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Abstract    We present SinGRAV, an attempt to learn a generative radiance volume from multi-view observations of a

single natural scene, in stark contrast to existing category-level 3D generative models that learn from images of many ob-

ject-centric scenes. Inspired by SinGAN, we also learn the internal distribution of the input scene, which necessitates our

key designs w.r.t. the scene representation and network architecture. Unlike popular multi-layer perceptrons (MLP)-based

architectures, we particularly employ convolutional generators and discriminators, which inherently possess spatial locali-

ty bias, to operate over voxelized volumes for learning the internal distribution over a plethora of overlapping regions. On

the other hand, localizing the adversarial generators and discriminators over confined areas with limited receptive fields

easily leads to highly implausible geometric structures in the spatial. Our remedy is to use spatial inductive bias and joint

discrimination on geometric clues in the form of 2D depth maps. This strategy is effective in improving spatial arrange-

ment while incurring negligible additional computational cost. Experimental results demonstrate the ability of SinGRAV

in generating plausible and diverse variations from a single scene, the merits of SinGRAV over state-of-the-art generative

neural scene models, and the versatility of SinGRAV by its use in a variety of applications. Code and data will be released

to facilitate further research.
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1    Introduction

3D generative modeling has made great strides via

gravitating  towards  neural  scene  representations,

which boast unprecedented photo-realism. Generative

models[1–5] can  now  draw  class-specific  scenes  (e.g.,

cars and portraits), offering a glimpse into the bound-

less universe in the virtual. Yet an obvious question is

how we can go beyond class-specific scenes, and repli-

cate  the  success  with  general  natural  scenes①,  creat-

ing  at  scale  diverse  scenes  of  more  sorts.  This  work

presents an attempt towards answering this question.

Another  key  that  boosted  the  field  is  differen-

tiable  projection  techniques  that  enable  training  on

only  2D  images,  bypassing  the  explicit  need  for  col-

lecting 3D models. However, collecting tons of homo-

geneous images for each scene type ad hoc is cumber-

some,  and  would  become  prohibitive  when  the  scene

type  varies  dynamically.  Herein,  our  key  observation

is that general natural scenes often contain many sim-
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①Analogous to the concept in single image generation[6], a general natural scene contains sufficiently rich information, such as
complex structures and textures, for learning an internal distribution.
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ilar  constituents  whose  geometry,  appearance,  and

spatial arrangements follow some clear patterns, while

exhibiting  rich  variations  over  different  regions.

Therefore we propose to train on a single general nat-

ural scene, which builds upon recent success with dif-

ferentiable rendering, particularly to learn the 3D in-

ternal distribution from its observation images.

To  this  end,  we  present  SinGRAV,  for  a  genera-

tive radiance volume learned to synthesize variations

from images of  a single general  natural  scene.  Train-

ing with a single scene necessitates learning the inter-

nal  statistics,  which  triggers  a  design  choice  of  the

scene  representation  with  locality  modeling  in  Sin-

GRAV.  Besides,  different  from  object-centric  scenes

as  in  [1, 3, 4]  or  image generation[6, 7],  plausible  geo-

metric arrangements are vital to 3D scene generation.

Therefore, key designs are dedicated to improving the

spatial arrangement plausibility, without significantly

increasing the computational overhead.

Specifically, the core of SinGRAV is to learn from

local regions via localizing the training. As our super-

vision  comes  from  purely  2D  observations,  learning

internal  distributions  consequently  grounds  Sin-

GRAV  on  the  assumption  that  multi-view  observa-

tions share a consistent internal distribution for learn-

ing. This can be simply realized by capturing images

with  cameras  at  roughly  uniform  distances  to  the

scene,  e.g.,  with  drones  for  outdoor  scenes.  On  the

other hand, multi-layer perceptron (MLP)-based rep-

resentations  tend  to  synthesize  holistically  and  per-

form  better  at  modeling  global  patterns  over  local

ones[8], as also revealed in our ablation studies. Hence,

we resort to convolutional operations, which generate

discrete  radiance  volumes  from  noise  volumes  with

limited  receptive  fields,  for  learning  local  properties

over a confined spatial extent, granting better out-of-

distribution  generation  in  terms  of  global  configura-

tion.  Moreover,  we  adopt  a  multi-scale  architecture

containing a pyramid of  convolutional  GANs to cap-

ture the internal distribution at various scales, allevi-

ating the notorious mode-collapse issue.  This is  simi-

lar  in  spirit  to  [6];  however,  important  designs  must

be  incorporated to  efficiently  and effectively  improve

the plausibility of the spatial arrangement of the gen-

erated  3D  scene.  Specifically,  we  found  that  coarser

scales  produce  highly  implausible  geometric  struc-

tures,  which  cannot  be  easily  distinguished  by  dis-

criminators  operating  on  the  renderings  with  limited

receptive  fields.  Our  remedy is  to  use  a  combination

of 1) the spatial inductive bias injected at the coars-

est scale,  and 2) the joint discrimination on the geo-

metric  depth map, which is  a byproduct from recon-

structing the input scene and also the volume render-

ing technique.

