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Abstract    As a highly vascular eye part, the choroid is crucial in various eye disease diagnoses. However, limited re-

search has focused on the inner structure of the choroid due to the challenges in obtaining sufficient accurate label data,

particularly for the choroidal vessels. Meanwhile, the existing direct choroidal vessel segmentation methods for the intelli-

gent diagnosis of vascular assisted ophthalmic diseases are still unsatisfactory due to noise data, while the synergistic seg-

mentation methods compromise vessel segmentation performance for the choroid layer segmentation tasks. Common cas-

caded structures grapple with error propagation during training. To address these challenges, we propose a cascade learn-

ing segmentation method for the inner vessel structures of the choroid in this paper. Specifically, we propose Transformer-

Assisted Cascade Learning Network (TACLNet) for choroidal vessel segmentation, which comprises a two-stage training

strategy: pre-training for choroid layer segmentation and joint training for choroid layer and choroidal vessel segmentation.

We also enhance the skip connection structures by introducing a multi-scale subtraction connection module designated as

MSC,  capturing  differential  and  detailed  information  simultaneously.  Additionally,  we  implement  an  auxiliary  Trans-

former branch named ATB to integrate global features into the segmentation process. Experimental results exhibit that

our method achieves the state-of-the-art performance for choroidal vessel segmentation. Besides, we further validate the

significant superiority of the proposed method for retinal fluid segmentation in optical coherence tomography (OCT) scans

on a publicly available dataset. All these fully prove that our TACLNet contributes to the advancement of choroidal ves-

sel segmentation and is of great significance for ophthalmic research and clinical application.

Keywords    choroidal vessel segmentation, optical coherence tomography (OCT), Transformer-assisted cascade learning,

retinal fluid segmentation, multi-scale feature extraction

 
 

1    Introduction

The choroid  is  a  vascular  layer  between the  reti-

na  and  the  sclera,  notable  for  being  the  most  richly

vascularized  tissue  in  the  human  body.  Due  to  its

dense vasculature, it plays a crucial role in maintain-

ing the health and function of the human eye, partic-

ularly the outer retina. The choroidal blood flow, one
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of the highest among organs, contributes to the ther-

mal  regulation  of  the  retina.  Intrinsic  choroidal  neu-

rons  modulate  choroidal  blood flow and control  non-

vascular smooth muscle cells within the choroid, espe-

cially behind the fovea[1].

Several studies used specific choroid biomarkers to

assess the choroid quantitatively. These biomarkers[2],

including features such as the choroidal thickness and

vascularity index, are crucial in the diagnosis, progno-

sis,  and  treatment  of  a  diverse  range  of  ophthalmic

diseases or pathological conditions. While quantifying

biomarkers  provides  insight  into  the  choroid's  struc-

ture,  these measures alone do not capture all  the in-

tricate  details  of  the  choroid  layer  and  its  complex

vascular  network.  For  instance,  the  shape,  position-

ing,  and  branching  patterns  of  individual  choroidal

vessels could offer valuable insights into revealing po-

tential  abnormalities  related  to  specific  ophthalmic

conditions[3]. Thus, our study focuses on exploring an

effective way to perceive the distribution of choroidal

vessels.

In  this  paper,  we  concentrate  on  the  segmenta-

tion of choroidal vessels in optical coherence tomogra-

phy[4] (OCT)  images.  OCT  is  a  non-invasive  tech-

nique producing cross-sectional retina images, includ-

ing the choroid, with broad applications in neurology,

ophthalmology,  gastroenterology,  and  cardiology.

While earlier time-domain OCT (TD-OCT) struggled

to image the choroid due to a low signal-to-noise ra-

tio,  newer  versions  like  spectral-domain  OCT  (SD-

OCT)[5], swept-source OCT (SS-OCT), and enhanced

depth  imaging  OCT (EDI-OCT) improved  in  resolu-

tion and depth penetration,  enhancing choroid  imag-

ing[6]. Although advances in the OCT technology sig-

nificantly  improve  resolution  and  depth  penetration,

these advances do not fully address the complexity of

choroidal imaging.

In  OCT  B-scans,  the  choroid  presents  three  key

challenges. First, the choroid lacks contrasting reflec-

tive properties, and the borders of its vessels often ap-

pear  indistinct,  making extracting  discriminative  fea-

tures  exceedingly  difficult[7].  Second,  the  choroid  lay-

er is characterized by densely distributed vessels with

irregular shapes, significantly increasing the complexi-

ty  of  their  identification  and  segmentation.  Lastly,

the  current  method  of  delineating  the  choroid  layer

and choroidal  vessels  in  OCT images  primarily  relies

on  manual  annotation  by  experienced  clinical  profes-

sionals. This procedure is not only labor-intensive but

also susceptible to potential inaccuracies. These chal-

lenges  severely  hinder  us  from  training  an  efficient

model for choroidal vessel segmentation.

In response to these challenges, recent methodolo-

gies grounded in deep learning have been gaining at-

tention.  Among  the  existing  methods,  direct  vessel

segmentation  models[8] often  grapple  with  noise  and

retinal  shadows[9] in  OCT  scans,  leading  to  subopti-

mal performance. In the synergistic method[10] a shar-

ing  encoder  can  significantly  reduce  the  computing

workload  since  it  mainly  extracts  the  commonalities

of  the  choroid  layer  and  choroidal  vessels.  However,

for optimal results, the sharing encoder needs to con-

currently  and  effectively  extract  the  unique  features

of both tasks, including different boundaries and intri-

cate details, which may not always align with the fea-

tures common to both tasks. Thus, insufficient extrac-

tion  of  unique  features  for  a  specific  task  in  the  en-

coder  could  impose  additional  challenges  on  the  spe-

cific and sharing decoders, leading to inferior segmen-

tation  results.  For  example,  the  synergistic  method

CUNet[10] shows  over-segmentation  between  adjacent

vessels in Fig.1(a). Meanwhile, in the common cascad-

ed  segmentation  methods[11, 12],  the  choroidal  vessel

segmentation  network  (VSN)  primarily  relies  on  the

intersection between the input OCT slice and the re-

sult  of  choroid  layer  segmentation  backbone  (LSB).

Thus,  the  calculation  error  of  the  choroid  layer  seg-

mentation backbone will affect the segmentation per-

formance  of  the  choroidal  vessel  network.  For  in-

stance,  ChoroidNET[11] unusually  deviates  from  the
 

(a) (b) (c) (d)

Fig.1.   Three comparative examples of  the results  of  choroidal
vessel  segmentation  by  various  methods.  Each  row is  an  indi-
vidual  OCT case.  The green and red rectangles  depict  magni-
fied images taken from two representative regions, emphasizing
the  enhanced  performance  of  our  TACLNet  over  methods
CUNet  and  ChoroidNET  in  a  fair  comparison.  (a)  Result  of
CUNet[10].  (b)  Result  of  ChoroidNET[11].  (c)  Result  of  our
TACLNet. (d) Ground truth.
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ground  truth  (Fig.1(d))  in Fig.1(b),  suggesting  error

propagation  during  the  training  phase.  Nonetheless,

compared  with  direct  segmentation,  the  latter  two

methods  provide  a  notable  advantage  by  incorporat-

ing prior knowledge. Since all choroidal vessels reside

between  the  Bruch's  membrane  (BM)  and  the

choroid-sclera interface (CSI), integrating choroid lay-

er  segmentation  within  the  workflow  could  exploit

this significant relationship. Given the success of cas-

caded learning strategies in addressing noise and reti-

nal shadows outside the choroid layer and their facili-

tative role for the following VSN, it is necessary to in-

vestigate  a  refined  cascaded  network  for  choroidal

vessel segmentation.

