

Understanding and Detecting Inefficient Image Displaying
Issues in Android Apps

Wen-Jie Li (李文杰), Member, CCF, Jun Ma* (马　骏), Member, CCF, ACM, IEEE
Yan-Yan Jiang (蒋炎岩), Member, CCF, ACM
Chang Xu (许　畅), Distinguished Member, ACM, Senior Member, CCF, IEEE
and Xiao-Xing Ma (马晓星), Senior Member, CCF, Member, ACM

State Key Laboratory of Novel Software Technology, Nanjing University, Nanjing 210023, China

Department of Computer Science and Technology, Nanjing University, Nanjing 210023, China

E-mail: dg1633009@smail.nju.edu.cn; majun@nju.edu.cn; jyy@nju.edu.cn; changxu@nju.edu.cn; xxm@nju.edu.cn

Received June 1, 2021; accepted June 5, 2022.

Abstract Mobile applications (apps for short) often need to display images. However, inefficient image displaying (IID)

issues are pervasive in mobile apps, and can severely impact app performance and user experience. This paper first estab-

lishes a descriptive framework for the image displaying procedures of IID issues. Based on the descriptive framework, we

conduct an empirical study of 216 real-world IID issues collected from 243 popular open-source Android apps to validate

the presence and severity of IID issues, and then shed light on these issues’ characteristics to support research on effective

issue detection. With the findings of this study, we propose a static IID issue detection tool TAPIR and evaluate it with

243 real-world Android apps. Encouragingly, 49 and 64 previously-unknown IID issues in two different versions of 16 apps

reported by TAPIR are manually confirmed as true positives, respectively, and 16 previously-unknown IID issues reported

by TAPIR have been confirmed by developers and 13 have been fixed. Then, we further evaluate the performance impact

of these detected IID issues and the performance improvement if they are fixed. The results demonstrate that the IID is-

sues detected by TAPIR indeed cause significant performance degradation, which further show the effectiveness and effi-

ciency of TAPIR.

Keywords Android application (app), inefficient image displaying (IID), performance, empirical study, static analysis

1 Introduction

Mobile devices such as smartphones and tablets

have become an indispensable part of people's daily

lives. Over the past few years, we have witnessed a

tremendous growth in the variety and complexity of

mobile applications (apps for short). Media-intensive

mobile apps must carefully implement their CPU- and

memory-demanding image displaying procedures.

Otherwise, user experience can be significantly affect-

ed①. For example, inefficiently displayed images can

lead to app crash, user interface (UI) lagging, memo-

ry bloat, or battery drain, and finally make users

abandon the apps even if they are functionally per-

fect[1].

In this paper, we empirically find that mobile

apps often suffer from “inefficient image displaying

(IID) issues” in which the image displaying code con-

tains non-functional defects that cause performance

degradation or even more serious consequences, such

as the app crashing or no longer responding. Despite

the fact that existing work has considered IID issues

Regular Paper

A preliminary version of the paper was published in the Proceedings of SANER 2019.

This work was supported by the Leading-Edge Technology Program of Jiangsu Natural Science Foundation of China under
Grant No. BK20202001, and the National Natural Science Foundation of China under Grant No. 61932021. The authors would like
to thank the support from the Collaborative Innovation Center of Novel Software Technology and Industrialization, Jiangsu, China.

*Corresponding Author

Li WJ, Ma J, Jiang YY et al. Understanding and detecting inefficient image displaying issues in Android apps. JOUR-

NAL OF COMPUTER SCIENCE AND TECHNOLOGY 39(2): 434−459 Mar. 2024. DOI: 10.1007/s11390-022-1670-3

①https://developer.android.com/topic/performance/graphics, Mar. 2024.
©Institute of Computing Technology, Chinese Academy of Sciences 2024

https://doi.org/10.1007/s11390-022-1670-3
https://doi.org/10.1007/s11390-022-1670-3
https://doi.org/10.1007/s11390-022-1670-3
https://doi.org/10.1007/s11390-022-1670-3
https://doi.org/10.1007/s11390-022-1670-3
https://doi.org/10.1007/s11390-022-1670-3
https://doi.org/10.1007/s11390-022-1670-3
https://developer.android.com/topic/performance/graphics

to some extent (within the scope of general perfor-

mance bugs[2–6] or partial image displaying perfor-

mance analysis[7, 8]), there still lacks a thorough and

in-depth study of IID issues for mobile apps, particu-

larly for source-code-level insights that can be lever-

aged in program analysis for automated IID issue de-

tection or even fixing.

To facilitate an in-depth understanding of IID is-

sues, in this paper, we establish a descriptive frame-

work for presenting the image displaying procedures

of IID issues intuitively. In this descriptive frame-

work, an IID issue can be represented as a code slice

annotated with its triggering conditions, conse-

quences, image processing functional modules, and er-

ror code description. Based on the descriptive frame-

work, we conduct an empirical study towards charac-

terizing IID issues in mobile apps. We carefully local-

ize 216 IID issues (in 41 apps) from 2 674 issue re-

ports and pull requests in 243 well-maintained open-

source Android apps in F-Droid②, and extract these

IID issues' annotated code slices③. Useful findings are

as follows.

1) Inappropriate handling of lots of images and

large images are the primary causes of IID issues,

most of which cause app crash (29.2%) or slowdown

(40.7%).

2) The implementation problems that induce IID

issues are four-fold: inappropriate code implementa-

tion (37.5%), lack of necessary functional modules

(28.2%), misconfiguration of third-party libraries

(21.8%), and using unsuitable third-party libraries

(12.5%).

3) A few types of runtime behavior cover most

(82.9%) examined IID issues: non-adaptive image de-

coding (49.1%), repeated and redundant image decod-

ing (19.9%), UI-blocking image displaying (8.3%), and

image leakage (5.6%).

4) Certain anti-patterns (AP for short) can be

strongly correlated with IID issues: image decoding

without resizing (23.1%), loop-based redundant im-

age decoding (16.7%), image decoding in UI event

handlers (8.3%), and unbounded image caching

(3.2%).

The empirical study provides key insights on un-

derstanding, detection, diagnosing, and fixing of IID

issues. Based on these findings, we design and imple-

ment a pattern-based static analyzer TAPIR④ for IID

issue detection in Android apps. We experimentally

evaluate the effectiveness of TAPIR. Encouragingly,

49 and 64 previously-unknown IID issues in two dif-

ferent versions of 16 apps reported by TAPIR, respec-

tively, are manually confirmed as true positives. We

report these issues to respective developers, among

which 16 have been confirmed and 13 have been

fixed. To evaluate whether the IID issues detected by

TAPIR indeed cause significant performance degrada-

tion, we conduct an experiment to measure the per-

formance impact of the IID issues detected by TAPIR

and the performance improvement after fixing these

detected IID issues. The results show that most IID

issues can cause tens to hundreds milliseconds unnec-

essary time consumption that can be avoided by fix-

ing these issues.

In our preliminary conference version[9] of this

work, we conducted an empirical study on 162 IID is-

sues and designed TAPIR to detect potential IID is-

sues in Android apps. In this journal version, we ex-

tend our previous work from the following perspec-

tives: 1) We establish a well structured descriptive

framework that clearly specifies the key parts (i.e.,

triggering condition, consequence, image processing

functional modules, and error description) of an IID

issue as well as their logic connections (Section 3).

2) Guided by the descriptive framework, we extend

our empirical study dataset to 216 IID issues, includ-

ing 54 newly collected IID issues in our empirical

study subjects. We also build a dataset③ of annotat-

ed IID issues' code slices for understanding IID issues

(Section 4), which is much more informative and

valuable compared with the dataset in the conference

version. 3) Based on the dataset of annotated IID is-

sues' code slices, we re-conduct the empirical study of

IID issues and identify totally six new issue-inducing

APIs for the anti-pattern rules used by TAPIR for

detecting IID issues. Thanks to the newly added is-

sue-inducing APIs, TAPIR reports six more IID is-

sues than it did in the conference paper. At the same

time, a comparison with the other two static anti-pat-

tern based tools (i.e., IMGDroid and PerfChecker) is

included. 4) Besides, we extend the study with an ad-

ditional research question “how are IID issues intro-

duced by developers?” to shed light on what common

implementation problems Android developers have in

the implementation process of image displaying and

provide clues to help developers diagnose IID issues

Wen-Jie Li et al.: Understanding and Detecting Inefficient Image Displaying Issues in Android Apps 435

②https://f-droid.org/, Mar. 2024.

③The datasets of all studied IID issues are publicly available at https://github.com/IID-dataset/IID-issues, Mar. 2024.

④https://github.com/StruggleLi/TAPIR, Mar. 2024.

https://f-droid.org/
https://f-droid.org/
https://f-droid.org/
https://github.com/IID-dataset/IID-issues
https://github.com/IID-dataset/IID-issues
https://github.com/IID-dataset/IID-issues
https://github.com/IID-dataset/IID-issues
https://github.com/IID-dataset/IID-issues
https://github.com/StruggleLi/TAPIR

(Subsection 5.2). 5) We conduct a set of experiments

to demonstrate both the performance impact of the

IID issues detected by TAPIR and the performance

improvement if these detected IID issues are fixed

(Subsection 6.2). The result confirms that the IID is-

sues detected by TAPIR indeed cause significant per-

formance degradation, which further shows the effec-

tiveness and efficiency of TAPIR.

The rest of this paper is organized as follows. Sec-

tion 2 introduces the background knowledge of ineffi-

cient image displaying in Android apps. Section 3

presents the descriptive framework for the image dis-

playing procedures of IID issues. Section 4 illustrates

the methodology of our empirical study for the 216

IID issues in Android apps. Section 5 discusses our

empirical findings. Section 6 designs and evaluates

our TAPIR tool. Section 7 discusses the potential

threats to validity. Section 8 summarizes related

work, and Section 9 concludes this paper.

2 IID Issues in Android Apps

In this section, we introduce the image displaying

process and IID issues in Android apps.

2.1 Image Displaying in Android Apps

The process of image displaying in Android apps

consists of the following four phases, which are all

performance-critical and energy-consuming⑤.

Bitmap Drawable BitmapDrawable

● Image loading for reading the external represen-

tation of an image (from an external source, e.g., a

URL, file, or input stream) and decoding the image

into an Android-recognizable in-memory object (e.g.,

, , and).

● Image transformation for post-decoding image pr-

ocessing, in which a decoded image object is resized,

reshaped, or specially processed for fitting in a desig-

nated application scenario (e.g., a cropped and en-

hanced thumbnail).

● Image storage for managing a decoded and/or

transformed image object, particularly in a cache, for

later rendering. Caching, on the one hand, can save

CPU/GPU cycles for decoding and transformation of

precious loaded and transformed images; on the other

hand, it would incur huge space overhead.

● Image rendering for physically displaying an im-

age object on an Android device’s screen. Images are

rendered natively by the Android framework⑥.

2.2 Inefficient Image Displaying (IID)

Displaying a full resolution image on a high-reso-

lution display may cost 1) hundreds of milliseconds of

CPU time[4] that can cause an observable lag, and 2)

tens of megabytes of memory⑦ that can drain an

app's limited memory. Therefore, the efficiency of im-

age displaying on CPU and memory-constrained mo-

bile devices is of critical importance. Inefficiently dis-

played images can severely impact app functions or

user experience.

OutOfMemoryError

For example, decoding images in the UI thread

can significantly degrade an app's performance, caus-

ing its slow responsiveness or even “app-not-respond-

ing” anomalies. Image objects not being freed in time

can consume significantly large amounts of memory,

leading to and unexpected app

terminations. Improperly stored (cached) images may

cause repeatedly (and unnecessary) processing of the

same images, resulting in meaningless performance

degradation and energy waste.

We thus define an “inefficient image displaying

(IID) issue” as a non-functional defect in an Android

app's image displaying implementation (e.g., improp-

er image decoding) that causes performance degrada-

tion (e.g., GUI lagging or memory bloat) and even

more serious consequences (e.g., app crash).

3 Descriptive Framework for IID Issues

To facilitate in-depth understanding of IID issues,

we establish a descriptive framework for depicting IID

issues. The framework acts both as a guideline for

studying IID issues and as a template for represent-

ing IID issues.

3.1 Descriptive Framework

p = (t, c,M,E)

The descriptive framework depicts an IID issue

with a four-tuple .

t ∈ T

T

● denotes the triggering condition of the IID

issue (e.g., displaying a large image or displaying a lot

of images), where denotes the set of all possible

triggering conditions of IID issues.

436 J. Comput. Sci. & Technol., Mar. 2024, Vol.39, No.2

⑤https://developer.android.com/topic/performance/graphics, Mar. 2024.

⑥https://developer.android.com/guide/platform/, Mar. 2024.

⑦https://developer.android.com/topic/performance/graphics/load-bitmap, Mar. 2024.

https://developer.android.com/topic/performance/graphics
https://developer.android.com/guide/platform/
https://developer.android.com/topic/performance/graphics/load-bitmap
https://developer.android.com/topic/performance/graphics/load-bitmap
https://developer.android.com/topic/performance/graphics/load-bitmap

c ∈ C

C

● denotes the consequence of the IID issue

(e.g., app slowdown or app crash), where denotes

the set of all possible consequences of IID issues.

M = (m1,m2, . . . ,m|M |)

D = {IL, IT,
IS, IR}

m = (d, S)

d ∈ D m S = (s0, s1, . . . , s|S|)

m

● denotes the sequence of

functional modules involved in the IID issue's image

displaying procedure. As mentioned in Subsection 2.1,

the process of image displaying in Android apps con-

sists of four phases: “image loading (IL)”, “image

transformation (IT)”, “image storage (IS)”, and “im-

age rendering (IR)”. We refer to each phase as a

“type” of functional module, and let

 be the set of all possible types of functional

modules. Then, for a functional module ,

 denotes the type of , and

denotes a code statement sequence, which imple-

ments and is contained in the IID issue's code slice.

E = (ES, ei)

ES = {es1, es2, . . . , es|ES|}

ei ∈ EI

EI

● denotes the IID issue's error de-

scription. Specifically, de-

notes the set of error statements (contained in the

code slice) inducing the issue. indicates the

implementation problem of these error code state-

ments (e.g., lack of necessary functional module(s),

misconfiguration of third-party libraries), where

denotes the set of all possible categories of implemen-

tation problems for IID issues.

Applying the descriptive framework to a given IID

issue would produce an “annotated code slice” for the

issue.

3.2 An Illustrative Example

To illustrate the details of the description frame-

work for IID issues, Fig.1 gives an example of an an-

notated code slice of an IID issue in ownCloud An-

droid app. In this IID issue, a camera photo in a fold-

er is decoded and displayed as a thumbnail, which

takes about one second and results in the app run-

ning slow.

decodeStream()

One could understand the issue intuitively and

quickly by just reading its annotated code slice with-

out reading through the tedious texts and source

codes. As indicated in Fig.1, the triggering condition

of the IID issue is handing a large image (i.e., a cam-

era photo), and the issue would result in the conse-

quence of app slowdown. The image displaying proce-

dure of the IID issue consists of two functional mod-

ules: one for loading image (lines 1–15) and the other

for rendering image (lines 16–22). Finally, as shown in

the “Error description” part of Fig.1, the issue is in-

duced by the “inappropriate code implementation” on

line 12 of the code slice, which decodes an image via

the API without down-sampling.