To validate the proposed framework, we collect a

dataset  containing  various  example  scenes,  and  con-

duct  comprehensive  investigations.  We  demonstrate

that SinGRAV enables us to easily generate plausible

variations  of  an  input  scene  in  large  quantities  and

varieties,  which  is  exemplified  by  a  subset  of  the  re-

sults showcased in Fig.1. To evaluate the plausibility

of  generated  scenes,  we  compare  the  observed multi-

view images  from the  generated  scenes  against  those

from  the  given  exemplar  scene.  And  performance

comparisons  are  made  to  state-of-the-art  generative

neural  scene  models.  We  also  extensively  investigate

each  key  design  choice  for  inspiring  more  future  re-

search.  Finally,  we  show the  versatility  of  SinGRAV

through  its  use  in  a  series  of  applications,  spanning

3D scene editing, composition, and animation. 

2    Related Work

Neural  Scene  Representation  and  Rendering.  In

recent  years,  neural  scene  representations  have  been

the de facto infrastructure in several  tasks,  including

representing  shapes[9–13],  novel  view  synthesis[14–16],

and 3D generative modeling[1–5, 17, 18]. Paired with dif-

ferentiable projection functions, the geometry and ap-

pearance  of  the  underlying  scene  can  be  optimized

based  on  the  error  derived  from the  downstream su-

pervision  signals.  [9–12, 19]  adopt  neural  implicit

fields  to  represent  3D  shapes  and  attain  highly  de-

tailed  geometries.  On  the  other  hand,  [16, 20, 21]

work  on  discrete  grids,  UV  maps,  and  point  clouds,

respectively,  with  attached  learnable  neural  features

that  can  produce  pleasing  novel  view  imagery.  More

recently,  the  Neural  Radiance  Field  (NeRF)  tech-

nique[15] has revolutionized several research fields with

a  trained  MLP-based  radiance  and  opacity  field,

achieving  unprecedented  success  in  producing  photo-

realistic  imagery.  An  explosion  of  NeRF  techniques

occurred  in  the  research  community  since  then  that

improves  the  NeRF  in  various  aspects  of  the

problem[22–30].  A  research  direction  drawing  increas-

ing  interest,  which  we  discuss  in  the  following,  is  to

incorporate such neural representations to learn a 3D

generative model possessing photo-realistic viewing ef-

fects.

Generative  Neural  Scene  Generation.  Recently,
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3D-aware generative models have attracted much at-

tention  and  achieved  appealing  results.  The  heart  of

these  models  is  a  3D  neural  scene  representation,

paired  with  the  differentiable  volume  rendering,  en-

abling the supervision imposed in the image domain.

[1, 4] integrate a neural radiance field into generative

models, and directly produce the final images via vol-

ume rendering, yielding consistent multi-view render-

ings of  generated scenes.  To overcome the low query

efficiency and high memory cost issues,  [2, 3, 5]  pro-

pose to adopt 2D neural renderers to achieve high-res-

olution renderings.  More often than not,  these meth-

ods are demonstrated on single-object scenes. [18] uti-

lizes  a  grid  of  locally  conditioned  radiance  sub-fields

to model indoor scenes. All these studies focus on cat-

egory-specific  models,  requiring  training  on  sufficient

volumes of  image data collected from many homoge-

neous scenes. In this work, we target general natural

scenes,  which  in  general  possess  intricate  and  exclu-

sive  characteristics,  suggesting  difficulties  in  collect-

ing necessary volumes of training data and rendering

these  data-consuming  learning  setups  intractable.

Moreover, as aforementioned, our task necessitates lo-

calizing the training over local regions, which is lack-

ing  in  MLP-based  representations,  leading  us  to  use

voxel grids.

Concurrently,  [31]  also  explores  the  learning  of  a

3D  generative  model  from  single-scene  images,  em-

ploying  a  two-stage  framework.  The  method[31] first

constructs  a  3D  volume  representation  from  the  in-

put  multi-view  images  and  subsequently  employs  a

3D discriminator to enhance spatial plausibility in the

generated  scenes.  In  contrast,  we  adopt  a  one-stage

training approach and our proposed framework is sig-

nificantly  different  from  [31]  in  its  strategy  for  im-

proving  3D  spatial  plausibility.  Specifically,  we  en-

hance  the  generator  by  incorporating  Cartesian  Spa-

tial Grid positional encoding[32], and we make the 2D

discriminator  jointly  discriminate  the  depth rendered

from generated scenes to guarantee spatial  plausibili-

ty.  In  comparison  to  the  approach  presented  in  [31],

which  includes  an  additional  3D  volume  discrimina-

tor, the strategies devised in our proposed framework

are  more  computation-efficient  and  memory-friendly.

Besides,  this  work  provides  an  extensive  analysis  of

the influence of different scene representations on the

task. Additionally, we showcase the versatility of our

core  framework  in  various  3D modeling  applications,

including  scene  editing,  composition,  and  animation.

Very  recently,  another  concurrent  work[33] has  been

proposed with a similar goal, which focuses mainly on

indoor scenes.

