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Abstract    Given a query patch from a novel class, one-shot object detection aims to detect all instances of this class in

a target image through the semantic similarity comparison. However, due to the extremely limited guidance in the novel

class as well as the unseen appearance difference between the query and target instances, it is difficult to appropriately ex-

ploit  their  semantic  similarity  and  generalize  well.  To  mitigate  this  problem,  we  present  a  universal  Cross-Attention

Transformer (CAT) module for  accurate and efficient semantic  similarity comparison in one-shot object  detection.  The

proposed CAT utilizes the transformer mechanism to comprehensively capture bi-directional correspondence between any

paired pixels from the query and the target image, which empowers us to sufficiently exploit their semantic characteristics

for accurate similarity comparison. In addition, the proposed CAT enables feature dimensionality compression for infer-

ence speedup without performance loss.  Extensive experiments on three object detection datasets MS-COCO, PASCAL

VOC and FSOD under the one-shot setting demonstrate the effectiveness and efficiency of our model, e.g., it surpasses

CoAE, a major baseline in this task, by 1.0% in average precision (AP) on MS-COCO and runs nearly 2.5 times faster.
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1    Introduction

Object detection is a fundamental task in comput-

er  vision  domain,  which  aims  to  predict  a  bounding

box  with  a  category  label  for  each  instance  of  inter-

est in the image[1].  Although deep convolutional neu-

ral  networks  (DCNNs)  based  object  detection  meth-

ods have achieved great success in recent years, their

success heavily relies on a huge amount of annotated

data, which is often difficult or even infeasible to col-

lect in real applications due to the expensive annota-

tion cost.  Therefore,  it  is  inevitable to cope with ob-

ject detection for unseen classes with only a few anno-

tated examples at the test phase.

In  this  study,  we  mainly  focus  on  a  challenging

task  in  object  detection,  i.e.,  one-shot  object  detec-

tion. Given a novel class, there is only one query im-

age with one annotated object, and a detector is then

required  to  find  all  objects  of  the  same  category  as

the  annotated  object  in  a  target  image.  Till  now,

some  effective  methods  have  been  proposed,  which

mainly  focus  on  building  a  two-stage  paradigm[2].

Specifically,  in  the  first  stage,  the  features  of  the
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query  image  and  the  target  image  are  aggregated  to

exploit  their  semantic  correspondence  utilizing  chan-

nel  attention[3] or  correlation  filtering[4].  Then,  a  re-

gion  proposal  network  is  utilized  to  detect  all  candi-

date objects and real ones are ultimately located by a

semantic  similarity comparison based classifier.  How-

ever, due to extremely limited guidance for the novel

class (i.e.,  only one annotated sample) as well  as the

unseen  appearance  difference  between  the  query  ob-

ject and the target one (e.g.,  that is often caused by

the intra-class variation and different imaging endear-

ments),  these  existing  methods  still  fail  to  appropri-

ately generalize well with pleasing performance.

To mitigate this  problem, we revisit  the one-shot

object  detection problem and attempt to  explore  the

accurate  semantic  correspondence  between  the  query

object and the target image for performance enhance-

ment.  Considering  that  the  great  appearance  differ-

ence often conceals  semantic  correspondence between

different  objects  into  an  unknown  embedding  space,

we have to sufficiently exploit any detailed correspon-

dence between two images. A direct way is to explore

the  relation  between  each  sub-region  from the  query

image and that in the target one. Following this idea,

we  propose  a  Cross-Attention  Transformer  (CAT)

module  and  embed  it  into  the  two-stage  detection

paradigm  for  comprehensive  exploration  of  the  bidi-

rectional  correspondence  between  the  target  and

query images.  The proposed CAT module consists of

two streams of interleaved Transformers[5]. Given the

grid features generated from a Siamese feature extrac-

tor[3],  the  two-stream  transformer  is  utilized  to  ex-

ploit  the  bi-directional  correspondence  between  any

paired sub-regions from the query and the target im-

ages  through  computing  the  cross-attention  between

them. As shown in Fig.1, the CAT module can suffi-

ciently exploit the semantic characteristics of each im-

age as well as their grid-level correspondences, which

will be beneficial for accurate similarity comparison in

the second stage.  In addition,  due to sufficient infor-

mation captured by the CAT module, the dimension-

ality of the final feature representation of each object

can  be  effectively  compressed  without  performance

loss. To verify the effectiveness of the proposed CAT,

we compare it with the state-of-the-art on three stan-

dard  one-shot  object  detection  benchmarks  and  ob-

serve  significant  performance  and  efficiency  improve-

ment.

In summary, this study mainly contributes in the

following three aspects.