Triggering condition: handling a large image

Consequence: app slowdown

Code slice:

（1）Functional module of image loading

1 public void onStart()

2 if (getFile() != null)

3 mLoadBitmapTask=new LoadBitmapTask(mImageView, mMessageView,

mProgressWheel);

4 mLoadBitmapTask.execute(getFile().getStoragePath());

5 protected Bitmap doInBackground(String... params)

6 Bitmap result = null;

7 String storagePath = params[0];

8 InputStream is = null;

9 File picture = new File(storagePath);

10 if (picture != null)

11 is = new FlushedInputStream(new BufferedInputStream(new

FileInputStream(picture)));

12 result = BitmapFactory.decodeStream(new FlushedInputStream(new

BufferedInputStream(new FileInputStream(picture))));

13 if (result == null)

14 result = BitmapUtils.rotateImage(result, storagePath);

15 return result;

（2）Functional module of image rendering

16 protected void onPostExecute(Bitmap result)

17 if (result != null)

18 showLoadedImage(result);

19 private void showLoadedImage(Bitmap result)

20 final ImageViewCustom imageView = mImageViewRef.get();

21 if (imageView != null)

22 imageView.setImageBitmap(result);

Error description:line 12, lack code implementation of image decoding

Fig.1. Annotated code slice of issue 921 in ownCloud⑧.

Wen-Jie Li et al.: Understanding and Detecting Inefficient Image Displaying Issues in Android Apps 437

⑧https://github.com/owncloud/android/issues/921, Mar. 2024.

https://github.com/owncloud/android/issues/921

3.3 Obtaining Annotated Code Slices for IID

Issues

(s1, s2, . . . , sn)

An IID issue's code slice is a statement sequence

 extracted from the issue's correspond-

ing app's execution trace and the statements in the

code slice directly or indirectly influence the execu-

tion of image displaying. Given an IID issue, we hypo-

thetically execute the associated Android app under

the test case that reveals the issue to obtain the cor-

responding execution trace. Then, we manually check

the collected trace to identify the IID issue's code

slice. Finally, we annotate the IID issue's code slice

with corresponding triggering condition, consequence,

image processing functional modules, and error de-

scription obtained by analyzing the statements in the

code slice as well as corresponding issue report, pull

request, and patch.

During the above process for obtaining annotated

code slides, we have to read and extract different

types of fragmented information scattered among

many comment texts and patch codes. Furthermore,

we have to combine pieces of extracted information

and reason about their relations to finally determine

the expected annotations. All the steps require strong

intellectual processing and logical reasoning. There-

fore, we currently carry out them manually. In the

following parts, we will describe each step in detail.

Collecting an IID Issue's Execution Trace by Hy-
pothetical Android App Execution. For a given IID is-

sue, we firstly infer a test input that can reveal the

IID issue by analyzing the corresponding issue report

and/or pull request, as well as the IID issue's patch

code (i.e., statements that are added, deleted, or mod-

ified by developers for fixing the issue in the patch),

which provides information of how the IID issue is

triggered and what code must be executed. Then, we

use the inferred test input to hypothetically execute

the buggy revision (associated with the IID issue) of

the Android app and collect the hypothetical execu-

tion trace.

Extracting an IID Issue’s Code Slice. We extract

an IID issue's code slice by identifying the state-

ments related to image displaying from the collected

execution trace. First, we identify the statements con-

taining image displaying API invocations⑨ in the IID

issue's execution trace. We believe that these identi-

si
sj si

sj si
sj si

sj

fied statements are particularly related to image dis-

playing. Then, we identify the image displaying relat-

ed data values (e.g., image data, image displaying re-

lated parameters) in these statements by referring to

Android documents⑩. Based on the collected state-

ments and identified data values, we further extract

all statements influencing the execution of image dis-

playing via performing manually control- and data-de-

pendence analysis. In particular, a statement con-

trol-depends on if whether is executed or not de-

pends on the outcome of ; a statement data-de-

pends on if the value of a variable defined in is

calculated from a value defined in . For example, a

data value that determines the size of an image cache

can indirectly affect the maximum number of images

that can be stored in the cache. By the control- and

data-dependence analysis, we can extract a state-

ment sequence influencing the execution of image dis-

playing in an IID issue's execution trace. We treat the

statement sequence as the IID issue's code slice[10],

which can focus our attention to the statements that

shed light on exactly how image data is decoded,

transformed, stored, and displayed.

Annotating an IID Issue’s Code Slice. To present

the image displaying procedure of an IID issue intu-

itively and help developers or researchers understand

IID issues' more easily, we further annotate an IID is-

sue's code slice with the information of triggering con-

ditions, consequences, image processing functional

modules, and error description.

An IID issue's triggering condition and conse-

quence can be obtained by inspecting the textual in-

formation in the titles, bodies, and comments of the

issue report and/or pull request. For instance, the re-

porter (of issue 921 in ownCloud) complained that “I
have several folders with larger amounts of photos

and the remote thumbnail feature is extremely slow

and unreliable. I often have to explicitly refresh in the

client for it to start showing thumbnails and it takes

about a second to load one thumbnail.” Therefore, we

conclude that displaying the thumbnail for a large im-

age would cause an explicit slowdown of the app (as

shown in Fig.1).

An image processing functional module is a set of

statements for specific functional purpose (such as de-

coding images, caching images). We identify state-

ments for certain image processing functional mod-

438 J. Comput. Sci. & Technol., Mar. 2024, Vol.39, No.2

⑨For details about the image displaying APIs, please refer to https://developer.android.com/reference/android/graphics/pack-
age-summary and https://developer.android.com/reference/android/graphics/drawable/package-summary, Mar. 2024.

⑩https://developer.android.com/reference/, Mar. 2024.

https://developer.android.com/reference/android/graphics/package-summary
https://developer.android.com/reference/android/graphics/package-summary
https://developer.android.com/reference/android/graphics/package-summary
https://developer.android.com/reference/android/graphics/package-summary
https://developer.android.com/reference/android/graphics/package-summary
https://developer.android.com/reference/android/graphics/drawable/package-summary
https://developer.android.com/reference/android/graphics/drawable/package-summary
https://developer.android.com/reference/android/graphics/drawable/package-summary
https://developer.android.com/reference/

BitmapFactory.decodeStream()
BufferedInputStream(FileInputStream)

ImageViewCustom.setImageBitmap()

ules in an IID issue's code slice by checking the in-

voked APIs of each statement and referring to the de-

tailed description of the functionalities of these APIs

in the Android official APIs document. Specifically,

from the and

 APIs used

by the statement on line 12 of the code slide shown in

Fig.1, we conclude that the statement is for loading

an image from a given file. Similarly, the statement

on line 22 is for rendering an image as it invokes the

 API. Then, by

inspecting statements forwardly and backwardly with

respect to control- and data-dependence in the code

slide, we could further find statements closely related

to the two statements on line 12 and line 22 accord-

ingly. By putting all closely related statements to-

gether, we finally obtain the two modules as shown in

Fig.1.

decodeSampledBitmapFrom
File() BitmapUtils

storagePath
minWidth

minHeight

Finally, an IID issue's error description can be

identified by checking the issue's patches. For in-

stance, Fig.2 shows the (simplified) patch for fixing is-

sue 921 of ownCloud. The

 method defined in actually fetch-

es the size of the original image (specified by

), resizes and decodes the image with re-

spect to the required size (specified by and

, indicating the size of screen⑪). Inspect-

ing the patch code, we conclude that the issue is in-

duced by an inappropriate implementation of the im-

age loading module that fails to resize (down-sample)

image correctly.

4 Understanding IID Issues in Android

Apps: Empirical Study Methodology

We conduct an empirical study for the purpose of

better understanding IID issues in Android apps.

First, we collect a set of 216 real-world IID issues

(i.e., 54 more than that of the conference version[9])

by keyword search and manual inspection from 243

well-maintained open-source Android apps in F-Droid

in Subsection 4.1. Then, we extract annotated code

slices for the 216 IID issues based on the proposed de-

scriptive framework and further analyze these anno-

tated code slices around the four research questions in

Subsection 4.2.

4.1 IID Issue Collection

The process of IID issue collection follows a

methodology similar to those adopted in existing

work[11, 12] for characterizing real-world Android app

bugs, and it consists of three steps: selecting apps,

identifying image-related performance issue reports

and pull requests, and collecting IID issues and bug-

gy code. Fig.3 illustrates the overall issue collection

process.

Selecting Apps. We collect 243 Android apps from

1 093 randomly selected Android apps in F-Droid as

our study subjects, meeting the following criteria:

1) open-source: hosted on GitHub with an issue

tracking system for tracing potential IID issues;

2) well-maintained: having over 100 code commits

in the corresponding GitHub repository;

3) of realistic usage: having over 1 000 downloads

on the Google play market.

Identifying Image-Related Performance Issue Re-
ports and Pull Requests. An issue report (IRep for

short) usually denotes a manifested app bug from end

users. An pull request (PR for short), on the other

hand, possibly contains the developer's perspective on

a concerned app bug. Therefore, we collect both of

them in the empirical study. We first identify IReps

and PRs involving images in the GitHub repositories

by searching in their issue tracking systems with the

following keywords⑫: “image”, “bitmap”, “decode”, “di-

1 - result = BitmapFactory.decodeStream(new FlushedInputStream(

new BufferedInputStream(new FileInputStream(picture))));

2 + Point screenSize = DisplayUtils.getScreenSize(getActivity());

3 + int minWidth = screenSize.x;

4 + int minHeight = screenSize.y;

5 + result = BitmapUtils.decodeSampledBitmapFromFile(storagePath,

minWidth, minHeight);

Fig.2. Simplified patch fixing issue 921 in ownCloud. “+” and “–” denote the code added and deleted to fix this bug, respectively.

Wen-Jie Li et al.: Understanding and Detecting Inefficient Image Displaying Issues in Android Apps 439

minWidth minHeight

⑪Actually, and can be further optimized with respect to the size of the widget for showing the image, but the
developer adopted this patch as it is enough to display the thumbnail in a reasonable time.

⑫These keywords are general natural language words related to image displaying. They come from existing research work, e.g.,
[4, 5] and our empirical study experience.

splay”, “picture”, “photograph”, “show”, and “thu-

mbnail”.
Any IRep or PR that contains any of the above

keywords in its title, body, or comments, is included

in our initial collection. There are totally 41 334

IReps/PRs reported after May 2011 in the selected

243 Android apps, at the moment (i.e., May. 2021) of

data collection⑬. We then manually inspect each

IRep/PR to further confirm whether it indeed fixes

any performance bug with the following criteria.

1) The IRep's/PR's text complains about the per-

formance degradation or more serious consequences

(e.g., app crash) when performing image displaying.

2) There is evidence that a bug is fixed (e.g., the

concern issue report is associated with a fixing com-

mit ID or an accepted fixing patch), and the same is-

sue has never been re-reported in the following three

months⑭.

After the manual inspection, we obtain a total of

2 674 image-related performance IReps/PRs in 62 An-

droid apps.

Collecting IID Issues and Their Buggy Code. Al-

though each of the remaining 2 674 IReps/PRs is im-

age-related and involves a performance degradation or

more serious consequences, not all of them are guar-

anteed related to any IID issue. Therefore, we further

inspect the fixing commits associated with these

IReps/PRs to decide whether they correspond to IID

issues or not. Generally, each fixing commit consists

of one or more patches, each of which may patch sev-

eral places in a file or multiple files. For each code

patch fixing a particular image-displaying-related per-

formance bug that is clearly documented in the corre-

sponding IReps/PR, we consider the patch related to

a new IID issue. Finally, we collect totally 216 IID is-

sues (distributed in 103 IReps/PRs) in 41/243

(16.9%) studied Android apps, suggesting that IID is-

sues are not rare, but common in practice and wor-

thy of an in-depth study.

Then, for each identified IID issue, we restore the

statements modified, added, or deleted in the patch to

obtain the buggy code and the buggy revision of the

corresponding Android app. As such, we obtain the

issue's textual descriptions in the corresponding

IRep/PR, its buggy code, its buggy revision of An-

droid app, and a patch for fixing it.

4.2 Research Questions

We extract the 216 IID issues' annotated code

slices following the process described in Subsection

3.3. Based on the extracted annotated code slices, we

organize the study of IID issues around the following

four research questions.

RQ1. What are the consequences and triggering
conditions of IID issues?

Understanding IID issues' triggering conditions

and consequences can provide useful implications on

how to design efficient test cases and oracles to trig-

ger and identify IID issues, respectively.

RQ2. How are IID issues introduced by develop-
ers?

243 Apps

2 674 Issue Reports

and Pull Requests

in 62 Apps

② Identifying Image-Related

Performance Issue Reports

and Pull Requests

① Selecting Apps ③ Collecting IID Issues

and Buggy Code

216 IID

Issues in

41 Apps

F-Droid

GitHub

Google Play

Keywords

Matching

Commits

Checking

Issue Tracking

Systems

GitHub

Repositories

Fig.3. IID issue collection process.

440 J. Comput. Sci. & Technol., Mar. 2024, Vol.39, No.2

⑬The issues reported by TAPIR are excluded from the collection to avoid bias.

⑭For those issues that do not contain any explicit link to any patch, we conduct a bisect on their GitHub repositories to find
potential fixing patches by following the methodology of existing work[13].

Investigating implementation problems of IID is-

sues can provide practical programming guidance to

developers and assist them in diagnosing and fixing

IID issues.

RQ3. What is the runtime behavior of IID issues?
The functional module sequence and error descrip-

tion in each IID issue’s annotated code slice can shed

light on how image data is decoded, transformed,

stored, and rendered. By analyzing them, we can

clearly know under what runtime behaviors IID is-

sues are likely to occur and these runtime behaviors

can provide useful implications for the root causes of

IID issues.

RQ4. Are there common anti-patterns for IID is-
sues?

lint

By inspecting the error statements indicated in

the annotated code slices, we could find whether there

are common anti-patterns correlated to IID issues.

Specifically, in this paper, we define anti-patterns as

recurrent source-code level mistakes which cause IID

issues, and we are particularly interested in code pat-

terns which can facilitate lightweight static -like

checkers.

5 Empirical Study: Results

In this section, we present our empirical study re-

sults by answering the four research questions de-

scribed in Subsection 4.2.

5.1 Answering RQ1: What Are the

Consequences and Triggering

Conditions of IID Issues?

We answer RQ1 by inspecting the consequences

and triggering conditions in each IID issue's annotat-

ed code slice. The overall results are summarized as

the follows.

Finding 1. “Most IID issues cause app crash

(29.2%) or slowdown (40.7%). Handling lots of im-

ages (55.0%) and large images (45.0%) are the major

trigger conditions.”

This finding⑮ is consistent with our intuitions:

IID issues typically occur in media-intensive apps and

may result in severe impact on user experience⑯.

Their consequences can be categorized as follows.

OutOfMemoryError

● App Crash. Of the 216 studied IID issues, 63

(29.2%) directly cause the corresponding apps to

crash. In most cases, an would be

thrown when allocating memory for storing a large

image⑰.

● App Slowdown. There are 88 studied IID issues

(40.7%) lead to GUI lagging⑱ and/or slow image dis-

playing⑲.

● Memory Bloat. For 24 (11.1%) studied IID is-

sues, the corresponding apps' consumed memories

keep growing without lag or crash⑳, which may lead

to unnecessary stops of background activities/ser-

vices and affect user experience.

● Abnormal Image Displaying. Images are failed

to display for 21 (9.7%) studied issues. In most cases,

the corresponding app's memory is insufficient for de-

coding large images without causing a crash, which

may also trigger frequent garbage collection (GC) and

impact user experience.

