

Qubit Mapping Based on Tabu Search

Hui Jiang (蒋　慧), Yu-Xin Deng* (邓玉欣), Senior Member, CCF, and Ming Xu (徐　鸣)

Shanghai Key Laboratory of Trustworthy Computing, East China Normal University, Shanghai 200062, China

E-mail: 52215902019@stu.ecnu.edu.cn; yxdeng@sei.ecnu.edu.cn; mxu@cs.ecnu.edu.cn

Received December 29, 2021; accepted August 31, 2023.

Abstract The goal of qubit mapping is to map a logical circuit to a physical device by introducing additional gates as

few as possible in an acceptable amount of time. We present an effective approach called Tabu Search Based Adjustment

(TSA) algorithm to construct the mappings. It consists of two key steps: one is making use of a combined subgraph iso-

morphism and completion to initialize some candidate mappings, and the other is dynamically modifying the mappings by

TSA. Our experiments show that, compared with state-of-the-art methods, TSA can generate mappings with a smaller

number of additional gates and have better scalability for large-scale circuits.

Keywords quantum computing, qubit mapping, initial mapping, tabu search, logical circuit

1 Introduction

Quantum computing has attracted more and more

interest in the last decades, since it provides the pos-

sibility to efficiently solve important problems such as

integer factorization[1], unstructured search[2], and

solving linear equations[3]. However, the (great) im-

provements in computer science driven by quantum

technology are still in the early stage, since large-scale

quantum computers have not yet been built. IBM has

developed the first 5-qubit backend called IBM QX2,

followed by the 16-qubit backend IBM QX3. The re-

vised versions of them are called IBM QX4 and IBM

QX5, respectively. Google announced the realization

of quantum supremacy, with the 53-qubit quantum

processor Sycamore[4]. IBM Q Experience① provides

the public with free quantum computing resources on

the cloud and Qiskit②, an open source quantum com-

puting software framework.

Users of early quantum computers mainly rely on

quantum circuits to implement quantum algorithms.

µ µ

There is a gap between the design and the implemen-

tation of a quantum algorithm[5]. In the design stage,

we usually do not consider any hardware connectivi-

ty constraints. But in order to implement an algo-

rithm on a quantum physical device, physical con-

straints have to be taken into account. For example,

IBM physical devices only support 1-qubit gates and

the 2-qubit CX gate between two adjacent qubits.

Hence, it is necessary to transform the circuits for

quantum algorithms to satisfy both logical and physi-

cal constraints. It is called qubit mapping, which

maps a logical circuit to a physical device by insert-

ing additional gates. A major challenge for quantum

information processing is quantum decoherence.

Quantum gates are applied in a coherent period but

the qubits stay in the coherent state for a very short

time. The longest coherence time of a superconduct-

ing quantum chip is still within 10 s–100 s[6]. Thus,

the main goal of qubit mapping is to reduce the num-

ber of additional gates and the depth of output cir-

cuits in an efficient way.

Regular Paper

This work was supported by the National Natural Science Foundation of China under Grant Nos. 61832015, 62072176, 12271172
and 11871221, the Research Funds of Happiness Flower of East China Normal University under Grant No. 2020ECNU-XFZH005,
the Fundamental Research Funds for the Central Universities of China under Grant No. 2021JQRH014, Shanghai Trusted Industry
Internet Software Collaborative Innovation Center, and the ``Digital Silk Road'' Shanghai International Joint Lab of Trustworthy
Intelligent Software under Grant No. 22510750100.

*Corresponding Author

Jiang H, Deng YX, Xu M. Qubit mapping based on tabu search. JOURNAL OF COMPUTER SCIENCE AND TECH-

NOLOGY 39(2): 421−433 Mar. 2024. DOI: 10.1007/s11390-023-2121-5

①https://www.ibm.com/quantum-computing/, Mar. 2024.

②https://www.qiskit.org/, Mar. 2024.
©Institute of Computing Technology, Chinese Academy of Sciences 2024

https://doi.org/10.1007/s11390-023-2121-5
https://doi.org/10.1007/s11390-023-2121-5
https://doi.org/10.1007/s11390-023-2121-5
https://doi.org/10.1007/s11390-023-2121-5
https://doi.org/10.1007/s11390-023-2121-5
https://doi.org/10.1007/s11390-023-2121-5
https://doi.org/10.1007/s11390-023-2121-5
https://www.ibm.com/quantum-computing/
https://www.ibm.com/quantum-computing/
https://www.ibm.com/quantum-computing/
https://www.qiskit.org/

In the current work, we use In-Memory Subgraph

Matching (IMSM)[7] to generate partial isomorphic

subgraphs of logical circuits and physical ones as a set

of partial initial mappings. By exploiting an appropri-

ate subgraph isomorphism and the connectivity of the

logical circuits and the physical ones, we get a dense

(clustered nodes) initial mapping, which avoids some

nodes from being mapped to remote positions. Note

that both subgraph isomorphism and the adjustment

of qubit mapping are NP-complete[8]. Thus, to be

practically efficient, we propose to use tabu search[9]

to generate logical circuits that will be executed on

the physical device. The advantage of tabu search is

to jump out of local optimum and ensure the diversi-

ty of the transformed results. We insert SWAP gates,

associated with the gates on the shortest path to the

candidate set, which greatly reduces the search space

and improves the search speed. We design three eval-

uation functions that consider not only the current

gates but also the constraints of the gates already

processed. Our experiments have been conducted by

using the architectures of IBM Q Tokyo and

Sycamore as the target physical devices. The experi-

mental results show that the evaluation function

based on calculating the number of additional gates

inserts the smallest number of gates. We test several

combinations of state-of-the-art initial mapping and

adjustment algorithms aiming to insert fewer addi-

tional gates after qubit mapping. Generally speaking,

Tabu Search Based Adjustment (TSA) outperforms

the Zulehner-Paler-Wille (ZPW) algorithm[10], SWAP-

Based BidiREctional heuristic search algorithm

(SABRE)[11] and Filtered Depth-Limited Search

(FiDLS)[12] in different aspects. When compared with

the Dynamic Look-Ahead Heuristic technique

(DLH)[13], which uses the maximum consecutive posi-

tive effect of an SWAP operation (MCPE) and the

optimized version (MCPE_OP) as the heuristic cost

function, the additional gates inserted by TSA in the

DLH benchmarks have been reduced by 27.32% and

12.42%, respectively.

The main contributions of this article are summa-

rized as follows.

1) We extend IMSM, which only generates a set

of partial initial mappings, by completing the map-

ping based on the connectivity between qubits.

2) We propose a heuristic circuit adjustment algo-

rithm based on tabu search, TSA, which can adjust

large-scale circuits much more efficiently than exist-

ing precise search and heuristic algorithms.

3) We propose three look-ahead evaluation func-

tions for the circuit adjustment; one employs configu-

ration checking with aspiration (CCA)[14], and the

other two use the number of additional gates and the

depth of the generated circuit as evaluation criteria,

taking into account both the current gates and some

gates yet to be processed.

4) We compare several state-of-the-art initial

mapping and adjustment algorithms, and the results

show that the initial mapping generated by our

method requires inserting fewer SWAP gates, and

TSA has better scalability than them for adjusting

the mapping for large-scale circuits.

The rest of this article is organized as follows. In

Section 2, we discuss the related work. In Section 3,

we recall some background in quantum computing

and quantum information. In Section 4, we introduce

the problem of qubit mapping and provide our de-

tailed solution. Section 5 reports the experimental re-

sults. We conclude in the last section and discuss fu-

ture work.

2 Related Work

Paler[15] has shown that initial mappings have an

important impact on qubit mapping. Just by placing

qubits in different positions from the default trivial

placement in the circuit instances on actual noisy in-

termediate-scale quantum (NISQ) devices, the cost

can be reduced by up to 10%. One important goal of

circuit adjustment algorithms is to minimize the num-

ber of additional gates. There are currently five main

methods to attack the qubit mapping problem.

● Unitary Matrix Decomposition Algorithm. It is

used to rearrange a quantum circuit from the begin-

ning while retaining the input circuit[16, 17]. It can be

applied to a broad class of circuits consisting of gener-

ic gate sets, but the results are not so efficient as a

compiler designed specifically for this task.