Generative  Image  Models.  Since  the  introduction

of Generative Adversarial Networks (GANs)[34], state-

 

(b)(a)

(c) (d) (e)

Fig.1.  Scene generation results and application results. (a) Three views of the training scenes. (b) Randomly generated scenes from
the proposed framework SinGRAV. (c) Results for object removal. (d) Results for duplicating an object. (e) Results for scene compo-
sition. Note how the global and object configurations vary in generated scenes shown in (b) yet still resembles the original training
scene.
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of-the-art studies can now synthesize high-fidelity im-

ages[35–39].  More recently,  diffusion models[40] have al-

so shown dominance in this field. Despite the impres-

sive success, most of them require a large set (typical-

ly dozens of thousands) of category-specific images to

learn the data distribution. Therefore, a line of stud-

ies  occurred  to  train  a  generative  model  on  a  single

image[6, 7],  and  achieved  compelling  results  with

learned  internal  distributions.  Particularly,  Sin-

GRAV  is  inspired  by  [6],  but  has  to  tackle  unique

challenges arising from learning the internal distribu-

tion from multi-view observations of a 3D scene. We

elaborately choose the neural scene presentation with

locality modeling, and propose an effective strategy to

cope with the challenges of producing implausible spa-

tial  arrangements.  Eventually,  SinGRAV  can  gener-

ate diverse 3D scenes supporting circular-viewing. We

note  that  SinGRAV  inherits  some  limitations  of  [6],

being  unable  to  handle  scenes  with  a  dominant  ob-

ject  that  is  highly  structure-sensitive  (e.g.,  human

head). 

3    Method

X = {x1, . . . ,xm}
m

SinGRAV learns  a  powerful  generative  model  for

generating  neural  radiance  volumes  from  multi-view

observations  of  a  single  scene,

where  denotes the viewpoint index. In contrast to

learning  class-specific  priors,  our  specific  aim  is  to

learn the internal  distribution of  the input scene.  To

this end, we resort to a voxel-based neural scene rep-

resentation,  paired  with  convolutional  generators,

which  inherently  possess  spatial  locality  bias,  with

limited receptive fields for learning over plenty of lo-

cal  regions.  The  generative  model  is  learned  via  ad-

versarial  generation  and  discrimination  through  2D

projections of the generated volumes. During training,

the camera pose is randomly selected from the train-

ing  set.  We will  omit  the  notion  of  the  camera  pose

for  brevity.  Overall,  we  use  a  multi-scale  framework

to  learn  properties  at  different  scales  ranging  from

global configurations to local fine texture details, and

have  to  tackle  the  spatial  geometric  arrangement  is-

sues in 3D. Fig.2 presents an overview. 

3.1    Neural Radiance Volume and Rendering

σ

c

r Ĉ

M

The  generated  scene  is  represented  by  a  discrete

3D voxel grid, and is to be produced by a 3D convo-

lutional  network.  Each  voxel  center  stores  a  4-chan-

nel vector that contains a density scalar  and a col-

or vector . Trilinear interpolation is used to define a

continuous  radiance  field  in  the  volume.  We  use  the

differentiable  volume  rendering[15] to  render  images

from generated volumes. Specifically, for each camera

ray , the expected color  is approximated by inte-

grating over  samples spreading along the ray: 

Ĉ({σi, ci}M
i=1) =

M∑
i=1

Ti

(
1− exp(−σiδi)

)
ci,
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Fig.2.  SinGRAV training setup. A series of convolutional generators are trained to generate a scene in a coarse-to-fine manner. At
each scale,  learns to form a volume via generating realistic 3D overlapping patches, which collectively contribute to a volumet-
ric-rendered imagery indistinguishable from the observation images of the input scene by the discriminator . At the finest scale,
the generator  operates purely on the 2D domain to super-resolve the imagery produced from scale , significantly reducing
the computation overhead.  means volume upsampling.
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Ti = exp
(
−

∑i−1

j=1
σjδj

)
,

tn tf
δi = ti+1 − ti

Ti

i

and  where the subscript  de-

notes the sample index between the near  and far 

bound,  is the distance between two con-

secutive samples, and  is the accumulated transmit-

tance  at  sample ,  which  is  obtained  via  integrating

over the preceding samples along the ray. This func-

tion  is  differentiable  and  enables  updating  the  vol-

ume based on the error derived from supervision sig-

nals.

Hybrid Multi-Scale Architecture. SinGRAV uses a

hybrid multi-scale architecture that contains a gener-

ation pyramid with a hybrid use of 2D and 3D convo-

lutional generators,  and a discrimination pyramid in-

specting  local  properties  on  2D  renderings  at  differ-

ent scales. 

3.1.1    Hybrid Generation Pyramid

{Gn}N−1
n=1

GN

θ

N

GN

µs

There are a series  of  3D convolutional  generators

 and  a  lightweight  2D convolutional  genera-

tor  (see Fig.2). Overall, 3D generators at coarser

scales  learn  to  generate  a  radiance  volume  at  an  in-

creasing  resolution,  and the  volume resolution in  the

pyramid  is  increased  by  a  factor  of  between  two

consecutive  scales.  At  the -th  scale,  to  avoid  the

overly  high  computation  issue,  we  use  a  lightweight

2D generator  to directly super-resolve the render-

ing from the preceding scale by a factor , achieving

higher-resolution  imagery.  Importantly,  these  genera-

tors are equipped with limited receptive fields to cap-

ture the distribution of local patches, instead of mem-

orizing the whole scene (i.e., reconstruction).