In  this  study,  we  propose  Transformer-Assisted

Cascade  Learning  Network  (TACLNet)  for  choroidal

vessel  segmentation.  To  address  the  issue  of  error

propagation commonly encountered in cascaded struc-

tures,  our  method  introduces  a  cascade  pre-training

strategy  for  the  cascaded  segmentation  workflow,  in-

cluding  pre-training  and  joint  training  stages.  Addi-

tionally, we propose an auxiliary Transformer branch

named  ATB,  which  contains  a  sequence  of  shunted

Transformer  blocks[13].  These  blocks  obtain  Key  and

Value  of  different  sizes  in  self-attention,  significantly

enhancing the ability to capture the OCT slice's glob-

al  and multi-scale  features.  The  use  of  the  ATB not

only  enhances  the  performance  of  our  method by  ef-

fectively capturing the global and multi-scale features

but  also  significantly  mitigates  the  impact  of  error

propagation. Finally, acknowledging that existing cas-

caded and synergistic methods often overlook the im-

portance  of  multi-scale  feature  extraction  in  dealing

with  the  complexity  of  choroidal  vessels,  we  intro-

duce  a  multi-scale  subtraction  connection  module

named MSC.  MSC adeptly  negotiates  the  differences

between  shallow  and  deep  convolution  feature  maps

while preserving essential details during the segmenta-

tion phase.

Our main contributions can be summarized as fol-

lows.

• We propose Transformer-Assisted Cascade Lear-

ning Network (TACLNet) for choroidal vessel segmen-

tation  with  a  cascade  pre-training  strategy  to  train

cascaded  segmentation  models  more  effectively.  Vast

experimental  results  validate  the  effectiveness  and

versatility of TACLNet and demonstrate its great po-

tential in choroidal analysis.

• We  present  an  auxiliary  Transformer  branch

named  ATB  with  the  advantages  of  the  shunted

Transformer[13] to  effectively  utilize  global  informa-

tion in the OCT slice to improve vessel segmentation

performance.

• We  introduce  a  novel  multi -scale  subtraction

connection  module  named  MSC,  which  can  capture

the differential  information across  multiple  scales  be-

tween feature maps while preserving the intricate de-

tails of local features for the choroidal vessel segmen-

tation. 

2    Related Work
 

2.1    Choroid Segmentation Method
 

2.1.1    Conventional Methods for Choroid

Segmentation

Graph search algorithms play an extensive role in

segmenting  retinal  layers  in  spectral-domain  optical

coherence  tomography  (SD-OCT).  Zhang et  al.[14]

were the first to use the 3D graph search method for

choroid surface detection.  Chen et  al.[15] used thresh-

olding  and  graph's  shortest  path  for  choroid  bound-

ary and CSI  detection,  respectively.  Hussian et  al.[16]

used  Dijkstra's  algorithm and  a  depth-based  intensi-

ty  normalization  technique  for  layer  segmentation

while  using  a  clustering  method  for  vessel  segmenta-

tion. However, it lacks robust testing. Despite reason-

able results, these methods heavily rely on handcraft-

ed features and are highly noise-sensitive. 

2.1.2    Deep-Learning Methods for Choroid

Segmentation

With the rise in interest in deep learning for medi-

cal  image  processing  research,  numerous  deep  learn-

ing models  were newly developed specifically  for  seg-

menting the choroid layer and choroidal vessels.

End-to-End.  Once  trained,  end-to-end  structures

are relatively straightforward, although they may not

always  achieve  perfect  results  or  require  complex

workarounds. Liu et al.[8] segmented the vessels using

RefineNet[17].  Zheng et  al.[18] segmented the  choroid's

upper and lower boundaries using ResUnet[19]. Zhu et
al.[10] proposed  a  novel  segmentation  pipeline  named

CUNet for synergistically segmenting the choroid lay-

er and vessels by treating these two tasks as a multi-

task  learning  process.  They  employed  a  global  en-

coder and global-specific decoders to manage the cor-

relation and specifics of different tasks. They also pro-

posed a new regularization term as an AMS loss func-
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tion  to  prevent  the  model  from favoring  one  specific

task  over  the  others.  In  the  3D choroidal  vessel  seg-

mentation  field,  Huang et  al.[20] introduced  a  shape-

aware  network  that  learns  both  the  pixel  and  shape

distributions  of  choroidal  vessels,  employing  a  rela-

tive distance map and a novel adversarial loss to opti-

mize  3D  choroidal  vessel  segmentation  performance.

Despite  considerable  efforts  to  develop  effective

straight  out-of-the-box  methods  for  vessel  segmenta-

tion  tasks,  contemporary  networks  face  challenges  in

simultaneously  addressing  the  significant  structural

differences between the choroid layer and vessels.

Cascaded.  The  cascaded  structure  is  commonly

used  in  medical  image  segmentation  tasks.  It  lever-

ages prior knowledge and incorporates it into specific

tasks,  resulting  in  a  multi-stage  workflow.  The  out-

put of each module in the cascaded structure is used

as input for the subsequent module, allowing employ-

ing  the  prior  knowledge.  Chen et  al.[21] implemented

two  SegNet[22] models  to  segment  the  Bruch's  mem-

brane  (BM)  and  the  Chorio-Scleral  interface  (CSI).

Subsequently, they used a seam carving method to fill

the area between the BM and CSI, achieving choroid

layer  segmentation.  However,  this  final  step's  depen-

dence  on handcrafted  features  may limit  the  model's

potential  for  adaptability  and  automation.  Zhang

et al.[23] developed a biomarker-infused global-to-local

network  (Bio-Net)  for  choroid  layer  segmentation.

Bio-Net  first  employs  a  global  multi-layer  segmenta-

tion  module  to  discern  global  structures.  These  are

then  concatenated  with  the  original  OCT  images  to

serve  as  the  input  for  the  second  stage's  local  LSB.

Khaing et  al.[11] proposed  a  two-stage  cascaded

pipeline  named ChoroidNET. This  deep-learning sys-

tem  initially  employs  a  U-Net  structure  to  segment

the  choroid  layer.  Once  the  choroid  layer  segmenta-

tion is complete, the intersection with the original im-

age becomes the input for another U-Net designed for

choroid  vessel  segmentation.  Significantly,  this  work

highlights  the  use  of  dilated  convolution  modules  in

both  the  choroid  layer  and  vessel  segmentation  pro-

cesses, marking it as the first to apply such a cascad-

ed deep-learning approach for choroid vessel  segmen-

tation. Although these cascaded techniques are prone

to error propagation, we draw inspiration from a pre-

training strategy proposed by Bai et al.[24] to address

this  issue.  As  a  result,  we  introduce  a  cascade  pre-

training  strategy  that  effectively  helps  mitigate  the

existing problems related to error propagation. 

2.2    Multi-Scale Feature Extraction

2

Techniques  for  multi-scale  feature  extraction  pri-

marily fall into inter-layer and intra-layer multi-scale

methods.  In  inter-layer  designs,  a  U-shaped architec-

ture[25] aggregates  different  scale  features  extracted

from  high  level  to  low  level  during  decoding.  Intra-

layer  methods[26, 27] often  employ  parallel  multi-

branch  convolution  layers  to  generate  a  range  of  re-

ceptive  fields.  Combining  these  two  designs,  M S-

Net[28]'s  Multi-Scale  in  Multi-Scale  Subtraction  Mod-

ule  (MMSM)  generates  a  rich  and  complementary

multi-scale  feature set  across  different levels.  MMSM

achieves  this  by  defining  a  multi-scale  subtraction

unit (MSU) that combines the feature maps of differ-

ent  filter  sizes  and  then  aggregates  these  features  to

generate a complementarity enhanced feature.