● Converting into Existing Problems. This ap-

proach converts the qubit mapping problem into some

existing problems, such as AI planning[18, 19], integer

linear programming[20], and satisfiability modulo theo-

ries (SMT)[21], and then uses existing tools to find the

optimum in an acceptable amount of time for the

problem. Furthermore, as the time cost is usually

high, it can only process small-scale quantum circuits.

● Exact Methods. Siraichi et al. proposed an ex-

act method[8]. It iterates over all possible mappings;

thus it is only suitable for simple quantum circuits

422 J. Comput. Sci. & Technol., Mar. 2024, Vol.39, No.2

and cannot be extended to complex ones.

● Graph Theory. Shafaei et al. used the minimum

linear permutation solution in graph theory to model

the problem of reducing the interaction distance[22]. A

two-step method was used to reduce the qubit map-

ping to a graph problem to minimize the number of

additional gates[23, 24].

● Heuristic Search. Existing solutions mainly aim

at inserting as few SWAP gates as possible[8, 10–13, 25, 26],

using the fidelity of the generated circuit as the objec-

tive function[27] or minimizing the overall circuit la-

tency[28]. At present, there are a number of

methods[10, 11, 13, 22] that exploit the look-ahead idea.

In particular, Zhu et al. proposed to dynamically ad-

just the number of look-ahead gates[13]. SABRE[11] de-

pends on a random initial mapping. SAHS[26] is an an-

nealing algorithm to find an initial mapping, but it is

unstable. FiDLS[12] tends to search through all possi-

ble combinations of SWAP gates to minimize the

number of executable 2-qubit gates. But the cost of a

thorough search is very high, especially when dealing

with medium-scale and large-scale circuits. DLH[13]

can deal with some large-scale benchmarks. We will

give a quantitative comparison with this method in

Section 5. A variation-aware qubit movement strate-

gy[27] was proposed, which takes advantage of the

change in error rate and a change-aware qubit map-

ping strategy by trying to select the route with the

lowest probability of failure. Lao et al. showed that

the fidelity of a circuit is related to the delay and the

number of gates[28]. Now some heuristic methods are

also applied to other platforms such as Surface-17[28, 29]

and Sycamore[12].

3 Preliminaries

C
In this section, we introduce some notions and no-

tations of quantum computing. Let denote the set

of all complex numbers.

|0⟩ |1⟩
|ϕ⟩ = a |0⟩+ b |1⟩

a, b ∈ C |a|2 + |b|2 = 1

|ϕ⟩ |0⟩
|a|2 |1⟩ |b|2

Q q

Classical information is stored in bits, while quan-

tum information is stored in qubits. Besides two ba-

sic states and , a qubit can be in any linear su-

perposition state like , where

 satisfy the condition . The intu-

ition is that is in the state with probability

 and in the state with probability . We use

the letter (resp.) to denote a physical (resp. logi-

cal) qubit.

A quantum gate acts on a qubit to change the

state of the qubit. For example, the Hadamard (H)

|0⟩
|1⟩ (|0⟩+ |1⟩)/

√
2 (|0⟩ − |1⟩)/

√
2

|A,B⟩ → |A,B ⊕A⟩ ⊕

|A,B⟩
|A⟩ |B⟩ = |A⟩ ⊗ |B⟩

gate is applied on a qubit, and the CX gate is ap-

plied on two qubits. Their symbols and matrix forms

are shown in Fig.1. The H gate turns state (resp.

) into (resp.). The

CX gate is a generalization of the classical XOR gate,

since the action of the gate may be summarized as

, where is addition modulo

two, which is exactly what the XOR gate does. That

is, the control qubit and the target qubit are XORed

and stored in the target qubit. Here is a short-

hand of the product state . We

use an SWAP gate to exchange the states between

two adjacent qubits, and multiple operations simu-

late moving non-adjacent qubits to adjacent positions.

An SWAP gate can be implemented by three CX

gates, or by inserting four H gates to change the di-

rection of the middle CX gate, as illustrated in Fig.2.

CX Gate

•
1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

H Gate H 1
√2

1 1

1 -1()

()
Fig.1. Symbols of two quantum gates and their matrices.


 ×



 • • 



 • H • H • 



 


 ×



 • 



 H H 



Fig.2. Implementing an SWAP gate by CX gates and H gates.

In a quantum circuit, each line represents a wire.

The wire does not necessarily correspond to a physi-

cal wire but may correspond to the passage of time or

a physical particle that moves from one location to

another through space. The interested reader can find

more details of these gates from the standard text-

book[30]. The execution order of a quantum logical cir-

cuit is from left to right. The width of a circuit refers

to the number of qubits in the circuit. The depth of a

circuit refers to the number of layers executable in

parallel. For example, the depth of the circuit in

Fig.3(a) is 6, and the width is 5. We refer to a circuit

with the number of 2-qubit gates no more than 100 as

a small-scale circuit, a circuit with the number of 2-

qubit gates more than 1 000 as a large-scale circuit,

and the rest are medium-scale circuits. It is unneces-

sary to consider quantum gates acting on single

qubits since 1-qubit gates are local[22], which do not

need to move the involved qubits for gate applica-

tions.

Hui Jiang et al.: Qubit Mapping Based on Tabu Search 423

CG = (VC, EC)

VC

EC

In the current work, we mainly consider the physi-

cal circuits of the IBM Q series, called coupling

graphs. Let denote the coupling graph

of a physical device, where is the set of physical

qubits and is the set of edges representing the con-

nectivity between qubits related by CX gates.

Figs.4(a)–4(e) are the coupling graphs of the 5-qubit

IBM QX2, IBM QX4, 16-qubit IBM QX3, IBM QX5,

and the 20-qubit IBM Q Tokyo, respectively. The

control of one qubit to a neighbor is unilateral, but

for IBM Q Tokyo the control between two adjacent

qubits is bilateral. The direction in each edge indi-

cates the control direction of each 2-qubit gate, and 2-

qubit gates can only be performed between two adja-

cent qubits.

IG
CG τ g = ⟨qc, qt⟩

qc qt
g

CG ⟨τ [qc], τ [qt]⟩
CG

Given an interaction graph , a coupling graph

, an initial mapping , and a CX gate

where is the control qubit and is the target

qubit, if the gate is executable on coupling graph

, then should be a directed edge on

.

IG CG
Example 1. Consider the logical interaction graph

 and a coupling graph shown in Fig.3(b) and

the blue part of Fig.4(e). Let the initial mapping be

as follows,

τ = {q0 → Q10, q1 → Q0, q2 → Q6, q3 → Q5, q4 → Q11}.

g0 = ⟨q2, q1⟩
⟨τ [q2], τ [q1]⟩ = ⟨Q6, Q0⟩

CG g1 = ⟨q3, q4⟩
⟨τ [q3], τ [q4]⟩ = ⟨Q5, Q11⟩ CG

Then the 2-qubit gate is not executable,

since the edge does not exist

in . However, the gate is executable,

since the edge exists in .

4 Qubit Mapping

Assume that the input circuit has only 1-qubit

gates and CX gates[31, 32]. We expect to find a qubit

mapping algorithm that, when given an input circuit,

can produce an output circuit with a small number of

additional gates in an acceptable amount of time.

Roughly speaking, we propose a method of qubit

mapping with the following three steps.

1) Preprocessing. This step includes extracting

the interaction graph from the input circuit and cal-

culating the shortest paths of the coupling graph.

2) Isomorphism and Completion. First, the sub-

graph isomorphism algorithm is used to find a set of

partial initial mappings[7]. Then we perform a map-

ping completion to process the remaining nodes that

do not satisfy all isomorphism requirements, accord-

ing to the connectivity between the unmapped nodes

and the mapped ones.

3) Adjustment. After the second step, some logi-

cally adjacent nodes may be mapped to physically

non-adjacent nodes, therefore, the quantum circuit is

not executable on the coupling graph. We use a tabu

search based adjustment algorithm to generate cir-

cuits that can be physically executed.

4.1 Preprocessing

In the preprocessing step, we adjust the input cir-

cuit described by an openQASM program[33] to ex-

tract the interaction graph from the input circuit and

 •
 •
 • •
 • • •
 • •

g g g g g g g g g
 

 



(b)(a)

Fig.3. (a) Original quantum circuit. (b) Logical interaction
graph of (a).

(a)

 



 

(b)

 



 



       

       

       

       

(d)

(e)

    

    

    

    

Fig.4. Coupling graphs of IBM Q series. (a) IBM QX2. (b) IBM
QX4. (c) IBM QX3. (d) IBM QX5. (e) IBM Q Tokyo.