z1

At  the  coarsest  scale,  the  generation  is  produced

in an unconditional manner, i.e., the radiance volume

at the coarsest scale is purely generated from a Gaus-

sian noise volume . Notably, we observe that learn-

ing  the  internal  distribution  with  spatial-invariant

and  receptive  field-limited  convolutional  networks

leads  to  more  difficulties  in  producing  plausible  3D

structures. Inspired by [32], which alleviates a similar

issue  in  image  generation  by  introducing  spatial  in-

ductive bias,  we introduce spatial  inductive bias into

our framework by using the 3D normalized Cartesian

Spatial Grid (CSG): 

ecsg(x, y, z) = 2×
[
x

W
− 1

2
,
y

H
− 1

2
,
z

U
− 1

2

]
,

W H U

x y z

where , , and  are the size of the volume along

the -, - and -axis  respectively.  As  illustrated  in

Fig.3,  the  grid  is  equipped  with  distinct  spatial  an-

ecsg

z1

chors,  empowering  the  model  with  better  spatial  lo-

calization.  The  spatial  anchors  provided  by  are

injected into the noise volume  at the coarsest level

via an element-wise summation operation: 

Ṽ1 = G1(z1, ecsg) = G1(z1 + ecsg),

z1, ecsg ∈ R3×U×H×W

G1 40%
G1

where .  Note  we  only  inject  the

spatial inductive bias at the coarsest scale, as the po-

sitional-encoded  information  will  be  propagated

through  subsequent  scales  by  convolution

operations[32]. The receptive field of  is around 

of the volume of interest;  thus  learns to generate

the overall layout.

Gn 1 < n < N

Gn

zn

(Ṽn−1) ↑θ Gn−1

Gn zn (Ṽn−1) ↑θ

Gn

Subsequently,  at  finer  scales  ( )

learns  to  add  details  missing  from  previous  scales.

Hence,  each  generator  takes  as  input  a  spatial

noise  volume  and  an  upsampled  volume  of

 outputted from . Specially, prior to be-

ing fed into ,  is added to , and, akin to

residual  learning[41],  only learns to generate miss-

ing details: 

Ṽn = (Ṽn−1) ↑θ + Gn

(
zn, (Ṽn−1) ↑θ

)
, 1 < n < N.

GN

x̃N−1

GN−1 x̃N

At the finest scale, a 2D convolutional generator 

takes as input only the rendering  produced from

 and outputs a super-resolved image  with en-

hanced details: 

x̃N = GN(x̃N−1).

GN

x̃N−1

 utilizes  upsampling  layers  introduced  in  [3],  and

produces  the  final  image  that  is  twice  the  resolution

of . 

3.1.2    Discrimination Pyramid

For supervising the generation at each scale,  Sin-

GRAV resorts to a pyramid of 2D discriminators that

operate  on  2D  images  obtained  by  volume-rendering

the generated volume, instead of directly using expen-

 

(-1, -1, 1) (-1, 1, 1)

(-1, 1, -1)

(1, 1, -1)(1, -1, -1)

(1, -1, 1) (0, 0, 0)

ecsgFig.3.  Spatial anchors provided by .
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[1, N − 1] {D2D
n }N−1

n=1

µr

{D2D
n }N−1

n=1

D2D
N

(x̃N−1) ↑µs

GN

D2D
n

sive  3D  convolutions.  Specifically,  at  coarser  scales

,  discriminators  jointly  discrimi-

nate on the RGB and depth renderings, of which the

resolution  between  consecutive  scales  increases  by  a

factor of , to simultaneously inspect the texture and

geometry. Although [18] also adopts joint discrimina-

tion on depth, their discriminator is to inspect the en-

tire  interior  layout,  while  our  is  to  learn

plausible  geometric  arrangements  from local  patches.

At the finest scale, where the input is an RGB image

directly generated from the generator, to improve the

view  consistency,  we  adopt  the  dual  discrimination

strategy  as  in  [2]  for  the  discriminator  by  con-

catenating  the  naively  super-resolved  with

the  output  from .  Overall,  to  progressively  learn

the  internal  priors,  the  receptive  field  of  is  so

limited  that  local  regions  in  the  generated  scene  can

be gradually crafted. 

3.2    Training Loss

Xn = {xn}N
n=1

The  multi-scale  architecture  is  sequentially

trained, from the coarsest to the finest scale. We con-

struct  a  pyramid  of  resized  input  observations,

,  for  providing  supervisions.  The  GANs

at coarser scales are frozen once trained. The training

objective is as follows: 

min
Gn

max
D2D

n

Ladv(Gn, D
2D
n )+

Lrec(Gn) + 1(n = N)Lswd(Gn),

Ladv Lrec

1(·)

Lswd

Lswd Lswd = Lswd(xN , x̃N)

=
∑K

k=1
Lswd(f̃

k,f k) f̃ k f k

k

Ladv Lrec

where  is an adversarial term,  is a reconstruc-

tion  term as  similar  in  [6],  is  an  indicator  func-

tion to  activate  the  associated term iff  the  condition

is  satisfied,  and  calculates  the  Sliced  Wasser-

stein  Distance  (SWD) as  in  [42].  SWD measures  the

distance between the textural distributions of two im-

ages, while neglecting the difference of the global lay-

outs. Concretely,  is given by: 

,  where  and  are  features

from  layer  of  a  pre-trained  VGG-19  network[43]

(please refer to [42] for more details). In the following,

we elaborate the designs of  and . 

