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Abstract    The goal of qubit mapping is to map a logical circuit to a physical device by introducing additional gates as

few as possible in an acceptable amount of time. We present an effective approach called Tabu Search Based Adjustment

(TSA) algorithm to construct the mappings. It consists of two key steps: one is making use of a combined subgraph iso-

morphism and completion to initialize some candidate mappings, and the other is dynamically modifying the mappings by

TSA. Our experiments show that,  compared with state-of-the-art methods,  TSA can generate mappings with a smaller

number of additional gates and have better scalability for large-scale circuits.

Keywords    quantum computing, qubit mapping, initial mapping, tabu search, logical circuit

  

1    Introduction

Quantum computing has attracted more and more

interest in the last decades, since it provides the pos-

sibility to efficiently solve important problems such as

integer  factorization[1],  unstructured  search[2],  and

solving  linear  equations[3].  However,  the  (great)  im-

provements  in  computer  science  driven  by  quantum

technology are still in the early stage, since large-scale

quantum computers have not yet been built. IBM has

developed the first 5-qubit backend called IBM QX2,

followed by the 16-qubit backend IBM QX3. The re-

vised versions of them are called IBM QX4 and IBM

QX5,  respectively.  Google  announced  the  realization

of  quantum  supremacy,  with  the  53-qubit  quantum

processor  Sycamore[4].  IBM  Q  Experience① provides

the public with free quantum computing resources on

the cloud and Qiskit②, an open source quantum com-

puting software framework.

Users of early quantum computers mainly rely on

quantum  circuits  to  implement  quantum  algorithms.

µ µ

There is a gap between the design and the implemen-

tation of a quantum algorithm[5]. In the design stage,

we usually  do not  consider  any hardware  connectivi-

ty  constraints.  But  in  order  to  implement  an  algo-

rithm  on  a  quantum  physical  device,  physical  con-

straints have to be taken into account. For example,

IBM physical  devices  only support 1-qubit  gates and

the  2-qubit CX gate  between  two  adjacent  qubits.

Hence,  it  is  necessary  to  transform  the  circuits  for

quantum algorithms to satisfy both logical and physi-

cal  constraints.  It  is  called  qubit  mapping,  which

maps a  logical  circuit  to  a  physical  device  by insert-

ing  additional  gates.  A  major  challenge  for  quantum

information  processing  is  quantum  decoherence.

Quantum gates  are  applied  in  a  coherent  period  but

the qubits stay in the coherent state for a very short

time.  The  longest  coherence  time  of  a  superconduct-

ing quantum chip is still within 10 s–100 s[6]. Thus,

the main goal of qubit mapping is to reduce the num-

ber  of  additional  gates  and  the  depth  of  output  cir-

cuits in an efficient way.
 
 

Regular Paper

This work was supported by the National Natural Science Foundation of China under Grant Nos. 61832015, 62072176, 12271172
and 11871221, the Research Funds of Happiness Flower of East China Normal University under Grant No. 2020ECNU-XFZH005,
the Fundamental Research Funds for the Central Universities of China under Grant No. 2021JQRH014, Shanghai Trusted Industry
Internet Software Collaborative Innovation Center, and the ``Digital Silk Road'' Shanghai International Joint Lab of Trustworthy
Intelligent Software under Grant No. 22510750100.

*Corresponding Author

Jiang H, Deng YX, Xu M. Qubit mapping based on tabu search. JOURNAL OF COMPUTER SCIENCE AND TECH-

NOLOGY 39(2): 421−433 Mar. 2024. DOI: 10.1007/s11390-023-2121-5

 

①https://www.ibm.com/quantum-computing/, Mar. 2024.
 

②https://www.qiskit.org/, Mar. 2024.
©Institute of Computing Technology, Chinese Academy of Sciences 2024

https://doi.org/10.1007/s11390-023-2121-5
https://doi.org/10.1007/s11390-023-2121-5
https://doi.org/10.1007/s11390-023-2121-5
https://doi.org/10.1007/s11390-023-2121-5
https://doi.org/10.1007/s11390-023-2121-5
https://doi.org/10.1007/s11390-023-2121-5
https://doi.org/10.1007/s11390-023-2121-5
https://www.ibm.com/quantum-computing/
https://www.ibm.com/quantum-computing/
https://www.ibm.com/quantum-computing/
https://www.qiskit.org/


In the current work, we use In-Memory Subgraph

Matching  (IMSM)[7] to  generate  partial  isomorphic

subgraphs of logical circuits and physical ones as a set

of partial initial mappings. By exploiting an appropri-

ate subgraph isomorphism and the connectivity of the

logical circuits and the physical ones, we get a dense

(clustered nodes)  initial  mapping,  which avoids some

nodes  from  being  mapped  to  remote  positions.  Note

that both subgraph isomorphism and the adjustment

of  qubit  mapping  are  NP-complete[8].  Thus,  to  be

practically  efficient,  we  propose  to  use  tabu  search[9]

to  generate  logical  circuits  that  will  be  executed  on

the physical  device.  The advantage of  tabu search is

to jump out of local optimum and ensure the diversi-

ty of the transformed results. We insert SWAP gates,

associated with the gates on the shortest path to the

candidate set, which greatly reduces the search space

and improves the search speed. We design three eval-

uation  functions  that  consider  not  only  the  current

gates  but  also  the  constraints  of  the  gates  already

processed.  Our  experiments  have  been  conducted  by

using  the  architectures  of  IBM  Q  Tokyo  and

Sycamore  as  the  target  physical  devices.  The  experi-

mental  results  show  that  the  evaluation  function

based  on  calculating  the  number  of  additional  gates

inserts the smallest number of gates. We test several

combinations  of  state-of-the-art  initial  mapping  and

adjustment  algorithms  aiming  to  insert  fewer  addi-

tional gates after qubit mapping. Generally speaking,

Tabu  Search  Based  Adjustment  (TSA)  outperforms

the Zulehner-Paler-Wille (ZPW) algorithm[10], SWAP-

Based  BidiREctional  heuristic  search  algorithm

(SABRE)[11] and  Filtered  Depth-Limited  Search

(FiDLS)[12] in different aspects. When compared with

the  Dynamic  Look-Ahead  Heuristic  technique

(DLH)[13], which uses the maximum consecutive posi-

tive  effect  of  an SWAP operation  (MCPE)  and  the

optimized  version  (MCPE_OP)  as  the  heuristic  cost

function, the additional gates inserted by TSA in the

DLH benchmarks  have  been  reduced  by  27.32% and

12.42%, respectively.

The main contributions of this article are summa-

rized as follows.

1) We extend  IMSM,  which  only  generates  a  set

of  partial  initial  mappings,  by  completing  the  map-

ping based on the connectivity between qubits.