424 J. Comput. Sci. & Technol., Mar. 2024, Vol.39, No.2

calculate the shortest paths of the coupling graph.

L(C) = {L0,

L1, . . . ,Ln} C
Li (0 ⩽ i ⩽ n)

L0 = {g0, g1},L1 = {g2},L2 = {g3, g4},
L3 = {g5, g6},L4 = {g7},L5 = {g8}

Quantum gates acting on different qubits can be

executed in parallel. The notation

 denotes the layered form of circuit ,

where stands for a set of quantum

gates that can be executed in parallel. The quantum

gate sets separated by the dotted lines in Fig.3(a) are

the following:

.

IG = (VI, EI)

VI EI

D[Qc][Qt]

Qc Qt

At the same time of layering, we generate an in-

teraction graph , which is an undirect-

ed graph with being the set of vertices, and the

set of undirected edges that denotes the connectivity

between qubits related by CX gates. Given a cou-

pling graph and assuming that the distance of each

edge is 1, we use the Floyd-Warshall algorithm[34] to

calculate the shortest distance matrix, with

denoting the shortest distance from to .

g = ⟨qc, qt⟩ qc qt
Qc Qt

g

costg = 7× (D[Qc][Qt]− 1)

costg = 3× (D[Qc][Qt]− 1)

Consider a CX gate . If and are

mapped to and , respectively, then the cost of

executing under the shortest path is denoted by

 on devices with unilateral

control. For IBM Q Tokyo, the cost is

.

g = ⟨q1, q2⟩ q1
Q6 q2 Q13

D[Q6][Q13] = 3

Q6

Q13 π0 = Q6 → Q5 → Q4 → Q13,

π1 = Q6 → Q5 → Q12 → Q13, π2 = Q6 → Q11 → Q12 →
Q13. costπ0

= 18, costπ1
= 14,

costπ2
= 14, costπi

0 ⩽ i ⩽ 2

Q6 Q13 πi

Example 2. Consider the QX5 coupling graph (cf.

Fig.4(d)). Given a CX gate , with

mapped to and mapped to , the shortest

distance between them is . There are

three shortest paths of moving from to an adja-

cent position of :

 Their costs are given by

and respectively. Here for

 stands for the cost of swapping the qubits

 to along the path .

4.2 Isomorphism and Completion

Generally speaking, in a coupling graph, it is al-

most impossible to find a subgraph that exactly

matches the interaction graph. We regard the map-

ping with the largest number of mapped nodes as a

good partial mapping. IMSM compares various com-

positions of several state-of-the-art subgraph isomor-

phism algorithms. Since IMSM cannot process discon-

nected graphs, we manually create connected graphs

by linking isolated nodes to the ones with the largest

degree in the interaction graph. Note that this does

not change the architecture of the original circuit.

CGThe input of Algorithm 1 is a coupling graph ,

IG
T l

l

len(τ)

τ V

τ V

V

V q

CG U

q

U U [0]

Q

q U

U [0] U

k Q

q

an interaction graph , and a partial mappings set

. Line 2 selects the largest number of mapped

nodes, and the partial mappings with mapped nodes

are used by the candidate set. Lines 3–22 complete

the partial mappings. The function returns the

size of . In line 5, we initialize an empty queue ,

which stores unmapped logical qubits, traverse the

mapping , and add the unmapped qubits to . We

then loop until is empty, and all logical qubits are

mapped to physical qubits. Line 7 takes out the first

element in to . Line 8 gets the adjacency matrix

of . Line 9 initializes a list , sorted by descend-

ing degree of connectivity to . Lines 10–20 traverse

 and select the node that has been mapped to

the physical node in the coupling graph and has

the largest number of logical connections to in .

Line 13 deletes the node from . Lines 15–17 se-

lect the node adjacent to in the adjacency ma-

trix and map to that node. Finally, we generate a

dense mapping.

Algorithm 1. Complete the Initial Mapping

CG IG
T

 Input: : a coupling graph; : an interaction graph;
 : a partial mapping set obtained by IMSM;

results IG
CG;

 Output: : a set of mapping relations between
 and

results = ∅ 1 Initialize ;

l← maxτ∈T |{i : τ [i] ≠ −1, i ⩽ len(τ), i ∈ N}| 2

τ ∈ T 3 for do

l = len(τ) 4 if then
V ← τ 5 the unmapped logical qubits in ;

len(V) > 0 6 while do

q ← V. 7 poll();

P ← CG.adjacencyMatrix() 8 ;

U ← q IG 9 the neighbors of in ;

len(U) > 010 while do

Q← τ [U [0]]11 ;
k ← 012 ;

U ← U\U [0]13 ;

k < len(P [Q])14 while do

(P [Q][k] or P [k][Q] ̸= 0 and not τ. contains(k))15 if
 then

τ [q]← k16 ;
17 break;

k ← k + 118 ;

k ̸= len(P [Q])19 if then

20 break;

results. (τ)21 add ;

return results22 ;

T = {τ0,
τ1, . . . , τn}

Example 3. Consider the interaction graph shown

in Fig.3(a) and the coupling graph in Fig.4(e). Sup-

pose we have a partial mapping set

. We take one of the partial mappings as an

Hui Jiang et al.: Qubit Mapping Based on Tabu Search 425

example.

τ0 = {q0 → Q10, q1 → −1, q2 → Q6, q3 → Q5, q4 → Q11},

q1 → −1 q1

τ0
V

V = {q1} V

q1 V

U = {q3, q2, q4, q0}
U q3 U

Q5 τ0[q3] = Q5

q1 q3

Q0

τ0 = {q0 → Q10, q1 → Q0, q2 → Q6, q3 → Q5, q4 → Q11}.

where means that is not mapped to any

physical qubit, therefore we need the mapping com-

pletion algorithm. The maximum number of mapped

nodes is 4. We demonstrate how is completed. We

add all unmapped nodes to the queue ; in this ex-

ample, we have . Then we loop until is

empty. We pop the first element of , get the ad-

jacency matrix of the target graph, and the candi-

date nodes list . Next, we traverse

 and take out the first element in , and calcu-

late the physical node as . Finally, we

map to the node connected to but not yet

mapped. In this example, it can be directly mapped

to . In the end, we obtain the mapping

4.3 Adjustment

4.3.1 Tabu Search

Tabu search uses a tabu list to avoid searching re-

peated spaces and deadlock and amnesty rules to

jump out of the local optimum to ensure the diversi-

ty of transformed results. Our circuit adjustment

mainly relies on the tabu search algorithm, aiming to

adjust those large-scale circuits that the existing algo-

rithms are difficult to process and generate a circuit

closer to the optimal solution.

Mp

j = Mp[i]
i j

Ml

j = Ml[i]
i j

L

E D

g L
qc

qt g
B g L

g
e.s e.t e B

e

The calculation of the candidate set is shown in

Algorithm 2. The input is a mapping from physi-

cal qubits to logical ones, where means that

the -th physical qubit is mapped to the -th logical

qubit. The set denotes the mapping of logical

qubits to physical ones, where means that

the -th logical qubit is mapped to the -th physical

qubit. The set includes all the gates in the current

layer, and the output is a candidate mapping set of

the current mapping. The set and the matrix

contain the shortest paths and distances of all nodes

in the coupled graph, respectively. Lines 3–7 delete

the gate that can be executed in under the cur-

rent mapping and gather the control qubit and tar-

get qubit of gate that cannot be executed into

the set . Lines 8–24 traverse gates in , and cal-

culate the shortest paths between the nodes of . If

the endpoints and of edge intersect with

on the shortest path, then is an element of the can-

didate set. Lines 14–20 update the mapping after the

swap. Lines 21–24 generate a new candidate solution.

Line 22 stores the swapped edges that will be used in

the output circuit, and line 23 calculates the swap

scores using an evaluation function.

