the  probabilities  at  each  epoch  equals  1.  For  the

weight  quantization of  the  seven layers  of  VGG-like,

the search processes of different layers tend to be sim-

ilar,  i.e.,  the probability of  P-3 gradually grows with

the  training  epoch  increasing,  while  that  of  other

schemes  decreases.  The  results  imply  that  P-3  con-

tributes less training loss during model training than

the  other  schemes.  Therefore,  QSS  finds  that  P-3  is

the  desirable  quantizing  scheme  among  all  candidate

schemes.  Similarly,  for  the activation quantization of

VGG-like,  QSS has found that R-3 owns the highest

sampling  probability  at  the  first  layer  because  R-3

can  reserve  the  features  in  the  first  layer  well.  Be-

sides,  C-3 achieves the highest sampling probabilities

at the rest six layers since C-3 can eliminate outliers

and  contribute  robust  training  results.  Finally,  QSS

finds  the  desirable  quantizing  schemes  of {P-3,  P-3,

P-3, P-3, P-3, P-3, P-3} and {R-3, C-3, C-3, C-3, C-3,

C-3,  C-3} for  the weight and activation quantization

of VGG-like, respectively.

Next,  we  generate  a  quantized  architecture  with

the found schemes above and fine tune it for another

150 epochs to  converge,  as  described in Algorithm 2.

The  accuracy  comparison  is  shown  in Fig.7.  QSS  is

denoted as QSS-F. B-1/3 denotes employing 1-bit bi-

nary for weight quantization and 3-bit ClipQ for acti-

vation  quantization,  respectively.  The  accuracy  of

QSS-F  achieves  93.07%,  which  constantly  outper-

forms that of candidate schemes by 2.70% on average,

and  only  incurs  0.42%  accuracy  degradation  com-

pared with the full-precision result (denoted as FP32).

The result verifies that QSS is able to seek desirable

quantizing  schemes  for  different  layers  to  gain  high

accuracy. 

6.1.3    Model-Wised Search

We employ the coarse-grained QSS to find shared

quantizing schemes for all layers of VGG-like. Specifi-

cally, respecting that the distributions of weights and

activation  are  usually  diverse,  we  seek  two  shared

schemes for the weight and activation quantization in

this  experiment,  respectively.  The  search  process  for

weight quantization is shown in Fig.8(a), and that for

activation  quantization  is  shown  in Fig.8(b).  Similar

to  the  layer-wised  results  above,  QSS  finds  that  C-3

and  P-3  are  the  desirable  quantizing  schemes  for

weight quantization, and C-3 is the desirable one for

activation  quantization.  Therefore,  we  take  C-3/C-3

and  P-3/C-3  as  two  desirable  quantizing  strategies.

C-3/C-3 employs C-3 for  both weight and activation

quantization.  P-3/C-3  adopts  P-3  for  weight  quanti-

 

Conv1

B-1 T-2 Q-2 F-3 Z-3 C-3 P-3 R-3

Conv2 Conv3 Conv4 Conv5 Conv6 FC7

F-3 Z-3 C-3 P-3 R-3

0         
Number of Epochs Number of Epochs Number of Epochs Number of Epochs Number of Epochs Number of Epochs Number of Epochs

150  

P-3

P-3 P-3 P-3 P-3

P-3
P-3

R-3

C-3 C-3 C-3
C-3 C-3

C-3

1       

0         

1       

150  50         100       150  50         100       150  50         100       150  50         100       150  50         100       150  50         100       150  

50         100       150  50         100       150  50         100       150  50         100       150  50         100       150  50         100       150  

50         100       

50         100       

Number of Epochs Number of Epochs Number of Epochs Number of Epochs Number of Epochs Number of Epochs Number of Epochs

(b)

(a)

Fig.6.  Changes of sampling probabilities of candidate schemes in the training phase of VGG-like. The x-axis is the number of train-
ing epochs (total number of 150 epochs) and the y-axis is the sampling probabilities of schemes (the sum of the probabilities is 1).
(a) Quantizing scheme search processes for the weights of different layers. (b) Quantizing scheme search processes for the activation
of different layers.
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zation and uses C-3 for activation quantization.

Since  the  shared  quantizing  schemes  may  not

meet the requirements of some layers inevitably, mod-

el-wised search sacrifices some accuracy to obtain the

unified  quantizing  schemes.  However,  QSS  still

presents competitive results compared with baselines.

As  shown  in Table 7,  the  accuracy  of  C-3/C-3

achieves 92.48%, which is only slightly lower than the

results of P-3/3 and R-3/3. The accuracy of P-3/C-3

achieves 92.90%, which outperforms that of P-3/3 and

R-3/3  by  0.34%  and  0.18%,  respectively.  These  re-

sults  demonstrate  that  QSS  is  able  to  find  expected

quantizing  schemes  from  a  candidate  set  efficiently,

thus  improving  the  accuracy  of  quantized  models

without requiring more bits and avoiding heavy man-

ual workloads. 