2) We propose a heuristic circuit adjustment algo-

rithm  based  on  tabu  search,  TSA,  which  can  adjust

large-scale  circuits  much  more  efficiently  than  exist-

ing precise search and heuristic algorithms.

3) We  propose  three  look-ahead  evaluation  func-

tions for the circuit adjustment; one employs configu-

ration  checking  with  aspiration  (CCA)[14],  and  the

other two use the number of additional gates and the

depth  of  the  generated  circuit  as  evaluation  criteria,

taking into account both the current gates and some

gates yet to be processed.

4) We  compare  several  state-of-the-art  initial

mapping  and  adjustment  algorithms,  and  the  results

show  that  the  initial  mapping  generated  by  our

method  requires  inserting  fewer SWAP gates,  and

TSA  has  better  scalability  than  them  for  adjusting

the mapping for large-scale circuits.

The rest of this article is organized as follows. In

Section 2,  we  discuss  the  related  work.  In Section 3,

we  recall  some  background  in  quantum  computing

and quantum information. In Section 4, we introduce

the  problem  of  qubit  mapping  and  provide  our  de-

tailed solution. Section 5 reports the experimental re-

sults. We conclude in the last section and discuss fu-

ture work. 

2    Related Work

Paler[15] has shown that initial  mappings have an

important impact on qubit mapping. Just by placing

qubits  in  different  positions  from  the  default  trivial

placement in the circuit instances on actual noisy in-

termediate-scale  quantum  (NISQ)  devices,  the  cost

can be reduced by up to 10%. One important goal of

circuit adjustment algorithms is to minimize the num-

ber of additional gates. There are currently five main

methods to attack the qubit mapping problem.

● Unitary  Matrix  Decomposition  Algorithm. It  is

used to  rearrange  a  quantum circuit  from the  begin-

ning while retaining the input circuit[16, 17].  It  can be

applied to a broad class of circuits consisting of gener-

ic  gate  sets,  but  the  results  are  not  so  efficient  as  a

compiler designed specifically for this task.

● Converting  into  Existing  Problems. This  ap-

proach converts the qubit mapping problem into some

existing  problems,  such  as  AI  planning[18, 19],  integer

linear programming[20], and satisfiability modulo theo-

ries (SMT)[21], and then uses existing tools to find the

optimum  in  an  acceptable  amount  of  time  for  the

problem.  Furthermore,  as  the  time  cost  is  usually

high, it can only process small-scale quantum circuits.

● Exact  Methods. Siraichi et  al. proposed  an  ex-

act  method[8].  It  iterates  over  all  possible  mappings;

thus  it  is  only  suitable  for  simple  quantum  circuits
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and cannot be extended to complex ones.

● Graph Theory. Shafaei et al. used the minimum

linear permutation solution in graph theory to model

the problem of reducing the interaction distance[22]. A

two-step  method was  used  to  reduce  the  qubit  map-

ping  to  a  graph  problem to  minimize  the  number  of

additional gates[23, 24].

● Heuristic Search. Existing solutions mainly aim

at inserting as few SWAP gates as possible[8, 10–13, 25, 26],

using the fidelity of the generated circuit as the objec-

tive  function[27] or  minimizing  the  overall  circuit  la-

tency[28].  At  present,  there  are  a  number  of

methods[10, 11, 13, 22] that  exploit  the  look-ahead  idea.

In particular, Zhu et al. proposed to dynamically ad-

just the number of look-ahead gates[13]. SABRE[11] de-

pends on a random initial mapping. SAHS[26] is an an-

nealing algorithm to find an initial mapping, but it is

unstable.  FiDLS[12] tends to search through all  possi-

ble  combinations  of SWAP gates  to  minimize  the

number of executable 2-qubit gates. But the cost of a

thorough search is very high, especially when dealing

with  medium-scale  and  large-scale  circuits.  DLH[13]

can  deal  with  some  large-scale  benchmarks.  We  will

give  a  quantitative  comparison  with  this  method  in

Section 5.  A  variation-aware  qubit  movement  strate-

gy[27] was  proposed,  which  takes  advantage  of  the

change  in  error  rate  and a  change-aware  qubit  map-

ping  strategy  by  trying  to  select  the  route  with  the

lowest  probability  of  failure.  Lao et  al. showed  that

the fidelity of a circuit is related to the delay and the

number  of  gates[28].  Now some  heuristic  methods  are

also applied to other platforms such as Surface-17[28, 29]

and Sycamore[12]. 

3    Preliminaries

C
In this section, we introduce some notions and no-

tations of quantum computing. Let  denote the set

of all complex numbers.

|0⟩ |1⟩
|ϕ⟩ = a |0⟩+ b |1⟩

a, b ∈ C |a|2 + |b|2 = 1

|ϕ⟩ |0⟩
|a|2 |1⟩ |b|2

Q q

Classical information is stored in bits, while quan-

tum information is  stored  in  qubits.  Besides  two ba-

sic states  and , a qubit can be in any linear su-

perposition  state  like ,  where

 satisfy the condition . The intu-

ition  is  that  is  in  the  state  with  probability

 and in the state  with probability . We use

the letter  (resp. ) to denote a physical (resp. logi-

cal) qubit.

A  quantum  gate  acts  on  a  qubit  to  change  the

state  of  the  qubit.  For  example,  the  Hadamard  (H)

|0⟩
|1⟩ (|0⟩+ |1⟩)/

√
2 (|0⟩ − |1⟩)/

√
2

|A,B⟩ → |A,B ⊕A⟩ ⊕

|A,B⟩
|A⟩ |B⟩ = |A⟩ ⊗ |B⟩

gate  is  applied  on  a  qubit,  and  the CX gate  is  ap-

plied on two qubits. Their symbols and matrix forms

are shown in Fig.1. The H gate turns state  (resp.

)  into  (resp. ).  The

CX gate is a generalization of the classical XOR gate,

since  the  action  of  the  gate  may  be  summarized  as

,  where  is  addition  modulo

two, which is exactly what the XOR gate does. That

is, the control qubit and the target qubit are XORed

and stored in the target qubit. Here  is a short-

hand  of  the  product  state .  We

use  an SWAP gate  to  exchange  the  states  between

two  adjacent  qubits,  and  multiple  operations  simu-

late moving non-adjacent qubits to adjacent positions.

An SWAP gate  can  be  implemented  by  three CX

gates,  or  by inserting four H gates to change the di-

rection of the middle CX gate, as illustrated in Fig.2.
 
 

CX Gate

•
1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

H Gate H 1
√2

1 1

1 -1(       )

(       )
Fig.1.  Symbols of two quantum gates and their matrices.

 
 
 


 ×



 • • 



 • H • H • 



 


 ×



 • 



 H H 



Fig.2.  Implementing an SWAP gate by CX gates and H gates.
 

In a quantum circuit, each line represents a wire.