3.2.1    Adversarial Loss

LadvWe use the WGAN-GP loss[44] as  for stabiliz-

ing the training. The discrimination score is obtained

by  averaging  over  the  patch  discrimination  map  of

D2D
n

{D2D
n }N−1

n=1

D2D
N

xN−1

xN

.  During  training,  we  render  the  depth  from the

generated volume, and concatenate the depth and col-

or images for the input to  as fake samples,

while real samples for depth can be derived with mul-

ti-view  geometry  techniques  trivially.  For  preparing

the real input to discriminator , we upsample the

resized observation  via bilinear upsampling and

concatenate  the  upsampled  image  with  the  ground

truth observation . 

3.2.2    Reconstruction Loss

X
{z∗

n}N−1
n=1 = {z∗

1 , 0, . . . , 0}

{V ∗
n }N−1

n=1 {x̃∗
n, d̃

∗
n}N

n=1

Lrec

Inspired  by  [6],  we  introduce  a  specific  set  of  in-

put  noise  volumes  to  ensure  that  they  can  recon-

struct  the  underlying  scene  depicted  in  the  observa-

tions . Specifically, a set of fixed noise volumes are

defined  as .  The  reconstruct-

ed radiance volumes and associated renderings are de-

noted as  and , respectively. Then

the reconstruction loss  is defined as: 

Lrec = λc||x̃∗
n − xn||22 + 1(n < N) · λd||d̃∗

n − dn||22, (1)

λc λd

λc = 10 λd = 30

GN

where  and  are  balance  parameters  and  we  set

 and . As shown in (1), we use supervi-

sions  on  both  color  images  and  depth  images  for

achieving higher quality. Note that the depth penalty

term is removed at the last scale since , which on-

ly works in the color image domain. As demonstrated

and  discussed  later  in Subsection 4.4.2,  our  method

can  be  applied  even  in  cases  where  ground-truth

depth maps are unavailable. In such scenarios, recon-

structed depth maps generated by NeRF[15] models or

our proposed framework can be utilized. 

4    Experiments
 

4.1    Settings
 

4.1.1    Data

To  evaluate  the  proposed  framework,  we  collect

observation  images  from  a  dozen  of  diverse  scenes,

which  exhibit  ample  variations  over  the  global  ar-

rangements  and  constituents.  Specifically,  we  collect

3D  scene  assets  from  this  website②,  under  Tur-

boSquid  3D Model  License③.  For  eliminating  the  in-

fluence  of  data  defects  including  incorrect  camera

pose estimation, incomplete scene coverage within the

multi-view  images,  etc.,  we  use  rendered  multi-view
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2 [−1, 1]

images  in  our  main  experiments,  comparison  experi-

ments, and ablation study. Specifically, we utilize the

path-tracing renderer in Blender to get the multi-view

RGB-D observation. For data rendering, we scale the

scenes  so  that  the  volume  of  interest  stays  within  a

cube with side width =  (within the range ).

Finally, for each scene, we render 200 observation im-

ages that fully cover the scene, for which the camera

positions  are  randomly  sampled  on  a  hemisphere.

Random  natural  scene  generation  of  our  method  is

demonstrated upon all collected scenes, whereas more

evaluations  are  conducted  on  a  subset  (stonehenge,

grass and flowers, and island).

Moreover,  in Subsection 4.5,  we  test  our  frame-

work  on  captured  data  obtained  by  a  hand-hold

phone.  For  captured  multi-view  images,  we  utilize

COLMAP  to  reconstruct  camera  poses,  which  is  a

common  practice  in  many  neural  scene  representa-

tion frameworks[15, 45]. 

4.1.2    Evaluation Measures

m = 50

k = 40

We extend common metrics in single image gener-

ation to quantitatively assess  scenes generat-

ed  from each  input  scene.  For  each  generated  scene,

 images at random viewpoints are rendered for

evaluation  under  a  multi-view  setting:  1)  SIFID-MV

measures  how  well  the  model  captures  the  internal

statistics of the input by SIFID[6] averaged over mul-

ti-view images of a generated scene; 2) Diversity-MV

measures the diversity of generated scenes by the av-

eraged image diversity[6] over multiple views. 

4.2    Neural Scene Variations

Fig.1 and Fig.4 present qualitative results of Sin-

GRAV, where the generated scenes depict reasonably

new  global  layouts,  and  objects  with  various  shapes

and realistic looking. These results suggest the effica-

cy of SinGRAV in modeling the internal patch distri-

bution  within  the  input  scene.  On  grass  and  flowers

exhibiting  uniform  yet  complicated  textures  over  an

open  field,  SinGRAV  produces  high-quality  random

generation  results.  Moreover,  SinGRAV  is  able  to

capture the global illumination to some extent, as evi-

denced  by  the  shadows  around  stones  and  islands,

along  with  the  illumination  changes  under  spinning

cameras  on  samples  of  mushroom.  In Fig.5,  we

demonstrate  examples  for  extracted  meshes  of  the

generated  scenes  from SinGRAV,  which  demonstrate

the  ability  to  capture  the  geometric  distribution  of

the exemplar scene.  In addition,  we present more vi-

sual results in the supplementary video④. 