For  our  work,  we  utilize  these  principles  by  ex-

tracting  differential  data  from  the  features  of  adja-

cent  convolution  layers  at  the  inter-layer  level,  and

we  improve  upon  the  MSU  module's  utility  by  pre-

serving  skip  connection  concatenations  at  the  intra-

layer  level.  This  method  allows  us  to  maintain  de-

tailed  specifics  in  the  feature  maps  while  obtaining

multi-scale  differential  information  within  the  same

feature map layer. 

2.3    Adaptation  of  Transformer  Variants  for

Image Segmentation

The use of auxiliary branches in semantic segmen-

tation  tasks  is  quite  prevalent.  Li et  al.[29] and  Xu

et al.[30] both introduced auxiliary task branches to as-

sist  with  the  main  task.  Ding et  al.[31] introduced

lightweight  Transformers  as  an  auxiliary  branch  to

enhance the global context of image features.

K V

Among  multiple  variants[13, 32, 33] of  the  Vision

Transformer[34],  a  notable  variant  is  shunted  Trans-

former[13],  which  employs  the  shunted  self-attention

mechanism. This  technique reduces the spatial  scales

of  and  to multiple  sizes,  not only reducing the

computational cost but also obtaining multi-scale fea-

ture  capturing  ability.  Thus,  the  shunted  Trans-

former has the potential for comprehensive global in-

formation capture.

In  the  context  of  OCT scan choroidal  vessel  seg-

mentation, it is critical to capture global information

and  preserve  original  structural  information  to  guide

and rectify the vessel segmentation process. Addition-

ally, the choroidal vessels exhibit a multi-scale nature,

making capturing features at multi-scale valuable. To
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this end, we incorporate a sequence of shunted Trans-

former blocks into our pipeline as an auxiliary atten-

tion branch, adapting it for our TACLNet. This adap-

tation  enables  it  to  rectify  potential  errors  and  im-

prove the overall performance of choroidal vessel seg-

mentation. 

3    Methods
 

3.1    Problem Definition

i Xi
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T 2
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To  provide  a  theoretical  basis  for  our  approach,

we  consider  the -th  B-scan  input,  denoted  as ,

which is  a part of  a training set .  For the tasks of

choroid  layer  segmentation  and  choroidal  vessel

segmentation ,  we  define  the  output  distributions

of this B-scan input as  and , respectively. The

training  set,  constructed  using  B-scans,  is  repre-

sented by . Each B-scan in  is

associated  with  a  set  of  choroid  layer  labels

 and  choroidal  vessel  labels

. We represent the training loss

term  for  the  choroid  layer  and  loss  term

 for the vessel, where  represents the cur-

rent slice number.

f(·)
g(·)

f(·) g(·)

W j
f f(·)

W j
c g(·)

h(·) = g ◦ f

Given that all choroidal vessels are located within

the  choroid  layer,  it  is  logical  to  follow  the  task  of

choroid  layer  segmentation  for  the  segmentation  of

these vessels. Thus, we employ two distinct deep con-

volutional  neural  networks  (DCNNs)  for  two  differ-

ent  tasks.  Each  of  the  DCNNs  consists  of  a  feature

extractor  to catch the discriminate feature and a

pixel-wise classifier  to obtain the pixel-wise classi-

fication probabilities. Both  and  are paramet-

ric  functions  that  can  be  approximated  by  DCNNs,

with learnable parameters denoted as  for  and

 for , respectively. To enhance clarity, we con-

solidate the feature extraction and pixel-wise classifi-

cation tasks into a unified composite function, denot-

ed as . The optimization objectives of the

two DCNNs can be formulated as follows: 

W1 = argmin
Wf,Wc

∑
i
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where  and  denote  the  optimal  parameter

spaces for  and , respectively. The configuration

Xi

P 1
i

(1− α) αXi

α

α

jointly  combines  two  distinct  optimization  proce-

dures into a singular process. In the second step, the

input  is  derived  from the  intersection  of  and  the

first  step's  choroid  layer  result, ,  which  is  then

scaled  by .  We  add ,  representing  a  por-

tion of the original information determined by , sup-

plementing the first output. To prevent an undue re-

liance on the output from the first segmentation mod-

ule, which could potentially provide an erroneous pri-

or,  and to preserve crucial  global  structures that the

modules can identify, we set  empirically to a mod-

est constant, typically 0.001.

The choroid layer can be used as a practical pre-

liminary guide, offering an approximate baseline that

aids  in  accurately  pinpointing  the  location  of

choroidal  vessels  within  the  B-scan.  However,  the

variance in difficulty between the two tasks (relative-

ly  simple  choroid  layer  segmentation  and  more  com-

plex  vessel  segmentation)  can  lead  to  error  propaga-

tion. Thus, we introduce a novel training strategy and

ATB to counteract such error propagation, as shown

in Fig.2. 

3.2    Network Design

2

2

3× 3

MSC

As  illustrated  in Fig.2,  our  proposed  network  in-

corporates  two integral  components:  the  choroid  lay-

er  segmentation  backbone  (LSB)  and  the  choroidal

vessel segmentation network (VSN). We utilize M S-

Net[28] as  a “plug  and play” LSB,  integrating  it  into

our  TACLNet  without  any  modifications.  Its  sole

function within our  model  is  to  provide the essential

choroid layer segmentation needed for the subsequent

vessel segmentation task carried out by VSN. The ef-

ficacy  of  M S-Net  is  corroborated  through  our  abla-

tion  study  on  LSB,  as  evidenced  in Table 1.  Within

VSN,  we  employ  various  strategies,  including  using

the MSC and deriving five levels of features. Each en-

coder block in VSN (excluding the first one) separate-

ly applies up-sampling and a  convolution on the

feature  maps  to  ensure  that  the  channel  quantity

matches the preceding encoder block's output. The re-

sulting  feature  and the  previous  encoder  block's  out-

put  feature  are  seamlessly  integrated  into  our  MSC.

Each  generates  a  complementary  differential

feature,  individually  serving  as  a  skip  connection  in

alignment with the feature maps of the decoder path-

way,  following  the  traditional  U-Net  skip  connection

scheme.  Moreover,  we  incorporate  ATB  within  our

VSN to augment the global feature compensations in

OCT  B-scans.  ATB  is  essential,  considering  the  in-

put  of  VSN  comprises  the  intersection  between  the
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LSB's  binary  result  and  the  input  B-Scan.  LSB  has

an inherent potential for erroneous segmentation out-

comes,  such as over-segmentation and under-segmen-

tation,  necessitating  the  incorporation  of  ATB.  In

subsequent  sections,  we  will  elucidate  the  functional

principles  of  both  MSC  and  ATB.  The  comprehen-

sive  pipeline  of  our  proposed TACLNet  is  delineated

in Fig.3. 

3.3    MSC

Drawing inspiration from the multi-scale in multi-

scale  subtraction  module  (MMSM)[28],  we  integrate

the  multi-scale  Subtraction  Unit  (MSU)[28] into  our

skip connection structure within our VSN, but we al-

tered the implement usage of  MSU. This adjustment

was  primarily  made  due  to  the  distinct  characteris-
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Fig.2.   Outline  of  our  proposed method,  which consists  of  two stages.  In  stage  1,  we pre-train  LSB.  In stage  2,  we perform joint
training of LSB and VSN. As indicated by the red arrows, the pre-trained LSB first segments the choroid layer result. We then in-
tersect the choroid layer result with the B-scan input, providing input to the main vessel segmentation branch. Meanwhile, the B-
scan input also goes through ATB, providing valuable global features to the main vessel segmentation branch through feature fusion.