● Application Not Responding. Three (1.4%) stud-

ied issues cause application not responding (ANR),

which is the extreme case of app slowdown and is

usually caused by an app performing time-consuming

image displaying operations in the UI thread㉑.

● Others. Besides, 23 studied issues (10.7%) can

also result in bad user experience but their

IReps/PRs lack further details for inspection.

We find that 160 of the 216 studied IID issues'

annotated code slices contain information about their

triggering conditions. All these triggering conditions

concern handling large images (72/160, 45.0%), han-

dling lots of images (88/160, 55.0%), or both (2/160,

1.3%). For these cases, inefficient handling of

large/lots of images mostly causes app crash/slow-

down.

These findings, although seemingly straightfor-

ward, provide actionable hints for reasonable work-

load designs and possible test oracles for the automat-

ed detection of IID issues. Simply feeding an app with

Wen-Jie Li et al.: Understanding and Detecting Inefficient Image Displaying Issues in Android Apps 441

⑮The finding of RQ1 is similar to that of our preliminary conference version[9] except for the data statistics. The same situation
also appears in the study results of RQ2 and RQ4.

⑯An IID issue may have multiple consequences or causes, and thus the sum of the concerned percentages may exceed 100%.

⑰https://github.com/the-blue-alliance/the-blue-alliance-android/issues/588, Mar. 2024.

⑱https://github.com/nikclayton/android-squeezer/issues/171, Mar. 2024.

⑲https://github.com/kontalk/androidclient/issues/789, Mar. 2024.

⑳https://github.com/romannurik/muzei/issues/383, Mar. 2024.

㉑https://github.com/ccrama/Slide/issues/1639, Mar. 2024.

https://github.com/the-blue-alliance/the-blue-alliance-android/issues/588
https://github.com/the-blue-alliance/the-blue-alliance-android/issues/588
https://github.com/the-blue-alliance/the-blue-alliance-android/issues/588
https://github.com/the-blue-alliance/the-blue-alliance-android/issues/588
https://github.com/the-blue-alliance/the-blue-alliance-android/issues/588
https://github.com/the-blue-alliance/the-blue-alliance-android/issues/588
https://github.com/the-blue-alliance/the-blue-alliance-android/issues/588
https://github.com/the-blue-alliance/the-blue-alliance-android/issues/588
https://github.com/the-blue-alliance/the-blue-alliance-android/issues/588
https://github.com/the-blue-alliance/the-blue-alliance-android/issues/588
https://github.com/the-blue-alliance/the-blue-alliance-android/issues/588
https://github.com/nikclayton/android-squeezer/issues/171
https://github.com/nikclayton/android-squeezer/issues/171
https://github.com/nikclayton/android-squeezer/issues/171
https://github.com/kontalk/androidclient/issues/789
https://github.com/romannurik/muzei/issues/383
https://github.com/ccrama/Slide/issues/1639

reasonably large-amount and large-size images would

suffice as an IID testing adversary, and test oracles

can also be accordingly designed around the studied

consequences.

5.2 Answering RQ2: How Are IID Issues

Introduced by Developers?

By analyzing error statements in the annotated

code slices, we can learn common source-code level

problems (made by developers) that introduce IID is-

sues.

Finding 2. “The implementation problems intro-

ducing IID issues can be categorized into two general

types: custom implementation specific and third-par-

ty library specific. The former type occurs when us-

ing developers' custom functionalities for image dis-

playing, including inappropriate code implementation

(37.5%) and lack of necessary functional modules

(28.2%). The latter type occurs when using third-par-

ty libraries for image displaying, including misconfigu-

ration of third-party libraries (21.8%) and using un-

suitable third-party libraries (12.5%).”
This finding shows that most IID issues are in-

duced by developers' custom implementation of im-

age displaying, and that even though many mature

image displaying libraries (e.g., Glide㉒, Pacasso㉓)

can alleviate image-related performance issues, apps

still misuse them and suffer from IID issues. This

finding can be used to assist developers and re-

searchers on diagnosing and fixing IID issues in An-

droid apps.

5.2.1 Custom Implementation Specific IID Issues

To make Android apps lightweight㉔, easy to

maintain, and meet specific functional requirements,

some developers customize the implementation of im-

age displaying in their apps. As a result, it brings a

burden on developers who need to ensure the correct-

ness and efficiency of the implementation. Unfortu-

nately, this is a non-trivial task and 142 (65.7%) IID

issues in our dataset are related to custom implemen-

tations. Such issues can be divided into two cate-

gories: 1) lack of necessary functional modules, and 2)

inappropriate code implementation.

1) Lack of Necessary Functional Modules. There

are 61 (28.2%) IID issues caused by lacking necessary

functional modules. When dealing with a variety of

image displaying scenarios, such as displaying lots of

images and displaying large images, developers need

to add necessary functional modules (e.g., image

caching, image resizing) in the implementation of im-

age displaying so as to ensure performance efficiency.

However, many developers lack experience in imple-

menting efficient image displaying and do not fully

consider the running scenarios of image displaying

that their apps may encounter, which results in lack-

ing necessary functional modules in their customized

implementation of image displaying and raises IID is-

sues. To ease understanding, we take issue report 299

of Subsonic㉕, a music player app, as an example

(Fig.4 shows the simplified code of this issue). Every

time Subsonic opens an image that has been dis-

played before, it re-decodes the image (line 5), which

would affect end-user experience. The cause of the is-

sue is that the app lacks a functional module of im-

age caching to store the decoded images that has been

displayed, resulting in duplicate decoding of the same

images. Subsonic's developers later fixed the issue by

adding an image cache (lines 7-9, 15-25).

2) Inappropriate Code Implementation. There are

81 (37.5%) IID issues caused by inappropriate code

implementation. For some Android apps, even though

developers have included all necessary functional

modules in the implementation of image displaying,

their customized implementations are often problem-

atic and raise IID issues. For example, issue 921 of

ownCloud, mentioned in Subsection 3.3, was induced

by an inappropriate implementation of the image

loading module that fails to resize (down-sample) im-

age correctly. Another example is issue 6 of Atarashii

(shown in Fig.5). The app crashes because of the

wrong implementation of image cache, such that it

gathers all decoded images without releasing (line 15).

5.2.2 Third-Party Library Specific IID Issues

We find that 74 (34.3%) IID issues are third-par-

ty library related. There are several popular third-

party libraries (e.g., Glide, Picasso) that can be used

to reduce implementation efforts and speed up devel-

442 J. Comput. Sci. & Technol., Mar. 2024, Vol.39, No.2

㉒https://github.com/bumptech/glide, Mar. 2024.

㉓https://github.com/square/picasso, Mar. 2024.

㉔https://github.com/Neamar/KISS/issues/570, Mar. 2024.

㉕https://github.com/AnimeNeko/Atarashii/issues/6, Mar. 2024.

https://github.com/bumptech/glide
https://github.com/square/picasso
https://github.com/Neamar/KISS/issues/570
https://github.com/AnimeNeko/Atarashii/issues/6

opment of image displaying in Android apps. Howev-

er, in practice, due to the unfamiliarity with third-

party libraries, it is hard for developers to avoid mak-

ing mistakes when using them, and IID issues may

arise. Concerning our study, there are two primary

implementation mistakes in this category: 1) using

unsuitable third-party libraries, and 2) misconfigura-

tion of third-party libraries.

1) Using Unsuitable Third-Party Libraries. There

are 27 (12.5%) IID issues caused by using unsuitable

third-party libraries. For the third-party libraries

used for image displaying, different libraries may have

different functional concerns and performances (e.g.,

runtime or memory overhead) when handling the

1 public class DSubWidgetProvider extends AppWidgetProvider {

2 private void performUpdate(Context context, …) {

3 int size;

4 …

5 - Bitmap bitmap = currentPlaying == null ? null:FileUtil

6 .getAlbumArtBitmap(context,…, size);

7 + ImageLoader imageLoader = SubsonicActivity

8 .getStaticImageLoader(context);

9 + Bitmap bitmap = imageLoader == null ? null : imageLoader

10 .getCachedImage(context, …, large);

11 …

12 } }

13 public class ImageLoader {

14 …

15 + public Bitmap getCachedImage(Context context, …) {

16 + int size = large ? imageSizeLarge : imageSizeDefault;

17 + Bitmap bitmap = cache.get(getKey(…);

18 + if(bitmap == null || bitmap.isRecycled()) {

19 + bitmap = FileUtil.getAlbumArtBitmap(…);

20 + String key = getKey(entry.getCoverArt(), size);

21 + cache.put(key, bitmap);

22 + cache.get(key);

23 + }

24 + return bitmap;

25 + }

26 …

27 }

Fig.4. Image decoding without resizing in issue 299 of Subsonic㉖ (simplified).

1 public class CoverAdapter<T> extends ArrayAdapter<T> {

2 public View getView(...) {

3 a = objects.get(position));

4 ImageView cover = v.findViewById(R.id.coverImage);

5 imageDownloader.download(a.getImageUrl(), cover);

6 } }

7 public class ImageDownloader {

8 public void download(String url,ImageView imageView) {

9 String filename = String.valueOf(url.hashCode());

10 File f = new File(getCacheDirectory(imageView.getContext

()), filename);

11 Bitmap bt = null;

12 bt = (Bitmap)imageCache.get(f.getPath());

13 if (bt == null){

14 bt = BitmapFactory.decodeFile(f.getPath());

15 - imageCache.put(..., bt);

16 + imageCache.put(..., new WeakReference<Bitmap>(bt));

17 imageView.setImageBitmap(bt);

18 } } }

Fig.5. Unbounded image caching in issue 6 of Atarashii㉗ (simplified, taken from [9]).

Wen-Jie Li et al.: Understanding and Detecting Inefficient Image Displaying Issues in Android Apps 443

㉖https://github.com/AnimeNeko/Atarashii/issues/6, May 2022.

㉗https://github.com/daneren2005/Subsonic/issues/299, Mar. 2024.

https://github.com/AnimeNeko/Atarashii/issues/6
https://github.com/daneren2005/Subsonic/issues/299

OutOfMemory

same running scenario of image displaying. Thus, de-

velopers should choose a suitable third-party library

that satisfies their actual requirements. However,

some Android apps contain IID issues for the reason

that developers use unsuitable third-party libraries

that cannot well handle the running scenarios of im-

age displaying these apps encounter. Taking pull re-

quest 577 of AmazeFileManager as an example (see

Fig.6), AmazeFileManager's developers originally used

Glide for image displaying and encountered an IID is-

sue of exception (line 8). To prevent the

exception, AmazeFileManager's developers replaced

Glide with another popular third-party library Picas-

so (line 9). Picasso can display an image at the low-

est possible resolution without affecting user experi-

ence on the quality of displayed images, which can

significantly reduce AmazeFileManager's memory

consumption for images displaying.

2) Misconfiguration of Third-Party Libraries.
There are 47 (21.8%) IID issues caused by misconfigu-

ration of third-party libraries. Third-party libraries

for image displaying are often equipped with dozens

of configuration options㉙ allowing customization to

different workloads, many of which greatly affect im-

DiskCacheStrategy.SOURSE
diskCacheStrategy()

DiskCacheStrategy.SOURSE DiskCacheStrate
gy.ALL

age displaying performance. Unfortunately, properly

setting these configurations is challenging for develop-

ers due to the complex and dynamic nature of image

displaying workloads, which makes misconfiguration

of third-party libraries one of the major root causes of

IID issues. Taking issue 1 071 of AntennaPod as an

example (in Fig.7), the app's GUI lags due to the

misconfiguration of the third-party library Glide. In

this issue, when a user browses a list of images and

slides up and down, a lot of images would be decoded

repeatedly, which results in high unnecessary run-

time overhead, leading to GUI lagging. The issue is

caused by the option

used in (line 7). The option in-

dicates that Glide caches only the original full-resolu-

tion image but not those transformed versions (e.g.,

obtained by resizing the original one) which are actu-

ally displayed in the app. Then, each time the app

displays an image, it redoes the transformation pro-

cess. One developer later fixed this issue by replacing

 with -

 (lines 7 and 8) so that Glide can cache and

reuse all image versions.

1 public class ImageViewer extends BaseActivity {

2 public void onCreate(Bundle savedInstanceState) {

3 AspectRatioImageView imageView = (AspectRatioImageView)

4 findViewById(R.id.image);

5 Intent intent = getIntent();

6 if(intent!=null){

7 String path=intent.getStringExtra("path");

8 - Glide.with(this).load(path).into(imageView);

9 + Picasso.with(this).load(“file://"+path).fit()

.into(imageView);

10 }

11 } }

Fig.6. Using unsuitable third-party library in PR 577 of AmazeFileManager㉘(simplified).

1 public class PodcastListAdapter extends ArrayAdapter<

GpodnetPodcast> {

2 public View getView(int position, ...) {

3 GpodnetPodcast podcast = getItem(position);

4 Glide.with(convertView.getContext())

5 .load(podcast.getLogoUrl())

6 .placeholder(R.color.light_gray)

7 - .diskCacheStrategy(DiskCacheStrategy.SOURCE)

8 + .diskCacheStrategy(DiskCacheStrategy.ALL)

9 .into(holder.image);

10 } }

Fig.7. Loop-based redundant image decoding in pull request 1 071 of AntennaPod㉚(simplified, taken from [9]).

444 J. Comput. Sci. & Technol., Mar. 2024, Vol.39, No.2

㉘https://github.com/TeamAmaze/AmazeFileManager/pull/577, Mar. 2024.

㉙Please refer to https://bumptech.github.io/glide/doc/configuration.html or https://guides.codepath.com/android/Displaying-
Images-with-the-Picasso-Library for an example, Mar. 2024.

㉚https://github.com/AntennaPod/AntennaPod/pull/1071, Mar. 2024.

https://github.com/TeamAmaze/AmazeFileManager/pull/577
https://bumptech.github.io/glide/doc/configuration.html
https://guides.codepath.com/android/Displaying-Images-with-the-Picasso-Library
https://guides.codepath.com/android/Displaying-Images-with-the-Picasso-Library
https://guides.codepath.com/android/Displaying-Images-with-the-Picasso-Library
https://guides.codepath.com/android/Displaying-Images-with-the-Picasso-Library
https://guides.codepath.com/android/Displaying-Images-with-the-Picasso-Library
https://guides.codepath.com/android/Displaying-Images-with-the-Picasso-Library
https://guides.codepath.com/android/Displaying-Images-with-the-Picasso-Library
https://guides.codepath.com/android/Displaying-Images-with-the-Picasso-Library
https://guides.codepath.com/android/Displaying-Images-with-the-Picasso-Library
https://guides.codepath.com/android/Displaying-Images-with-the-Picasso-Library
https://guides.codepath.com/android/Displaying-Images-with-the-Picasso-Library
https://github.com/AntennaPod/AntennaPod/pull/1071

5.3 Answering RQ3: What Is the Runtime

Behavior of IID Issues?

Finding 3. “Only a few runtime behavior types
cover most (82.9%) inspected IID issues: non-adap-
tive image decoding (49.1%), repeated and redundant
image decoding (19.9%), UI-blocking image display-
ing (8.3%), and image leakage (5.6%).”

This finding reveals that existing performance bug
detectors cover only a narrow range of IID issues and
that it is worthwhile to develop IID-specific analysis
techniques and tools. For example, the existing pat-
tern-based analysis[2] detects only a small portion of
image decoding in the UI thread, the existing re-
source leakage analysis[14] can be expanded to manual
image resource management (the tool itself does not
cover), and existing image displaying performance
analysis[8] can help developers improve the rendering
performance of slow image displaying.