4.3    Comparisons

We compare our framework SinGRAV with three

state-of-the-art neural scene generative models, name-

ly,  GRAF[4],  pi-GAN[1],  and  GIRAFFE[5].  We  use

their official codes for training these baselines. Train-

ing details  of  each baseline  can be found in the sup-

plementary  material⑤.  For  fair  comparisons,  similar

to  SinGRAV,  we  use  ground  truth  cameras  when

training  baselines,  instead  of  using  random  cameras

from a predefined camera distribution. The quantita-

tive  and  qualitative  results  are  presented  in Table 1

and Fig.6,  respectively. Table 1 shows  that  pi-GAN

produces  the  best  SIFID-MV score,  but  the  value  of

Diversity-MV  drastically  degrades.  GRAF  and  GI-

RAFFE also  exhibit  a  significantly  degraded  diversi-

ty score.  Qualitative results in Fig.6 show that these

baselines suffer from severe mode collapse, due to the

lack of diverse samples for learning category-level pri-

ors. 

4.4    Validation of Design Choices

We  conduct  experiments  to  evaluate  several  key

design choices and the quantitative results are report-

ed in Table 2. 

4.4.1    Spatial Inductive Bias

ecsg

17%

We build a variant—SinGRAV (wo. CSG), which

is trained without the spatial anchor volume . As

shown  in Table 2,  compared  with  SinGRAV,  Sin-

GRAV (wo. CSG) produces a worse SIFID-MV score

(increased  by )  and  an  increased  Diversity-MV

score.  While  the  latter  suggests  increased  diversity,

we observe from the visual results that the spatial ar-

rangements  of  objects  deviate  significantly  from that

of  the  input,  producing  floating  stones,  as  shown  in

Fig.7(a). 

4.4.2    Depth Supervision Strategy

To  investigate  the  role  exerted  by  the  depth  su-

pervision  (depth  sup.)  and  the  influence  of  using  re-
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constructed  depth  cues,  we  conduct  experiments  on

three variants of SinGRAV, including SinGRAV (wo.

depth  sup.),  SinGRAV  (self-depth)  and  SinGRAV

(NeRF-depth).

 

!"##"$%&'()*+,-.!"/"$%&'(01+,-.!"/"$%&'(2)+,-.!")"$%&'(33+,-.

(b)(a)

Fig.4.  Random scene generation. (a) Sampled views for different training scenes. (b) Rendered views from three randomly generat-
ed scenes. In each row, the images shown in (a) and (b) are under the same viewpoints. After training on multi-view observations of
an input scene, SinGRAV learns to generate similar scenes with new objects and configurations. Note the observation images of the
beach castle at the top row are taken from the real world, and novel beach castles with various layouts are generated by SinGRAV.

 

Fig.5.  Examples for extracted meshes from generated scenes produced by SinGRAV.
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In  the  first  variant,  SinGRAV  (wo.  depth  sup.),

we remove the depth supervisions and present the nu-

merical results in Table 2. Visual results are also pro-

vided  in Fig.7.  While  the  numerical  results  for  this

variant are comparable to those of our full model Sin-

GRAV, Fig.7 shows  that  the  extracted  point  clouds

exhibit undesirable geometric structures in the gener-

ated scenes of  SinGRAV (wo. depth sup.).  Addition-

ally,  in  the  supplementary video⑥,  we include multi-

view videos to further illustrate the suboptimal geom-

etry  produced  by  this  variant.  These  results  empha-

size  the  importance  of  incorporating  depth  supervi-

sions during the training.

There  are  many  scenarios  where  perfect  ground-

z∗

λd = 0

truth depth is  not available;  thus we further investi-

gate the feasibility of utilizing reconstructed depth in-

formation from multi-view RGB images.  The variant

SinGRAV  (NeRF-depth)  uses  the  depth  obtained

from a NeRF[15] reconstruction of the input scene, and

SinGRAV  (self-depth)  uses  the  depth  obtained  from

the  reconstructed  volume  with  from  our  frame-

work  trained  with . Table 2 shows  that  Sin-

GRAV (NeRF-depth)  and SinGRAV (self-depth)  are

able to achieve comparable performance to SinGRAV,

implying  that  SinGRAV  is  robust  to  the  quality  of

the depth data. The extracted point clouds from gen-

erated  scenes,  as  shown  in Fig.7,  also  demonstrate

that using depth supervision coming from reconstruct-

ed  depth  can  generate  reasonable  geometric  arrange-

ments.  Furthermore, we provide multi-view videos of

the  generated  scenes  from  two  aforementioned  vari-

ants  for  enhanced  visualization.  To  encapsulate,

depth  data  obtained  via  reconstruction  methods  suf-

fice  to  guide  the  learning  of  global  geometric  struc-

tures,  reinforcing  the  adaptability  and  versatility  of

SinGRAV in diverse scenarios.
 

 

Table  1.    Quantitative Comparisons

Method Img. Res. ↓SIFID-MV ↑Diversity-MV 

GRAF[4] 320× 320 0.444 7 0.133 7

pi-GAN[1] 128× 128 0.013 3 0.115 7

GIRAFFE[5] 320× 320 0.471 0 0.319 8

SinGRAV 320× 320 0.111 3 0.776 9

↓ ↑

Note:  The  top  two  on  each  metric  are  bolded.  All  baselines
suffer  from severe  mode  collapse,  producing  low Diversity-MV
scores. Img. Res.: image resolution. : the lower, the better; :
the higher, the better.