Algorithm 2. Calculate the Candidate Set

Mp
Ml

L
E
D

 Input: : the mapping from physical qubits to logical
 qubits; : the mapping from logical qubits to
 physical qubits; : gates included in the current
 layer of circuits; : the shortest paths set of the
 coupling graph; : the distance matrix between
 nodes in the coupling graph;

results Output: : the set of candidate mapping;

results← ∅ B ← ∅; 1 Initialize ;

g ∈ L 2 for do

g is executable 3 if then

L ← L\{g} 4 ;
 5 else

qc, qt ← the operating qubits of gate g 6 ;

B ← B ∪ {qc, qt}; 7

g ∈ L 8 for do

qc, qt ← the operating qubits of gate g 9 ;

p ∈ E[Ml[qc]][Ml[qt]]10 for do
e ∈ p11 for do

e.s and e.t /∈ B12 if then
13 continue;

M ′
p ←Mp M ′

l ←Ml14 ; ;

Q1 ←M ′
p[e.s] Q2 ←M ′

p[e.t]15 ; ;

M ′
p[e.s]← Q2 M ′

p[e.t]← Q116 ; ;

Q1 ̸= −117 if then

M ′
l [Q1]← Q218 ;

Q2 ̸= −119 if then

M ′
l [Q2]← Q120 ;

s← ∅21 ;

s.swaps← s.swaps ∪ {e};22

s.value← evaluate(D,M ′
l ,L)23 ;

results← results ∪ {s}24 ;

return results25 ;

Example 4. Let us consider the mapping

τ0 = {q0 → Q10, q1 → Q0, q2 → Q6, q3 → Q5, q4 → Q11}.

L0 = {g0, g1} costg1
= 0 costg0

= 3

g1 τ0
L0 g0

τ0
B = {q2, q1}

with , , and . The

gate can be executed directly in the mapping,

therefore we delete it from , but cannot be exe-

cuted in the mapping . The nodes that cannot be

executed join the set . The set of shortest

paths is

{{Q6 → Q1 → Q0}, {Q6 → Q5 → Q0}}.

{(Q6, Q1),

(Q1, Q0), (Q6, Q5), (Q5, Q0)}

We traverse the shortest paths and calculate the can-

didate set. The current candidate set is

 .

TSA takes a layered circuit and an initial map-

ping as input and outputs a circuit that can be exe-

cuted in the specified coupling graph, as shown in Al-

gorithm 3. The adjusted circuit mapping of each lay-

er is used as the initial mapping of the next layer.

426 J. Comput. Sci. & Technol., Mar. 2024, Vol.39, No.2

τini
τbest

τbest

τbest

tb

Line 1 regards the initial mapping as the best

mapping . Lines 3–12 cyclically check whether all

the gates in the current layer can be executed under

the mapping . If all the gates are executable or

the number of iterations reaches the given bound, the

search is completed. Otherwise, the search continues.

Line 4 gets the current mapping candidate, and line 7

finds the best mapping in the candidate set. Note

that if the edge swapped by a candidate appears in

the tabu list, the candidate will be removed from the

candidate set. Then from the remaining candidates,

we choose a mapping with the lowest cost. Line 9

takes the amnesty rules. If the best candidate is not

found, the amnesty rules will select the mapping with

the lowest cost in the candidate set as the best map-

ping. Lines 10–12 update the best mapping and

insert the swapped edge performed by the best map-

ping to the tabu list . The motivation is to execute

the generated circuit in parallel as much as possible

and to avoid swapping the edges in the tabu list.

Then it will check whether the termination condition

of the algorithm is satisfied. The condition deter-

mines whether the number of iterations reaches the

given bound, or the current mapping ensures all the

gates in the current layer can be executed.

Algorithm 3. Tabu Search

τini tb Input: : the initial mapping; : the tabu list;
τbest Output: : the best mapping;
τbest ← τini 1 Initialize ;

it← 1 2 ; /*the number of iterations*/

not mustStop(it, τbest) 3 while do

C ← τbest.candidates() 4 /*candidate set*/

C is empty 5 if then

break 6 ;

cbest ← best_candidates(C, tb) 7 ;

cbest is empty 8 if then

cbest ← amnesty_candidates(C, tb) 9 ;
τbest ← cbest10 ;

tb← tb. (cbest.swaps)11 add ;

n← n+ 112 ;

return τbest;13

4.3.2 Evaluation Functions with Look Ahead

We propose three evaluation functions: one intro-

duces CCA; one uses the number of additional gates

in the generated circuit as an evaluation criterion as

given in (1); and the last one uses the depth of the

generated circuit as an evaluation criterion as given in

(2). They give rise to three variants of TSA called

TSAcca, TSAnum, and TSAdep, respectively.

CCA has mainly been used for Boolean Satisfiabil-

submake

subbreak

subscore = submake − subbreak

ity (SAT) problems. We apply the idea of CCA to ad-

just circuits. Let represent the number of

qubits for which two qubits are closer after an SWAP

gate, and represent the number of qubits for

which two qubits are farther apart after an SWAP

gate. We introduce

into the evaluation function and adjust the weight

with the Smooth Weight based Threshold (SWT)

scheme[14].

i i

d

(i+ 1) i

(i+ 1)

i

i (i+ la) i+ la ⩽ d

la

i

δ

The output of the -th layer, with smaller than

the depth of the circuit , is used as the input of the

-th layer. Note that any SWAP gate in the -th

layer will affect the mapping of the -th layer. If

we only consider the gate of the current layer when

selecting the SWAP gate, only the requirements of

the layer will be satisfied, not necessarily those of

the next layer. Therefore, we take the gates from the

-th to the -th layer, with , into con-

sideration, where is the number of look-ahead lay-

ers. It is necessary to give a higher priority to execut-

ing the gates in the -th layer, therefore we introduce

an attenuation factor to control the influence of the

gates in the look-ahead layers.

costnum(Qc, Qt) =
∑
g∈Li

3× (D[τ [qc]][τ [qt]]− 1)+

δ ×

(
i+la∑
j=i

∑
g∈Lj

3× (D[τ [qc]][τ [qt]]− 1)

)
, (1)

costdep(Qc, Qt) = Depth

(
i+la∪
j=i

Lj

)
. (2)

costnum(Qc, Qt) costdep(Qc, Qt)

Lj

i ⩽ j ⩽ i+ la Qc

Qt Depth(L)
L qc qt

g

Here (resp.) denotes

the distance (resp. depth) of all the gates in layer

(), after swapping the state of with

that of . The function returns the depth

of and the notation (resp.) stands for the con-

trol (resp. target) qubit of gate .

δ = 0.5 la = 2

L1 = {g2, g0} {(Q6, Q1),

(Q1, Q0), (Q6, Q5), (Q5, Q0)},

Example 5. Let us continue the previous example.

We select the one with the lowest evaluation score

from the candidate set. Assuming and ,

for , the candidate set is

 and the costs are given

as follows:

costnum(Q6, Q1) = 0, costnum(Q1, Q0) = 1.5,

costnum(Q6, Q5) = 1.5, costnum(Q5, Q0) = 1.5.

τ0 = {q0 →
Q10, q1 → Q0, q2 → Q1, q3 → Q5, q4 → Q11}

The algorithm chooses the first SWAP with the

smallest score, and the mapping becomes

.

g0The current mapping ensures that is exe-

Hui Jiang et al.: Qubit Mapping Based on Tabu Search 427

cutable. Thus we can continue to the next layer.

4.3.3 Complexity

IG = (VI, EI)

CG = (VC, EC)

d G

8×G

O(d×G× (8×G)(|EC|−1))

O(G)

Given an interaction graph and a

coupling graph , we assume that the

depth of the circuit is and there are 2-qubit gates

in one layer. The candidate set consists of the edges

connected to the control or target qubits, thus the

size of the SWAP candidate set is . The worst-

case time complexity is ,

and the space complexity is .

5 Experiments

t |ket⟩

t |ket⟩

log10
x

y

We compare TSA with several state-of-the-art al-

gorithms for qubit mapping, namely ZPW[10],

SABRE[11], FiDLS[12], and DLH[13]. Notice that other

algorithms such as SAHS[26] and [25] are not list-

ed because Li et al.[12] have pointed out that FiDLS is

superior to SAHS and the latter outperforms
[26]. The implementation in Python is available

online③. All the experiments are conducted on a

Ubuntu machine with a 2.2 GHz CPU and 64 GB

memory. We take the logarithm of both the -

axis and -axis such that the experimental results are

easy to observe. The time limit for each benchmark is

one hour. Among the 159 benchmarks, we have con-

sidered, 158 of them are taken from some functions of

RevLib[35], and one is added by our own. This dataset

has also been adopted in several related work. We be-

lieve that it is representative and our comparative ex-

periments are carried out on it. With the 159 bench-

marks, we compare TSA with ZPW, SABRE, and

FiDLS on IBM Q Tokyo, and with FiDLS on

Sycamore. Since the code of DLH is not available on-

line, we only make comparison with this algorithm on

the number of inserted additional gates but not the

running time. Note that SABRE uses a random ini-

tial mapping, thus for every benchmark we execute it

five times, each with a different initial mapping, and

report the best result out of the five trials. TSA uses

unsorted candidates, and thus we execute it five times

and take the best result. Other algorithms are deter-

ministic, therefore they only run once. Fig.5 illus-

trates the entire process of our experiments. Below we

go through it in more detail.