Besides, this finding also suggests that static pro-

gram analysis techniques concerning these particular-

ly recognized runtime behavior may be effective for

detecting IID issues, as long as one can semantically

model the image displaying process in an app's source

code, or find particular code anti-patterns that corre-

late to these runtime behaviors (studied later in Sub-

section 5.4).

E = {e1, e2, . . . , em}

imw×h w × h
e′ → e e′

e e′

e

We describe the runtime behavior of an IID issue
using a simplified data-flow model. An IID issue's
code slice can be represented by a sequence of chrono-
logically sorted events . Some

events may be the results of image-related API invo-
cations. Each of such events is associated with an im-
age object in the heap of resolution . We
use the notation to denote that event is da-
ta-dependent on event , i.e., the result of is com-
puted directly or indirectly involving the result of .

Non-Adaptive Image Decoding. Nearly half

(106/216, 49.1%) of the issues are simply caused by

decoding a large image without considering the actu-

al size of the widget that displays this image, result-

ing in significant performance degradation and/or

crash. A typical example is to decode a full-resolu-

tion image for merely displaying a thumbnail㉛. Issue

921 of ownCloud (Fig.1) and issue 5 701 of Word-

Press (Fig.8) are also examples of this kind.

imw×h

edec ∈ E
im

edisp ∈ E

edec → edisp
im′

w′×h′ imw×h

w′ < w ∧ h′ < h

For a non-adaptive image decoding case, there ex-

ists an image object associated with event

 which is the result of an image decoding API

invocation, and is finally displayed by event

, which is an image displaying API invoca-

tion and . However, the actually displayed

image is smaller than (i.e.,

).

edec, edec
′ ∈ E

im im′

imw×h = im′
w×h

Repeated and Redundant Image Decoding. Quite a

few (43/216, 19.9%) issues are due to improper stor-

age (particularly caching) of images such that the

same images may be repeatedly and redundantly de-

coded, causing unnecessary performance degradation

and/or battery drain. An indicator of this type of IID

issues is that there are two image decoding API invo-

cation events whose respective associat-

ed images and are identical, i.e.,

. The pull request 1 071 of Antenna-

Pod (shown in Fig.7) is an example of this type.

UI-Blocking Image Displaying. Although the An-

droid documentation㉝ explicitly discourages decod-

ing images in an app's UI thread, a few (18/216,

8.3%) issues still fall into this category. A typical ex-

ample is to decode large images in the UI thread㉞,

which causes UI blocking, leading to noticeably slow

responsiveness. Issue 5777 of WordPress shown in

Fig.9 is an example of this type.

1 public class AztecImageLoader implements Html.ImageGetter {

2 public void loadImage(String url, ..., int maxWidth) {

3 - Bitmap bitmap = BitmapFactory.decodeFile(url);

4 + int orientation = ImageUtils.getOrientation(..., url);

5 + byte[] bytes = ImageUtils.createThumbnail(Uri.parse(url),

maxWidth, ...);

6 + Bitmap bitmap = BitmapFactory.decodeByteArray(bytes, 0,

bytes.length);

7 BitmapDrawable bitmapDrawable = new BitmapDrawable(

context.getResources(), bitmap);

8 callbacks.onImageLoaded(bitmapDrawable);

9 } }

Fig.8. Image decoding without resizing in issue 5701 of WordPress㉜(simplified, taken from [9]).

Wen-Jie Li et al.: Understanding and Detecting Inefficient Image Displaying Issues in Android Apps 445

㉛https://github.com/opendatakit/collect/issues/1237, Mar. 2024.

㉜https://github.com/wordpress-mobile/WordPress-Android/issues/5701, Mar. 2024.

㉝https://developer.android.com/topic/performance/graphics/load-bitmap, Mar. 2024.

㉞https://developer.android.com/topic/performance/graphics, Mar. 2024.

https://github.com/opendatakit/collect/issues/1237
https://github.com/wordpress-mobile/WordPress-Android/issues/5701
https://github.com/wordpress-mobile/WordPress-Android/issues/5701
https://github.com/wordpress-mobile/WordPress-Android/issues/5701
https://github.com/wordpress-mobile/WordPress-Android/issues/5701
https://github.com/wordpress-mobile/WordPress-Android/issues/5701
https://developer.android.com/topic/performance/graphics/load-bitmap
https://developer.android.com/topic/performance/graphics/load-bitmap
https://developer.android.com/topic/performance/graphics/load-bitmap
https://developer.android.com/topic/performance/graphics

OutOfMemoryError

Image Leakage. A few (12/216, 5.6%) issues are

caused by memory (by image objects) leakage, where

inactive images cannot be garbage-collected effective-

ly. Memory leakage is a major cause of

 and has been extensively studied

in the existing literatures[15, 16]. Issue 6 of Atarashii

(shown in Fig.5) is an example of this type㉟.

5.4 Answering RQ4: Are There Common

Anti-Patterns for IID Issues?

Following the analysis of runtime behavior of IID

issues in Subsection 5.3, we further inspect the state-

ment sequences of concerned IID issues' annotated

code slices to identify whether IID issues are related

to any particular code anti-patterns. The overall re-

sults are summarized as follows.

Finding 4. “Certain anti-patterns are strongly cor-

related to IID issues: image decoding without resizing

(23.1%), loop-based redundant image decoding

(16.7%), image decoding in UI event handlers (8.3%),

and unbounded image caching (3.2%). Together with

additional bug types mentioned by existing studies[8, 14]

(21.8%), 73.1% of the examined IID issues could be

identified. This finding lays the foundation of our pat-

tern-based lightweight static IID issue detection tech-

nique.”
Image Decoding Without Resizing (AP1). IID is-

sues are likely to present if an image potentially from

external sources (like a network or a file system) is

decoded with its original size.

decodeFile()

createThumbnail()

Surprisingly, this simple anti-pattern covers

50/216 (23.1%) of all studied IID issues. Fig.8 gives

such an example, in which displaying the thumbnail

of a network image may unnecessarily consume about

128 MB of memory in decoding (using the image de-

coding API at line 3) and result in app

crash. One developer later fixed this issue by resizing

the image's resolution according to the actual size of

the widget for displaying it (by invoking

 for resizing images, lines 4–6).

Loop-Based Redundant Image Decoding (AP2).

IID issues also frequently occur when an image is un-

intentionally decoded multiple times (e.g., in a loop).

Particularly, Android apps often use a ViewGroup

(e.g., a ListView, a GridView, or a RecyclerView) to

display a scrolling list of images, and a ViewGroup is

generally associated with some callback methods (e.g.,

for loading image resources) that can be frequently in-

voked.

getView() PodcastListAdap
ter

getView()

This anti-pattern covers 36/216 (16.7%) of all

studied IID issues. Fig.7 gives an example, in which

the callback method of -

 is frequently invoked (line 2) when a user brows-

es a list of images and slides up and down. However,

the cache option is miss-configured in , as

mentioned in Subsection 5.2.

Image Decoding in UI Event Handlers (AP3). Im-

age decoding in the UI thread also contributes to a

significant amount of studied IID issues, which are

found to invoke (directly or indirectly) image decod-

ing APIs in a UI event handler.

1 public class PreviewActivity extends AppCompatActivity {

2 protected void onCreate() {

3 mediaUri = media.getUrl();

4 loadImage(mediaUri); }

5 private void loadImage(String mediaUri) {

6 - byte[] bytes = ImageUtils.createThumbnail(Uri.parse(

mediaUri), ...);

7 + new LocalImageTask(mediaUri, size).executeOnExecutor(

AsyncTask.THREAD_POOL_EXECUTOR);

8 - Bitmap bmp = BitmapFactory.decodeByteArray(bytes, ...);

9 } }

10 + private class LocalImageTask extends AsyncTask<...> {

11 + protected Bitmap doInBackground(Void... params) {

12 + byte[] bytes = ImageUtils.createThumbnailFromUri(...,

Uri.parse(mMediaUri);

13 + return BitmapFactory.decodeByteArray(bytes, ...);

14 } }

15 public class ImageUtils {

16 public static byte[] createThumbnail(Uri imageUri, ...) {

17 Bmp = BitmapFactory.decodeFile(imageUri, ...);

18 } }

Fig.9. Image decoding in UI event handlers in issue 5777 of WordPress㉟ (simplified, taken from [9]).

446 J. Comput. Sci. & Technol., Mar. 2024, Vol.39, No.2

㉟https://github.com/wordpress-mobile/WordPress-Android/issues/5777, Mar. 2024.

https://github.com/wordpress-mobile/WordPress-Android/issues/5777
https://github.com/wordpress-mobile/WordPress-Android/issues/5777
https://github.com/wordpress-mobile/WordPress-Android/issues/5777
https://github.com/wordpress-mobile/WordPress-Android/issues/5777
https://github.com/wordpress-mobile/WordPress-Android/issues/5777

createThumbnail() decodeByteArray()

mediaUri loadImage()
onCreate()

This anti-pattern covers 18/216 (8.3%) of all stud-

ied IID issues. Fig.9 gives such an example, in which

a big image read from a local location is decoded in

the UI thread and causes the concerned app to run

slowly (similar to the code snippet example of image

decoding without resizing's in Fig.8). In this issue,

methods and

are used to decode an image read from a URL site

 (lines 6 and 8) in method ,

which is invoked by a callback method ,

which is then invoked in the UI thread. Therefore, the

image decoding is actually done in the UI thread and

causes UI lag. To fix this issue, one developer later

moved the image decoding to a background thread

(lines 7 and 10–13).

OutOfMemoryError

Unbounded Image Caching (AP4). Finally, an in-

correctly implemented unbounded cache, in which a

pool of decoded images is maintained but no image

can be released, is another source of IID issues, since

the ever-increasing cache size would cause memory

bloat or .

OutOfMemoryError

imageCache

This anti-pattern covers 7/216 (3.2%) of all stud-

ied IID issues. Fig.5 gives such an example, in which

an app crashes because of after a

user browses many images. The app's image cache

 is wrongly implemented in a way where

it gathers all decoded images without releasing them.

Its developer later fixed this issue by adding a soft

reference for each image in the cache so that the

cached images could be correctly released if necessary

(line 16).

The four anti-patterns mentioned above are or-

thogonal, and they form a firm basis for developing

effective static analysis techniques for detecting IID

issues.

6 Design and Evaluation of Static IID Issue

Detection Tool

In this section, we introduce the design and evalu-

ation of our static anti-pattern-based prototype

TAPIR for detecting IID issues.

6.1 Static Detection of IID Issues

6.1.1 IID Issue Anti-Pattern Rules

By further inspecting the empirical study results

decodeFile() decodeFileDescriptor()
decodeStream() decodeByteArray() setImageURI()
decodeRegion() createFromPath() createFromStr
eam() setImageViewUri()

ImageLoader.display
Image() Glide.load()

and IID issue cases, we observe that most IID issues

are correlated with image decoding APIs concerning

external images, which are essentially a small portion

of all image decoding APIs. In particular, only the

nine following Android official APIs are correlated

with IID㊱: , ,

, , ,

, , -

 and . Besides, we observe

two popular third-party APIs, -

 and , which are associated with

at least two apps in the studied IID issues.

We call the eleven APIs “issue inducing APIs”.
IID issues can occur when these APIs are invoked un-

der anti-pattern rules, which consist of API invoca-

tion sequences and/or parameter value combinations.

These issue-inducing rules are characterized in Table

1, which are matched against in the TAPIR static an-

alyzer. Specifically, compared with our conference ver-

sion, four more issue-inducing APIs are added for rule

#1 and two more issue-inducing APIs are added for

rule #2.

6.1.2 TAPIR Static Analyzer

apk dex2jar

AsyncTask.exec
ute() AsyncTask.doInBackground()

Thread.start()
Thread.run()

We implement the pattern-and-rule based static

analyzer on top of Soot㊲. TAPIR takes an Android

app binary () file as input and uses ㊳ to

obtain the corresponding Java bytecode files. It then

builds the app's context-insensitive call graph, with a

few implicit method invocation relations being added,

used to check rule #4. For example, -

 implicitly invokes

defined in the same class; while me-

thod implicitly invokes defined in the

same class.

For each potential issue-inducing API call site

(CS), TAPIR obtains: 1) the data-flow of method pa-

rameters by a backward slicing, and 2) the usages of

decoded image objects by a forward slicing. Then,

TAPIR checks each image storage (IS) against the

anti-pattern rules in Table 1 as follows.

Option
Option

1) Rule #1 (image decoding without resizing) is

checked by analyzing the data-flow of the pa-

rameter, and a warning is raised if the param-

eter is missing or its value satisfies the condition spec-

ified in Table 1.

Wen-Jie Li et al.: Understanding and Detecting Inefficient Image Displaying Issues in Android Apps 447

setImageURI() setImageViewUri()

㊱ and both decode and display an image.

㊲https://github.com/soot-oss/soot, Mar. 2024.

㊳https://sourceforge.net/projects/dex2jar/, Mar. 2024.

https://github.com/soot-oss/soot
https://github.com/soot-oss/soot
https://github.com/soot-oss/soot
https://sourceforge.net/projects/dex2jar/

LruCache.put() DiskCacheStrategy.All

2) Rules #2 and #3 (loop-based redundant im-

age decoding) are equivalent to checking the call

graph reachability from the loop-related method invo-

cations to the CS. Furthermore, TAPIR also checks

whether there is any data flow from the decoded im-

age to cache-related methods or arguments (in partic-

ular, ,) to ex-

clude non-IID cases.

Thread.run() AsyncTask.doInBackground()
IntentService.onHandleIntent()

3) Rule #4 (image decoding in UI event handlers)

is another case of checking reachability from invoca-

tions of , ,

or , to the CS.

4) Rules #5, #6, and #7 (unbounded image cach-

ing) follow the same pattern of checking whether a se-

ries of designated method invocations are reachable in

the call graph.

For each CS matching at least one anti-pattern

rule, TAPIR generates an IID warning, which can be

further validated by the respective app developer.

Note that we currently focus on IID issues intro-

duced by developers of the selected apps. So, TAPIR

only analyzes the image displaying codes of the select-

ed apps, skipping codes of image displaying third-par-

ty libraries, which are out of the apps' local source

trees.

6.2 Evaluation of TAPIR Static Analyzer

In this subsection, we conduct experiments to in-

vestigate whether TAPIR can help developers fight

with IID issues in real-world Android apps. The eval-

uation is driven by the following two research ques-

tions.

RQ5. (Effectiveness and Efficiency): Can TAPIR
efficiently and effectively identify IID issues in real-
world Android applications?

RQ6. (Performance Impact and Improvement):
What is the performance impact of the IID issues de-
tected by TAPIR? How much performance can be im-
proved if the IID issues detected by TAPIR are fixed?

We conduct all experiments on a PC with an In-

tel® Core i7-6700 processor and 16 GB RAM.