 

Table  1.    Ablation Study Results for LSB: Mean(%) (Standard Deviation(%)) of 5-Fold Cross-Validation

Method Vessel Layer

IoU ACC IoU DSC SE PC

Attention U-Net[35] 72.30 (4.46) 99.50 (0.10) 93.66 (1.53) 96.70 (0.84) 97.07 (0.45) 96.40 (1.28)

U-Net[36] 73.30 (4.76) 99.51 (0.11) 93.70 (1.79) 96.72 (0.99) 97.03 (0.90) 96.50 (1.21)

CVI-Net[12] 73.24 (4.18) 99.51 (0.04) 93.72 (0.88) 96.75 (0.47) 96.98 (0.91) 96.57 (0.44)
2M S-Net[28] 75.17 (4.77) 99.62 (0.07) 95.00 (0.98) 97.43 (0.52) 97.82 (0.24) 97.08 (0.75)

ChoroidNET[11] 73.55 (4.71) 99.63 (0.08) 95.06 (1.26) 97.45 (0.67) 97.57 (0.41) 97.37 (1.46)

Note: We use Attention U-Net[35], U-Net[36], CVI-Net[12], M2S-Net[28], and ChoroidNET[11] as LSB, respectively. For choroidal vessels,
we use our TACLNet’s VSN.
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tics of choroidal vessels, which are smaller and denser

than the choroid layer.

While  the  standard  MMSM  excels  at  acquiring

multi-scale  differential  information,  it  significantly

sacrifices  contextual  data.  This  is  mainly  because  of

the initial dimension reduction from 64, 256, 512, 1 024,

2 048 to  64.  As  the  encoder  level  increases,  the  con-

text  loss  becomes  more  severe.  Additionally,  using  a

skip connection by adding complementary features to

the decoder path instead of concatenation potentially

contributes to the loss of detailed local data from the

encoder side.

Fi, i ∈ {1, 2, 3,

We  introduce  a  multi-scale  subtraction  connec-

tion module named MSC to address these challenges.

This  bespoke  solution  is  designed  to  segment  vessels

and other small objects. First, we extract five feature

maps  in  the  encoder  path,  denoted  as 

4, 5} Fi+1 (i ̸= 0)

Fi Fi+1 (i ̸= 0)

Fi

×

.  In particular,  results from the con-

volution  layer  acting  on .  Each  is  up-

sampled  via  bilinear  interpolation  and  dimensionally

reduced  to  align  with  the  previous  encoder  block's

feature .  These  two  features  are  then  processed

through  MSU  and  a  3 3  convolution  operation  to

yield  multi-scale  differential  data,  which  can  be  for-

mulated as: 

Mi+1 = Conv(MSU(Fi, Up(Fi+1))),

Up(·)

Conv(·)

Dj D′
j

where  represents  the  upsample  operation.  We

omit the Batch normalization (BN) and ReLU activa-

tion after  for conciseness. Finally, this convo-

luted  differential  feature  map  is  concatenated  with

the  decoder  path's  feature ,  which  generates .

Consequently,  we  can  capture  multi-scale  differential

information  through  MSU  while  preserving  detailed
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Fig.3.   (a)  Overview  of  computational  operations  and  elements.  (b)  Structure  of  standard  convolution  block  and  shunted  Trans-
former block[13]. (c) Descriptions of loss function. (d) Pre-training the LSB. (e) Implementing a dual-path approach to segment the
choroidal vessel from the input slice. The second stage consists of a pre-trained LSB and a VSN to form a cascade learning network
for fine vessel segmentation. We calculate the difference of features of adjacent layers to obtain multi-scale features. For instance,
the notation “(1–2)” denotes the extraction of differential features between the feature maps of convolution layers 1 and 2. An ATB
is applied to generate a global Sigmoid “attention” map. This map is then pixel-wise multiplied by the output features of the main
branch to adaptively focus on important features. The weighted features are then concatenated with the original features, aggregat-
ing features from both paths. Finally, a  convolution and Sigmoid operation yield the vessel segmentation result.
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spatial  hierarchical  data  via  channel-wise  concatena-

tion,  thereby  achieving  precise  localizations.  The  de-

piction of MSC is illustrated in Fig.4. The second step

of MSC can be formulated as follows: 

D′
j = Concat(Dj,Mi+1),

s.t. 1 ⩽ i ⩽ (d− 1), j = d− i,

Dj j

d

i j

i+ j = d Concat(·, ·)

where  is  the feature map at the -th level in the

decoder path,  and  is  the total  number of  layers  in

the  encoder.  We  use  the  variables  and  to  index

the encoder and decoder layers, respectively, with the

constraint  that .  is  concatenat-

ing two feature maps along the channel dimension.
 
 

Upsample and Dimensionality Reduction
  

 

Concatenation 

Pixel-Wise Addition 

Pixel-Wise Subtraction and Absolute Value
 

 

Multi-Scale Filters  

Conv-BN-ReLU  

 

 

Concatenation 

 

   
Upsample 

Encoder 

Encoder 
 

Decoder 

 

Concatenated

Decoder 

 

  

     

d
i

Fig.4.  Outline of MSC.  denotes the total number of layers in
the encoder, and  denotes the current layer. 

3.4    ATB

Besides  the  main  U-Net  architecture,  we  intro-

(H/4)× (W/4)
C

F1, F2, F3, F4

Fi (H/2i+1)× (W/2i+1)× (C × 2i−1)

F4

1× 1

1× 1

duce an auxiliary Transformer branch named ATB as

a rectifier for potentially inaccurate prior information

LSB  might  provide  for  VSN.  This  auxiliary  branch

comprises  a  four-stage  sequence  of  shunted  Trans-

former blocks and a feature fusion operation. Firstly,

the  original  B-scan  input  is  patch  embedded  to  ob-

tain  a  more  informative  token  sequence  with  the

length of  and the token dimension of

.  There  are  four  stages  containing  several  shunted

Transformer blocks[13].  In each stage, each block out-

puts feature maps of the same size. In the linear em-

bedding  step,  we  utilize  a  convolution  layer  with  a

stride of 2 to connect different stages. Before feeding

the feature  maps into  the  next  stage,  the  size  of  the

feature maps will be halved, but their dimensions will

be  doubled.  Therefore,  we  have  four  feature  maps,

, which are the output of each stage. And

the  size  is .  The

final  stage's  is  up-sampled  to  align  with  the  fea-

ture map's size from the last decoder block of VSN. A

 convolution and Sigmoid activation are applied,

resulting in a global attention map. This map is mul-

tiplied with the last decoder block's feature, enabling

concentration on pivotal information. Concurrently, a

skip connection is implemented from the last decoder

block  to  the  filtered  feature  map,  thus  ensuring  the

preservation of integral global knowledge. Finally, the

conclusive feature map is established via a  con-

volution  and  Sigmoid  activation,  generating  the  ulti-

mate  vessel  prediction  mask.  The  implementation  of

our ATB can be formulated as follows: 

Sx = Sigmoid(Up(ST (x))),

x

ST (·)
x

Sx

Fmain

F ′
main = Sx ⊗ Fmain

Fmain F ′
main

F ′′
main

where  the  input  is  first  processed  through  the

shunted Transformer, denoted as , then up-sam-

pled, matching the original size of , after a Sigmoid

activation,  resulting  in  a  global  attention  map .

This  map  is  then  pixel-wisely  multiplied  with  the

main branch's last decoder feature map, , result-

ing  in  a  newly  formed  feature  map,  denoted  as

. For a more efficient feature fusion,

we concatenate the original  with , followed

by  applying  a  standard  convolution  block,  forming

,  which  is  now  primed  for  pixel-wise  classifica-

tion of vessels. The feature fusion process can be for-

mulated as: 

F ′′
main = Conv(Concat(F ′

main, Fmain)).
 