 

(a) (b) (c)

(d) (e)

Fig.6.  Qualitative results for comparisons. (a) Training scenes. (b) Randomly generated scenes from GRAF[4]. (c) Randomly gener-
ated scenes from pi-GAN[1]. (d) Randomly generated scenes from GIRAFFE[5]. (e) Randomly generated scenes from SinGRAV. All
baselines encounter severe mode-collapse issues, while SinGRAV generates diverse samples.
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4.4.3    SWD Loss

LswdIf  is  eliminated,  the  internal  distribution  of

generated scenes would differ greatly from that of the

input, leading to significantly increased SIFID-MV at

the fifth row (wo. SWD) in Table 2. Correspondingly,

Lswd

Lswd

the  visual  results  in Fig.8 also  show  that

SinGRAV(wo. ) produces blurry and less realistic

textures,  suggesting the efficacy of  in improving

visual quality. 

4.4.4    MLP vs Voxel

160× 160

To validate our choice of adopting the voxel-based

representation,  we  design  a  variant  SinGRAV  (w.

MLP), which integrates a conditional MLP-based ra-

diance  field  as  in  [4].  The  numerical  results  of  Sin-

GRAV  (w.  MLP),  which  uses  a  conditional  MLP-

based radiance field as in GRAF, are reported in Ta-

ble 2.  The  highest  image  resolution  is  due

to  overly  high  memory  consumption.  SinGRAV  (w.

MLP)  degrades  in  both  the  quality  and  diversity,

which  is  also  reflected  by  the  visuals  in Fig.2.  Note

that,  although  the  same  patch  discrimination  strate-

 

Table  2.    Numerical Results for Variants of SinGRAV

Variant Img. Res. ↓SIFID-MV ↑Diversity-MV 

(wo. CSG) 3202 0.130 7 0.843 4

(wo. depth sup.) 3202 0.115 7 0.791 0

(NeRF-depth) 3202 0.129 0 0.804 6

(self-depth) 3202 0.112 0 0.786 2

(wo. SWD) 3202 0.271 3 0.773 0

(w. MLP) 1602 0.184 3 0.523 5

(w. MLP-LLG) 1082 0.201 3 0.462 1

SinGRAV 3202 0.111 3 0.776 9

Note: wo.: without; w.: with.

 

wo. CSG wo. depth sup. Full modelFull modelFull model(a) (b) (c) (d) (e)

Fig.7.  Influence of spatial inductive bias and depth supervision strategies. (a) Results from SinGRAV (wo. CSG). (b) Results from
SinGRAV (wo.  depth sup.).  (c)  Results  from SinGRAV (NeRF-depth).  (d)  Results  from SinGRAV (self-depth).  (e)  Results  from
SinGRAV with GT depth. One generated sample with the corresponding point cloud is shown in (a)–(e). Without the inductive bias
or depth supervision, the generated scenes exhibit implausible geometric structures, while the variants that use reconstructed depth
maps or ground-truth depth preserve the spatial arrangement well.

 

!"##$"%&'()*+!"$"%&'(),$-./0!"$"%&'()+,-./0

RandomgenerationInputscene

SinGRAV(wo. ! !"#" SinGRAV(a) (b) (c)

Lswd
Lswd Lswd

Fig.8.  SinGRAV vs SinGRAV (wo. ). (a) Two training scenes. (b) Rendered results of generated scenes from SinGRAV (wo.
). (c) Rendered results of generated scenes from SinGRAV. Without the SWD loss at the finest scale, SinGRAV (wo. ) pro-

duces blurry textures and undesired artifacts, while training with SWD loss significantly improves the texture quality.
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gy  is  used,  SinGRAV  (w.  MLP)  suffers  from  severe

mode collapse. We believe this is because the genera-

tive output of coordinate-based MLPs is very likely to

be dominated by the input coordinates. The poor gen-

eration  is  also  possibly  a  product  of  the  conflict  be-

tween  the  lack  of  locality  in  the  fully-connected  lay-

ers[8] and the limited receptive field in the adversarial

training.  In  addition,  we  train  a  variant  SinGRAV

(w. MLP-LLG), which incorporates a local latent grid

(LLG) proposed in [18] to increase the capacity of the

MLP-based representation. Fig.9 shows that the gen-

erated layouts are improved with the increased locali-

ty; however, severe mode collapse still  exists. On the

other  hand,  we  believe  more  efforts  can  be  made  in

the  future  to  adapt  MLP-based  representations  for

our task.
  

!

RandomgenerationInputscene

SinGRAV (MLP) SinGRAV (MLP-LLG)
(a) (b) (c)

Fig.9.  Qualitative results of using MLP-based representations.
(a)  Training  scenes.  (b)  Generated  scenes  from SinGRAV (w.
MLP).  (c)  Generated  scenes  from  SinGRAV  (w.  MLP-LLG).
SinGRAV (w. MLP) produces grid patterns, which are alleviat-
ed by the use of local latent grid in SinGRAV (w. MLP-LLG).
Nevertheless,  both  variants  suffer  from  severe  mode  collapse,
and generate almost identical scene samples. 

4.4.5    Influence of Varying Pyramid Depth

t t < N

{Gn}N
n=N−t+1

{D2D
n }N

n=N−t+1

We train variants with various numbers of scales.