Firstly, we test TSA with fixed and variable look-

la

la

la = 2

ahead parameter . In Fig.6, different colors repre-

sent the logarithms of the number of additional gates.

The lower the points in the figure, the fewer addition-

al gates inserted. As for the look-ahead parameter ,

the optimal parameter for each circuit may be differ-

ent. We have done thousands of experiments and

found that when , the number of additional

gates is relatively small for all benchmarks. It means

that a 2-layer look-ahead already gives a good perfor-

mance for TSA.

TSAcca TSAdep TSAnumIn Fig.7, we compare , and

using the 159 benchmarks mentioned above. Com-

TSA with Variable Look-Ahead Parameter

Comparison of TSAcca, TSAdep, and TSAnum

Comparison of TSAnum with DLH

Comparison of the Initial Mapping Algorithms of

ZPW, SABRE, FiDLS, andTSA

Comparison of the Adjustment Algorithms

of ZPW, SABRE, FiDLS, TSAnum, and TSAcca

Comparison of the Overall Performance of

TSAnum, TSAcca, SABRE, and FiDLS on IBM Q Tokyo

Comparison of TSA with FiDLS on Sycamore

Fig.5. Sketch of the experiments.

0 2

N
u
m

b
e
r

o
f
A

d
d
it
io

n
a
l
G

a
t
e
s

4 6 8

5.7

5.6

5.5

5.7

5.6

5.5

a

laFig.6. Impact of the look-ahead parameter on search results.

428 J. Comput. Sci. & Technol., Mar. 2024, Vol.39, No.2

③https://github.com/Holly-Jiang/QCTSA, Mar. 2022.

https://github.com/Holly-Jiang/QCTSA
https://github.com/Holly-Jiang/QCTSA
https://github.com/Holly-Jiang/QCTSA

TSAcca TSAnum

TSAdep

pared with (resp.), the depth of the

generated circuits by is reduced by 2.37% (re-

TSAcca

TSAdep TSAnum

TSAdep TSAnum

sp. 3.42%) on average. Compared with (resp.

), the number of additional gates by is

reduced by 2.69% (resp. 9.56%) on average. There-

fore, it is preferable to use either or ,

depending on the optimization objective to be either

the depth or the number of additional gates of the re-

sulting circuits.

TSAnum

TSAnum

Secondly, we use the benchmarks[13] to compare

 with DLH. Note that two heuristic cost func-

tions MCPE and MCPE_OP are used in DLH. Since

there is no code available online for DLH, we only

compare the number of additional gates inserted with

the circuits[13], as shown in Table 1. Compared with

MCPE and MCPE_OP, reduces the total

number of additional gates by 27.32% and 12.42%, re-

spectively.

Thirdly, we compare the combinations of several

algorithms for inserting fewer additional gates. In or-

der to visualize the differences between ZPW, FiDLS,

SABRE, and TSA, we have plotted a series of figures

1 2 3

Number of 2-Qubit Gates

4 5

0

1

2

3

4

5
TSAcca

TSAdep

TSAnum

N
u
m

b
e
r

o
f
A

d
d
it
io

n
a
l
G

a
te

s

TSAdep TSAcca TSAnum

Fig.7. Comparison of the number of additional gates inserted
by , , and .

TSAnumTable 1. Comparison of MCPE, MCPE_OP and

Benchmark n G G0 (MCPE) G1 (MCPE_OP) G2 TSAnum () ∆0(%) ∆1(%)

4mod5-v1_22 5 21 0 0 0 0.00 0.00

mod5mils_65 5 35 0 0 0 0.00 0.00

alu-v0_27 5 36 3 3 6 –100.00 –100.00

decod24-v2_43 4 52 0 0 0 0.00 0.00

4gt13_92 5 66 21 21 0 100.00 100.00

ising_model_10 16 786 0 0 0 0.00 0.00

ising_model_13 16 786 0 0 0 0.00 0.00

ising_model_16 16 786 0 0 0 0.00 0.00

qft_10 10 200 39 39 57 –46.15 –46.15

qft_16 16 512 225 192 189 16.00 1.56

rd84_142 15 343 153 108 99 35.29 8.33

adr4_197 13 3 439 1 566 1 224 1 029 34.29 15.93

radd_250 13 3 213 1 353 1 047 852 37.03 18.62

z4_268 11 3 073 1 071 855 915 14.57 –7.02

sym6_145 14 3 888 1 017 1 017 681 33.04 33.04

misex1_241 15 4 813 2 118 1 098 1 032 51.27 6.01

rd73_252 10 5 321 2 352 2 193 1 629 30.74 25.72

cycle10_2_110 12 6 050 2 226 1 968 1 890 15.09 3.96

square_root_7 15 7 630 2 061 1 788 1 509 26.78 15.60

sqn_258 10 4 459 3 708 3 057 3 093 16.59 –1.18

rd84_253 12 13 658 6 411 5 697 4 605 28.17 19.17

co14_215 15 17 936 5 634 5 062 6 813 –20.93 –34.59

sym9_193 10 34 881 15 420 13 746 12 315 20.14 10.41

urf5_158 9 164 416 69 852 58 947 56 253 19.47 4.57

hwb9_119 10 207 775 93 219 89 355 78 753 15.52 11.87

urf4_187 11 512 064 220 329 168 366 141 768 35.66 15.80

Sum – 1 307 223 428 778 355 782 311 598 27.32 12.42

n G G0 G2
∆i = (Gi −G2)/Gi

Note: is the number of qubits, is the number of gates in the input circuit, – are the numbers of additional gates inserted
by MCPE, MCPE_OP and TSAnum, respectively, and .

Hui Jiang et al.: Qubit Mapping Based on Tabu Search 429

available online as supplementary materials④. We use

the initial mapping and adjustment algorithms from

ZPW[10], SABRE[11], FiDLS[12], and TSA.

In Table 2, we compare the performance of the

four initial mapping algorithms of ZPW, SABRE,

FiDLS, and TSA under the specific adjustment algo-

rithms. For example, in the first row, the adjustment

algorithm is fixed to be that of ZPW; there are 115

circuits that all of the four initial mapping algo-

rithms can successfully transform and we compare the

number of additional gates. As we can see, the initial

mapping algorithm of TSA performs the best when

used in conjunction with the five adjustment algo-

rithms. It leads to a reduction of 41%, 30%, and 37%

of additional gates compared with the initial map-

ping algorithms of ZPW, SABRE, and FiDLS.

TSAnum TSAcca

We then compare the five adjustment algorithms

from ZPW, SABRE, FiDLS, , and un-

der specific initial mapping algorithms in Table 3.

FiDLS gives rise to the fewest additional gates. For

example, in the second row, SABRE is used as the

adjustment algorithm, 16 632 (resp. 12 072) gates are

inserted under the initial mapping of SABRE (resp.

TSA). The SABRE adjustment algorithm combined

with the initial mapping provided by TSA has fewer

gates inserted than the SABRE initial mapping algo-

rithm in these benchmarks. This shows that the ini-

tial mapping of TSA is better than that of SABRE.

FiDLS uses a deep search on the circuits, calculates

the full permutation of all edges, and then selects the

best among all the permutations according to an eval-

uation function. FiDLS takes large-scale search space

and long search time for large-scale circuits. Overall,

TSA performs well on large-scale circuits, trading off

additional gates and runtime.