The wire  does  not necessarily  correspond to a physi-

cal wire but may correspond to the passage of time or

a  physical  particle  that  moves  from  one  location  to

another through space. The interested reader can find

more  details  of  these  gates  from  the  standard  text-

book[30]. The execution order of a quantum logical cir-

cuit is from left to right. The width of a circuit refers

to the number of qubits in the circuit. The depth of a

circuit  refers  to  the  number  of  layers  executable  in

parallel.  For  example,  the  depth  of  the  circuit  in

Fig.3(a) is 6, and the width is 5. We refer to a circuit

with the number of 2-qubit gates no more than 100 as

a  small-scale  circuit,  a  circuit  with the  number  of  2-

qubit  gates  more  than 1 000 as  a  large-scale  circuit,

and the rest are medium-scale circuits. It is unneces-

sary  to  consider  quantum  gates  acting  on  single

qubits  since  1-qubit  gates  are  local[22],  which  do  not

need  to  move  the  involved  qubits  for  gate  applica-

tions.
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CG = (VC, EC)

VC

EC

In the current work, we mainly consider the physi-

cal  circuits  of  the  IBM  Q  series,  called  coupling

graphs.  Let  denote  the  coupling  graph

of  a  physical  device,  where  is  the  set  of  physical

qubits and  is the set of edges representing the con-

nectivity  between  qubits  related  by CX gates.

Figs.4(a)–4(e)  are  the  coupling graphs  of  the  5-qubit

IBM QX2, IBM QX4, 16-qubit IBM QX3, IBM QX5,

and  the  20-qubit  IBM  Q  Tokyo,  respectively.  The

control  of  one  qubit  to  a  neighbor  is  unilateral,  but

for  IBM Q  Tokyo  the  control  between  two  adjacent

qubits  is  bilateral.  The  direction  in  each  edge  indi-

cates the control direction of each 2-qubit gate, and 2-

qubit gates can only be performed between two adja-

cent qubits.

IG
CG τ g = ⟨qc, qt⟩

qc qt
g

CG ⟨τ [qc], τ [qt]⟩
CG

Given an interaction graph ,  a coupling graph

, an initial  mapping ,  and a CX gate 

where  is  the  control  qubit  and  is  the  target

qubit,  if  the  gate  is  executable  on  coupling  graph

,  then  should  be  a  directed  edge  on

.

IG CG
Example 1. Consider the logical interaction graph

 and  a  coupling  graph  shown in Fig.3(b)  and

the  blue  part  of Fig.4(e).  Let  the  initial  mapping  be

as follows, 

τ = {q0 → Q10, q1 → Q0, q2 → Q6, q3 → Q5, q4 → Q11}.

g0 = ⟨q2, q1⟩
⟨τ [q2], τ [q1]⟩ = ⟨Q6, Q0⟩

CG g1 = ⟨q3, q4⟩
⟨τ [q3], τ [q4]⟩ = ⟨Q5, Q11⟩ CG

Then the 2-qubit  gate  is  not executable,

since  the  edge   does  not  exist

in .  However,  the  gate  is  executable,

since the edge  exists in . 

4    Qubit Mapping

Assume  that  the  input  circuit  has  only  1-qubit

gates  and CX gates[31, 32].  We expect  to  find a  qubit

mapping algorithm that, when given an input circuit,

can produce an output circuit with a small number of

additional  gates  in  an  acceptable  amount  of  time.

Roughly  speaking,  we  propose  a  method  of  qubit

mapping with the following three steps.

1) Preprocessing. This  step  includes  extracting

the interaction graph from the input circuit  and cal-

culating the shortest paths of the coupling graph.

2) Isomorphism  and  Completion. First,  the  sub-

graph isomorphism algorithm is used to find a set of

partial  initial  mappings[7].  Then  we  perform  a  map-

ping  completion  to  process  the  remaining  nodes  that

do  not  satisfy  all  isomorphism  requirements,  accord-

ing to the connectivity between the unmapped nodes

and the mapped ones.

3) Adjustment. After  the  second  step,  some  logi-

cally  adjacent  nodes  may  be  mapped  to  physically

non-adjacent nodes,  therefore,  the quantum circuit is

not executable on the coupling graph. We use a tabu

search  based  adjustment  algorithm  to  generate  cir-

cuits that can be physically executed. 

4.1    Preprocessing

In the preprocessing step, we adjust the input cir-

cuit  described  by  an  openQASM  program[33] to  ex-

tract the interaction graph from the input circuit and

 

 •
 •
 • •
 • • •
 • •

g g g g g g g g g
 

 



(b)(a)

Fig.3.   (a)  Original  quantum  circuit.  (b)  Logical  interaction
graph of (a).

 

(a)

 



 

(b)

 



 



       

       

       

       

(d)

(e)

    

    

    

    

Fig.4.  Coupling graphs of IBM Q series. (a) IBM QX2. (b) IBM
QX4. (c) IBM QX3. (d) IBM QX5. (e) IBM Q Tokyo.
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calculate the shortest paths of the coupling graph.

L(C) = {L0,

L1, . . . ,Ln} C
Li (0 ⩽ i ⩽ n)

L0 = {g0, g1},L1 = {g2},L2 = {g3, g4},
L3 = {g5, g6},L4 = {g7},L5 = {g8}

Quantum gates  acting  on  different  qubits  can  be

executed  in  parallel.  The  notation 

 denotes  the  layered  form  of  circuit ,

where  stands  for  a  set  of  quantum

gates that can be executed in parallel.  The quantum

gate sets separated by the dotted lines in Fig.3(a) are

the  following: 

.

IG = (VI, EI)

VI EI

D[Qc][Qt]

Qc Qt

At the same time of  layering,  we generate  an in-

teraction  graph ,  which  is  an  undirect-

ed graph with  being the set of vertices, and  the

set of  undirected edges that denotes the connectivity

between  qubits  related  by CX gates.  Given  a  cou-

pling  graph  and  assuming  that  the  distance  of  each

edge is  1,  we use the Floyd-Warshall  algorithm[34] to

calculate the shortest distance matrix, with 

denoting the shortest distance from  to .

g = ⟨qc, qt⟩ qc qt
Qc Qt

g

costg = 7× (D[Qc][Qt]− 1)

costg = 3× (D[Qc][Qt]− 1)

Consider  a CX gate .  If  and  are

mapped to  and ,  respectively,  then the  cost  of

executing  under  the  shortest  path  is  denoted  by

 on devices  with unilateral

control.  For  IBM  Q  Tokyo,  the  cost  is

.

g = ⟨q1, q2⟩ q1
Q6 q2 Q13

D[Q6][Q13] = 3

Q6

Q13 π0 = Q6 → Q5 → Q4 → Q13,

π1 = Q6 → Q5 → Q12 → Q13, π2 = Q6 → Q11 → Q12 →
Q13. costπ0

= 18, costπ1
= 14,

costπ2
= 14, costπi

0 ⩽ i ⩽ 2

Q6 Q13 πi

Example 2. Consider the QX5 coupling graph (cf.