Specifically,  for  training  a  variant  with  ( )

scales, we use generators  and discrimina-

tors  to preserve the final image resolu-

tion.  As  shown  in Fig.10,  with  less  scales,  the  effec-

tive  receptive  field  at  the  coarsest  scale  is  rather

small,  resulting  in  a  model  that  only  captures  local

properties,  whereas,  using  more  scales  allows  model-

ing plausible global arrangements. 

4.5    Results on Real-World Data

To  investigate  the  applicability  of  SinGRAV  on

real-world  data,  we  test  SinGRAV  on  a  daily  sce-

nario  where  people  use  a  mobile  phone  to  capture

multi-view images of a desktop scene. Specifically, we

capture  dozens  of  images  of  two  candy  piles.  The

flash  is  turned  on  for  removing  the  shadows  intro-

duced by the hands and the hand-hold devices. Then

we use COLMAP to estimate the camera poses of the

captured  images.  Once  the  poses  are  estimated,  we

adopt MultiNeRF⑦ to reconstruct the captured scene.

Finally,  given  the  MultiNeRF-parameterized  scene,

we can render multi-view images with roughly consis-

tent  camera-scene  distances  for  training  SinGRAV.

Since the ground-truth depth maps are not available

for images captured by hand-hold phones, we use ren-

dered  depth  maps  from  the  reconstructed  scene  to

train our framework.

The  generated  scenes  are  shown  in Fig.11.  As

shown in Fig.11, SinGRAV is able to produce plausi-

ble  scenes  with  considerable  diversity,  demonstrating

the applicability of SinGRAV on real-world captured

images.  The  results  further  manifest  that  the  pro-

posed framework can achieve appealing results by us-

ing  reconstructed  depth  maps  from  multi-view  im-

ages. The rendered multi-view observations from more

generated  scenes  can  be  found  in  the  supplementary

video⑧. 

4.6    Applications

SinGRAV  supports  various  applications,  which

can  be  achieved  by  naively  manipulating  generated

volumes at coarse scales and using subsequent genera-
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RandomgenerationInputscene

N=5 N=4 N=3

!"#$"%&'()*#+,-.

N=6(Default)(a) (b) (c) (d) (e)

N = 6
N = 5 N = 4

N = 3
N 6

Fig.10.  Influence of different numbers of scales. (a) Training scene. (b) Generated scene from SinGRAV with . (c) Generated
scenes  from SinGRAV with .  (c)  Generated scenes  from SinGRAV with .  (e)  Generated scenes  from SinGRAV with

. Training with more scales is beneficial to the modeling of global arrangements, while a model with less scales tends to cap-
ture only local textures.  is set to  by default for SinGRAV.
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tors  to  harmonize  the  modifications.  Specifically,  we

derive  three  applications  with  SinGRAV,  including

3D  scene  editing  with  removal  and  duplicate  opera-

tions, composition, and animation. Fig.1 presents the

results.  More  results  and  implementation  details  are

given in the supplementary material⑨. 

5    Conclusions

In this work, we made an attempt to learn a deep

generative  neural  scene  model  from  visual  observa-

tions of a single scene. Once trained on a single scene,

the model can generate novel scenes with plausible ge-

ometries  and  arrangements,  which  can  be  rendered

with  pleasing  viewing  effects.  The  importance  of  key

design choices is validated. Despite successful demon-

strations,  our  proposed  SinGRAV  has  a  few  limita-

tions. While SinGRAV learns from a single scene, by-

passing the need for collecting data from many homo-

geneous  3D  samples,  multi-view  images  with  suffi-

cient  coverage  rate  of  the  scene  are  yet  required.

Moreover,  albeit  validated,  the  use  of  voxel  grids  in-

herently limits the network capacity in modeling fine

details,  consequently  hindering  the  model  from

achieving  high-resolution  imagery.  Our  remedy  is  to

incorporate a 2D neural renderer that operates on the

2D  domain  to  super-resolve  the  imagery,  which  in-

evitably  introduces  the  multi-view  inconsistency.

There are view inconsistencies in complex textural ar-

eas,  e.g.,  the thin structures in the grass and flowers

scene.  A  future  direction  would  be  to  overturn  this

design, with more endeavors on exploiting MLP-based

representations to model  continuous volumes.  We al-

so  noticed  that,  when  the  exemplar  scene  is  domi-

nant by a structure-sensitive object, as demonstrated

in Fig.12,  SinGRAV  may  produce  less  satisfying  re-

sults.  Besides,  the  proposed  method,  in  its  current

form, sometimes produces artifacts in the background,

as  it  does  not  incorporate  special  designs  for  model-

ing the background. Hence, it would also be worth ad-

dressing  this  issue,  especially  for  scenes  with  compli-

cated backgrounds, potentially with special considera-

tions on the foreground-background continuity.
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(a) (b)

Fig.11.  Random scene samples generated from two real-world indoor scenes. (a) Two views of the training scenes. (b) Three ran-
domly generated scenes from SinGRAV separately trained on the training scenes. Each scene is rendered with the same two views.
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Fig.12.   Results  for  structure-sensitive  object-centric  scenes.
(a)  Two training  scenes.  (b)  Randomly  generated  scenes  from
SinGRAV.  When  the  exemplar  scene  is  predominantly  occu-
pied by a single object, SinGRAV possibly produces less satis-
fying results due to the insufficiency of exploitable patch priors
and unawareness of the underlying semantics.
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