3.5    Training Strategy

Inspired by the pre-training strategy proposed by
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Bai et al.[24], to train the proposed network for better

vessel  segmentation,  we  develop  a  cascade  pre-train-

ing  strategy,  mainly  containing  pre-training  of  LSB

and  joint  training.  The  cascade  pre-training  strategy

ensures  that  LSB  and  VSN  can  play  their  expected

roles.

Pre-Training of  LSB.  The goal  of  LSB is  to first

segment  the  choroid  layer  from  the  OCT  images,

which  serves  as  a  solid  prior  for  the  VSN,  as  all

choroidal  vessels  are  resident  in  the  choroid  layer.

The  loss  function  we  employ  in  this  pre-training

phase is designed to build a layer loss. We utilize the

following equation: 

Llayer = LwBCE + LDICE,

LwBCE LDICE

LwBCE

LBCE

LwBCE

LDICE

L1
pretrain = Llayer

where  and  signify  the  weighted  binary

cross-entropy  (BCE)  loss  and  Dice  loss,  respectively.

The term [37], a refined variant derived from the

original ,  focuses  more  on  hard  pixels  than  its

original  form.  In  our  layer  loss  function,  while  the

 enhances the pixel-level  classification, the Dice

loss, , is advantageous in refining the delineation

of  boundaries.  Thus,  we  obtain .

L1
joint = Llayer

x

oW×H = f(x′) x′

x

H W

Joint  Training.  After  pre-training  LSB,  we  joint-

ly train the LSB and VSN. At this step, the choroid

loss  is  the  same  as  in  pre-training: .  We

further  introduce  a  vessel  loss.  Initially,  we  extract

the  vessel  region  based  on  the  prediction  from  the

VSN.  Assuming  a  single  OCT  slice  as  the  input

slice,  we  denote  the  output  of  the  VSN  as

 for simplicity,  where  is  the intersec-

tion of LSB's layer result with the input slice . Here,

 and  represent  the  height  and width of  the  in-

put  images,  respectively.  The  process  of  extracting

the  predicted  vessel  region  can  be  formulated  as  fol-

lows: 

Hx = Histogram(T (Sigmoid(o), λ) ∩ x),

T (a, λ) λ

a ⩾ λ

< λ

o

λ

T

where the function  applies a threshold  to a

given  input ,  mapping  all  values   to  1  and  all

values   to 0.  Since the Sigmoid activation is  ap-

plied  to  the  output ,  which  produces  a  probability

ranging from 0 to 1, the threshold  is typically set to

0.5,  with  scores  exceeding  this  value  interpreted  as

positive  results  indicative  of  the  presence  of  a

choroidal  vessel.  Then,  we  apply  the  threshold  func-

tion  to generate a binary mask. This mask then in-

x

Hx

H ′
x = log(Hx/(

∑
Hx))

tersects with the OCT slice  to get the vessel region.

A histogram is computed from the predicted vessel re-

gion,  resulting  in .  The  normalized  and  logarith-

mic form is represented as .

Similarly, the intensity probability of the ground-

truth vessel region's histogram can be obtained by: 

Hy = Histogram(GT ∩ x).

Hy H ′
y = Hy/(

∑
Hy)The  normalized  is  formed  in .

Subsequently, the vessel loss can be articulated as fol-

lows: 

Lvessel = LwBCE + LDICE + λDKL(H
′
x||H ′

y),

LwBCE LDICE DKL(H
′
x||H ′

y)

DKL(H
′
x||H ′

y)

Lvessel

LwBCE LDICE λDKL(H
′
x||H ′

y)

λDKL(H
′
x||H ′

y)

λ = 70

L2
joint = Lvessel

where , ,  and  represent  the

weighted  BCE  loss,  Dice  loss,  and  the  Kullback-

Leibler  divergence  (KL-divergence)[38],  respectively.

 measures the similarity between the pre-

dicted and the ground-truth vessel regions in the fea-

ture space. The vessel loss  is a linear combina-

tion  of , ,  and .  Specifically,

the  two  aforementioned  loss  partitions  are  optimized

to encourage the segmentation results to align closely

with  the  ground  truth  regarding  spatial  distribution,

and  is introduced as a constraint regu-

larization  on  the  intensity  distribution.  Acknowledg-

ing  the  noticeable  intensity  contrast  between  the

choroidal  stroma  and  vessels,  without  accurate  seg-

mentation,  the  intensity  discrepancy  between  the

model's  predictions  and  the  ground  truth  could  be

considerable.  We  assign  a  value  of  to  ensure

the effectiveness of this regularization term. Thus, we

obtain .
 

4    Experiments
 

4.1    Dataset

×

×
×

× ×

Our  study  uses  images  sourced  from  SS-OCT

(model  DRI OCT-1 Atlantis;  Topcon).  These  images

are  produced  using  a  radial  scanning  pattern  of  12

lines, offering a resolution of 1 024  12. Each image

represents  an  average  of  32  consecutive,  overlapped

scans centered around the fovea, yielding a resolution

of 1 024  992.  This  equates  to  a  physical  area  of

12 mm  2.6 mm. And when translated into a magni-

fication  ratio,  it  equates  to  12.00  2.60/(1 024 

992).  For  this  research①,  we  randomly  select  a  total
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of 10 subjects,  which are specifically made up of five

emmetropes and five high myopes (refractive error 

5.0).  In total,  we conduct 120 OCT scans.  Further

in the process, two seasoned physicians separately an-

notate the choroid layer and choroidal vessel on each

OCT slice and then jointly cross-verify them. To eval-

uate the effectiveness of our proposed method, in our

research, we utilize a 5-fold cross-validation methodol-

ogy  to  assess  the  robustness  of  our  model.  Our

dataset comprises ten studies, each containing images

and  annotated  regions.  In  each  validation  iteration,

we  utilize  eight  studies,  including  96  images  and ap-

proximately 8 740 annotated regions, as training data.

These studies are employed to educate our model and

adjust  its  parameters.  The  remaining  two  studies,

consisting  of  24  images  and  approximately 2 190 an-

notated regions,  are  used as  testing data to  evaluate

the model's performance. This selection process is per-

formed five times, with each iteration encompassing a

unique  combination  of  studies  for  training  and  test-

ing.

× × ×

To  fully  demonstrate  the  generalization  of

TACLNet in various medical tasks, we conduct a vali-

dation  using  the  RETOUCH[39] dataset.  The  RE-

TOUCH  dataset  comprises  three  training  sets  ob-

tained  from  different  OCT  devices,  totaling  70  vol-

umes. Specifically, there are 24 volumes acquired with

Cirrus  (Zeiss),  24  volumes  acquired  with  Spectralis

(Heidelberg),  and  22  volumes  acquired  with  T-1000

and  T-2000  (Topcon).  Each  volume  from  these  de-

vices contains a different number of B-scans: 128, 49,

and  128,  respectively.  The  resolutions  of  these  scans

are  512 1 024,  512 496,  and  512 885,  respectively.

In the RETOUCH dataset, three distinct fluid types,

namely  intraretinal  fluid  (IRF),  subretinal  fluid

(SRF), and pigment epithelial detachment (PED), are

manually  labeled and provided as  ground truth.  The

RETOUCH  organizers  assess  the  submitted  results

from various research teams. As a result,  the ground

truth  of  the  RETOUCH  test  data  remains  undis-

closed to the public. We employ a 3-fold cross-valida-

tion  strategy  in  our  experiments  on  the  RETOUCH

training  dataset,  splitting  the  data  at  the  case  level.