Fig.4(d)).  Given  a CX gate ,  with 

mapped  to  and  mapped  to ,  the  shortest

distance  between  them  is .  There  are

three  shortest  paths  of  moving  from  to  an  adja-

cent  position  of : 

 

 Their costs are given by 

and  respectively.  Here  for

 stands  for  the  cost  of  swapping  the  qubits

 to  along the path . 

4.2    Isomorphism and Completion

Generally  speaking,  in  a  coupling  graph,  it  is  al-

most  impossible  to  find  a  subgraph  that  exactly

matches  the  interaction  graph.  We  regard  the  map-

ping  with  the  largest  number  of  mapped  nodes  as  a

good  partial  mapping.  IMSM compares  various  com-

positions  of  several  state-of-the-art  subgraph  isomor-

phism algorithms. Since IMSM cannot process discon-

nected  graphs,  we  manually  create  connected  graphs

by linking isolated nodes to the ones with the largest

degree  in  the  interaction  graph.  Note  that  this  does

not change the architecture of the original circuit.

CGThe input of Algorithm 1 is a coupling graph ,

IG
T l

l

len(τ)

τ V

τ V

V

V q

CG U

q

U U [0]

Q

q U

U [0] U

k Q

q

an interaction graph ,  and a partial  mappings set

.  Line  2  selects  the  largest  number  of  mapped

nodes, and the partial mappings with  mapped nodes

are  used  by  the  candidate  set.  Lines  3–22  complete

the partial mappings. The function  returns the

size  of .  In  line  5,  we initialize  an empty queue ,

which  stores  unmapped  logical  qubits,  traverse  the

mapping , and add the unmapped qubits to . We

then loop until  is empty, and all logical qubits are

mapped to physical qubits. Line 7 takes out the first

element in  to .  Line 8 gets the adjacency matrix

of .  Line  9  initializes  a  list ,  sorted by descend-

ing  degree  of  connectivity  to .  Lines  10–20 traverse

 and select the node  that has been mapped to

the  physical  node  in  the  coupling  graph  and  has

the  largest  number  of  logical  connections  to  in .

Line 13 deletes the node  from . Lines 15–17 se-

lect  the  node  adjacent  to  in  the  adjacency  ma-

trix  and map  to  that  node.  Finally,  we generate  a

dense mapping.

Algorithm 1. Complete the Initial Mapping

CG IG
T

   Input: :  a  coupling  graph; :  an  interaction  graph;
  : a partial mapping set obtained by IMSM;

results IG
CG;

  Output: :  a  set  of  mapping  relations  between 
  and 

results = ∅ 1 Initialize ;

l← maxτ∈T |{i : τ [i] ≠ −1, i ⩽ len(τ), i ∈ N}| 2 

τ ∈ T 3 for  do

l = len(τ) 4   if  then
V ← τ 5    the unmapped logical qubits in ;

len(V ) > 0 6   while  do

q ← V. 7   poll();

P ← CG.adjacencyMatrix() 8    ;

U ← q IG 9    the neighbors of  in ;

len(U) > 010   while  do

Q← τ [U [0]]11   ;
k ← 012   ;

U ← U\U [0]13   ;

k < len(P [Q])14   while  do

(P [Q][k] or P [k][Q] ̸= 0 and not τ. contains(k))15   if      
   then

τ [q]← k16   ;
17   break;

k ← k + 118   ;

k ̸= len(P [Q])19   if  then

20   break;

results. (τ)21   add ;

return results22  ;

T = {τ0,
τ1, . . . , τn}

Example 3.  Consider the interaction graph shown

in Fig.3(a)  and  the  coupling  graph  in Fig.4(e).  Sup-

pose  we  have  a  partial  mapping  set 

. We take one of the partial mappings as an
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example. 

τ0 = {q0 → Q10, q1 → −1, q2 → Q6, q3 → Q5, q4 → Q11},

q1 → −1 q1

τ0
V

V = {q1} V

q1 V

U = {q3, q2, q4, q0}
U q3 U

Q5 τ0[q3] = Q5

q1 q3

Q0

τ0 = {q0 → Q10, q1 → Q0, q2 → Q6, q3 → Q5, q4 → Q11}.

where  means  that  is  not  mapped to  any

physical  qubit,  therefore  we  need  the  mapping  com-

pletion algorithm.  The maximum number  of  mapped

nodes is 4. We demonstrate how  is completed. We

add all  unmapped nodes  to  the queue ;  in  this  ex-

ample,  we  have .  Then  we  loop  until  is

empty. We pop the first element  of , get the ad-

jacency  matrix  of  the  target  graph,  and  the  candi-

date  nodes  list .  Next,  we  traverse

 and take out the first element  in , and calcu-

late  the  physical  node  as .  Finally,  we

map  to  the  node  connected  to  but  not  yet

mapped.  In  this  example,  it  can  be  directly  mapped

to .  In  the  end,  we  obtain  the  mapping

 

4.3    Adjustment
 

4.3.1    Tabu Search

Tabu search uses a tabu list to avoid searching re-

peated  spaces  and  deadlock  and  amnesty  rules  to

jump out of the local optimum to ensure the diversi-

ty  of  transformed  results.  Our  circuit  adjustment

mainly relies on the tabu search algorithm, aiming to

adjust those large-scale circuits that the existing algo-

rithms  are  difficult  to  process  and  generate  a  circuit

closer to the optimal solution.

Mp

j = Mp[i]
i j

Ml

j = Ml[i]
i j

L

E D

g L
qc

qt g
B g L

g
e.s e.t e B

e

The  calculation  of  the  candidate  set  is  shown  in

Algorithm 2. The input  is a mapping from physi-

cal qubits to logical ones, where  means that

the -th physical  qubit  is  mapped to the -th logical

qubit.  The  set  denotes  the  mapping  of  logical

qubits  to  physical  ones,  where  means  that

the -th logical  qubit  is  mapped to the -th physical

qubit. The set  includes all the gates in the current

layer,  and  the  output  is  a  candidate  mapping  set  of

the  current  mapping.  The  set  and  the  matrix 

contain the shortest  paths and distances of  all  nodes

in  the  coupled  graph,  respectively.  Lines  3–7  delete

the gate  that can be executed in  under the cur-

rent mapping and gather the control qubit  and tar-

get  qubit  of  gate  that  cannot  be  executed  into

the set . Lines 8–24 traverse gates  in , and cal-

culate  the  shortest  paths  between  the  nodes  of .  If

the endpoints  and  of edge  intersect with 

on the shortest path, then  is an element of the can-

didate set. Lines 14–20 update the mapping after the

swap. Lines 21–24 generate a new candidate solution.