● We propose a CAT module which is able to suf-

ficiently  exploit  the  grid-level  correspondence  be-

tween the query and target image for accurate and ef-

ficient one-shot object detection. It is noticeable that

the CAT module is an universal module which can be

seamlessly plugged into other existing one-shot object

detection frameworks.

● With the CAT module, we develop an effective

one-shot  detection  network,  which  demonstrates  the

state-of-the-art  accuracy  on  three  standard  bench-

marks for one-shot object detection.

2.5

● By compressing the feature dimensions, the pro-

posed  model  is  capable  of  running  nearly  times

faster  than  the  current  state-of-the-art  baseline

CoAE[3] without accuracy degradation. 

2    Related Work

In this section, we will briefly review two lines of

researches related to this study. 

2.1    Few-Shot Object Detection

The key for few-shot object detection is to estab-

lish a similarity metric that can be appropriately gen-

eralized  to  unseen  classes  with  a  few  labeled  exam-

ples  (i.e.,  the  query set).  Efforts  have been made re-

cently  from  different  perspectives,  such  as  transfer

 

(a) (b) (c) (d)

Fig.1.   Visualization  results  of  the  intermediate  feature  maps.
(a)  Query  images.  (b)  Target  images.  (c)  Backbone  images.
(d) CAT outputs. We visualize the response maps of the input
and  output  of  our  proposed  CAT  module  in  (c)  and  (d).  By
capturing  the  bidirectional  correspondence  between  query  and
target  images,  our  CAT  module  significantly  refines  the  re-
sponse  map  and  pays  more  attention  to  the  objects  with  the
same category of query objects.
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learning,  metric  learning  and  attention-based  meth-

ods.

Specifically,  for  transfer  learning,  Chen et  al.[6]

presented the regularization techniques to relieve the

over-fitting caused by directly transferring knowledge

from  a  large  auxiliary  dataset  to  the  novel  classes.

Kang et  al.[7] developed  a  single-stage  detector  com-

bined  with  a  meta-model  that  re-weights  the  impor-

tance  of  features  from  the  base  model.  For  metric

learning, Karlinsky et al.[8] introduced a distance met-

ric  based  classifier  into  the  Region  of  Interest  (RoI)

module  in  the  detector,  which  maps  the  objects  into

the  universal  embedding  space.  The  attention-based

methods  focus  on  modelling  the  correspondence  be-

tween  the  target  and  the  query.  Hsieh et  al.[3] de-

signed a co-attention based model called CoAE which

leverages  the  correlated features  from the  target  and

the  query  for  better  generalization  performance.  Fan

et  al.[4] introduced  depth-wise  convolution  to  get  the

attention feature map in the region proposal network

(RPN)  phase  and  proposed  the  multi-relation  detec-

tor to model different relationships in the region-con-

volutional  neural  network (R-CNN) phase.  Osokin et
al.[9] firstly  performed  dense  correlation  matching

based  on  local  features  and  then  conducted  spatial

alignment  and  bi-linear  resampling  to  compute  the

detection score.

Our work lies on the third line of research, the at-

tention-based methods. Different from previous work,

our proposed CAT module empowers us to deeply ex-

ploit  the  grid-level  bidirectional  correspondence  be-

tween the target and the query, using stacks of cross-

attention transformer layers. 

2.2    Visual Transformer

Witnessing  that  Transformer[5] becomes  the  de-

facto  standard  in  natural  language  processing

(NLP)[10],  recent  literature  commences  introducing

transformer-like  networks  into  various  computer  vi-

sion  tasks,  including  image  recognition[11, 12],  object

detection[13, 14],  segmentation[15],  visual  question  an-

swering  (VQA)[16, 17], and  point  cloud[18].  The  Vision

Transformer (ViT)[11] directly feeds image patches in-

to  a  transformer  for  image  classification,  which  re-

moves the need of any convolution operation. Yuan et
al.[19] proposed a layer-wise tokens-to-tokens transfor-

mation  to  progressively  structurize  the  image  to  to-

kens,  which  has  better performance  and  lower  over-

head  than  ViT.  Carion et  al.[13] proposed  DETR,  a

transformer  encoder-decoder  architecture  that  per-

forms end-to-end object detection as set prediction. It

does  not  rely  on  many  manual  components  required

by  traditional  detectors,  such  as  non-maximum  sup-

pression and anchor selection. Ye et al.[15] proposed a

cross-modal  self-attention model  to capture the long-

range dependencies  between language and visual  fea-

tures. LXMERT[16] and VL-BERT[17] are transformer-

like  visual-linguistic  pretraining  models  that  achieve

superior performance on several vision-language tasks.