Like the choroidal vessel  segmentation task, we label

the  retina  layer  labels  for  training.  Specifically,  we

randomly select 711 slices from SD-OCT scans across

24  volumes  acquired  with  the  Spectralis  device  (Hei-

delberg) in the RETOUCH dataset. These slices origi-

nally  contain  official  valid  fluid  labels.  Since  our

TACLNet  is  cascaded,  the  retinal  layer  in  711  SD-

OCT slices  is  further  annotated  and  verified  by  two

experienced doctors. 

4.2    Experimental Setting

×

×

5.0× 10−2

5.0× 10−3

9.0× 10−3

5.0× 10−4

LDICE Lvessel

LCross−Entropy

The whole framework is built on PyTorch 1.12.1.

In the choroidal vessel segmentation, due to the limit-

ed GPU memory, we reduce the size of the input im-

age instead of using the full resolution. Thus, the in-

put size is resized to 512 512 without data augmen-

tation.  In  the  RETOUCH  dataset's  fluid  segmenta-

tion task, the input size is resized to 256 256 with no

data augmentation. We optimize the network with an

SGD  optimizer  on  randomly  drawn  OCT  samples

from the dataset. For the hyper-parameters, the chan-

nel  numbers  64,  128,  256,  512, 1 024 are  set  for  the

five encoder stages of VSN's U-Net backbone, respec-

tively, while the setting of decoder stages is symmetri-

cal.  In  the  first  training  step,  the  learning  rates  for

LSB are set to , and in the second step, the

learning rates for  the LSB are set  to ,  and

the  learning  rates  for  VSN  and  ATB  are  set  to

. The momentum and weight decay are set

as  0.9  and ,  respectively.  For  the  Retinal

Fluid  Segment  task,  we  replace  in  with

 due to the multi-class nature of this task.

The second difference is the number of epochs due to

different  convergence  speeds.  Specifically,  the  train-

ing  epoch  settings  for  different  stages  are  as  follows:

LSB undergoes a pre-training phase of 25 epochs. Fol-

lowing this,  the joint training of both LSB and VSN

is  conducted  for  another  25  epochs.  For  the  RE-

TOUCH dataset, the fluid segmentation is trained for

30 epochs. The network's training time is 1 hour, and

the inference time is 7.116 seconds per validation fold

with  24  slices.  During  inference,  we  do  not  use  any

post-processing  operations.  The  accuracy  (ACC),  in-

tersection over union (IoU), dice similarity coefficient

(DSC),  sensitivity (SE),  and precision (PC) are  used

to evaluate our method's effectiveness in choroid lay-

er  segmentation,  choroidal  vessel  segmentation,  and

retinal  fluid  segmentation.  The  metrics'  mean  value

and standard deviation on the five splits (three splits

in fluid segmentation) are reported to evaluate differ-

ent  methods.  This  validation  strategy  is  adopted  to

guarantee the statistical significance of the experimen-

tal results. 

4.3    Comparison with State-of-the-Art

Methods

We  compare  TACLNet  with  state-of-the-art

choroidal  vessel  segmentation  methods  and  current
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general medical segmentation networks. In our study,

we carefully compare the results produced by our net-

work and four  established choroidal  vessel  segmenta-

tion  methods  (RefineNet[8, 17], ChoroidNET[11],  CVI-

Net[12],  CUNet[10]),  as  well  as  the  baseline  models  of

U-Net[36] and Attention U-Net[35]. Through both qual-

itative  and  quantitative  evaluation  of  the  segmented

images relative to their  corresponding ground truths,

our proposed approach yields promising results. Fig.5

provides  illustrative  examples  of  vessel  segmentation

outputs.  A  detailed  comparison  of  choroidal  vessel

segmentation  performance  across  all  tested  networks

is  presented  in Table 2.  The  experimental  results

demonstrate  that  all  compared  methods  except  Re-

fineNet improve the vessel segmentation baseline. Our

TACLNet  outperforms  the  other  models  in  terms  of

vessel  segmentation  performance,  comprising  the

highest ACC (99.27  0.17), as well as IoU (76.26 

5.82), SE (87.55  2.91), and PC (85.46  5.16). 

4.4    Ablation Experiments

2

To  explore  the  contribution  of  each  part  of

TACLNet,  we  investigate  the  impact  of  our  cascade

pre-training  strategy,  MSC,  and  ATB.  The  ablation

models  are  trained  and  validated  using  the  same

training  and  test  sets  using  the  same  LSB  network

(M S-Net). Fig.6 shows  the  choroidal  vessel  segmen-

tation  results  for  all  ablation  models. Table 3 com-

pares the performance of TACLNet's ablation models.

Every  model,  except  for  Ablation-5,  uses  a  non-cas-

cade strategy.

Effect  of  MSC. As  shown  in Fig.6,  Ablation-1's

sole U-Net hardly segments the vessel with appropri-

ate  extension,  shape,  and  boundary.  With  the  MSC

added  in  the  skip  connection,  the  segmented  vessel

with  different  scales  gains  a  better  extension  and

shape, which improves in avoiding unexpected vacant

holes in vessels. As a result, Ablation-2 improves the
 

(b)(a) (c) (d) (e) (f) (g)

Fig.5.  Visualized choroidal vessel segmentation comparisons of various methods. The five rows exhibit the visualized segmentation
results of five individual OCT cases with different segmentation methods. The yellow arrows indicate the inaccuracies of the segmen-
tation methods. The green and red rectangles depict magnified images taken from two representative regions. (a) Input slice. (b) At-
tention U-Net[35]. (c) ChoroidNET[11]. (d) CVI-Net[12]. (e) CUNet[10]. (f) Ours. (g) Ground truth.
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Table  2.    Segmentation Result Comparisons Between Various Methods on Clinical Choroidal Vessel Dataset: Mean(%) (Standard
Deviation(%)) of 5-Fold Cross-Validation

Method ACC IoU DSC SE PC

RefineNet[8, 17] 98.34(0.36) 54.07(7.08) 69.55(6.35) 78.79(2.67) 63.75(8.25)

U-Net[36] 98.91(0.14) 66.87(3.96) 79.74(3.14) 84.25(2.16) 78.47(5.92)

Attention U-Net[35] 98.94(0.12) 67.60(3.88) 80.29(3.04) 85.15(1.67) 78.36(5.09)

ChoroidNET[11] 99.01(0.18) 70.13(4.19) 82.22(3.02) 86.53(1.33) 78.91(4.97)

CVI-Net[12] 99.02(0.18) 70.35(4.50) 82.37(3.24) 86.91(1.69) 78.91(4.95)

CUNet[10] 99.18(0.21) 72.91(5.26) 84.09(3.61) 83.55(2.53) 85.15(5.46)

TACLNet (ours) 99.27(0.17) 76.26(5.82) 86.34(3.88) 87.55(2.91) 85.46(5.16)

Note: The highest mean results in this table are highlighted in bold. This format is consistent in all the following tables.

 

(b)(a) (c) (d) (e) (f) (g)

Fig.6.  In the ablation study, samples of choroidal vessel segmentation using various VSNs are visualized. The five rows exhibit the
visualized segmentation results of five individual OCT cases with varying VSNs. (a) Input slice. (b) Result of U-Net[36], as shown in
Ablation-1. (c) Result of adding the MSC, as shown in Ablation-2. (d) Result of adding the ATB, as shown in Ablation-3. (e) Re-
sult of adding both MSC and ATB, as shown in Ablation-4. (f) Result of adding MSC, ATB, and cascade pre-training strategy, as
shown in Ablation-5. (g) Ground truth. The yellow arrows indicate the inaccuracies of the segmentation network. The green and red
rectangles depict magnified images taken from two representative regions.