Line 22 stores the swapped edges that will be used in

the  output  circuit,  and  line  23  calculates  the  swap

scores using an evaluation function.

Algorithm 2. Calculate the Candidate Set

Mp
Ml

L
E
D

  Input: :  the  mapping  from  physical  qubits  to  logical
  qubits; :  the  mapping  from  logical  qubits  to
  physical  qubits; :  gates  included  in  the  current
  layer  of  circuits; :  the  shortest  paths  set  of  the
  coupling  graph; :  the  distance  matrix  between
  nodes in the coupling graph;

results  Output: : the set of candidate mapping;

results← ∅ B ← ∅; 1 Initialize ; 

g ∈ L 2 for  do

g is executable 3   if  then

L ← L\{g} 4   ;
 5   else

qc, qt ← the operating qubits of gate g 6   ;

B ← B ∪ {qc, qt}; 7  

g ∈ L 8 for  do

qc, qt ← the operating qubits of gate g 9    ;

p ∈ E[Ml[qc]][Ml[qt]]10   for  do
e ∈ p11   for  do

e.s and e.t /∈ B12   if    then
13   continue;

M ′
p ←Mp M ′

l ←Ml14   ; ;

Q1 ←M ′
p[e.s] Q2 ←M ′

p[e.t]15   ; ;

M ′
p[e.s]← Q2 M ′

p[e.t]← Q116   ; ;

Q1 ̸= −117   if  then

M ′
l [Q1]← Q218   ;

Q2 ̸= −119   if  then

M ′
l [Q2]← Q120   ;

s← ∅21   ;

s.swaps← s.swaps ∪ {e};22  

s.value← evaluate(D,M ′
l ,L)23   ;

results← results ∪ {s}24   ;

return results25  ;

Example 4. Let us consider the mapping 

τ0 = {q0 → Q10, q1 → Q0, q2 → Q6, q3 → Q5, q4 → Q11}.

L0 = {g0, g1} costg1
= 0 costg0

= 3

g1 τ0
L0 g0

τ0
B = {q2, q1}

with , ,  and .  The

gate  can  be  executed  directly  in  the  mapping,

therefore we delete it from , but  cannot be exe-

cuted  in  the  mapping .  The  nodes  that  cannot  be

executed join the set . The set of shortest

paths is 

{{Q6 → Q1 → Q0}, {Q6 → Q5 → Q0}}.

{(Q6, Q1),

(Q1, Q0), (Q6, Q5), (Q5, Q0)}

We traverse the shortest paths and calculate the can-

didate  set.  The  current  candidate  set  is 

  .

TSA  takes  a  layered  circuit  and  an  initial  map-

ping as  input and outputs a circuit  that can be exe-

cuted in the specified coupling graph, as shown in Al-

gorithm 3. The adjusted circuit mapping of each lay-

er  is  used  as  the  initial  mapping  of  the  next  layer.
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τini
τbest

τbest

τbest

tb

Line  1  regards  the  initial  mapping  as  the  best

mapping . Lines 3–12 cyclically check whether all

the gates in the current layer can be executed under

the  mapping .  If  all  the  gates  are  executable  or

the number of iterations reaches the given bound, the

search is completed. Otherwise, the search continues.

Line 4 gets the current mapping candidate, and line 7

finds  the  best  mapping  in  the  candidate  set.  Note

that  if  the  edge  swapped  by  a  candidate  appears  in

the tabu list, the candidate will be removed from the

candidate  set.  Then  from  the  remaining  candidates,

we  choose  a  mapping  with  the  lowest  cost.  Line  9

takes  the  amnesty  rules.  If  the  best  candidate  is  not

found, the amnesty rules will select the mapping with

the lowest cost in the candidate set as the best map-

ping.  Lines  10–12  update  the  best  mapping  and

insert the swapped edge performed by the best map-

ping to the tabu list . The motivation is to execute

the  generated  circuit  in  parallel  as  much  as  possible

and  to  avoid  swapping  the  edges  in  the  tabu  list.

Then it will check whether the termination condition

of  the  algorithm  is  satisfied.  The  condition  deter-

mines  whether  the  number  of  iterations  reaches  the

given  bound,  or  the  current  mapping  ensures  all  the

gates in the current layer can be executed.

Algorithm 3. Tabu Search

τini tb  Input: : the initial mapping; : the tabu list;
τbest  Output: : the best mapping;
τbest ← τini 1 Initialize ;

it← 1 2 ; /*the number of iterations*/

not mustStop(it, τbest) 3 while   do

C ← τbest.candidates() 4     /*candidate set*/

C is empty 5   if   then

break 6    ;

cbest ← best_candidates(C, tb) 7    ;

cbest is empty 8   if   then

cbest ← amnesty_candidates(C, tb) 9    ;
τbest ← cbest10    ;

tb← tb. (cbest.swaps)11    add ;

n← n+ 112    ;

return τbest;13  
 

4.3.2    Evaluation Functions with Look Ahead

We propose three evaluation functions: one intro-

duces  CCA; one uses  the number of  additional  gates

in  the  generated circuit  as  an evaluation criterion as

given  in  (1);  and  the  last  one  uses  the  depth  of  the

generated circuit as an evaluation criterion as given in

(2).  They  give  rise  to  three  variants  of  TSA  called

TSAcca, TSAnum, and TSAdep, respectively.

CCA has mainly been used for Boolean Satisfiabil-

submake

subbreak

subscore = submake − subbreak

ity (SAT) problems. We apply the idea of CCA to ad-

just  circuits.  Let  represent  the  number  of

qubits for which two qubits are closer after an SWAP

gate, and  represent the number of qubits for

which  two  qubits  are  farther  apart  after  an SWAP

gate.  We introduce   

into  the  evaluation  function  and  adjust  the  weight

with  the  Smooth  Weight  based  Threshold  (SWT)

scheme[14].

i i

d

(i+ 1) i

(i+ 1)

i

i (i+ la) i+ la ⩽ d

la

i

δ

The output of the -th layer, with  smaller than

the depth of the circuit , is used as the input of the

-th layer. Note that any SWAP gate in the -th

layer will affect the mapping of the -th layer. If

we  only  consider  the  gate  of  the  current  layer  when

selecting  the SWAP gate,  only  the  requirements  of

the  layer  will  be  satisfied,  not  necessarily  those  of

the next layer. Therefore, we take the gates from the

-th to the -th layer, with , into con-

sideration,  where  is  the number of  look-ahead lay-

ers. It is necessary to give a higher priority to execut-

ing the gates in the -th layer, therefore we introduce

an attenuation factor  to control the influence of the

gates in the look-ahead layers. 

costnum(Qc, Qt) =
∑
g∈Li

3× (D[τ [qc]][τ [qt]]− 1)+

δ ×

(
i+la∑
j=i

∑
g∈Lj

3× (D[τ [qc]][τ [qt]]− 1)

)
, (1)

 

costdep(Qc, Qt) = Depth

(
i+la∪
j=i

Lj

)
. (2)

costnum(Qc, Qt) costdep(Qc, Qt)

Lj

i ⩽ j ⩽ i+ la Qc

Qt Depth(L)
L qc qt

g

Here  (resp. ) denotes

the distance (resp. depth) of all the gates in layer 

( ),  after  swapping  the  state  of  with

that of . The function  returns the depth

of  and the notation  (resp. ) stands for the con-

trol (resp. target) qubit of gate .