To the best of our knowledge, our proposed model is

the first attempt to employ Transformers for the task

of  one-shot  object  detection.  Moreover,  it  relies  on  a

two-stream  cross-attention  architecture,  rather  than

the commonly-adopted self-attention mechanisms. 

3    Our Approach

p

I

C0

C1 C0 ∩ C1 = ∅

We  formulate  the  one-shot  object  detection  task

as in CoAE[3].  Given a query image patch  with its

class  label,  the  one-shot  detector  aims  to  detect  all

object instances of the same class in a target image ,

where we assume that at least  one instance exists  in

the target image. We denote the set of classes in the

test  phase  (unseen  classes)  as  while  those  in  the

training  phase  (seen  classes)  is ,  and .

The model is trained with the annotated data of the

seen classes,  and generalized to detect  unseen classes

with a single query image. 

3.1    Overall Architecture

50

Iq ∈ R3×Hq×Wq

It ∈ R3×Ht×Wt

50

ϕ(It) ∈ RC×H′
t×W ′

t

ϕ(Iq) ∈ RC×H′
q×W ′

q

ϕ

C = 1 024 H ′
t = Ht/16

W ′
t = Wt/16 H ′

q = Hq/16 W ′
q = Wq/16

3× 3 1× 1

As shown in Fig.2,  our  proposed  method is  com-

posed  of  three  parts,  including  the  feature  extractor

(backbone), the cross-attention module CAT and the

similarity-based  detection  head.  At  first,  we  adopt

ResNet- [20] to extract features from both the query

image  and  the  target  image

. Note that the backbone parameters are

shared  between  the  query  and  the  target  images.

What needs to be especially explained is that we only

use the first three blocks of ResNet-  to extract fea-

ture maps with high resolutions. For the ease of rep-

resentation,  we  denote  and

 as  the  feature  maps  of  the  target

and  the  query  images  respectively,  where  repre-

sents  the  backbone, , ,

,  and .  After

that, we use a  convolution and a  convolu-

tion  to  compress  the  number  of  channels  of
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ϕ(It), ϕ(Iq) 1 024 dm = 256,  respectively  from  to .

Both  features  are  flattened  in  the  spatial  dimension

and  further  deeply  aggregated  by  the  CAT  module

with the cross-attention mechanism as defined in the

following formula:
 

(Ft,Fq) = CAT (ϕ(It)
′, ϕ(Iq)

′),

ϕ(It)
′ ∈ Rdm×H′

tW
′
t , ϕ(Iq)

′ ∈ Rdm×H′
qW

′
q

Ft ∈ Rdm×H′
t×W ′

t ,Fq ∈ Rdm×H′
q×W ′

q

CAT

where  are the in-

put  sequences,  are

the  output  feature  maps  after  cross-attention,  and

 represents the operation of our proposed Cross-

Attention Transformer.

p1,p2, . . . ,pn Ft

In  the  end,  the  RPN-based  head  takes  as  input

the  aggregated  target  features  and  generates  propos-

als  for  further  classification  and  regression.  The  fea-

tures of proposals  extracted from  by

RoI  align  are  fed  into  a  regressor  to  obtain  refined

bounding boxes.
 

bboxi = Φr(ψ(Ft,pi)),

Φr ψ

Fq

where  represents  the  regressor  and  represents

the operation of RoI align. For similarity-based classi-

fication, we first apply global average pooling on the

RoI  features  and  the  aggregated  query  features ,
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Fig.2.  Overall architecture of the proposed module for one-shot object detection. Our detector is composed of three parts. The first
part is (a) a shared ResNet- [20] backbone used to extract features of both the target and query images. And the following part is
(b) our Cross-Attention Transformer (CAT) module that fuses the features from backbone and enhances the features of the regions
which may be the same category as query in the target image, while the last part is (c) the detection head with a regular RPN head
and an R-CNN head like Faster R-CNN[2].
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Φc P (bboxi), i = 1, 2, . . . , n

and  then  concatenate  them as  the  input  of  classifier

.  The  classification  results 

can be formulated as: 

P (bboxi) = Φc(Concat(GAP (ψ(Ft,pi)), GAP (Fq))),

Concat

GAP

where  represents  the  operation  of  concate-

nate, and  represents the operation of global av-

erage pooling. 

3.2    Cross-Attention Transformer Module

The Cross-Attention Transformer (CAT) model is

the key component of our proposed framework. Based

on  the  Transformer  architecture,  it  models  the  bidi-

rectional correspondences between grids of the target

and query images and performs dual feature aggrega-

tion for both the target and the query.