 

Table  3.    Ablation Study Results for Our Proposed TACLNet: Mean(%) (Standard Deviation(%)) of 5-fold Cross-Validation

Method ACC IoU DSC SE PC

Ablation-1 99.04(0.17) 70.43(3.75) 82.44(2.76) 85.36(0.88) 80.53(4.23)

Ablation-2 99.16(0.16) 73.62(4.17) 84.63(2.85) 86.24(1.84) 83.44(4.27)

Ablation-3 99.15(0.14) 73.10(3.78) 84.28(2.62) 85.89(1.41) 83.19(4.34)

Ablation-4 99.22(0.16) 75.17(4.77) 85.68(3.20) 86.45(2.06) 85.15(4.16)

Ablation-5 99.24(0.15) 75.61(4.73) 85.93(3.17) 86.75(2.38) 85.47(4.69)
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average IoU score from 70.43% to 73.62%

Effect  of  ATB. Although  multi-scale  differential

information  between  adjacent  convolution  feature

maps  is  learned,  the  nature  limitation  of  cascaded

training is not solved (i.e., the second stage's VSN on-

ly  processes  the  intersection  of  choroid  layer  predic-

tion and OCT scan, which may lead to the segmenta-

tion of the wrong region, thereby misleading the VSN,

or it may result in overlooking the real choroid layer

part, failing to provide vital priors for the VSN). We

try to add ATB to learn helpful global features from

the  OCT scan,  which  forms  Ablation-3.  As  a  result,

the  auxiliary  branch  further  enhances  the  handling

with  vacant  holes  in  vessel  prediction.  The  auxiliary

branch  also  enables  the  model  to  avoid  predicting

non-existing  choroidal  vessel  regions.  Singularly

adding  the  ATB  helps  gain  an  IoU  score  improve-

ment of 2.67%. When combining the MSC and ATB,

formed  as  Ablation-4,  the  improvement  in  the  IoU

score  further  increases  to  4.74%,  integrating  the

strengths. The visualization of our Transformer auxil-

iary  branch's  captured  feature  map  can  be  found  in

Fig.7.

Effect  of  Cascade  Pre-Training  Strategy. To  un-

lock  the  potential  of  our  MSC and  ATB.  We try  to

avoid the initial stage's error propagation in common

cascaded training methods. We first pre-train LSB to

a “plug-and-play” degree.  Then,  during  the  joint

training  stage,  we  reduce  the  learning  rate  to  fine-

tune  LSB  while  setting  a  relatively  higher  learning

rate for VSN. As a result, we successfully activate the

latent  potential  of  our  network.  After  utilizing  our

cascade  pre-training  strategy,  Ablation-5's  result's

boundary, shape, and extensions are even more com-

parable  with  the  ground  truth.  Specifically,  the  only

difference  between  Ablation-5  and  Ablation-4  is  that

Ablation-5  applies  the  cascade  pre-training  strategy,

and the gain is 0.44% in terms of IoU. Compared with

Ablation-1,  Ablation-5  achieves  higher  performance

on  average  ACC,  IoU,  DSC,  SC,  and  PC  from

99.04%,  70.43%,  82.44%,  85.36%,  and  80.53%  to

99.24%, 75.61%, 85.93%, 86.75% and 85.47%, respec-

tively, on our clinical choroidal vessel dataset.

Lvessel

LDICE

LwBCE

DKL

LwBCE

DKL

Effect of Different Terms in Vessel Loss. To eval-

uate  the  effectiveness  of  different  terms  in ,  we

first focus on the vanilla , resulting in an IoU of

75.85%.  We  then  incrementally  integrate  and

 to  assess  their  respective  contributions  to  the

model  performance. Table 4 demonstrates  that  the

addition of  alone yields an increase in IoU from

75.85% to 76.15%. Similarly, integrating  indepen-

dently  results  in  an  IoU  enhancement  to  76.22%.
 

(b)(a) (c) (d) (e) (f)

Fig.7.  The Visualization of our ATB's Sigmoid output using the “inferno” colormap. (a) and (d) showcase the input slices. (b) and
(e) exhibit the Sigmoid output from the ATB, visually represented as a normalized graphical illustration using the “inferno” color
map. (c) and (f) combine the input slice with the visualized Sigmoid output. The intensity of colors, with brighter, more vivid hues
signifying higher values and darker shades indicating lower values, effectively conveys the numerical information. This graphic repre-
sentation efficiently highlights our ATB's proficiency in identifying and integrating additional global features.
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When all three terms are applied together, the IoU is

further  increased to  76.26%.  Besides,  we additionally

study  the  impact  of  the  weight  for  the  loss  term

, which ranges from 0 to 100 with an increment of

10. In this ablation study, the main loss term  is

with a constant weight of 1. Fig.8 shows that the op-

timal IoU is achieved when the weight  is set to 70.

Thus,  when  the  weight  is  properly  set,  the  pro-

posed loss term  may improve the performance of

choroidal vessel segmentation.
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4.5    Versatility of Proposed Network

To underscore the versatility of our TACLNet, we

train  and  validate  it  using  an  entirely  new  dataset,

the  RETOUCH[39] dataset.  This  poses  a  different

challenge for our network: the segmentation of multi-

class retinal fluid from spectral domain optical coher-

ence tomography (SD-OCT) scans. We maintain con-

sistency with the original training procedures. The on-

ly modification is replacing the dice-loss function with

a  cross-entropy  loss  function  to  better  suit  the  new

task's  nature.  To  comprehensively  understand  our

model's  performance,  we  juxtapose  it  with  three  re-

cent  choroidal  vessel  segmentation  methodologies,

CUNet[10],  ChoroidNET[11],  and  CVI-Net[12],  and  two

baseline  models,  U-Net[36] and  Attention  U-Net[35].

Fig.9 provides  a  qualitative  comparison,  from  which

we can see that our TACLNet segments accurate flu-

id  regions  and  inhibits  the  misclassification  that  of-

ten happens to the compared methods. Table 5 offers

a detailed breakdown of comparative results. Togeth-

er,  they  reinforce  the  assertion  of  the  strength  and

versatility  of  our  proposed  model.  TACLNet  per-

forms better than other methods across all metrics in

most  cases,  except  for  the  Dice  coefficient  of  SRF,

which  shows  a  slight  inferiority  of  0.50%.  Compared

with  the  second-best  model  CUNet[10],  TACLNet  ex-

hibits better results in terms of ACC, IoU, and DSC

for  all  classes,  as  well  as  DSC  for  IRF  and  PED,

achieving  gains  of  0.70%,  1.44%,  2.34%,  4.88%,  and

1.67%, respectively. 

5    Discussions

The choroid layer provides significant prior infor-

mation  for  the  ultimate  segmentation  when  employ-

ing the cascaded method for choroidal vessel segmen-

tation.  This  includes  positioning  the  choroidal  vessel

and filtering out unrelated information in OCT scans.

In  this  section,  we  challenge  the  commonly  held  be-

lief  that  better  choroid  layer  segmentation  will  al-

ways  lead  to  improved  segmentation  of  the  vessels,

which could guide future research efforts.

Importance of  Choroid Layer Prior. As shown in

Table 2,  RefineNet[17],  U-Net[36],  and  Attention  U-

Net[35] all  directly  learn  from  choroidal  vessel  labels,

yielding  inferior  outcomes  in  vessel  segmentation.

Those methods that utilize choroid layer labels are all

improved  compared  with  the  baseline.  Thus,  we  can

assume that applying the choroid layer prior can ele-

vate the performance in the choroidal vessel  segmen-

tation task.