TSAnum TSAcca

x

TSAnum

TSAnum

TSAnum TSAcca

Fourthly, we compare the overall performance of

 and with SABRE and FiDLS on IBM

Q Tokyo. We test 159 circuits, including 66 small-

scale circuits, 49 medium-scale circuits, and 44 large-

scale ones. Note that in Table 4 and Fig.8 we do not

display the data for ZPW. Instead, we make compari-

son with SABRE because it is already shown that

SABRE is much more scalable than ZPW[11]. In Fig.8,

the number of additional gates introduced by the blue

bars is the largest, followed by the red ones. We can

see that the yellow bars are the shortest when the -

axis is greater than 3, indicating that FiDLS has in-

serted the fewest gates in the large-scale circuits. The

green bars are for . The number of additional

gates it introduces is slightly larger than that of

FiDLS. It can also be seen from Table 4 that

takes much less time than FiDLS in general. SABRE

successfully transforms 144 circuits, including all the

small-scale and medium-scale circuits, and 29 large-

scale ones, which takes 12 436 seconds. FiDLS suc-

cessfully transforms 159 circuits, which takes 63 841

seconds. and are much faster, as they

successfully transform all the 159 circuits, taking 2 465

seconds and 2 523 seconds, respectively. Compared

with SABRE, the number of additional SWAP gates

Table 2. Comparison of the Initial Mapping Algorithms of ZPW, SABRE, FiDLS, and TSA

Algorithm N G G0 G1 G2 G3 ∆0(%) ∆1(%) ∆2(%)

ZPW 115 63 666 29 640 24 951 27 651 17 412 41.26 30.22 37.03

SABRE 108 77 790 28 671 26 079 26 412 16 068 43.96 38.39 39.16

FiDLS 120 209 433 29 484 28 434 30 195 25 950 11.99 8.74 14.06

TSAnum 120 163 485 54 969 52 512 62 817 45 948 12.50 26.85 18.59

TSAcca 120 163 485 57 777 53 922 61 668 46 305 19.86 14.13 24.91

N G
G0 G3

∆i = (Gi −G3)/Gi

Note: is the number of circuits that all the four initial mapping algorithms can successfully transform, is the number of gates
in the input circuits, – are the numbers of additional gates inserted by ZPW, SABRE, FiDLS, and TSA, respectively, and

.

TSAnum TSAccaTable 3. Comparison of the Adjustment Algorithms of ZPW, SABRE, FiDLS, , and

Algorithm N G G0 G1 G2 G3 G4 ∆0(%) ∆1(%) ∆2(%) ∆4(%)

ZPW 94 29 443 14 472 11 244 4 938 10 173 10 389 29.71 9.53 –106.01 2.08

SABRE 105 49 987 19 053 16 632 6 204 12 072 11 904 36.61 27.41 –94.58 –1.41

FiDLS 109 105 428 45 813 31 011 16 668 37 800 37 851 17.49 –21.89 –126.78 0.13

TSA 124 150 464 49 620 30 447 19 068 40 461 40 629 18.46 –32.89 –112.19 0.41

N G
G0 G4 num cca

∆i = (Gi −G3)/Gi

Note: is the number of circuits that all the five adjustment algorithms can successfully transform, is the number of gates in the
input circuits, – are the numbers of additional gates inserted by ZPW, SABRE, FiDLS, TSA , and TSA , respectively,
and .

430 J. Comput. Sci. & Technol., Mar. 2024, Vol.39, No.2

④https://github.com/Holly-Jiang/QCTSA/blob/master/QCTSA_Appendix.pdf, Jun. 2023.

https://github.com/Holly-Jiang/QCTSA/blob/master/QCTSA_Appendix.pdf
https://github.com/Holly-Jiang/QCTSA/blob/master/QCTSA_Appendix.pdf
https://github.com/Holly-Jiang/QCTSA/blob/master/QCTSA_Appendix.pdf
https://github.com/Holly-Jiang/QCTSA/blob/master/QCTSA_Appendix.pdf
https://github.com/Holly-Jiang/QCTSA/blob/master/QCTSA_Appendix.pdf

TSAnumgenerated by is reduced by 51% on average,

among the 115 small-scale and medium-scale circuits

that both of them can successfully transform.

TSAnum

TSAnum

TSAnum

t2

In small-scale (resp.middle-scale) circuits,

generates an average of 33% (resp. 2%) fewer addi-

tional SWAP gates compared with FiDLS. Specifical-

ly, FiDLS inserts 1 329 (resp. 5 328) additional gates,

while the number is 894 (resp. 5 199) for .

When dealing with large-scale circuits, although

 inserts more additional gates, it can convert

large-scale circuits more than 25 times faster than

FiDLS, as we can see in the fourth row and the -

column of Table 4.

Finally, we set the 53-qubit quantum processor

TSAnum

Sycamore as our target device and compare TSA with

FiDLS still on the 159 benchmarks. In each row of

Table 5, the same initial mapping algorithm is used,

and in each column, the same adjustment algorithm is

used. Generally speaking, TSA leads to a reduction of

2%-3% for the number of inserted additional gates. In

the experiment, we find that the degrees of the

Sycamore nodes are small and the maximum is 4. If

the degrees of nodes in the interaction graph are gen-

erally greater than the maximum degree of Sycamore,

it is not very suitable to use subgraph isomorphism to

generate the set of partial initial mappings. The algo-

rithm tempts to first match the node with the largest

degree. If the node with the maximum degree does

not satisfy the isomorphism condition, the initial

mapping generated by the subgraph isomorphism al-

gorithm is not friendly. However, the adjustment of

TSA is still very effective because the time cost is

drastically lowered, going from 31 896 seconds for

FiDLS to 1 795 seconds for , that is, the lat-

ter is more than 17 times faster than the former.

6 Conclusions

We proposed a scalable algorithm called Tabu

Search-Based Adjustment (TSA) for qubit mapping.

We first used a subgraph isomorphism algorithm and

a mapping completion algorithm based on the connec-

tivity between qubits to generate a high-quality ini-

tial mapping. Then we employed a look-ahead heuris-

tic search to adjust the mapping, which takes into ac-

count the influence of the gates yet to be processed to

TSAnum TSAccaTable 4. Comparison of Runtime and Number of Circuits Successfully Transformed by SABRE, FiDLS, , and

Scale N G
SABRE FiDLS TSAnum TSAcca

N0 G0 t0 (s) N1 G1 t1 (s) N2 G2 t2 (s) N3 G3 t3 (s)

Small 66 5 997 66 2 301 2 66 1 329 7 66 894 16 66 897 21

Medium 49 21 618 49 10 218 22 49 5 328 90 49 5 199 57 49 5 280 62

Large 44 3 289 162 29 162 522 12 412 44 532 485 63 744 44 1 013 196 2 392 44 1 037 427 2 440

Sum 159 3 312 734 144 175 041 12 436 159 539 142 63 841 159 1 015 521 2 465 159 1 043 604 2 523

N G N0 N3

num cca t0 t3 num
cca G0 G3 num cca

Note: is the number of test circuits, is the number of gates in the input circuits, – are the numbers of circuits
successfully transformed by SABRE, FiDLS, TSA , and TSA respectively, – are the runtime of SABRE, FiDLS, TSA ,
and TSA , respectively, and – are the numbers of additional gates inserted by SABRE, FiDLS, TSA , and TSA ,
respectively.

1 2 3 4 5

0

1

2

3

4

5
SABRE

FiDLS

N
u
m

b
e
r

o
f
A

d
d
it
io

n
a
l
G

a
te

s TSAcca

TSAnum

Number of 2-Qubit Gates

TSAcca TSAnumFig.8. Comparison of SABRE, , and FiDLS on
IBM Q Tokyo.

Table 5. Comparing the Initial Mapping and Adjustment Algorithms of FiDLS and TSA on Sycamore

Algorithm FiDLS TSAnum TSAcca ∆1(%) ∆2(%)

G0 t0 (s) G1 t1 (s) G2 t2 (s)

FiDLS 2 311 560 31 896 2 245 314 233 2 257 371 3 392 2.86 2.56

TSA 2 305 125 31 211 2 234 937 1 795 2 252 271 3 390 3.04 2.29

N G G0 G2

num cca t0 t2 num cca
∆i = (G0 −Gi)/G0

Note: The number of test circuits, , is 159, the number of gates in the input circuits, , is 3 312 734, – are the numbers of
additional gates inserted by FiDLS, TSA and TSA , respectively, – are the runtime of FiDLS, TSA , and TSA ,
respectively, and .

Hui Jiang et al.: Qubit Mapping Based on Tabu Search 431

reduce the number of additional gates. We compared

the performance of the initial mapping and adjust-

ment algorithms of TSA with state-of-the-art algo-

rithms ZPW, SABRE, and FiDLS, using the architec-

tures of IBM Q Tokyo and Sycamore as the target de-

vices. Our experimental results show that the initial

mapping of TSA gives rise to fewer SWAP gates in-

serted and the adjustment algorithm can be obtained

in an acceptable amount of time. Most small-scale

and medium-scale circuits can be transformed in a

few seconds. For large-scale circuits, the results can

be obtained within a few minutes. In the future, we

will investigate how to reduce the number of addition-

al gates inserted and increase the speed. We will also

apply the proposed method to more noisy intermedia-

to-scale quantum (NISQ) devices.