6.2.1 Effectiveness and Efficiency of TAPIR

apk

apk
apk

apk apk

Validation Against Existing IID Issues. We col-

lect the “buggy” s corresponding to the IID is-

sues in our previous studies. Specifically, for studied

apps whose historical s are available, we select di-

rectly the corresponding buggy s. Meanwhile, for

an app that no longer provides the corresponding his-

torical buggy , we try to build these buggy s

Table 1. Static IID Anti-Pattern Rules for IID Issue-Inducing APIs

Issue-Inducing API Anti-Pattern Rule

1 decode {File, FileDescriptor, Stream, ByteArray,
Region} setImage {URL, ViewUri}⋆
create {FromPath, FromStream}⋆

, ,

null
BitmapFactory.Options

inJustDecodeBounds= 0 inSampleSize⩾ 1

(“Image decoding without resizing”) An external image is decoded with a
value of , or the fields in the option satisfy

 and

2 decode {File, FileDescriptor, Stream, ByteArray,
Region} create {FromPath, FromStream}
Glide.diskCacheStrategy
setImage {URL, ViewUri}⋆

, ,
,

getView onDraw onBindViewHolder getGroupView
getChildView

LruCache.put

(“Loop-based redundant image decoding”) An external image is decoded
(directly or indirectly) in , , , ,

. However, if the developer explicitly stores decoded images in a
cache (e.g., using), we do not consider this case as IID

3 Glide.load Glide.diskCacheStrategy,
getView onDraw onBindViewHolder getGroupView

getChildView
Glide.diskCacheStrategy DiskCacheStrategy.ALL

(“Loop-based redundant image decoding”) An external image is decoded
(directly or indirectly) in , , , ,

. However, if the developer explicitly sets the argument of
 to be , we do not consider

this case as IID

4 decode {File, FileDescriptor, Stream, ByteArray,
Region} create {FromPath, FromStream}
setImage {URL, ViewUri}

, , Thread.run
AsyncTask.doInBackground IntentService.onHandleIntent

(“Image decoding in UI event handlers”) An external image is decoded but is
not invoked in an asynchronous method: overridden ,

, or

5 decode {File, FileDescriptor, Stream, ByteArray,
Region} create {FromPath, FromStream}, LruCache.put()

LruCache.evictAll() LruCache.remove()

(“Unbounded image caching”) An external image is decoded and added to an

image cache by , but there is no subsequent invocation to
 or

6 ImageLoader.displayImage
ImageLoaderConfiguration.Builder. {memoryCache, diskCache}

clearMemoryCache removeFromCache

(“Unbounded image caching”) There exists method invocation to
, but there is

no subsequent invocation to or

7 Glide.load Glide.diskCacheStrategy
DiskCacheStrategy. {SOURCE, RESULT, ALL}

clearDiskCache

(“Unbounded image caching”) Caching images by
with , but there is no subsequent
invocation to

⋆Note: denotes newly added issue-inducing APIs (compared with our conference version[9]).

448 J. Comput. Sci. & Technol., Mar. 2024, Vol.39, No.2

apk

apk

apk

from the corresponding source code. In theory one

should be able to compile each IID issue's correspond-

ing app's source code. However, in practice, the de-

pendencies of the concerned Android apps could not

be easily resolved, and some large apps fail for compi-

lation due to their stale dependencies. To reduce the

possible bias that can be caused by our manual modi-

fications to the apps' dependencies, we choose only

those apps whose s corresponding to the studied

IID issues can be built from source code without suf-

fering from any dependency issue. Finally, we collect

buggy s corresponding to 25 confirmed IID issues

from ten Android apps (as shown in Table 2) as

ground truth to evaluate TAPIR. As a comparison,

we also apply IMGDroid[17] to the collected s.

The overall evaluation results are shown in Table

3. All evaluated 25 IID issues belong to three anti-

patterns. TAPIR correctly identifies all the 25 IID is-

sues without any false negative (FN) report. At the

same time, IMGDroid only successfully detects 13

(out of 14) issues of AP1 (i.e., image decoding with-

out resizing) and one (out of two) issues of AP2 (i.e.,

loop-based redundant image decoding) but misses the

other 11 issues (two of AP1, seven of AP2, and two of

AP3).

We note that in practice TAPIR may possibly de-

tect previously unknown IID issues in these app ver-

sions. However, we are unable to examine them in

this part of the evaluation due to the lack of a ground

truth of all IID issues in these apps' historical ver-

sions.

Discovering Previously Unknown IID Issues. In our

conference version[9], we have applied TAPIR (with-

out the new issue-inducing APIs noted in Table 1)

to the latest versions (available at the end of Septem-

ber 2017) of all the 243 Android apps used in the em-

pirical study and detected 45 previously unknown IID

issues in 16 apps. In this paper, we also apply TAPIR

(with the new issue-inducing APIs noted in Table 1)

to both the old versions evaluated in [9] and the lat-

est versions (available at the beginning of November

2021) of the 16 apps, and Table 4 shows their basic

information.

This time, TAPIR reports totally 51 anti-pattern

Table 2. Effectiveness Validation Subjects

App Name Category Number of Downloads Revision KLOC

OpenNoteScanner Education 10k+ d34135e 2.7

Subsonic Multimedia 500k+ 68496f6 23.8

PhotoAffix Multimedia 10k+ 3d8236e 1.4

WordPress Internet 5M+ 1a8fa65
8429f0a
9f87bc0
dcb7db1
8d3e9e6

95.8

OneBusAway Navigation 500k+ 9f6feea 15.7

Kontalk Internet 10k+ 3f2d89d
9185a80

19.6

NewPipe Multimedia 10k+ 4df4f68 3.5

MoneyManagerEx Money 100k+ dcf4b87 63.8

BlueAlliance Education 10k+ c081671 31.4

Collect Tool 1M+ 6b05133 52.0

Table 3. Effectiveness Validation Results

App Name #IID (IRep/PR ID) TAPIR IMGDroid

AP1 AP2 AP3 AP4 TP FN AP1 AP2 AP3 AP4 TP FN

OpenNoteScanner 2 (#12) 2 0 0 0 2 0 2 0 0 0 2 0

Subsonic 1 (#299) 0 1 0 0 1 0 0 0 0 0 0 1

WordPress 7 (#5290, #5777, #6267, #6676, #7057) 4 2 1 0 7 0 3 1 0 0 4 3

PhotoAffix 2 (#5) 2 0 0 0 2 0 2 0 0 0 2 0

Kontalk 3 (#234, #269, #789) 2 0 1 0 3 0 2 0 0 0 2 1

OneBusAway 2 (#730) 2 0 0 0 2 0 2 0 0 0 2 0

NewPipe 5 (#166) 0 5 0 0 5 0 0 0 0 0 0 5

MoneyManagerEx 1 (#938) 1 0 0 0 1 0 1 0 0 0 1 0

BlueAlliance 1 (#588) 1 0 0 0 1 0 1 0 0 0 1 0

Collect 1 (#2985) 1 0 0 0 1 0 0 0 0 0 0 1

Total 25 15 8 2 0 25 0 13 1 0 0 14 11

Note: Each known IID issue is either a true positive (TP) or a false negative (FN). Columns AP1–AP4 denote the number of studied
IID issues categorized as a specific anti-pattern, respectively.

Wen-Jie Li et al.: Understanding and Detecting Inefficient Image Displaying Issues in Android Apps 449

warnings (i.e., six more warnings than those reported

in the conference version[9]) in the old versions (i.e.,

the versions evaluated in [9]) of the 16 apps. In gener-

al, it is hard to reproduce warnings reported by tools

based on static analysis, and there is no guarantee

that they could be triggered. Therefore, as done by

most static-analysis-based studies, we do not attempt

to reproduce these warnings as well. Instead, we man-

ually inspect each of the reported warnings to deter-

mine whether it is an IID issue or not. Specifically, for

each reported issue, we hypothetically execute the is-

sue's associated Android app, and check whether any

typical runtime behavior of IID issues (e.g., non-adap-

tive image decoding, repeated and redundant image

decoding, UI-blocking image displaying, and image

leakage as described in Subsection 5.3) could be

found. If any typical runtime behavior is found, we

categorize it as an IID issue (i.e., true positive, TP);

otherwise, we categorize it as a spurious warning (i.e.,

false positive, FP). For each TP, we also report it to

its developers for final validation. As most IID issues

detected by TAPIR (in an anti-pattern way) are obvi-

ous and easy to fix, we do not attach respective

patches or open pull requests. We let developers judge

the validity of our reported issues on their own rather

than potentially misleading them by trivial patches.

The results are listed in Table 5.

Finally, 49 of 51 warnings are manually con-

firmed to be true instances of anti-patterns, achiev-

decodeByteArray()

Options
decodeByteArray()

ing an anti-pattern discovery precision of 96.08%. For

the FP case of Qkstms in which an image is decoded

by without resizing, such an im-

age is, however, not from an external source. TAPIR

fails to analyze the parameter of

 which contains resized geome-

tries, and thus conservatively reports it as an IID is-

sue. The FP in ownCloud is also due to the limita-

tion of static analysis: displayed images are from a

disk cache, which stores already resized images.

Among the 49 unique IID issues, there are multi-

ple issues of the same type (e.g., decoding without re-

sizing) in the same app; at the same time, there are

also multiple issues of different types within a single

small code segment. For both of the cases, we believe

that the involved issues are closely related, and we

encapsulate them in a single report so as not to dis-

turb the developers too much. Finally, we have en-

closed the 43 issues reported by the conference ver-

sion㊴ into 20 issue reports and submitted them to re-

spective developers (with descriptions of the issues

and associated anti-patterns). The last column in Ta-

ble 5 shows the reported IRep IDs. So far, we have re-

ceived feedback from the developers on 27 issues. The

remaining 16 reported IID issues are still pending

(their concerned apps may no longer be under active

maintenance).

Among the issues with feedback, 16/27 (59.3%)

are confirmed as real performance threats, and 13 of

Table 4. List of 16 Android Apps Detected with Previously Unknown IID Issues by Applying TAPIR to the 243 Studied Apps

App Name Category Number of
Downloads

Evaluated in [9] Latest

Revision KLOC Revision KLOC

Newsblur Reading 50k+ 535b879 20.1 ecdcacf 20.8

WordPress Internet 10M+ 30ff305 95.8 31ee0d2 262.0

Seadroid Internet 100k+ f5993bd 37.9 45dad57 34.6

MPDroid Multimedia 100k+ 9b0a783 20.5 069baaa 20.6

Aphotomanager Multimedia 10k+ 9343d84 12.4 f7abd36 36.0

Conversations Internet 100k+ 1c31b96 38.0 3f31575 66.2

ownCloud Internet 100k+ 1443902 49.1 e2085ad 58.4

OpenNoteScanner Education 10k+ 2640785 3.5 8fff44c 3.8

Geopaparazzi Navigation 10k+ 71fd81e 89.9 078f90c 74.5

Passandroid Reading 1M+ 1382c6a 6.6 d671360 8.3

4pdaclient Internet 1M+ a637156 41.9 26c6246 56.7

DocumentViewer Reading 500k+ a97560f 49.6 c9bcd30 60.4

Kiss Theming 100k+ 9677dd1 5.1 8b8d8c2 13.5

Bubble Reading 10k+ 9f1e06c 3.5 3dbcd37 3.5

Qksms Communication 500k+ c54c1cc 55.3 2bce012 57.0

Photoview Demo 10k+ 6c227ee 2.1 6c227ee 2.1

Note: An italic app name denotes it previously suffered from IID issues.

450 J. Comput. Sci. & Technol., Mar. 2024, Vol.39, No.2

㊴We do not report the six issues detected with newly added issue-inducing APIs, as the corresponding reversions are too old.

the 16 IID issues (81.3%) have already been fixed by

developers. This indicates that TAPIR can indeed de-

tect quite a few new IID issues that affect the perfor-

mance in real-world Android apps. The result also

practically validates the effectiveness of the summa-

rized anti-pattern rules in our empirical study.

For the remaining 11 IID issues, developers hold

various conservative attitudes as discussed below.

1) Most developers rejecting our reports think

that the performance impact might be negligible, and

would only be convinced if we can provide further evi-

dence about the performance degradation. For exam-

ple, Aphotomanager's developers acknowledge that

their app might encounter performance degradation in

some cases but should be sufficiently fast and thus do

not plan to fix them.

2) Some developers acknowledge the reported is-

sues, but they claim to have higher-priority tasks

than performance optimization.

decodeStream()
decodeFile()

×

We have also applied TAPIR (with the new issue-

inducing APIs), IMGDroid[17], and PerferChecker[2], to

the latest versions of the 16 apps (as shown in Table

4), and Table 6 shows the results㊵. TAPIR reports

totally 67 anti-pattern warnings for the latest ver-

sions of the 16 apps. After manual checking, we final-

ly confirm 64 warnings as true instances of anti-pat-

terns and three false alarms. The three FPs come

from the same app, Newsblur. In two FPs, an icon

image is decoded by and

 without resizing. Such an image is,

however, a small image prepared by the developer in

advance. TAPIR fails to analyze the size of the icon

(i.e., 128 128), and thus conservatively reports it as

an IID issue. The third FP is also due to the limita-

tion of static analysis, where displayed images are

loaded (without resizing) from a disk cache, which

stores already resized images. These three FPs are re-

ported by IMGDroid as well.

Specifically, among the 64 manually confirmed

warnings, there are 11 warnings that are also detect-

ed in the old versions (i.e., included in the 49 warn-

ings shown in Table 5). Among the 11 identical warn-

ings, there are nine warnings that have been reported

to the developers (in our conference version) and two

warnings that are not reported as they are recently

detected by TAPIR with the newly added issue-in-

ducing APIs. Of the nine reported warnings, four are

still pending and three are rejected. The remaining

two warnings (from the same app of Conversations)

are interesting. The developer confirmed and fixed

them (see issue #2283 of Conversations); however,

TAPIR detects the same issues in the latest version of

Conversations, indicating that the original fix does

not solve the issues completely.

The other 37 warnings detected in the old ver-

sions are not detected by TAPIR in the latest ver-

sions. The reasons for the disappearances of these

warnings might be two-fold. 1) They might be fixed

intentionally by the developers (e.g., the 13 fixed is-

sues with explicit responses as shown in Table 5). 2)

They might be removed unintentionally by the devel-

opers during the normal software evolution process as

Table 5. List of 49 Previously Unknown IID Issues Found in
the 16 Android Apps (Old Versions)

App Name AP1 AP2AP3AP4Submitted Issue Reports

Newsblur 1 1 1 0 #977

WordPress 4 0 0 0 #5232,
#5703partially-fixed/rejected

Seadroid 1 0 3 1 #616, #617, #766

MPDroid 1 0 0 0 #837

Aphotomanager 0 1 1 0 #74

Conversations 0 2 0 0 #2198fixed

ownCloud 3(1) 2 1 0 #1862

OpenNoteScanner 0 1 0 0 #69

Geopaparazzi 2 0 0 0 #387

Passandroid 3 0 0 0 #136

4pdaclient 0 1 1 0 #25fixed

DocumentViewer 0 1 2 0 #233

Kiss 0 0 1 0 #570fixed

Bubble 1 0 0 0 #47

Qksms 2(1) 2 2 0 #718fixed, #719fixed

Photoview 0 1 0 0 #478

⋆Aphotomanager 1 1 0 0 n/a

⋆OpenNoteScanner 0 1 0 0 n/a

⋆Geopaparazzi 1 0 0 0 n/a

⋆Kiss 1 0 0 0 n/a

⋆Photoview 1 0 0 0 n/a

Total 23(2) 14 12 1

⋆Note: denotes issues detected with newly added
issueinducing APIs and we do not report these six issues as the
versions are too old. An italic app name denotes it previously
suffered from IID issues. AP1–AP4 denote the number of
detected issues related to each anti-pattern respectively.
Numbers in a bracket are false positives. In the last column,
blue-bold/red-strikethrough issues are explicitly confirmed/
rejected by the developers, and the remaining ones are open
issues. An superscript indicates whether a confirmed issue is
“fixed” or “partially fixed and rejected”. Results of IMGDroid
are not available, as IMGDroid requires corresponding
historical APKs that were not available for most APPs at the
time the experiment was carried out.