The  basic  building  block  of  Transformer  is  the

“Scaled Dot-Product Attention” defined as follows: 

Attention(Q,K,V ) = softmax
(
QKT

√
dk

)
V ,

Q,K,V

dk

where  represent queries, keys and values, re-

spectively.  is the dimension of keys.

Vaswani et  al.[5] thought  Multi-Head  Attention

mechanism can be further employed to jointly attend

to  information  from  different  representation  sub-

spaces: 

MH(Q,K,V ) = Concat(head1, . . . , headM)W
O,

headi = Attention(QW Q
i ,KWK

i ,V W V
i ),

MH

W Q
i ∈ Rdm×d′

WK
i ∈ Rdm×d′

W V
i ∈ Rdm×d′

W O ∈ RMd′×dm

d′ = dm/M dm = 256 M = 8

where  represents the operation of multi-head at-

tention, , , 

are the matrices  to compute the so-called query,  key

and  value  embeddings  respectively,  and

 is the projection matrix. In our work,

we set ,  and .

After the multi-head attention operation, the out-

put  is  sent  into  a  feed-forward  network  (FFN) mod-

ule  composed of  two linear  transformations  with  Re-

LU activation, defined as: 

FFN(x) = max(0,xW1 + b1)W2 + b2,

W1,W2 b1, b2where  and  are the weight matrices and

basis vectors respectively.

Carion et al.[13] proposed a Transformer-like mod-

el  (DETR) for  general  object  detection and obtained

competing  performance.  Although  we  also  employ

Transformer  in  this  work,  there  are  still  significant

differences between DETR and our model. Firstly, the

challenges faced by the two models are different. As a

general object detector, DETR focuses on the discrim-

ination  between  the  foreground  and  the  background,

and  accurate  bounding  box  regression.  On  the  con-

trary, the difficulty of one shot detection is mainly on

similarity-based  comparison,  rather  than  proposal

generation[21]. Through experiments, we found that in

many  cases,  one-shot  detection  models  can  produce

accurate bounding boxes of salient objects but fail to

assign correct class labels. To resolve their individual

challenges,  DETR  and  our  model  choose  different

model  architectures.  DETR  is  built  upon  self-atten-

tion  that  explores  long-range  dependencies  between

pixels of a single input image. In contrast, our model

relies  on  a  two-stream  architecture  which  performs

cross-attention  (query-to-target  and  target-to-query)

to  exploit  the  similarity  between  sub-regions  of  the

query and the target images.

Xt ∈ RNt×dm

Xq ∈ RNq×dm

Nt = H ′
t ×W ′

t Nq = H ′
q ×W ′

q

sine

Xt Xq

Q = Xt K = V = Xq

To  be  more  specific,  and
 represent  the  input  sequences  that  are

the flattened feature maps of the target and the query
images  respectively,  as  shown  in Fig.2.  Note  that

 and  are  the  lengths  of

the sequences, respectively. Following Carion et al.[13],
we use the  function to generate spatial  position
encoding  for  input  sequences  and .  In  one

stream  of  CAT,  we  let  and ,

and obtain the aggregated target features. This proce-
dure can be summarized as: 

Yt = Norm(X̃t + FFN(X̃t)),
 

X̃t = Norm(Xt + Pt +MH(Xt + Pt,Xq + Pq,Xq)),

Norm
MH

Pt ∈ RNt×dm ,Pq ∈ RNq×dm

Xt

Xq Q = Xq

K = V = Xt Yq

N = 4

where  represents  the  operation  of  layer  nor-
malization,  represents  the  operation  of  multi-
head attention, and  are the

spatial  position  encodings  corresponding  to  and
,  respectively.  In  another  stream,  we  set 

and  and  generate ,  the  aggregated

query features. The above whole computation can be
viewed  as  one  layer  of  our  proposed  CAT,  and  the
outputs of one layer will be the inputs of the next lay-
er. In our work, we set the number of layers .

Ft Fq

Ft

Fq

The  outputs  of  the  CAT  module  are  then  re-
shaped to new feature maps  and  that share the

same sizes as the origin feature maps, where  is fed
into the subsequent RPN and  is used in similarity-

based classification. 

4    Experiments

Our  experiments  are  conducted  on  MS-COCO[22]
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(short for COCO), PASCAL VOC[23] and the recent-

ly  released  FSOD[4] dataset.  In Subsection 4.1,  we

first introduce implementation details. Then we carry

out  ablation  study  and  comparison  with  SOTA  in

Subsections 4.2 and 4.3 respectively. 