2

Influence  of  VSN  Structure. In  our  initial  abla-

tion study for TACLNet, we utilize M S-Net[28] as the

LSB. All  ablation models incorporate cascaded train-

ing.  As  shown in Table 3 and Table 6,  although  our

TACLNet  (Ablation-5)  achieves  the  best  choroidal

vessel  segmentation  performance,  its  performance  in

choroid  layer  segmentation  is  inferior  to  its  ablation

models. Our comparative study with State-of-the-Art

methods  also  observes  the  same trend.  As  per Table

7,  the  choroid  layer  segmentation  of  our  TACLNet

trails  behind two cascaded methods  (CVI-Net[12] and

ChoroidNET[11])  and  one  end-to-end  method,

CUNet[10].  These  results  potentially  imply  the  influ-

ence  of  the  VSN's  structure  is  more  significant  than

the prior information from the choroid layer segmen-

 

LvesselTable  4.      Ablation Study Results  for :  Mean(%) of  5-
Fold Cross-Validation

LDICE LwBCE DKL IoU

� 75.85

� � 76.15

� � 76.22

� � � 76.26

LDICE
LwBCE DKL �

Note: We set vanilla  as the main loss terms and explore
the  incremental  impact  of  adding  and .  The
presence  of  these  additional  loss  terms  is  indicated  by  a “ ”
symbol.
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(b)(a) (c) (d) (e) (f) (g) (h)

Fig.9.  Visualized retinal fluid segmentation samples of different segmentation networks. The six rows exhibit the visualized segmen-
tation results of six individual OCT cases with different segmentation methods. Different colors indicate different fluid types (i.e.,
blue refers to SRF, red to IRF, and green to PED). (a) Input slice. (b) Ground truth. (c) Ours. (d) CVI-Net[12]. (e) Attention U-Net[35].
(f) CUNet[10]. (g) U-Net[36]. (h) ChoroidNET[11].

 

Table   5.      Segmentation  Result  Comparisons  Between  Various  Methods  on  the  RETOUCH[39] Retinal  Fluid  Dataset:  Mean(%)
(Standard Deviation(%)) of 3-Fold Cross-Validation

Method ACC IoU DSC IRF SRF PED

CVI-Net[12] 98.45(0.27) 15.22(0.97) 22.72(1.18) 30.54(2.11) 20.15(0.99) 17.72(1.96)

Attention U-Net[35] 98.36(0.20) 18.91(3.68) 26.62(4.11) 32.95(2.44) 26.24(5.71) 20.69(4.78)

ChoroidNET[11] 98.81(0.18) 19.55(3.49) 27.56(3.74) 27.56(4.18) 35.87(5.34) 25.10(4.54)

U-Net[36] 98.38(0.16) 20.63(2.04) 28.64(2.16) 34.05(1.77) 28.79(3.32) 22.94(3.47)

CUNet[10] 98.23(0.36) 26.86(1.96) 33.84(1.95) 38.97(1.85) 35.68(3.54) 27.86(2.81)

TACLNet (ours) 98.93(0.15) 28.30(1.63) 36.18(1.54) 43.85(1.97) 35.37(3.51) 29.53(2.32)

 

Table   6.      Ablation Study Results  for  Choroid Layer  Segmentation During the Choroidal  Vessel  Segmentation:  Mean(%) (Stan-
dard Deviation(%)) of 5-Fold Cross-Validation

Method ACC IoU DSC SE PC

Ablation-1 99.54 (0.07) 94.01 (1.26) 96.88 (0.69) 97.70 (0.39) 96.20 (1.38)

Ablation-2 99.58 (0.06) 94.68 (0.94) 97.20 (0.50) 97.58 (0.33) 96.87 (0.72)

Ablation-3 99.64 (0.05) 95.19 (0.94) 97.53 (0.50) 98.00 (0.36) 97.26 (0.45)

Ablation-4 99.62 (0.07) 95.00 (0.98) 97.43 (0.52) 97.82 (0.24) 97.08 (0.75)

Ablation-5 99.50 (0.02) 93.40 (0.70) 96.56 (0.38) 95.93 (0.38) 97.23 (0.79)
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tation.

2

2

Influence of LSB. We proceed to carry out an ad-

ditional  ablation  study  for  LSB.  For  this  particular

study,  we  fix  our  proposed  TACLNet's  VSN.  Then,

we  use  U-Net[36],  Attention  U-Net[35],  CVI-Net[12],

M S-Net[28],  and  ChoroidNET[11] as  LSB,  all  without

pre-training. The results are shown in Table 1. From

the result of M S-Net[28] and ChoroidNET[11],  we can

see that  the LSB's  performance in choroid layer  seg-

mentation  doesn't  decide  the  best  vessel  segmenta-

tion,  since  the  model  with  better  choroid  layer  seg-

mentation  is  significantly  inferior  in  the  vessel  seg-

mentation task.

Cascade  Pre-Training  Strategy:  Maximizing  the
Use of Prior Information. Although our data suggest

that  excellent  choroid  layer  segmentation  does  not

necessarily result in superior choroidal vessel segmen-

tation,  the  importance  of  choroid  layer  segmentation

should  not  be  overlooked.  Compared  with  methods

lacking  prior  information,  methods  with  decent

choroid layer segmentation likely yield better results.

This  motivates  us  to  devise  a  cascade  pre-training

strategy to use the prior information more efficiently.

Pre-training can help  establish  a  stronger  foundation

for  our  VSN,  addressing  error  propagation  and  en-

hancing  overall  outcomes.  During  the  joint  training

stage,  combining  fine-tuning  choroid  layer  segmenta-

tion  and  training  vessel  segmentation  could  further

render  better  performance.  This  can  be  observed  in

Table 3 and Table 6. Even when the choroid layer re-

sults are inferior, our Ablation-5 (TACLNet) achieves

better  segmentation  than  Ablation-4,  which  uses  the

same  architecture  but  without  applying  the  cascade

pre-training strategy.

Model  Complexity. From Table 8,  our  TACLNet

has  a  similar  floating-point  computational  workload

compared with other cascaded methods[11, 36], but our

TACLNet  significantly  outperforms  in  choroidal  ves-

sel segmentation, as illustrated in Table 2. Compared

with non-cascade methods[10, 8, 17], TACLNet is larger

than  some  methods  but  shows  significant  perfor-

mance  improvements  over  these  methods.  To  reduce

model  complexity,  in  our  future  research,  we  aim  to

use the choroid layer priors  with a more streamlined

module without compromising the performance of the

choroidal vessel segmentation. 

6    Conclusions

In  this  work,  we  proposed  Transformer-Assisted

Cascade  Learning  Network  (TACLNet)  to  improve

the performance in choroidal vessel segmentation. The

proposed  TACLNet  mainly  uses  a  cascade  pre-train-

ing  strategy  that  can  effectively  learn  the  valuable

prior from the pre-trained LSB and then jointly train

LSB  and  VSN.  The  designed  MSC  can  provide  spa-

tial  differential  information  from  adjacent  feature

maps  while  keeping  the  local  details.  Besides,  ATB

compensates for the lost global information from cas-

caded training. Experimental results on the choroidal

vessel  and  retinal  fluid  segmentation  tasks  demon-

strate  that  our  TACLNet  outperforms  other  well-

known  choroidal  vessel  segmentation  methods  in

terms of accuracy and versatility. Moreover, our seg-

mentation  method  can  help  ophthalmologists  accu-

rately  predict  choroidal  vessel  regions,  reducing  the

burden  of  manual  quantitative  analysis  of  choroidal-

related retinal diseases. 
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