Wen-Jie Li et al.: Understanding and Detecting Inefficient Image Displaying Issues in Android Apps 451

㊵We also plan to evaluate another tool, namely DRAW proposed by Gao et al.[8]. However, it is not public available currently.

well (e.g., related codes might be updated or re-

moved).

For the remaining new 53 warnings reported by

TAPIR in the latest app versions, by May 2022, we

have enclosed 22 warnings in ten issue reports and

submitted them to respective developers. So far we

have received four responses involving 12 warnings.

The first issue report㊶ involves seven AP1 (i.e., de-

coding without resizing) warnings in Geopaparazzi,

which is a tool providing georeferenced notes and pic-

tures to do engineering/geologic surveys. The develop-

er admits that “an image will be read in at its origi-

nal size” but “this must be passed on the map render-

er in its original size, which then resizes the com-

bined, individual, images as needed”, “otherwise dis-

aster is guaranteed”. The second issue report㊷ in-

volves one AP3 (i.e., decoding in UI event handlers)

warning in NewsBlur. The developer admits that the

favicon image is “decoded on the main thread with-

out caching” but “the impact to the end user would

be very low if noticeable on current hardware”, and

assigns a low priority to it. The third issue report㊸

involves two AP1 warnings in KISS. One developer

responds that he would “have a look at the code to

see if it could be a problem”. The developer of Con-

versations rejects the last issue report㊹ involving two

AP1 warnings.

decodeResource()
decodeResource()

drawable

As shown in Table 6, among the 67 warnings re-

ported by TAPIR, there are totally 39 warnings (in-

cluding the three false alarms) that can also be de-

tected by IMGDroid. TAPIR uniquely reports 28

warnings, while IMGDroid uniquely reports 71 warn-

ings of AP1, AP2, and AP3㊺. The reasons for this

difference can be attributed to the following aspects.

1) Different issue-inducing APIs. For example, IMG-

Droid includes as its issue-induc-

ing API for detecting IID issues. is

usually used by an app to load images from the

 directory, which usually consists of small

images for different densities. Decoding such small im-

ages would not introduce too much overhead and fur-

ther affect user experience in most cases, therefore we

Table 6. List of Previously Unknown IID Issues Found in the 16 Android Apps (Latest Versions)

App Name Detected IID Issues Execution Time (s)

AP1 AP2 AP3 AP4 Total TAPIR IMGDroid PerferChecker

TI T I TI T I TI T I P TI T I TI T I P

Newsblur 1(3) 0 0 0 1 0 4 1 2 0 0 0 0 8 2 2 0 44.6 11.7 3.8
⋆WordPress 0 0 1 0 0 0 0 0 0 – 0 0 0 0 0 1 – 89.8 84.2 n/a

Seadroid 0 1 0 0 0 0 2 0 11 0 0 1 0 2 2 11 0 93.8 47.4 1.5

MPDroid 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 6.7 6.6 2.5

Aphotomanager 1 0 1 1 1 0 2 0 8 0 0 0 0 4 1 9 0 32.1 10.6 12.0

Conversations 0 2 1 0 0 1 12 0 7 0 0 0 0 12 2 9 0 124.0 30.6 7.6
⋆Owncloud 0 0 0 0 0 5 0 0 0 – 0 0 0 0 0 5 – 134.3 44.2 n/a

OpenNoteScanner 0 0 0 0 0 0 1 0 2 0 0 0 0 1 0 2 0 145.7 93.8 5.4

Geopaparazzi 0 8 2 0 0 0 1 8 3 0 0 0 0 1 16 5 0 157.9 54.2 8.9

Passandroid 3 0 3 0 0 0 3 0 4 0 0 0 0 6 0 7 0 46.0 14.7 4.0

4pdaclient 0 0 1 0 0 0 0 0 8 0 0 0 0 0 0 9 0 98.4 33.6 6.0

DocumentViewer 1 0 1 0 0 1 1 1 0 0 0 0 0 2 1 2 0 29.8 50.4 4.2

⋆Kiss 1 1 1 0 1 0 1 0 1 – 0 0 0 2 2 2 – 9.7 3.5 n/a

Bubble 0 0 3 0 0 0 0 0 3 0 0 0 0 0 0 6 0 32.3 12.0 3.0

⋆Qksms 0 0 0 0 0 0 0 1 0 – 0 0 0 0 1 0 – 111.0 27.4 n/a

Photoview 0 1 0 0 0 0 1 0 0 0 0 0 0 1 1 0 0 7.5 2.5 0.9

Total 7(3) 13 15 1 3 7 28 11 49 0 0 1 0 39 28 71 0 – – –

⋆Note: PerferChecker crashes with errors during processing the apps annotated with . An italic app name denotes it previously
suffered from IID issues. TI: detected by both TAPIR and IMGDroid, T: uniquely detected by TAPIR, I: uniquely detected by
IMGDroid, P: uniquely detected by PerferChecker. AP1–AP4 denote the number of detected issues related to each anti-pattern
respectively. Numbers in a bracket are false positives (currently, only issues reported by TAPIR are manually checked).

452 J. Comput. Sci. & Technol., Mar. 2024, Vol.39, No.2

㊶https://github.com/geopaparazzi/geopaparazzi/issues/661, Mar. 2024.

㊷https://github.com/samuelclay/NewsBlur/issues/1573, Mar. 2024.

㊸https://github.com/Neamar/KISS/issues/1838, Mar. 2024.

㊹https://github.com/iNPUTmice/Conversations/issues/4236, Mar. 2024.

㊺IMGDroid also reports one warning of the anti-pattern “passing image via intent”, which is out of the scope of TAPIR.

https://github.com/geopaparazzi/geopaparazzi/issues/661
https://github.com/samuelclay/NewsBlur/issues/1573
https://github.com/Neamar/KISS/issues/1838
https://github.com/iNPUTmice/Conversations/issues/4236

decodeResource()

getView()

decodeFile()

inJustDecodeBounds true

decodeFile()

do not include as an issue-induc-

ing API in TAPIR to avoid reporting warnings that

do not affect user experience. Besides, IMGDroid in-

cludes decoding APIs of two more third-party li-

braries (i.e., Picasso and Fresco) as its issue-inducing

APIs, which are currently not included (but can be

easily added) in TAPIR. 2) Different criteria. For ex-

ample, for situations like those shown in Fig.10, where

 is invoked in the UI thread, IMGDroid

would report two “decoding in UI thread” issues for

the two invocations (lines 12 and 16).

Whereas we believe the first invocation (line 12)

would not bring in much overhead, as the option

 is set to (line 11), TAPIR

reports only one issue for the second invocation of

 (line 16). 3) Different implementation

details. For example, although both tools are built on

top of soot, different options adopted by them as well

as the ways they handle inter-procedural calls may

lead to different results.

decodeFile()

.jar

The tool of PerfChecker[2] could possibly identify

one kind of IID issue: decoding bitmap (i.e., calling

) in the UI thread, which is a special

case of AP3. Specifically, to analyze an app, Per-

fChecker needs the bytecode of the app as well as the

 files of (usually tens of) dependent libraries (with

specific version requirements), and it requires a lot of

non-trivial configuration for each subject app. In our

evaluation, we successfully apply it to only 12 of the

studied apps without detecting any IID issue. While

for the remaining four apps, PerfChecker crashes with

errors without generating any IID issue report as well.

Table 6 also shows the time consumption of

TAPIR, IMGDroid, and PerferChecker on each evalu-

ated app. It takes only a few seconds to a few min-

utes for both TAPIR and IMGDroid to analyze an

app, while PerfChecker could analyze an app within

ten seconds.

Here, we present two interesting real-world IID is-

sue cases to show the effectiveness of TAPIR when

applying it in practice[9]. We could see how develop-

ers have overlooked the severity of our reported IID

issues, and in fact, seemingly minor IID issues can in-

deed cause poor app experience.

WordPress. The first case is from WordPress,

which is one of the most popular blogging apps.

TAPIR identifies two anti-pattern instances of image

decoding without resizing, and thus one issue report is

composed. However, the app's developers did not real-

ize the severity of our reported issue, and assigned a

low priority to it.

Two months later, a user reported an image-relat-

ed bug that WordPress crashed when loading a large

image. The developers then made extensive efforts in

diagnosing this issue, and proposed several fixes.

However, twenty days later, another user encoun-

tered a similar problem with the same triggering con-

dition. The developers once again attempted to diag-

nose its root cause, but did not reach a clear

verdict㊼.

c94b1b5
For this interesting case, we apply TAPIR to the

latest reversion (i.e.,) of WordPress in 2017

and detected one previously detected and two new

1 public View getView(int position,…) {

2 ...

3 final File file = new File(…);

4 Bitmap bitmap = HugeImageLoader.loadImage(file, …);

5 holder.image.setImageBitmap(bitmap);

6 ...

7 }

8

9 public static Bitmap loadImage(File file,…){

10 BitmapFactory.Options options = new BitmapFactory.Options();

11 options.inJustDecodeBounds = true;

12 BitmapFactory.decodeFile(file.getAbsolutePath(), options);

13 int downscale = calculateInSampleSize(options, …);

14 options.inSampleSize = downscale;

15 options.inJustDecodeBounds = false;

16 Bitmap b = BitmapFactory.decodeFile(file.getAbsolutePath(),

options);
17 return b;

18 }

Fig.10. Decoding in UI thread in issue 74 of Aphotomanager㊻.

Wen-Jie Li et al.: Understanding and Detecting Inefficient Image Displaying Issues in Android Apps 453

㊻https://github.com/k3b/APhotoManager/issues/74, Mar. 2024.

㊼https://github.com/wordpress-mobile/WordPress-Android/issues/5701, Mar. 2024.

https://github.com/k3b/APhotoManager/issues/74
https://github.com/wordpress-mobile/WordPress-Android/issues/5701
https://github.com/wordpress-mobile/WordPress-Android/issues/5701
https://github.com/wordpress-mobile/WordPress-Android/issues/5701
https://github.com/wordpress-mobile/WordPress-Android/issues/5701
https://github.com/wordpress-mobile/WordPress-Android/issues/5701

IID issues, which all belong to the anti-pattern of

“image decoding without resizing”. We reported all

three issues and the developers quickly fixed two of

them in three days㊽. After fixing these TAPIR's re-

ported issues, similar image-related performance is-

sues have never been reported again since July 2017

until the day this paper was written.

This case suggests that providing consequence ver-

ification may make developers more active in dealing

with our reported IID issues. In addition, IID issues

can be more complicated than one expects. Develop-

ers may have overlooked the actual difficulty of diag-

nosing such issues, and ad-hoc fixings may not be effi-

cient in addressing IID issues.

KISS. The second case is from KISS, an Android

app launcher with searching functionalities, the conse-

quences of whose suffered IID issue might have also

been overlooked by its developers. TAPIR detects the

anti-pattern of “loop-based redundant image decod-

ing” in KISS, and thus we reported this issue to its

developers㊾. Unfortunately, the developers explicitly

rejected our proposal due to the concern that they be-

lieved that the performance impact would be minor

and KISS should be kept simple and lightweight.

Interestingly, a year and a half later, one of the

KISS users encountered and complained about an im-

age displaying problem㊿. Then the developers no-

ticed this and decided that this is truly due to our

mentioned IID issue. Thus they quickly fixed this is-

sue. This encouraging result suggests that pattern-

based program analysis can be naturally effective for

defending against practical IID issues in Android

apps.

6.2.2 Performance Impact and Improvement

Study

We also conduct an experiment to answer RQ6

about the performance impact of the IID issues de-

tected by TAPIR and the performance improvement

after fixing these detected IID issues.

apk apk

Experimental Setup. We conduct our experiment

on a set of IID issues selected from the previously un-

known IID issues detected by TAPIR. These detect-

ed IID issues belong to four IID issue anti-patterns

and we randomly select no more than two IID issues

per each anti-pattern as experimental subjects. To

measure runtime performance of an IID issue's corre-

sponding buggy code, we compile the source code of

the app revision corresponding to the selected IID is-

sue, generate the file, and install file on a Xi-

aomi Redmi Note4 smartphone running Android 6.0,

which is a very popular Android device with 26.8 mil-

lion active devices in 2017 (the time when these se-

lected IID issues were detected by TAPIR) . We use

this Android device for the reason that Android de-

velopers commonly use current popular mobile de-

vices for testing when they release their apps, which

can measure the actual impact of the IID issues on

end-users.

Next, we carefully study IID issues' correspond-

ing apps and design one test case for each IID issue.

For these designed test cases, their execution should

cover the buggy code of these selected IID issues. Fi-

nally, six IID issues are selected and Table 7 lists

their basic information, including 1) the IID issue in-

dex, 2) the anti-pattern type of an IID issue, 3) the

name of an IID issue's corresponding Android app,

4) the buggy class, 5) the buggy revision in which

TAPIR detected the IID issue, 6) the issue report of

the IID issue. The designed test cases of these IID is-

sues are public available . It is not an easy work to

design test cases that can cover specific code in an

Android app[18], and we have not found a test case

that covers the buggy code of any IID issue belong-

ing to AP4 in our selected subjects.

Table 7. Selected IID Issues for Performance Analysis

Index IID Pattern App Name Class Revision Issue Report

1 AP1 Qksms Contact c54c1cc #719fixed

2 AP1 Newsblur ImageLoader 535b879 977

3 AP2 Qksms ContactHelper c54c1cc #718fixed

4 AP2 Qksms Contact c54c1cc #719fixed

5 AP3 Qksms Contact c54c1cc #718fixed

6 AP3 Newsblur PrefsUtils 535b879 977

Note: In the last column, bold/stroke-out issues are explicitly fixed/rejected by the developers.

454 J. Comput. Sci. & Technol., Mar. 2024, Vol.39, No.2

㊽Developers consider one report as false positive because they have control of the external image size.

㊾https://github.com/Neamar/KISS/issues/570, Mar. 2024.