4.1    Implementation Details

10

0.01 16

10

5 9

0.000 1 0.9

600

1 000

128× 128

Training  Details.  Our  network  is  trained  with

stochastic gradient descent (SGD) over four NVIDIA

RTX-2080Ti  GPUs  for  epochs  with  the  initial

learning  rate  being  and  a  mini-batch  of  im-

ages. The learning rate is reduced by a factor of  at

epoch  and ,  respectively.  Weight  decay  and  mo-

mentum are set to  and , respectively. As in

CoAE[3], the backbone ResNet-50 model is pretrained

on a reduced training set of ImageNet in which all the

MS-COCO  classes  are  removed  to  ensure  that  our

model does “foresee” any unseen class. The target im-

ages  are  resized  to  have  their  shorter  side  being 

and their longer side less than or equal to , and

the query image patches are resized to a fixed size of

.  We  built  our  model  on  MMDetection[24],

which  is  a  general  object  detection  framework  based

on  PyTorch.  Based  on  spatial-wise  and  channel-wise

co-attention,  CoAE[3] achieves  the  best  performance

over existing approaches and serves as a major base-

line in our paper. For strictly fair comparison, we re-

implemented the CoAE model on the same MMDetec-

tion  framework,  and  achieved  significantly  better  re-

sults than the original author-provided version on all

the three evaluated datasets. The reason may be bet-

ter training strategies in MMDetection, such as multi-

ply data augmentations and optimized pipeline.

Inference Details. The same evaluation strategy as

CoAE is  applied for  fair  comparison.  Specifically,  we

firstly  shuffle  the  query  image  patches  of  that  class

with  a  random  seed  of  target  image  ID,  and  then

sample the first five query image patches. We run our

evaluations on these patches and take the average of

these results as the stable statistics for evaluation. 

4.2    Ablation Study

1

Since CAT is the key component of our model, in

this  subsection  we  mainly  explore  the  effect  of  this

module  with  different  hyper-parameters.  For  easy  il-

lustration, our ablation experiments are conducted on

COCO split  which  will  be  discussed  in Subsection

4.3.

Transformer  Structure.  Our  CAT  module  con-

sists of a stack of two-stream transformer layers, each

8.0% 14.2%

1 024
256

of  stream performing target-to-query or  query-to-tar-

get  attention  and  generating  the  corresponding  tar-

get  or  query  features.  To  better  demonstrate  the  ef-

fectiveness  of  our  two-stream  transformer  layers,  we

conduct several ablative experiments as shown in Ta-

ble 1. For a clear comparison, we first remove the en-

tire transformer layers and report the performance on

both  unseen  and  seen  classes.  One  can  see  that  the

model incurs  and  AP (average precision)

drops  on  unseen  and  seen  classes  respectively,  which

demonstrates  the  attention  mechanism  is  critical  for

modeling the relation between the query and the tar-

get.  It  is  worth noticing that “No Attention” in Ta-

ble 1 has  lower  inference  speed  (FPS)  than  our  pro-

posed  CAT;  we  hypothesize  that  it  is  mostly  due  to

the  difference  in  channel  dimensions:  original  Faster

R-CNN  has  channel  dimensions;  however,  we

use  for  accuracy-efficiency  trade-offs  (see Table

2).
 
 

Table  1.    Results of Different Dimensions of Feature Embed-
ding

Method FPS Unseen Seen

AP 50AP AP 50AP

No attention 6.0 8.5 15.0 17.1 28.7
CAT (one stream) 18.4 15.2 25.3 30.3 48.6
CAT (two streams) 16.3 16.5 27.1 31.3 50.5
Self attention 14.7 16.2 26.5 32.6 52.2

Note: “Two streams” represents our model that performs both
query-to-target  and  target-to-query  attentions,  while “one
stream” represents  a  model  that  executes  the  query-to-target
side.  The  bold  number  is  the  maximum  value  of  the  same
column.
 
 

Table  2.    Results of Different Dimensions of Embeddings

dm Params (×106) FPS Unseen Seen
AP 50AP AP 50AP

128 12.74 20.8 14.6 26.0 29.0 49.6
256 19.10 16.3 16.5 27.1 31.3 50.5
512 37.67 9.5 16.6 27.3 32.1 51.6

1 024 110.53 4.9 15.7 25.8 32.7 52.4

Note:  Params  represents  the  number  of  parameters  of  the
model with different dimension of embeddings.
 

1.3% 1.0%

Then  we  compare  the  two-stream  architecture

with  a  one-stream  transformer  that  only  performs

query-to-target  attention  and  generates  aggregated

target features. The results show that the one-stream

model incurs  and  AP drops on unseen and

seen  classes  respectively,  demonstrating  the  impor-

tance  of  bidirectional  feature  aggregation.  We  also

find  that  our  two-stream  cross-attention  method

slightly  outperforms  self-attention  with  less  memory

usage and a faster inference speed.