6.2    QPL Validation

In  this  subsection,  we  verify  that  QPL  can  find

reasonable  mixed-precision  policies  for  VGG-like  and

reduce the performance degradation of  the quantized

model  within a  limited model  size  and memory foot-

print.

We take ClipQ as the quantizing scheme for veri-

fying QPL, since clip quantization is the most widely

used  scheme.  We  still  utilize  Cifar10  and  VGG-like

for evaluations. In addition, we set a target expected

bit of 3 for precision loss in this experiment to high-

light comparison results.

We train 150 epochs to learn optimal mixed-preci-

sion policies for VGG-like. Fig.9(a) presents the quan-

4 096× 1 024

tizing  bit  changes  of  weight  quantization  with  the

number of epochs. We finally obtain the mixed-preci-

sion policy of {7, 8, 6, 6, 7, 5, 2} for the weight quan-

tization  of  different  layers,  and  the  average  bitwidth

of this policy is 2.82. There are  parame-

ters  in  the  full-connected  layer  FC7,  which  occupy

over 90% of the VGG-like parameters and have a lot

 

0 50 100 150 200 250 300

Number of Epochs

0.5

0.6

0.7

0.8

0.9

V
a
li
d
a
ti
o
n
 A

c
c
u
ra

c
y

FP32: 0.934 9

Searching Sampled

B-1/3: 0.908 3

T-2/3: 0.919 7

Q-2/3: 0.920 7

F-3/3: 0.788 6

Z-3/3: 0.914 4

C-3/3: 0.924 8

P-3/3: 0.925 6

R-3/3: 0.927 2

QSS-F: 0.930 7
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Table   7.      Accuracy  Comparison in  Model-Wised Search (C-
3/C-3 and P-3/C-3)

Name Method Accuracy (%)

Normal quantization B-1/3 90.83

T-2/3 91.97

Q-2/3 92.07

F-3/3 78.86

Z-3/3 91.44

P-3/3 92.56

R-3/3 92.72

Model-wised search C-3/C-3 92.48

P-3/C-3 92.90

Note: The best results are underlined.
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of  redundancy.  Therefore,  QPL  obtains  the  bitwidth

of  2  for  FC7  to  balance  the  classification  and  preci-

sion losses. The convolutional layers use a small num-

ber of parameters to extract features and have less re-

dundancy.  Consequently,  QPL  learns  high  bitwidths

to  reduce  the  classification loss,  such as  the  7  and 8

bits  for  Conv1  and  Conv2,  respectively,  as  shown in

Fig.9(a). The mixed-precision learning process of acti-

vation quantization is shown in Fig.9(b). QPL learns

the mixed-precision policy of {2, 3, 3, 4, 5, 4, 6} and

the average bitwidth of this policy is 3.08. The accu-

racy comparison is shown in Fig.9(c). Compared with

ClipQ (denoted as C-3/3), the accuracy of the learned

mixed-precision  policy  (denoted  as  C-2.82/3.08)

achieves 93.03%, which outperforms C-3/3 by 0.55%.

L

The  results  above  demonstrate  that  QPL  is  able

to learn relatively optimal mixed-precision policies to

balance  the  classification  and  precision  losses  of

DNNs.  QPL employs the classification loss  to reduce

the model redundancy and proposes the precision loss

 in (6) to constrain the model size and memory foot-

print,  thus  improving  the  accuracy  and  efficiency  of

quantized DNNs. 

7    Conclusions

In this paper, we proposed AutoQNN, an end-to-

end  framework  aiming  at  automatically  quantizing

neural  networks.  Differing  from  manual-participated

heuristic  explorations  with  heavy  workloads  of  do-

main experts,  AutoQNN could  efficiently  explore  the

search  space  of  automatic  quantization  and  provide

appropriate  quantizing  strategies  for  arbitrary  DNN

architectures. It automatically sought desirable quan-

tizing  schemes  and  learned  relatively  optimal  mixed-

precision  policies  for  efficiently  compressing  DNNs.

Compared  with  full-precision  models,  the  quantized

models using AutoQNN achieved competitive classifi-

cation  accuracy  with  a  much smaller  model  size  and

memory  footprint.  Compared  with  state-of-the-art

competitors:  DSQ[47],  QIL[25],  BCGD[48],  and  TRQ[32],

the  comprehensive  evaluations  on  AlexNet  and

ResNet18  demonstrated  that  AutoQNN obtained  ac-

curacy improvements by up to 1.65% and 1.74%, re-

spectively. 
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