㊿https://github.com/Neamar/KISS/issues/1054, Mar. 2024.
 https://newzoo.com/insights/articles/insights-into-the-2-3-billion-android-smartphones-in-use-around-the-world/, Mar. 2024.
 https://github.com/StruggleLi/Test-cases, Mar. 2024.

https://github.com/Neamar/KISS/issues/570
https://github.com/Neamar/KISS/issues/1054
https://newzoo.com/insights/articles/insights-into-the-2-3-billion-android-smartphones-in-use-around-the-world/
https://newzoo.com/insights/articles/insights-into-the-2-3-billion-android-smartphones-in-use-around-the-world/
https://newzoo.com/insights/articles/insights-into-the-2-3-billion-android-smartphones-in-use-around-the-world/
https://newzoo.com/insights/articles/insights-into-the-2-3-billion-android-smartphones-in-use-around-the-world/
https://newzoo.com/insights/articles/insights-into-the-2-3-billion-android-smartphones-in-use-around-the-world/
https://newzoo.com/insights/articles/insights-into-the-2-3-billion-android-smartphones-in-use-around-the-world/
https://newzoo.com/insights/articles/insights-into-the-2-3-billion-android-smartphones-in-use-around-the-world/
https://newzoo.com/insights/articles/insights-into-the-2-3-billion-android-smartphones-in-use-around-the-world/
https://newzoo.com/insights/articles/insights-into-the-2-3-billion-android-smartphones-in-use-around-the-world/
https://newzoo.com/insights/articles/insights-into-the-2-3-billion-android-smartphones-in-use-around-the-world/
https://newzoo.com/insights/articles/insights-into-the-2-3-billion-android-smartphones-in-use-around-the-world/
https://newzoo.com/insights/articles/insights-into-the-2-3-billion-android-smartphones-in-use-around-the-world/
https://newzoo.com/insights/articles/insights-into-the-2-3-billion-android-smartphones-in-use-around-the-world/
https://newzoo.com/insights/articles/insights-into-the-2-3-billion-android-smartphones-in-use-around-the-world/
https://newzoo.com/insights/articles/insights-into-the-2-3-billion-android-smartphones-in-use-around-the-world/
https://newzoo.com/insights/articles/insights-into-the-2-3-billion-android-smartphones-in-use-around-the-world/
https://newzoo.com/insights/articles/insights-into-the-2-3-billion-android-smartphones-in-use-around-the-world/
https://newzoo.com/insights/articles/insights-into-the-2-3-billion-android-smartphones-in-use-around-the-world/
https://newzoo.com/insights/articles/insights-into-the-2-3-billion-android-smartphones-in-use-around-the-world/
https://newzoo.com/insights/articles/insights-into-the-2-3-billion-android-smartphones-in-use-around-the-world/
https://newzoo.com/insights/articles/insights-into-the-2-3-billion-android-smartphones-in-use-around-the-world/
https://newzoo.com/insights/articles/insights-into-the-2-3-billion-android-smartphones-in-use-around-the-world/
https://newzoo.com/insights/articles/insights-into-the-2-3-billion-android-smartphones-in-use-around-the-world/
https://newzoo.com/insights/articles/insights-into-the-2-3-billion-android-smartphones-in-use-around-the-world/
https://newzoo.com/insights/articles/insights-into-the-2-3-billion-android-smartphones-in-use-around-the-world/
https://github.com/StruggleLi/Test-cases
https://github.com/StruggleLi/Test-cases
https://github.com/StruggleLi/Test-cases

As all the selected IID issues would cause perfor-

mance degradation because of improper implementa-

tion of image decoding (such as decoding an image di-

rectly without considering the actual size of the wid-

get that displays the image, decoding large images in

the UI thread), for each selected IID issue, we manu-

ally instrument the source code of the corresponding

app revision to obtain the time consumption used for

image decoding in the buggy code (i.e., the execution

time of the statements responding for image decod-

ing). After these preparations, for each selected IID

issue, we then run the corresponding instrumented

app with the designed test case 100 times to measure

the average time consumption. For each test run, we

reset the app under test by reinstalling the app.

To measure the performance improvement of the

selected IID issues after fixing them, we prepare an

“optimized version” for each IID issue. The opti-

mized version is the app revision that the IID issue

has been fixed. If an IID issue has been fixed by de-

velopers, we replace the buggy version's buggy code

with that of the bug fixing revision . If there is no

fix provided by developers for an IID issue, we manu-

ally fix it by referring to the fix suggestions provided

in the Android documentation .

● For the IID issues belonging to AP1, we fix

them by resizing the resolution of the displayed im-

ages according to the size of the widgets used for dis-

playing them, so as to fit the widget's size and re-

duce unnecessary image decoding.

● For the IID issues belonging to AP2, we fix

them by adding an image cache for the displayed im-

ages, so as to reduce redundant image decoding.

● For the IID issues belonging to AP3, we fix

them by moving image decoding to background

threads, so as to avoid UI thread blocking.

Next, as we do in the performance impact experi-

ment, we use the same designed test cases and execu-

tion strategy to execute the optimized version of each

IID issue and record the time consumption, which is

then compared with that of the buggy version.

Experimental Results. In order to keep an app's

user interface (UI) smooth, developers need to make

sure that the Android system can render the UI at a

frame rate of 60 FPS or above . To achieve this tar-

get, an app typically needs to be able to prepare the

items in the UI in a couple of milliseconds. Therefore,

even one millisecond saved in decoding an image is

helpful to guarantee satisfactory user experience.

Now, let us discuss the results of our experiments.

● IID Issues of AP1. For the IID issue 1 in

Qksms, it involves a UI of the contact list and each

contact item is attached with a contact image. The

displayed contact images all have a fixed resolution of

720×720. When displaying these images in the buggy

version, the average decoding time of an image con-

sumes 15.2 milliseconds. However, the required image

resolution of the widgets used to display contact im-

ages is 140×140. In the optimized version, where

proper down-sampling is implemented, the average

time consumption for image decoding reduces to 3.8

milliseconds. For the IID issue 2 in Newsblur, it in-

volves a UI of the news list and each news item is at-

tached with a widget to display a thumbnail image.

The required image resolution of the widgets is

240×40. However, in the buggy version, the resolu-

tion of the thumbnail images actually displayed in

these widgets ranges from 432×462 to 1 534×2 560,

and the time consumption for decoding an image

ranges from 10.1 milliseconds to 132.6 milliseconds,

which decreases to 4.6 milliseconds in the optimized

version.

×

● IID Issues of AP2. IID issues 3 and 4 involve re-

peated displaying and redundant decoding contact

images with resolution of 720 720 and the average

image decoding time is 15.2 milliseconds and 13.6 mil-

liseconds, respectively. In the optimized versions, a

displayed image only needs to be decoded on the first

display, and the decoded image object would be

cached for future use, leading to a time consumption

of only about 0.000 3 milliseconds (i.e., the average

time for getting an image object from cache) for both

the two apps.

×

×

● IID Issues of AP3. IID issue 5 in Qksms in-

volves displaying seven contacts' images with a reso-

lution of 720 720 in a contact list in the UI thread,

and the buggy version takes 157.2 milliseconds on av-

erage to decode all these seven images. IID issue 6 in

Newsblur involves displaying a user thumbnail with a

resolution of 180 180 in the UI thread, which takes

about 3.5 milliseconds in the buggy version. In the

optimized versions, where the image decoding logic is

Wen-Jie Li et al.: Understanding and Detecting Inefficient Image Displaying Issues in Android Apps 455

 To ensure functional equivalence, we do not use developers' own issue fixing revision of some IID issue as their optimized ver-
sion because there commonly exist additional revisions between the buggy version and the issue fixing version and those additional
revisions may introduce functional changes. What is more, the code changes in those revisions may have side effect on the perfor-
mance of the Android application.

 https://stuff.mit.edu/afs/sipb/project/android/docs/training/displaying-bitmaps/index.html, Mar. 2024.
 https://developer.android.com/, Mar. 2024.

https://stuff.mit.edu/afs/sipb/project/android/docs/training/displaying-bitmaps/index.html
https://stuff.mit.edu/afs/sipb/project/android/docs/training/displaying-bitmaps/index.html
https://stuff.mit.edu/afs/sipb/project/android/docs/training/displaying-bitmaps/index.html
https://developer.android.com/

moved to a background thread, the time consump-

tion (in the background thread) changes to 103.6 mil-

liseconds and 4.1 milliseconds, respectively. Although

the improvements in time consumption for decoding

images are not very significant or even negative, it

improves the smoothness of UI thread execution by

reducing the workload of the UI thread.

×
×

From the experiment, we find that decoding a rel-

atively large image (e.g., 1 534 2 560) or a relatively

small number of images (e.g., several 720 720 im-

ages) can take more than 100 milliseconds (on the

evaluated device). In addition, once an IID issue is re-

solved, the performance can be significantly im-

proved in most cases. The finding shows the effective-

ness of TAPIR as the IID issues detected by it in-

deed cause significant performance degradation.

7 Threats to Validity

Subject Selection. The empirical study is based on

216 IID issues from 243 open-source Android apps,

which may not be fully representative of all IID is-

sues in practice. Therefore, the generalizability of the

anti-patterns and the associated rules for identifying

IID issues is not guaranteed. To reduce such threats,

we collect these IID issues from well-maintained pop-

ular open-source Android apps covering diverse cate-

gories. Besides, we determine the issue-inducing APIs

in each rule shown in Table 1 not only directly based

on APIs encountered in studied issues, but based on

our experience/knowledge of the image displaying

process as well (i.e., for each rule, there would be

some APIs that have never been found in the studied

issues). In the future, we plan to collect more IID is-

sues in more Android apps to study their characteris-

tics.

Another threat is that we only evaluate TAPIR

with a small number of apps. Although we have tried

our best, we only successfully build a relatively small

ground truth with ten apps involving 25 known IID

issues. At the same time, we only apply TAPIR to

the studied apps for detecting previous unknown IID

issues. As a result, we might not guarantee the gener-

alizability of our evaluations. In the future, we plan

to evaluate TAPIR on more Android apps.

Code Slice Extraction. The IID issues' annotated

code slices used in our study are extracted manually,

and it is possible that such a process is subject to

mistakes. To reduce the threat, we cross-validate all

results. We also release our datasets for public access.

Limitations of TAPIR. TAPIR is lightweight

(e.g., lacking the full path sensitivity) and identifies

only the extracted code anti-patterns. Therefore, it

may report spurious warnings (false positives) or miss

certain anti-patterns (false negatives). We intentional-

ly design TAPIR to be simple, and the evaluation

demonstrates its effectiveness in detecting IID issues.

A future effort is to develop more sophisticated static

and/or dynamic analysis for more accurate detection

of IID problems.

Besides, as mentioned earlier, TAPIR currently

does not consider the source code of third-party li-

braries used by studied Android apps, which could be

another source of IID issues. Developers may also use

ad-hoc implementations for image displaying, present-

ing obstacles to our pattern-based analysis. This as-

pect of IID issue detection can be a potential future

direction.

8 Related Work

Performance has become a major concern for mo-

bile app developers and has been widely studied in

the community. In this section, we briefly summarize

and discuss existing literatures on this concern.

Understanding Performance Issues in Mobile
Apps. Huang et al.[19] identified several important fac-

tors that may impact user-perceived network laten-

cies in mobile apps. Liu et al.[2] studied the character-

istics of Android app performance issues and identi-

fied their common patterns. These findings can sup-

port performance issue avoidance, testing, debugging,

and analysis for Android apps. Nejati and Balasubra-

manian[20] performed an in-depth investigation of mo-

bile browser performance by pairwise comparisons be-

tween mobile and non-mobile browsers. Huang et al.[21]

conducted a systematic measurement study to quanti-

fy user-perceived latency with/without background

workloads. Rosen et al.[22] investigated the benefits

and challenges of using Server Push on mobile de-

vices to improve mobile performance.

Several studies provide some clues for understand-

ing and detecting IID issues as studied in this work.

Wang and Rountev[4] provided evidence that the re-

sponse time of image decoding can grow significantly

as the image's size increases, and thus IID may be a

significant source of performance issues, while Carette

et al.[3] discussed that large images may potentially

impact the performance of Android apps.

These studies either focus on general performance

issues in Android apps and thus provide limited in-

sights to tackle specific IID issues, or do not system-

atically investigate IID issues in practical Android

456 J. Comput. Sci. & Technol., Mar. 2024, Vol.39, No.2

apps. To the best of our knowledge, in [9], we con-

ducted the first systematic empirical study of IID is-

sues using real-world Android apps, and in this paper

we extend that study with 54 new IID issues. Our

studies provide key insights (e.g., common anti-pat-

terns derived from real-world issues and patches) on

understanding and detection of IID issues in Android

apps.

Diagnosing and Detecting Performance Issues in
Mobile Apps. Mantis[7] estimates the execution time

for Android apps on given inputs to identify problem-

inducing inputs that can slow down an app's execu-

tion. ARO[23] monitors cross-layer interactions (e.g.,

those between the app layer and the resource manage-

ment layer) to help disclose inefficient resource usage,

which can commonly cause performance degradation

of Android apps. AppInsight[24] instruments app bina-

ries to identify critical paths (e.g., slow execution

paths) in handling user interaction requests, so as to

disclose root causes for performance issues in mobile

apps. Panappticon[25] monitors the application, sys-

tem, and kernel software layers to identify perfor-

mance problems stemming from application design

flaws, underpowered hardware, and harmful interac-

tions between apparently unrelated applications, and

further reveals performance issues from inefficient

platform code or problematic app interactions. Nistor

and Ravindranath[26] analyzed sequences of calls to

String getter methods to understand the impact of

larger inputs on a user's perception in Windows

Phone apps. Lin et al.[27] proposed an approach,

ASYNCHRONIZER, to automatically refactor long-

running operations into asynchronous tasks. Kang et
al.[28] tracked asynchronous executions with a dynam-

ic instrumentation approach and profiled them in a

task granularity, equipping it with low-overhead and

high compatibility merits.

decodeFile()

For the work on diagnosing and detecting IID is-

sues, Liu et al.[2] proposed a tool, PerfChecker, based

on static analysis, which can possibly identify one

kind of IID issues: decoding bitmap (i.e., calling

) in the UI thread. Draw proposed by

Gao et al.[8] performs two UI rendering analyses to

help app developers pinpoint rendering problems and

resolve short delays. However, these pieces of work

can cover only a small proportion of IID issues stud-

ied in this paper. Song et al.[17] proposed a static anal-

ysis tool, IMGDroid, that can detect the IID issues of

anti-patterns 1–3. However, the scopes of these two

tools are not exactly the same. TAPIR focuses on the

image displaying process that starts from image de-

coding and ends with image rendering, whereas IMG-

Droid focuses on image loading process. Specifically,

TAPIR can additionally detect the anti-pattern of

“unbounded image caching” while IMGDroid can ad-

ditionally detect the anti-patterns of “image passing

by intent” and “local image loading without permis-

sion”.
Fixing and Optimizing Performance Issues in Mo-

bile Apps. Lee et al.[29] proposed a technique that can

render speculative frames of future possible outcomes,

delivering them to the client device entire RTT ahead

of time, and recover quickly from possible mis-specu-

lations when they occur to mask up the network la-

tency. Huang et al.[21] developed a lightweight tracker

to accurately identify all delay-critical threads that

contribute to the slow response of user interactions,

and build a resource manager that can efficiently

schedule various system resources including CPU,

I/O, and GPU, for optimizing the performance of

these threads. Zhao et al.[1] leveraged the string analy-

sis and callback control flow analysis to identify

HTTP requests that should be prefetched to reduce

the network latency in Android apps. Lyu et al.[30]

rewrote the code that places database writes within

loops to reduce the energy consumption and improve

runtime performance of database operations in An-

droid apps. Nguyen et al.[31] reduced the application

delay by prioritizing reads over writes and grouping

them based on assigned priorities. In our work, the

detection results of TAPIR provide the location and

anti-patterns of its detected IID issues in Android

apps, which can then be used to help developers

quickly fix IID issues as our experiments and case

analyses show.

9 Conclusions

Improper handling of (potentially large) images in

an Android app can lead to inefficient image display

(IID) issues, which can cause the app to crash or slow

down. In this paper, we proposed a descriptive frame-

work for the image displaying procedures of IID is-

sues. Based on the framework, we conducted an em-

pirical study of 216 real-world IID issues and found

that most IID issues are strongly correlated with cer-

tain anti-patterns in the source code (e.g., image de-

coding without resizing, loop-based redundant image

decoding, image decoding in UI event handlers, and

unbounded image caching). We proposed a static tool

TAPIR based on such anti-patterns. The evaluation

results show that the anti-pattern-based static tech-

nique can effectively and efficiently detect IID issues

in practice.