3 6

Number  of  CAT Layers. We  investigate  the  per-

formance of CAT with different numbers of layers. As

shown in Table 3, we test the results of CAT with the

number of layers ranging from  to . The CAT with
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5

4

four  layers  achieves  the  best  performance  on  unseen

classes, while on seen classes the best AP is obtained

with the number of layers of . It can be found that

increasing  the  number  of  layers  does  not  always  im-

prove performance, which may be caused by the over-

fitting  on  seen  classes.  Note  that  even  using  only

three  layers,  our  model  still  outperforms  CoAE,

demonstrating  the  superiority  of  the  proposed

method.  In  the  remaining  experiments,  we  set  the

number of layers to  by default.

dm
1

dm 128

2

dm = 256 dm = 512

dm 512

dm = 1 024

dm 256

Dimension of Feature Embeddings. Table 2 shows

the results with different values of  on COCO split

. We also report their number of parameters and in-

ference  speed  (FPS).  From  the  results,  we  can  find

that reducing  to  will significantly decrease AP

by  points  on  unseen  classes.  The  APs  with

 and  are  close  to  each  other,  but

setting  to  will significantly increase the mod-

el  size  and  slow  down  the  inference  speed.  The  re-

sults  with  show  an  overfitting  on  seen

classes.  To  strike  the  balance  between  the  accuracy

and speed,  we set  to  in the following experi-

ments. 

4.3    Comparison with State-of-the-Arts

MS-COCO. Following Hsieh et al.[3], we divide the

80

2017

1.0% 0.9%
50

0.9%

 classes  of  the  COCO dataset[22] into  four  groups,

alternately  taking  three  groups  as  seen  classes  and

one group as unseen classes. We use the “train ”
(118 000 images) split for training and minival (5 000

images) split for evaluation. We compare our method

with  SiamMask[25] and CoAE in Tables 4 and 5.  Be-

sides the authors' release of the CoAE model (denot-

ed as CoAE in Tables 4 and 5), we also re-implement

this  model  in  the  MMDetection  framework  (denoted

as  CoAE (Reimp))  for  strictly  fair  comparison.  Note

that  CoAE (Reimp)  is  trained with  the  same strate-

gies as our model and achieves better results than the

original  version,  and  thus  it  serves  as  a  strong  and

fair baseline. Tables 4 and 5 show the comparison on

unseen and seen classes, respectively. Compared with

the re-implemented CoAE model, our model achieves

 and  improvements on the average AP and

AP  respectively.  As for seen classes,  our model  al-

so  achieves  better  performance  that  outperforms

CoAE (Reimp) by  AP point on average.

20

16 4

2007

2012

2007

1.3%

PASCAL VOC. As for VOC[23],  we divide the 

classes  into  seen  classes  and  unseen  classes,

where the choice of seen classes and unseen classes is

consistent with that of CoAE. Note that our model is

trained  on  the  union  set  of  VOC  train&val  sets

and VOC  train and validate sets, while is evalu-

ated on VOC . We evaluate the average precision

of each category, and calculate the mean average pre-

cision  (mAP)  of  seen  classes  and  unseen  classes,  re-

spectively. Tables 6 and 7 show the comparison with

CoAE and other several baselines[26–28], whose evalua-

tion settings are consistent with ours. Our model out-

performs  the  re-implemented  CoAE  by  mAP

points  on  unseen  classes  and  performs  slightly  worse

 

1Table  3.    Ablation Study of CAT on the COCO Split 

Layer Unseen Seen

AP 50AP AP 50AP

3CAT (  layers) 15.8 25.9 31.2 50.0

4CAT (  layers) 16.5 27.1 31.3 50.5

5CAT (  layers) 16.5 27.1 32.1 51.6

6CAT (  layers) 16.3 27.1 31.8 51.3

 

Table  4.    Results (Average Precision) on the Unseen Classes of the COCO Dataset

Method Split 1 Split 2 Split 3 Split 4 Average

AP 50AP AP 50AP AP 50AP AP 50AP AP 50AP

SiamMask[25] – 15.3 – 17.6 – 17.4 – 17.0 – 16.8

CoAE 11.8 23.2 12.2 23.7 9.3 20.3 9.4 20.4 10.7 21.9

CoAE (Reimp) 15.1 25.7 15.3 25.4 11.0 21.0 12.5 21.7 13.5 23.5

Ours 16.5 27.1 16.6 26.6 12.4 22.5 12.6 21.4 14.5 24.4

Note: We set the results of CoAE as our baseline. For fair comparisons, we re-implement CoAE on our code framework and report
its results.
 