Conflict of Interest The authors declare that

they have no conflict of interest.

References

 Shor P W. Algorithms for quantum computation: Dis-

crete logarithms and factoring. In Proc. the 35th Annual

Symposium on Foundations of Computer Science, Nov.

1994, pp.124–134. DOI: 10.1109/SFCS.1994.365700.

[1]

 Grover L K. A fast quantum mechanical algorithm for

database search. In Proc. the 28th Annual ACM Sympo-

sium on the Theory of Computing, Jul. 1996, pp.212–219.

DOI: 10.1145/237814.237866.

[2]

 Harrow A W, Hassidim A, Lloyd S. Quantum algorithm

for linear systems of equations. Physical Review Letters,

2009, 103(15): 150502. DOI: 10.1103/PhysRevLett.103.1505

02.

[3]

 Arute F, Arya K, Babbush R et al. Quantum supremacy

using a programmable superconducting processor. Nature,

2019, 574(7779): 505–510. DOI: 10.1038/s41586-019-1666-

5.

[4]

 Almudever C G, Lao L L, Wille R, Guerreschi G G. Real-

izing quantum algorithms on real quantum computing de-

vices. In Proc. the 23rd Conference on Design, Automa-

tion and Test in Europe, Mar. 2020, pp.864–872. DOI: 10.

23919/DATE48585.2020.9116240.

[5]

 Reagor M, Pfaff W, Axline C et al. Quantum memory

with millisecond coherence in circuit QED. Physical Re-

view B, 2016, 94(1): 014506. DOI: 10.1103/PhysRevB.94.

014506.

[6]

 Sun S X, Luo Q. In-memory subgraph matching: An in-

depth study. In Proc. the 2020 ACM SIGMOD Interna-

tional Conference on Management of Data, Jun. 2020,

pp.1083–1098. DOI: 10.1145/3318464.3380581.

[7]

 Siraichi M Y, dos Santos V F, Collange C, Pereira F M

Q. Qubit allocation. In Proc. the 2018 International Sym-

posium on Code Generation and Optimization, Feb. 2018,

pp.113–125. DOI: 10.1145/3168822.

[8]

 Glover F. Tabu search-part II. ORSA Journal on Com-

puting, 1990, 2(1): 4–32. DOI: 10.1287/ijoc.2.1.4.

[9]

 Zulehner A, Paler A, Wille R. An efficient methodology

for mapping quantum circuits to the IBM QX architec-

tures. IEEE Transactions on Computer-Aided Design of

Integrated Circuits and Systems, 2019, 38(7): 1226–1236.

DOI: 10.1109/TCAD.2018.2846658.

[10]

 Li G S, Ding Y F, Xie Y. Tackling the qubit mapping

problem for NISQ-era quantum devices. In Proc. the 24th

International Conference on Architectural Support for

Programming Languages and Operating Systems, Apr.

2019, pp.1001–1014. DOI: 10.1145/3297858.3304023.

[11]

 Li S J, Zhou X Z, Feng Y. Qubit mapping based on sub-

graph isomorphism and filtered depth-limited search.

IEEE Transactions on Computers, 2021, 70(11): 1777–

1788. DOI: 10.1109/TC.2020.3023247.

[12]

 Zhu P C, Guan Z J, Cheng X Y. A dynamic look-ahead

heuristic for the qubit mapping problem of NISQ comput-

ers. IEEE Transactions on Computer-Aided Design of In-

tegrated Circuits and Systems, 2020, 39(12): 4721–4735.

DOI: 10.1109/TCAD.2020.2970594.

[13]

 Cai S W, Su K L. Local search for Boolean Satisfiability

with configuration checking and subscore. Artificial Intel-

ligence, 2013, 204: 75–98. DOI: 10.1016/j.artint.2013.09.001.

[14]

 Paler A. On the influence of initial qubit placement dur-

ing NISQ circuit compilation. In Proc. the 1st Interna-

tional Workshop on Quantum Technology and Optimiza-

tion Problems, Mar. 2019, pp.207–217. DOI: 10.1007/978-

3-030-14082-3_18.

[15]

 Kissinger A, van de Griend A M. CNOT circuit extrac-

tion for topologically-constrained quantum memories.

Quantum Information and Computation, 2020, 20(7/8):

581–596. DOI: 10.26421/QIC20.7-8-4.

[16]

 Nash B, Gheorghiu V, Mosca M. Quantum circuit opti-

mizations for NISQ architectures. Quantum Science and

Technology, 2020, 5(2): 025010. DOI: 10.1088/2058-9565/

ab79b1.

[17]

 Venturelli D, Do M, Rieffel E, Frank J. Temporal plan-

ning for compilation of quantum approximate optimiza-

tion circuits. In Proc. the 26th International Joint Confer-

ence on Artificial Intelligence, Aug. 2017, pp.4440–4446.

[18]

 Bernal D E, Booth K E C, Dridi R, Alghassi H, Tayur S,

Venturelli D. Integer programming techniques for minor-

embedding in quantum annealers. In Proc. the 17th Inter-

national Conference on Integration of Constraint Pro-

gramming, Artificial Intelligence, and Operations Re-

search, Sept. 2020, pp.112–129. DOI: 10.1007/978-3-030-

58942-4_8.

[19]

 de Almeida A A A, Dueck G W, da Silva A C R. Find-

ing optimal qubit permutations for IBM’s quantum com-

puter architectures. In Proc. the 32nd Symposium on In-

tegrated Circuits and Systems Design, 2019, Article No.

13. DOI: 10.1145/3338852.3339829.

[20]

 Wille R, Burgholzer L, Zulehner A. Mapping quantum

circuits to IBM QX architectures using the minimal num-

ber of SWAP and H operations. In Proc. the 56th Annu-

al Design Automation Conference 2019, Jun. 2019, Arti-

[21]

432 J. Comput. Sci. & Technol., Mar. 2024, Vol.39, No.2

https://doi.org/10.1109/SFCS.1994.365700
https://doi.org/10.1145/237814.237866
https://doi.org/10.1103/PhysRevLett.103.150502
https://doi.org/10.1103/PhysRevLett.103.150502
https://doi.org/10.1038/s41586-019-1666-5
https://doi.org/10.1038/s41586-019-1666-5
https://doi.org/10.1038/s41586-019-1666-5
https://doi.org/10.1038/s41586-019-1666-5
https://doi.org/10.1038/s41586-019-1666-5
https://doi.org/10.1038/s41586-019-1666-5
https://doi.org/10.1038/s41586-019-1666-5
https://doi.org/10.23919/DATE48585.2020.9116240
https://doi.org/10.23919/DATE48585.2020.9116240
https://doi.org/10.1103/PhysRevB.94.014506
https://doi.org/10.1103/PhysRevB.94.014506
https://doi.org/10.1145/3318464.3380581
https://doi.org/10.1145/3168822
https://doi.org/10.1287/ijoc.2.1.4
https://doi.org/10.1109/TCAD.2018.2846658
https://doi.org/10.1145/3297858.3304023
https://doi.org/10.1109/TC.2020.3023247
https://doi.org/10.1109/TCAD.2020.2970594
https://doi.org/10.1016/j.artint.2013.09.001
https://doi.org/10.1007/978-3-030-14082-3_18
https://doi.org/10.1007/978-3-030-14082-3_18
https://doi.org/10.1007/978-3-030-14082-3_18
https://doi.org/10.1007/978-3-030-14082-3_18
https://doi.org/10.1007/978-3-030-14082-3_18
https://doi.org/10.1007/978-3-030-14082-3_18
https://doi.org/10.1007/978-3-030-14082-3_18
https://doi.org/10.1007/978-3-030-14082-3_18
https://doi.org/10.1007/978-3-030-14082-3_18
https://doi.org/10.1007/978-3-030-14082-3_18
https://doi.org/10.1007/978-3-030-14082-3_18
https://doi.org/10.26421/QIC20.7-8-4
https://doi.org/10.26421/QIC20.7-8-4
https://doi.org/10.26421/QIC20.7-8-4
https://doi.org/10.26421/QIC20.7-8-4
https://doi.org/10.26421/QIC20.7-8-4
https://doi.org/10.1088/2058-9565/ab79b1
https://doi.org/10.1088/2058-9565/ab79b1
https://doi.org/10.1088/2058-9565/ab79b1
https://doi.org/10.1088/2058-9565/ab79b1
https://doi.org/10.1007/978-3-030-58942-4_8
https://doi.org/10.1007/978-3-030-58942-4_8
https://doi.org/10.1007/978-3-030-58942-4_8
https://doi.org/10.1007/978-3-030-58942-4_8
https://doi.org/10.1007/978-3-030-58942-4_8
https://doi.org/10.1007/978-3-030-58942-4_8
https://doi.org/10.1007/978-3-030-58942-4_8
https://doi.org/10.1007/978-3-030-58942-4_8
https://doi.org/10.1007/978-3-030-58942-4_8
https://doi.org/10.1007/978-3-030-58942-4_8
https://doi.org/10.1007/978-3-030-58942-4_8
https://doi.org/10.1145/3338852.3339829

cle No. 142. DOI: 10.1145/3316781.3317859.