δ = 0.5 la = 2

L1 = {g2, g0} {(Q6, Q1),

(Q1, Q0), (Q6, Q5), (Q5, Q0)},

Example 5. Let us continue the previous example.

We  select  the  one  with  the  lowest  evaluation  score

from the candidate set. Assuming  and ,

for ,  the  candidate  set  is 

 and  the  costs  are  given

as follows: 

costnum(Q6, Q1) = 0, costnum(Q1, Q0) = 1.5,

costnum(Q6, Q5) = 1.5, costnum(Q5, Q0) = 1.5.

τ0 = {q0 →
Q10, q1 → Q0, q2 → Q1, q3 → Q5, q4 → Q11}

The  algorithm  chooses  the  first SWAP with  the

smallest  score,  and the  mapping becomes 

.

g0The  current  mapping  ensures  that  is  exe-

Hui Jiang et al.: Qubit Mapping Based on Tabu Search 427



cutable. Thus we can continue to the next layer. 

4.3.3    Complexity

IG = (VI, EI)

CG = (VC, EC)

d G

8×G

O(d×G× (8×G)(|EC|−1))

O(G)

Given  an  interaction  graph  and  a

coupling  graph ,  we  assume  that  the

depth of the circuit is  and there are  2-qubit gates

in  one  layer.  The candidate  set  consists  of  the  edges

connected  to  the  control  or  target  qubits,  thus  the

size of the SWAP candidate set is . The worst-

case  time  complexity  is ,

and the space complexity is . 

5    Experiments

t |ket⟩

t |ket⟩

log10
x

y

We compare TSA with several state-of-the-art al-

gorithms  for  qubit  mapping,  namely  ZPW[10],

SABRE[11],  FiDLS[12],  and  DLH[13].  Notice  that  other

algorithms such as SAHS[26] and [25] are not list-

ed because Li et al.[12] have pointed out that FiDLS is

superior  to  SAHS  and  the  latter  outperforms
[26].  The implementation in Python is  available

online③.  All  the  experiments  are  conducted  on  a

Ubuntu  machine  with  a  2.2  GHz  CPU  and  64  GB

memory. We take the logarithm  of both the -

axis and -axis such that the experimental results are

easy to observe. The time limit for each benchmark is

one hour.  Among the 159 benchmarks,  we have con-

sidered, 158 of them are taken from some functions of

RevLib[35], and one is added by our own. This dataset

has also been adopted in several related work. We be-

lieve that it is representative and our comparative ex-

periments are carried out on it. With the 159 bench-

marks,  we  compare  TSA  with  ZPW,  SABRE,  and

FiDLS  on  IBM  Q  Tokyo,  and  with  FiDLS  on

Sycamore. Since the code of DLH is not available on-

line, we only make comparison with this algorithm on

the  number  of  inserted  additional  gates  but  not  the

running  time.  Note  that  SABRE uses  a  random ini-

tial mapping, thus for every benchmark we execute it

five times, each with a different initial mapping, and

report the best result out of the five trials. TSA uses

unsorted candidates, and thus we execute it five times

and take the best result. Other algorithms are deter-

ministic,  therefore  they  only  run  once. Fig.5 illus-

trates the entire process of our experiments. Below we

go through it in more detail.

Firstly, we test TSA with fixed and variable look-

la

la

la = 2

ahead  parameter .  In Fig.6,  different  colors  repre-

sent the logarithms of the number of additional gates.

The lower the points in the figure, the fewer addition-

al gates inserted. As for the look-ahead parameter ,

the optimal parameter for each circuit may be differ-

ent.  We  have  done  thousands  of  experiments  and

found  that  when ,  the  number  of  additional

gates is relatively small for all  benchmarks. It means

that a 2-layer look-ahead already gives a good perfor-

mance for TSA.

TSAcca TSAdep TSAnumIn Fig.7, we compare ,  and 

using  the  159  benchmarks  mentioned  above.  Com-

 

TSA with Variable Look-Ahead Parameter

Comparison of TSAcca, TSAdep, and TSAnum 

Comparison of TSAnum with DLH

Comparison of the Initial Mapping Algorithms of

ZPW, SABRE, FiDLS, andTSA

Comparison of the Adjustment Algorithms

of ZPW, SABRE, FiDLS, TSAnum, and TSAcca

Comparison of the Overall Performance of

TSAnum, TSAcca, SABRE, and FiDLS on IBM Q Tokyo

Comparison of TSA with FiDLS on Sycamore

Fig.5.  Sketch of the experiments.
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③https://github.com/Holly-Jiang/QCTSA, Mar. 2022.

https://github.com/Holly-Jiang/QCTSA
https://github.com/Holly-Jiang/QCTSA
https://github.com/Holly-Jiang/QCTSA


TSAcca TSAnum

TSAdep

pared  with  (resp. ),  the  depth  of  the

generated circuits by  is reduced by 2.37% (re-

TSAcca

TSAdep TSAnum

TSAdep TSAnum

sp.  3.42%) on average.  Compared with  (resp.

), the number of additional gates by  is

reduced  by  2.69%  (resp.  9.56%)  on  average.  There-

fore,  it  is  preferable to use either  or ,

depending  on  the  optimization  objective  to  be  either

the depth or the number of additional gates of the re-

sulting circuits.

TSAnum

TSAnum

Secondly,  we  use  the  benchmarks[13] to  compare

 with DLH. Note that two heuristic cost func-

tions MCPE and MCPE_OP are used in DLH. Since

there  is  no  code  available  online  for  DLH,  we  only

compare the number of additional gates inserted with

the  circuits[13],  as  shown  in Table 1.  Compared  with

MCPE  and  MCPE_OP,  reduces  the  total

number of additional gates by 27.32% and 12.42%, re-

spectively.

Thirdly,  we  compare  the  combinations  of  several

algorithms for inserting fewer additional gates. In or-

der to visualize the differences between ZPW, FiDLS,

SABRE, and TSA, we have plotted a series of figures
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Fig.7.   Comparison  of  the  number  of  additional  gates  inserted
by , , and .