Wen-Jie Li et al.: Understanding and Detecting Inefficient Image Displaying Issues in Android Apps 457

Conflict of Interest The authors declare that

they have no conflict of interest.

References

 Zhao Y X, Laser M S, Lyu Y J, Medvidovic N. Leverag-

ing program analysis to reduce user-perceived latency in

mobile applications. In Proc. the 40th International Con-

ference on Software Engineering, May 27–Jun. 3, 2018,

pp.176–186. DOI: 10.1145/3180155.3180249.

[1]

 Liu Y P, Xu C, Cheung S C. Characterizing and detect-

ing performance bugs for smartphone applications. In

Proc. the 36th Int. Conf. Software Engineering, May

31–Jun. 7, 2014, pp.1013–1024. DOI: 10.1145/2568225.

2568229.

[2]

 Carette A, Younes M A A, Hecht G, Moha N, Rouvoy R.

Investigating the energy impact of Android smells. In

Proc. the 24th IEEE International Conference on Soft-

ware Analysis, Evolution and Reengineering, Feb. 2017,

pp.115–126. DOI: 10.1109/SANER.2017.7884614.

[3]

 Wang Y, Rountev A. Profiling the responsiveness of An-

droid applications via automated resource amplification.

In Proc. the 2016 International Conference on Mobile

Software Engineering and Systems, May 2016, pp.48–58.
DOI: 10.1145/2897073.2897097.

[4]

 Linares-Vásquez M, Vendome C, Luo Q, Poshyvanyk D.

How developers detect and fix performance bottlenecks in

Android apps. In Proc. the 2015 IEEE Int. Conf. Soft-

ware Maintenance and Evolution, Sept. 29–Oct. 1, 2015,

pp.352–361. DOI: 10.1109/ICSM.2015.7332486.

[5]

 Liu Y P, Xu C, Cheung S C. Diagnosing energy efficien-

cy and performance for mobile internetware applications.

IEEE Software, 2015, 32(1): 67–75. DOI: 10.1109/MS.

2015.4.

[6]

 Kwon Y, Lee S, Yi H, Kwon D, Yang S, Chun B G,

Huang L, Maniatis P, Naik M, Paek Y. Mantis: Automat-

ic performance prediction for smartphone applications. In

Proc. the 2013 USENIX Conference on Annual Technical

Conference, Jun. 2013, pp.297–308.

[7]

 Gao Y, Luo Y, Chen D Q, Huang H C, Dong W Y, Xia

M Y, Liu X, Bu J J. Every pixel counts: Fine-grained UI

rendering analysis for mobile applications. In Proc. the

2017 IEEE Conference on Computer Communications,

May 2017. DOI: 10.1109/INFOCOM.2017.8057023.

[8]

 Li W J, Jiang Y Y, Xu C, Liu Y P, Ma X X, Lyu J.

Characterizing and detecting inefficient image displaying

issues in Android apps. In Proc. the 26th IEEE Interna-

tional Conference on Software Analysis, Evolution and

Reengineering, Feb. 2019, pp.355–365. DOI: 10.1109/

SANER.2019.8668030.

[9]

 Agrawal H, Horgan J R. Dynamic program slicing. ACM

SIGPLAN Notices, 1990, 25(6): 246–256. DOI: 10.1145/

93548.93576.

[10]

 Liu Y P, Xu C, Cheung S C, Terragni V. Understanding

and detecting wake lock misuses for Android applications.

In Proc. the 24th ACM SIGSOFT International Sympo-

sium on Foundations of Software Engineering, Nov. 2016,

[11]

pp.396–409. DOI: 10.1145/2950290.2950297.

 Hu J J, Wei L L, Liu Y P, Cheung S C, Huang H X. A

tale of two cities: How WebView induces bugs to An-

droid applications. In Proc. the 33rd ACM/IEEE Interna-

tional Conference on Automated Software Engineering,

Sept. 2018, pp.702–713. DOI: 10.1145/3238147.3238180.

[12]

 Rath M, Rendall J, Guo J L C, Cleland-Huang J, Mäder

P. Traceability in the wild: Automatically augmenting in-

complete trace links. In Proc. the 40th International Con-

ference on Software Engineering, May 27–Jun. 3 2018,

pp.834–845. DOI: 10.1145/3180155.3180207.

[13]

 Wu T Y, Liu J R, Xu Z B, Guo C R, Zhang Y L, Yan J,

Zhang J. Light-weight, inter-procedural and callback-

aware resource leak detection for Android apps. IEEE

Trans. Software Engineering, 2016, 42(11): 1054–1076.
DOI: 10.1109/TSE.2016.2547385.

[14]

 Xu G Q, Rountev A. Precise memory leak detection for

Java software using container profiling. In Proc. the 30th

International Conference on Software Engineering, May

2008, pp.151–160. DOI: 10.1145/1368088.1368110.

[15]

 Yan D C, Xu G Q, Yang S Q, Rountev A. LeakChecker:

Practical static memory leak detection for managed lan-

guages. In Proc. the 2014 Annual IEEE/ACM Interna-

tional Symposium on Code Generation and Optimization,

Feb. 2014, pp.87–97. DOI: 10.1145/2544137.2544151.

[16]

 Song W, Han M Q, Huang J. IMGDroid: Detecting im-

age loading defects in Android applications. In Proc. the

43rd IEEE/ACM Int. Conf. Software Engineering, May

2021, pp.823–834. DOI: 10.1109/ICSE43902.2021.00080.

[17]

 Jensen C S, Prasad M R, Møller A. Automated testing

with targeted event sequence generation. In Proc. the

2013 Inter. Symp. Software Testing and Analysis, Jul.

2013, pp.67–77. DOI: 10.1145/2483760.2483777.

[18]

 Huang J X, Xu Q, Tiwana B, Mao Z M, Zhang M, Bahl

P. Anatomizing application performance differences on

smartphones. In Proc. the 8th International Conference

on Mobile Systems, Applications, and Services, Jun. 2010,

pp.165–178. DOI: 10.1145/1814433.1814452.

[19]

 Nejati J, Balasubramanian A. An in-depth study of mo-

bile browser performance. In Proc. the 25th International

Conference on World Wide Web, Apr. 2016, pp.1305–
1315. DOI: 10.1145/2872427.2883014.

[20]

 Huang G, Xu M W, Lin F X, Liu Y X, Ma Y, Pushp S,

Liu X Z. ShuffleDog: Characterizing and adapting user-

perceived latency of Android apps. IEEE Trans. Mobile

Computing, 2017, 16(10): 2913–2926. DOI: 10.1109/TMC.

2017.2651823.

[21]

 Rosen S, Han B, Hao S, Mao Z M, Qian F. Push or re-

quest: An investigation of HTTP/2 server push for im-

proving mobile performance. In Proc. the 26th Interna-

tional Conference on World Wide Web, Apr. 2017,

pp.459–468. DOI: 10.1145/3038912.3052574.

[22]

 Qian F, Wang Z G, Gerber A, Mao Z Q, Sen S,

Spatscheck O. Profiling resource usage for mobile applica-

tions: A cross-layer approach. In Proc. the 9th Interna-

tional Conference on Mobile Systems, Applications, and

Services, Jun. 28–Jul. 1, 2011, pp.321–334. DOI: 10.1145/

1999995.2000026.

[23]

458 J. Comput. Sci. & Technol., Mar. 2024, Vol.39, No.2

https://doi.org/10.1145/3180155.3180249
https://doi.org/10.1145/2568225.2568229
https://doi.org/10.1145/2568225.2568229
https://doi.org/10.1109/SANER.2017.7884614
https://doi.org/10.1145/2897073.2897097
https://doi.org/10.1109/ICSM.2015.7332486
https://doi.org/10.1109/MS.2015.4
https://doi.org/10.1109/MS.2015.4
https://doi.org/10.1109/INFOCOM.2017.8057023
https://doi.org/10.1109/SANER.2019.8668030
https://doi.org/10.1109/SANER.2019.8668030
https://doi.org/10.1145/93548.93576
https://doi.org/10.1145/93548.93576
https://doi.org/10.1145/2950290.2950297
https://doi.org/10.1145/3238147.3238180
https://doi.org/10.1145/3180155.3180207
https://doi.org/10.1109/TSE.2016.2547385
https://doi.org/10.1145/1368088.1368110
https://doi.org/10.1145/2544137.2544151
https://doi.org/10.1109/ICSE43902.2021.00080
https://doi.org/10.1109/ICSE43902.2021.00080
https://doi.org/10.1109/ICSE43902.2021.00080
https://doi.org/10.1145/2483760.2483777
https://doi.org/10.1145/2483760.2483777
https://doi.org/10.1145/2483760.2483777
https://doi.org/10.1145/1814433.1814452
https://doi.org/10.1145/2872427.2883014
https://doi.org/10.1109/TMC.2017.2651823
https://doi.org/10.1109/TMC.2017.2651823
https://doi.org/10.1145/3038912.3052574
https://doi.org/10.1145/1999995.2000026
https://doi.org/10.1145/1999995.2000026

 Ravindranath L, Padhye J, Agarwal S, Mahajan R, Ober-

miller I, Shayandeh S. AppInsight: Mobile app perfor-

mance monitoring in the wild. In Proc. the 10th USENIX

Conference on Operating Systems Design and Implemen-

tation, Oct. 2012, pp.107–120. DOI: 10.5555/2387880.

2387891.

[24]

 Zhang L D, Bild D R, Dick R P, Mao Z M, Dinda P.

Panappticon: Event-based tracing to measure mobile ap-

plication and platform performance. In Proc. the 2013 In-

ternational Conference on Hardware/Software Codesign

and System Synthesis, Sept. 29–Oct. 4, 2013, pp.1–10.

DOI: 10.1109/CODES-ISSS.2013.6659020.

[25]

 Nistor A, Ravindranath L. SunCat: Helping developers

understand and predict performance problems in smart-

phone applications. In Proc. the 2014 International Sym-

posium on Software Testing and Analysis, Jul. 2014,

pp.282–292. DOI: 10.1145/2610384.2610410.

[26]

 Lin Y, RadoiC, Dig D. Retrofitting concurrency for An-

droid applications through refactoring. In Proc. the 22nd

ACM SIGSOFT International Symposium on Founda-

tions of Software Engineering, Nov. 2014, pp.341–352.

DOI: 10.1145/2635868.2635903.

[27]

 Kang Y, Zhou Y F, Xu H, Lyu M R. DiagDroid: Android

performance diagnosis via anatomizing asynchronous exe-

cutions. In Proc. the 24th ACM SIGSOFT International

Symposium on Foundations of Software Engineering, Nov.

2016, pp.410–421. DOI: 10.1145/2950290.2950316.

[28]

 Lee K, Chu D, Cuervo E, Kopf J, Degtyarev Y, Grizan S,

Wolman A, Flinn J. Outatime: Using speculation to en-

able low-latency continuous interaction for mobile cloud

gaming. In Proc. the 13th Annual International Confer-

ence on Mobile Systems, Applications, and Services, May

2015, pp.151–165. DOI: 10.1145/2742647.2742656.

[29]

 Lyu Y J, Li D, Halfond W G J. Remove RATs from your

code: Automated optimization of resource inefficient

database writes for mobile applications. In Proc. the 27th

ACM SIGSOFT International Symposium on Software

Testing and Analysis, Jul. 2018, pp.310–321. DOI: 10.

1145/3213846.3213865.

[30]

 Nguyen D T, Zhou G, Xing G L, Qi X, Hao Z J, Peng G,

Yang Q. Reducing smartphone application delay through

read/write isolation. In Proc. the 13th Annual Int. Conf.

Mobile Systems, Applications, and Services, May 2015,

pp.287–300. DOI: 10.1145/2742647.2742661.

[31]

Wen-Jie Li is a lecturer with the

School of Computer and Information,

Anhui Normal University, Wuhu. He

received his Ph.D. degree from Nan-

jing University, Nanjing, in 2022. His

research interests include Android ap-

plication analysis and testing.

Jun Ma is an associate professor in

the Department of Computer Science

and Technology at Nanjing University,

Nanjing. He received his Ph.D. degree

from Nanjing University, Nanjing, in

2015. His research interests include

software testing and analysis, and soft-

ware composition analysis.

Yan-Yan Jiang received his Ph.D.

degree from Nanjing University, Nan-

jing, in 2017. He is currently an asso-

ciate professor in the Department of

Computer Science and Technology,

Nanjing University, Nanjing. His re-

search interests include software test-

ing/analysis and program synthesis.

Chang Xu is a professor in the De-

partment of Computer Science and

Technology at Nanjing University,

Nanjing. He received his Ph.D. degree

in computer science and engineering

from The Hong Kong University of

Science and Technology, Hong Kong,

in 2008. His research interests include big data software

engineering, software testing and analysis, and adaptive

and embedded system.

Xiao-Xing Ma received his Ph.D.

degree in computer science and tech-

nology from Nanjing University, Nan-

jing, in 2003. He is currently a profes-

sor in State Key Laboratory for Novel

Software Technology, Nanjing Univer-

sity, Nanjing. His research topics in-

clude adaptive software systems, software architectures,

middleware systems, and assurance of non-functional

software qualities.

Wen-Jie Li et al.: Understanding and Detecting Inefficient Image Displaying Issues in Android Apps 459

https://dl.acm.org/doi/10.5555/2387880.2387891
https://dl.acm.org/doi/10.5555/2387880.2387891
https://doi.org/10.1109/CODES-ISSS.2013.6659020
https://doi.org/10.1109/CODES-ISSS.2013.6659020
https://doi.org/10.1109/CODES-ISSS.2013.6659020
https://doi.org/10.1145/2610384.2610410
https://doi.org/10.1145/2635868.2635903
https://doi.org/10.1145/2950290.2950316
https://doi.org/10.1145/2742647.2742656
https://doi.org/10.1145/3213846.3213865
https://doi.org/10.1145/3213846.3213865
https://doi.org/10.1145/2742647.2742661

	1 Introduction
	2 IID Issues in Android Apps
	2.1 Image Displaying in Android Apps
	2.2 Inefficient Image Displaying (IID)

	3 Descriptive Framework for IID Issues
	3.1 Descriptive Framework
	3.2 An Illustrative Example
	3.3 Obtaining Annotated Code Slices for IID Issues

	4 Understanding IID Issues in Android Apps: Empirical Study Methodology
	4.1 IID Issue Collection
	4.2 Research Questions

	5 Empirical Study: Results
	5.1 Answering RQ1: What Are theConsequences and TriggeringConditions of IID Issues?
	5.2 Answering RQ2: How Are IID Issues Introduced by Developers?
	5.2.1 Custom Implementation Specific IID Issues
	5.2.2 Third-Party Library Specific IID Issues

	5.3 Answering RQ3: What Is the Runtime Behavior of IID Issues?
	5.4 Answering RQ4: Are There Common Anti-Patterns for IID Issues?

	6 Design and Evaluation of Static IID Issue Detection Tool
	6.1 Static Detection of IID Issues
	6.1.1 IID Issue Anti-Pattern Rules
	6.1.2 TAPIR Static Analyzer

	6.2 Evaluation of TAPIR Static Analyzer
	6.2.1 Effectiveness and Efficiency of TAPIR
	6.2.2 Performance Impact and Improvement Study

	7 Threats to Validity
	8 Related Work
	9 Conclusions
	Conflict of Interest
	References