Table  5.    Results (Average Precision) on the Seen Classes of the COCO Dataset

Method Split 1 Split 2 Split 3 Split 4 Average

AP 50AP AP 50AP AP 50AP AP 50AP AP 50AP

SiamMask[25] – 38.9 – 37.1 – 37.8 – 36.6 – 37.6

CoAE 22.4 42.2 21.3 40.2 21.6 39.9 22.0 41.3 21.8 40.9

CoAE (Reimp) 31.2 51.3 27.3 45.3 27.7 45.0 28.8 47.3 28.8 47.2

Ours 31.3 50.5 28.8 46.1 28.9 45.3 29.6 47.5 29.7 47.3
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0.3%(  mAP)  on  seen  classes,  which  presents  a

stronger generalization ability from seen classes to un-

seen classes.

1 000

800 200

1.7% 2.5% 75

FSOD. The  FSOD  dataset[4] is  specifically  de-

signed for few-shot object detection. It contains 

categories, with  for training and  for test. We

test  the  performance  of  our  model  and  our  re-imple-

mented  CoAE model  on  this  dataset,  with  the  same

one-shot  setting. Table 8 shows  that  our  model  out-

performs CoAE by  in AP and  in AP  on

novel classes.
 
 

Table  8.    Results (Average Precision) on the Unseen Classes
of the FSOD Dataset

Method AP 50AP 75AP

CoAE (Reimp) 40.3 63.8 41.7

Ours 42.0 64.0 44.2

dm = 256

16.3

5.9

2.5

Inference Speed. Note that our model achieves su-

perior accuracy with a much smaller dimension of fea-

tures  ( )  than  that  of  the  previous  SOTA

CoAE (1 024). On the other hand, the dot-product at-

tention  adopted  by  Transformer  is  more  paralleliz-

able  and  space-efficient.  These  two  characteristics

lead to a much faster inference speed: on an NVIDIA

RTX-2080Ti  GPU,  our  model  achieves  FPS,

while the speed of CoAE is only  FPS that is near-

ly  times slower than ours. 

4.4    Visualization of CAT Layers

For intuitively understanding our model, we visu-

alize  the  intermediate  feature  maps  according  to  the

intensity of response. As shown in Fig.3, the first and

the second columns represent  the query and the tar-

get  images  respectively,  and  the  remaining  columns

correspond to the visualization of  different CAT lay-

ers. Without incorporating any query information, the

backbone outputs endow higher responses (higher val-

ues  on  the  heatmap)  on  salient  objects  or  features.

With the increase of layers and deeper aggregation of

query  information,  the  CAT outputs  gradually  focus

on the objects of the same category as the query. The

 

Table  6.    Results (Average Precision) on the Seen Classes of the VOC Dataset

Method Seen Class mAP

Plant Sofa TV Car Bottle Boat Chair Person Bus Train Horse Bike Dog Bird Mbike Table

SiamFC 3.2 22.8 5.0 16.7 0.5 8.1 1.2 4.2 22.2 22.6 35.4 14.2 25.8 11.7 19.7 27.8 15.1

SiamRPN 1.9 15.7 4.5 12.8 1.0 1.1 6.1 8.7 7.9 6.9 17.4 17.8 20.5 7.2 18.5 5.1 9.6

CompNet 28.4 41.5 65.0 66.4 37.1 49.8 16.2 31.7 69.7 73.1 75.6 71.6 61.4 52.3 63.4 39.8 52.7

CoAE 30.0 54.9 64.1 66.7 40.1 54.1 14.7 60.9 77.5 78.3 77.9 73.2 80.5 70.8 72.4 46.2 60.1

CoAE (Reimp) 47.3 61.8 72.1 83.0 56.6 63.1 40.4 80.3 81.3 80.6 79.6 77.1 83.2 75.0 69.4 45.5 68.5

Ours 44.2 65.5 67.1 83.9 54.2 66.8 45.6 79.5 76.8 82.3 81.4 78.5 84.0 76.7 71.0 33.9 68.2

Note: We compare our model with several previous methods and our baseline model CoAE.
 

Table  7.    Results (Average Precision) on the Unseen Classes
of the VOC Dataset

Method Unseen Class mAP

Cow Sheep Cat Aero

SiamFC 6.8 2.28 31.6 12.4 13.3

SiamRPN 15.9 15.70 21.7 3.5 14.2

CompNet 75.3 60.00 47.9 25.3 52.1

CoAE 83.9 67.10 75.6 46.2 68.2

CoAE (Reimp) 84.8 75.60 83.7 57.8 75.5

 

(a) (b) (c) (d) (e) (f) (g)

Fig.3.  Visualization results of the intermediate feature maps. (a) Query images. (b) Target images. (c) Backbones outputs. (d) Lay-
er-1. (e) Layer-2. (f) Layer-3. (g) Layer-4. We visualize the outputs of each layer in our CAT on several target-query pairs.
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visualization demonstrates the importance of our pro-

posed CAT module  on exploiting the  correspondence

between the target and the query. 