 

TSAnumTable  1.    Comparison of MCPE, MCPE_OP and 

Benchmark n G G0  (MCPE) G1  (MCPE_OP) G2 TSAnum ( ) ∆0(%) ∆1(%)

4mod5-v1_22 5 21 0 0 0 0.00 0.00

mod5mils_65 5 35 0 0 0 0.00 0.00

alu-v0_27 5 36 3 3 6 –100.00 –100.00

decod24-v2_43 4 52 0 0 0 0.00 0.00

4gt13_92 5 66 21 21 0 100.00 100.00

ising_model_10 16 786 0 0 0 0.00 0.00

ising_model_13 16 786 0 0 0 0.00 0.00

ising_model_16 16 786 0 0 0 0.00 0.00

qft_10 10 200 39 39 57 –46.15 –46.15

qft_16 16 512 225 192 189 16.00 1.56

rd84_142 15 343 153 108 99 35.29 8.33

adr4_197 13 3 439 1 566 1 224 1 029 34.29 15.93

radd_250 13 3 213 1 353 1 047 852 37.03 18.62

z4_268 11 3 073 1 071 855 915 14.57 –7.02

sym6_145 14 3 888 1 017 1 017 681 33.04 33.04

misex1_241 15 4 813 2 118 1 098 1 032 51.27 6.01

rd73_252 10 5 321 2 352 2 193 1 629 30.74 25.72

cycle10_2_110 12 6 050 2 226 1 968 1 890 15.09 3.96

square_root_7 15 7 630 2 061 1 788 1 509 26.78 15.60

sqn_258 10 4 459 3 708 3 057 3 093 16.59 –1.18

rd84_253 12 13 658 6 411 5 697 4 605 28.17 19.17

co14_215 15 17 936 5 634 5 062 6 813 –20.93 –34.59

sym9_193 10 34 881 15 420 13 746 12 315 20.14 10.41

urf5_158 9 164 416 69 852 58 947 56 253 19.47 4.57

hwb9_119 10 207 775 93 219 89 355 78 753 15.52 11.87

urf4_187 11 512 064 220 329 168 366 141 768 35.66 15.80

Sum – 1 307 223 428 778 355 782 311 598 27.32 12.42

n G G0 G2
∆i = (Gi −G2)/Gi

Note:  is the number of qubits,  is the number of gates in the input circuit, –  are the numbers of additional gates inserted
by MCPE, MCPE_OP and TSAnum, respectively, and .
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available online as supplementary materials④. We use

the  initial  mapping  and  adjustment  algorithms  from

ZPW[10], SABRE[11], FiDLS[12], and TSA.

In Table 2,  we  compare  the  performance  of  the

four  initial  mapping  algorithms  of  ZPW,  SABRE,

FiDLS, and TSA under the specific adjustment algo-

rithms. For example, in the first row, the adjustment

algorithm is  fixed  to  be  that  of  ZPW;  there  are  115

circuits  that  all  of  the  four  initial  mapping  algo-

rithms can successfully transform and we compare the

number of additional gates. As we can see, the initial

mapping  algorithm  of  TSA  performs  the  best  when

used  in  conjunction  with  the  five  adjustment  algo-

rithms. It leads to a reduction of 41%, 30%, and 37%

of  additional  gates  compared  with  the  initial  map-

ping algorithms of ZPW, SABRE, and FiDLS.

TSAnum TSAcca

We then compare  the  five  adjustment  algorithms

from ZPW, SABRE, FiDLS, , and  un-

der  specific  initial  mapping  algorithms  in Table 3.

FiDLS  gives  rise  to  the  fewest  additional  gates.  For

example,  in  the  second  row,  SABRE  is  used  as  the

adjustment algorithm, 16 632 (resp. 12 072) gates are

inserted  under  the  initial  mapping  of  SABRE  (resp.

TSA).  The  SABRE  adjustment  algorithm  combined

with the initial  mapping provided by TSA has fewer

gates inserted than the SABRE initial mapping algo-

rithm in  these  benchmarks.  This  shows  that  the  ini-

tial  mapping  of  TSA is  better  than  that  of  SABRE.

FiDLS  uses  a  deep  search  on  the  circuits,  calculates

the full permutation of all edges, and then selects the

best among all the permutations according to an eval-

uation function. FiDLS takes large-scale search space

and long search time for  large-scale  circuits.  Overall,

TSA performs well  on large-scale circuits,  trading off

additional gates and runtime.

TSAnum TSAcca

x

TSAnum

TSAnum

TSAnum TSAcca

Fourthly,  we  compare  the  overall  performance  of

 and  with SABRE and FiDLS on IBM

Q  Tokyo.  We  test  159  circuits,  including  66  small-

scale circuits, 49 medium-scale circuits, and 44 large-

scale ones. Note that in Table 4 and Fig.8 we do not

display the data for ZPW. Instead, we make compari-

son  with  SABRE  because  it  is  already  shown  that

SABRE is much more scalable than ZPW[11]. In Fig.8,

the number of additional gates introduced by the blue

bars is the largest, followed by the red ones. We can

see that the yellow bars are the shortest when the -

axis  is  greater  than 3,  indicating that FiDLS has in-

serted the fewest gates in the large-scale circuits. The

green bars are for . The number of additional

gates  it  introduces  is  slightly  larger  than  that  of

FiDLS. It can also be seen from Table 4 that 

takes much less time than FiDLS in general. SABRE

successfully  transforms  144  circuits,  including  all  the

small-scale  and  medium-scale  circuits,  and  29  large-

scale  ones,  which  takes 12 436 seconds.  FiDLS  suc-

cessfully  transforms  159  circuits,  which  takes 63 841

seconds.  and  are much faster, as they

successfully transform all the 159 circuits, taking 2 465

seconds  and 2 523 seconds,  respectively.  Compared

with SABRE, the number of  additional SWAP gates
 

Table  2.    Comparison of the Initial Mapping Algorithms of ZPW, SABRE, FiDLS, and TSA

Algorithm N G G0 G1 G2 G3 ∆0(%) ∆1(%) ∆2(%)

ZPW 115 63 666 29 640 24 951 27 651 17 412 41.26 30.22 37.03

SABRE 108 77 790 28 671 26 079 26 412 16 068 43.96 38.39 39.16

FiDLS 120 209 433 29 484 28 434 30 195 25 950 11.99 8.74 14.06

TSAnum 120 163 485 54 969 52 512 62 817 45 948 12.50 26.85 18.59

TSAcca 120 163 485 57 777 53 922 61 668 46 305 19.86 14.13 24.91

N G
G0 G3

∆i = (Gi −G3)/Gi

Note:  is the number of circuits that all the four initial mapping algorithms can successfully transform,  is the number of gates
in the input circuits, –  are  the numbers  of  additional  gates  inserted by ZPW, SABRE, FiDLS,  and TSA, respectively,  and

.