 Shafaei A, Saeedi M, Pedram M. Optimization of quan-

tum circuits for interaction distance in linear nearest

neighbor architectures. In Proc. the 50th Annual Design

Automation Conference, May 2013, Article No. 41. DOI:

10.1145/2463209.2488785.

[22]

 Guerreschi G G, Park J. Two-step approach to schedul-

ing quantum circuits. Quantum Science and Technology,

2018, 3(4): 045003. DOI: 10.1088/2058-9565/aacf0b.

[23]

 Matsuo A, Yamashita S. An efficient method for quan-

tum circuit placement problem on a 2-D grid. In Proc. the

11th International Conference on Reversible Computa-

tion, Jun. 2019, pp.162–168. DOI: 10.1007/978-3-030-

21500-2_10.

[24]

 Cowtan A, Dilkes S, Duncan R, Krajenbrink A, Simmons

W, Sivarajah S. On the qubit routing problem. In Proc.

the 14th Conference on the Theory of Quantum Compu-

tation, Communication and Cryptography, May 2019, Ar-

ticle No. 5. DOI: 10.4230/LIPIcs.TQC.2019.5.

[25]

 Zhou X Z, Li S J, Feng Y. Quantum circuit transforma-

tion based on simulated annealing and heuristic search.

IEEE Transactions on Computer-Aided Design of Inte-

grated Circuits and Systems, 2020, 39(12): 4683–4694.

DOI: 10.1109/TCAD.2020.2969647.

[26]

 Tannu S S, Qureshi M K. Not all qubits are created

equal: A case for variability-aware policies for NISQ-era

quantum computers. In Proc. the 24th International Con-

ference on Architectural Support for Programming Lan-

guages and Operating Systems, Apr. 2019, pp.987–999.

DOI: 10.1145/3297858.3304007.

[27]

 Lao L L, van Someren H, Ashraf I, Almudever C G. Tim-

ing and resource-aware mapping of quantum circuits to

superconducting processors. IEEE Transactions on Com-

puter-Aided Design of Integrated Circuits and Systems,

2022, 41(2): 359–371. DOI: 10.1109/TCAD.2021.3057583.

[28]

 Guerreschi G G. Scheduler of quantum circuits based on

dynamical pattern improvement and its application to

hardware design. arXiv: 1912.00035, 2019. https://arxiv.

org/abs/1912.00035, Mar. 2024.

[29]

 Nielsen M A, Chuang I L. Quantum Computation and

Quantum Information: 10th Anniversary Edition. Cam-

bridge University Press, 2010.

[30]

 Barenco A, Bennett C H, Cleve R, DiVincenzo D P, Mar-

golus N, Shor P, Sleator T, Smolin J A, Weinfurter H. El-

ementary gates for quantum computation. Physical Re-

view A, 1995, 52(5): 3457–3467. DOI: 10.1103/PhysRevA.

52.3457.

[31]

 Mottonen M, Vartiainen J J. Decompositions of general

quantum gates. Frontiers in Artificial Intelligence and

Applications, 2005, 57(8): 1263–1270. DOI: 10.1103/Phys-

RevLett.93.130502.

[32]

 Cross A, Javadi-Abhari A, Alexander T et al. Open-

QASM 3: A broader and deeper quantum assembly lan-

[33]

guage. ACM Transactions on Quantum Computing, 2022,

3(3): 12. DOI: 10.1145/3505636.

 Floyd R W. Algorithm 97: Shortest path. Communica-

tions of the ACM, 1962, 5(6): 345. DOI: 10.1145/367766.

368168.

[34]

 Wille R, Große D, Teuber L, Dueck G W, Drechsler R.

Revlib: An online resource for reversible functions and re-

versible circuits. In Proc. the 38th International Sympo-

sium on Multiple Valued Logic, May 2008, pp.220–225.
DOI: 10.1109/ISMVL.2008.43.

[35]

Hui Jiang received her B.Eng. de-

gree in computer science and technolo-

gy from Sichuan Agriculture Universi-

ty, Ya'an, in 2019. She is currently a

Ph.D. candidate at Shanghai Key Lab-

oratory of Trustworthy Computing,

East China Normal University (EC-

NU), Shanghai. Her research interests include quantum

circuit compilation and optimization.

Yu-Xin Deng received his B.Eng.

degree in thermal energy engineering

and M.Sc. degree in computer science

from Shanghai Jiao Tong University,

Shanghai, in 1999 and 2002, respec-

tively, and his Ph.D. degree in com-

puter science from Ecole des Mines de

Paris, Paris, in 2005. He is a professor of East China

Normal University (ECNU), Shanghai. His research in-

terests include concurrency theory, especially about pro-

cess calculi, formal semantics of programming languages,

as well as quantum computing.

Ming Xu received his B.Eng. de-

gree in software engineering and Ph.D.

degree in system sciences from East

China Normal University (ECNU),

Shanghai, in 2005 and 2010, respec-

tively. He is currently an associate re-

search professor at Shanghai Key Lab-

oratory of Trustworthy Computing, ECNU. His re-

search interests include computer algebra, program veri-

fication, and quantum computing.

Hui Jiang et al.: Qubit Mapping Based on Tabu Search 433

https://doi.org/10.1145/3316781.3317859
https://doi.org/10.1145/2463209.2488785
https://doi.org/10.1088/2058-9565/aacf0b
https://doi.org/10.1088/2058-9565/aacf0b
https://doi.org/10.1088/2058-9565/aacf0b
https://doi.org/10.1007/978-3-030-21500-2_10
https://doi.org/10.1007/978-3-030-21500-2_10
https://doi.org/10.1007/978-3-030-21500-2_10
https://doi.org/10.1007/978-3-030-21500-2_10
https://doi.org/10.1007/978-3-030-21500-2_10
https://doi.org/10.1007/978-3-030-21500-2_10
https://doi.org/10.1007/978-3-030-21500-2_10
https://doi.org/10.1007/978-3-030-21500-2_10
https://doi.org/10.1007/978-3-030-21500-2_10
https://doi.org/10.1007/978-3-030-21500-2_10
https://doi.org/10.1007/978-3-030-21500-2_10
https://doi.org/10.4230/LIPIcs.TQC.2019.5
https://doi.org/10.1109/TCAD.2020.2969647
https://doi.org/10.1145/3297858.3304007
https://doi.org/10.1109/TCAD.2021.3057583
https://arxiv.org/abs/1912.00035
https://arxiv.org/abs/1912.00035
https://doi.org/10.1103/PhysRevA.52.3457
https://doi.org/10.1103/PhysRevA.52.3457
https://doi.org/10.1103/PhysRevLett.93.130502
https://doi.org/10.1103/PhysRevLett.93.130502
https://doi.org/10.1103/PhysRevLett.93.130502
https://doi.org/10.1145/3505636
https://doi.org/10.1145/367766.368168
https://doi.org/10.1145/367766.368168
https://doi.org/10.1109/ISMVL.2008.43

	1 Introduction
	2 Related Work
	3 Preliminaries
	4 Qubit Mapping
	4.1 Preprocessing
	4.2 Isomorphism and Completion
	4.3 Adjustment
	4.3.1 Tabu Search
	4.3.2 Evaluation Functions with Look Ahead
	4.3.3 Complexity

	5 Experiments
	6 Conclusions
	Conflict of Interest
	References