4.5    Comparison  with  Few-Shot  Detection

Methods

We also  compare  our  method  with  several  state-

of-the-art few-shot object detection methods on PAS-

CAL  VOC  and  MS-COCO,  under  the  one-shot  set-

ting.

20

0.5 50

20

60

Experimental  Setup. PASCAL  VOC  2007  and

VOC 2012 consist of 16.5k training and validation im-

ages and 5k test images covering  categories.  Con-

sistent  with  the  previous  few-shot  learning  setup  in

TFA[29],  we  use  the  VOC  2007  and  VOC  2012

train/val sets for training and the VOC 2007 test set

for test. Fifteen classes are considered as base classes,

and the remaining five classes as novel classes. We re-

port the mean average precision (mAP) with intersec-

tion  over  union  (IoU)  threshold  at  (AP ).  For

MS-COCO,  we  set  the  PASCAL VOC categories

as  novel  classes  and  the  remaining  categories  as

base classes. Since our method is a one-way one-shot

object detection method, we keep the evaluation pro-

tocol of few-shot methods consistent with CoAE for a

fair  comparison,  which  means  we  only  test  classes

present in each test image.

20

Quantitative  Results. The  results  are  summarized

in Tables 9 and 10. Our method outperforms state-of-

the-art  methods in  most  cases  for  the  three  different

dataset  splits  of  PASCAL VOC,  and  it  achieves  the

best results on the  novel  classes of  COCO, which

demonstrates the effectiveness of our approach. In Ta-

ble 10, we list the FPS of various methods on COCO,

among  which  our  CAT is  the  fastest.  Moreover,  our

approach does  not  need to fine-tune on novel  classes

compared with the previous few-shot methods, which

leads to a much faster adaptation speed.
 

5    Conclusions

2.5

In  this  work,  we  proposed  a  Cross-Attention

Transformer module (CAT) to deeply exploit bidirec-

tional  correspondence  between  the  query  and  target

pairs for one-shot object detection. By combining the

proposed  CAT  module  with  a  two-stage  framework,

we constructed a  simple  yet  effective  one-shot  detec-

tor. The proposed model achieves state-of-the-art per-

formance on three one-shot detection benchmarks and

meanwhile runs  times faster than CoAE[3],  a ma-

jor  strong  baseline,  demonstrating  a  superiority  over

both effectiveness and efficiency.
 

 

Table  9.    Comparison with Few-Shot Methods on Three PASCAL VOC Novel Split Sets

Model Backbone Novel Split 1 Novel Split 2 Novel Split 3 Adaptation Time (s)

Meta R-CNN ICCV2019[30] R-101 39.9 31.4 35.3 327

FSOD CVPR2020[4] R-101 53.5 45.2 57.5 407

TFA w/fc ICML2020[29] R-101-FPN 61.2 44.8 57.2 2 672

TFA w/cos ICML2020[29] R-101-FPN 58.1 49.2 58.8 2 672

FsDetView ECCV2020[31] R-101 59.8 47.6 56.4 319

FSCE CVPR2021[32] R-101-FPN 69.0 50.1 59.2 586

MPSR ECCV2020[33] R-101-FPN 60.5 47.9 58.7 407

Ours R-101 61.9 53.2 60.8 0

Note: All results come from official released codes of these methods. For a fair comparison, we modify their evaluation protocols to
be the same as CoAE[3]. “R-101” refers to ResNet-101 backbone and “R-101-FPN” refers to ResNet-101 with FPN[34] and adaptation
time represents the time the model requires for fine-tuning on novel classes on eight NVIDIA RTX-2080Ti GPUs.

 

Table  10.    Comparison with Few-Shot Methods on COCO

Model Backbone Novel AP Novel AP50 FPS Adaptation Time (s)

Meta R-CNN ICCV2019[30] R-101 10.9 20.4 11.4 339

FSOD CVPR2020[4] R-101 14.7 24.8 10.6 402

TFA w/fc ICML2020[29] R-101-FPN 15.3 25.2 16.1 2 597

TFA w/cos ICML2020[29] R-101-FPN 15.5 25.9 16.1 2 597

FsDetView ECCV2020[31] R-101 16.4 26.8 9.5 311

FSCE CVPR2021[32] R-101-FPN 15.8 26.5 16.2 902

MPSR ECCV2020[33] R-101-FPN 14.5 24.2 15.9 643

Ours R-101 17.8 30.1 16.3 0
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