 

TSAnum TSAccaTable  3.    Comparison of the Adjustment Algorithms of ZPW, SABRE, FiDLS, , and 

Algorithm   N G G0 G1 G2 G3 G4 ∆0(%) ∆1(%) ∆2(%) ∆4(%)

ZPW 94 29 443 14 472 11 244 4 938 10 173 10 389 29.71 9.53 –106.01 2.08

SABRE 105 49 987 19 053 16 632 6 204 12 072 11 904 36.61 27.41 –94.58 –1.41

FiDLS 109 105 428 45 813 31 011 16 668 37 800 37 851 17.49 –21.89 –126.78 0.13

TSA 124 150 464 49 620 30 447 19 068 40 461 40 629 18.46 –32.89 –112.19 0.41

N G
G0 G4 num cca

∆i = (Gi −G3)/Gi

Note:  is the number of circuits that all the five adjustment algorithms can successfully transform,  is the number of gates in the
input circuits, –  are the numbers of additional gates inserted by ZPW, SABRE, FiDLS, TSA , and TSA , respectively,
and .
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④https://github.com/Holly-Jiang/QCTSA/blob/master/QCTSA_Appendix.pdf, Jun. 2023.
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TSAnumgenerated  by  is  reduced by 51% on average,

among the  115  small-scale  and medium-scale  circuits

that both of them can successfully transform.

TSAnum

TSAnum

TSAnum

t2

In small-scale  (resp.middle-scale)  circuits, 

generates  an  average  of  33%  (resp.  2%)  fewer  addi-

tional SWAP gates compared with FiDLS. Specifical-

ly, FiDLS inserts 1 329 (resp. 5 328) additional gates,

while  the  number  is  894  (resp. 5 199)  for .

When  dealing  with  large-scale  circuits,  although

 inserts  more  additional  gates,  it  can  convert

large-scale  circuits  more  than  25  times  faster  than

FiDLS,  as  we  can  see  in  the  fourth  row  and  the -

column of Table 4.

Finally,  we  set  the  53-qubit  quantum  processor

TSAnum

Sycamore as our target device and compare TSA with

FiDLS  still  on  the  159  benchmarks.  In  each  row  of

Table 5,  the  same  initial  mapping  algorithm is  used,

and in each column, the same adjustment algorithm is

used. Generally speaking, TSA leads to a reduction of

2%-3% for the number of inserted additional gates. In

the  experiment,  we  find  that  the  degrees  of  the

Sycamore  nodes  are  small  and  the  maximum is  4.  If

the degrees of nodes in the interaction graph are gen-

erally greater than the maximum degree of Sycamore,

it is not very suitable to use subgraph isomorphism to

generate the set of partial initial mappings. The algo-

rithm tempts to first match the node with the largest

degree.  If  the  node  with  the  maximum  degree  does

not  satisfy  the  isomorphism  condition,  the  initial

mapping  generated  by  the  subgraph  isomorphism al-

gorithm  is  not  friendly.  However,  the  adjustment  of

TSA  is  still  very  effective  because  the  time  cost  is

drastically  lowered,  going  from 31 896 seconds  for

FiDLS to 1 795 seconds  for ,  that  is,  the  lat-

ter is more than 17 times faster than the former. 

6    Conclusions

We  proposed  a  scalable  algorithm  called  Tabu

Search-Based  Adjustment  (TSA)  for  qubit  mapping.

We first used a subgraph isomorphism algorithm and

a mapping completion algorithm based on the connec-

tivity  between  qubits  to  generate  a  high-quality  ini-

tial mapping. Then we employed a look-ahead heuris-

tic search to adjust the mapping, which takes into ac-

count the influence of the gates yet to be processed to

 

TSAnum TSAccaTable  4.    Comparison of Runtime and Number of Circuits Successfully Transformed by SABRE, FiDLS, , and 

Scale N G
SABRE FiDLS TSAnum TSAcca

N0 G0 t0  (s) N1 G1 t1  (s) N2 G2 t2  (s) N3 G3 t3  (s)

Small 66 5 997 66 2 301 2 66 1 329 7 66 894 16 66 897 21

Medium 49 21 618 49 10 218 22 49 5 328 90 49 5 199 57 49 5 280 62

Large 44 3 289 162 29 162 522 12 412 44 532 485 63 744 44 1 013 196 2 392 44 1 037 427 2 440

Sum 159 3 312 734 144 175 041 12 436 159 539 142 63 841 159 1 015 521 2 465 159 1 043 604 2 523

N G N0 N3

num cca t0 t3 num
cca G0 G3 num cca

Note:  is  the  number  of  test  circuits,  is  the  number  of  gates  in  the  input  circuits, –  are  the  numbers  of  circuits
successfully transformed by SABRE, FiDLS, TSA , and TSA  respectively, –  are the runtime of SABRE, FiDLS, TSA ,
and  TSA ,  respectively,  and –  are  the  numbers  of  additional  gates  inserted  by  SABRE,  FiDLS,  TSA ,  and  TSA ,
respectively.
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Table  5.    Comparing the Initial Mapping and Adjustment Algorithms of FiDLS and TSA on Sycamore

Algorithm FiDLS TSAnum TSAcca ∆1(%) ∆2(%)

G0 t0  (s) G1 t1  (s) G2 t2  (s)

FiDLS 2 311 560 31 896 2 245 314 233 2 257 371 3 392 2.86 2.56

TSA 2 305 125 31 211 2 234 937 1 795 2 252 271 3 390 3.04 2.29

N G G0 G2

num cca t0 t2 num cca
∆i = (G0 −Gi)/G0

Note: The number of test circuits, , is 159, the number of gates in the input circuits, , is 3 312 734, –  are the numbers of
additional  gates  inserted  by  FiDLS,  TSA  and  TSA ,  respectively, –  are  the  runtime  of  FiDLS,  TSA ,  and  TSA ,
respectively, and .
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reduce the number of additional gates. We compared

the  performance  of  the  initial  mapping  and  adjust-

ment  algorithms  of  TSA  with  state-of-the-art  algo-

rithms ZPW, SABRE, and FiDLS, using the architec-

tures of IBM Q Tokyo and Sycamore as the target de-

vices.  Our  experimental  results  show  that  the  initial

mapping of  TSA gives  rise  to fewer SWAP gates  in-

serted and the adjustment algorithm can be obtained

in  an  acceptable  amount  of  time.  Most  small-scale

and  medium-scale  circuits  can  be  transformed  in  a

few  seconds.  For  large-scale  circuits,  the  results  can

be  obtained  within  a  few  minutes.  In  the  future,  we

will investigate how to reduce the number of addition-

al gates inserted and increase the speed. We will also

apply the proposed method to more noisy intermedia-

to-scale quantum (NISQ) devices. 
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