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Abstract    Direct volume rendering (DVR) is a technique that emphasizes structures of interest (SOIs) within a volume

visually, while simultaneously depicting adjacent regional information, e.g., the spatial location of a structure concerning

its neighbors. In DVR, transfer function (TF) plays a key role by enabling accurate identification of SOIs interactively as

well as ensuring appropriate visibility of them. TF generation typically involves non-intuitive trial-and-error optimization

of rendering parameters, which is time-consuming and inefficient. Attempts at mitigating this manual process have led to

approaches that make use of a knowledge database consisting of pre-designed TFs by domain experts. In these approaches,

a user navigates the knowledge database to find the most suitable pre-designed TF for their input volume to visualize the

SOIs. Although these approaches potentially reduce the workload to generate the TFs, they, however, require manual TF

navigation of the knowledge database, as well as the likely fine tuning of the selected TF to suit the input. In this work,

we propose a TF design approach, CBR-TF, where we introduce a new content-based retrieval (CBR) method to automat-

ically navigate the knowledge database. Instead of pre-designed TFs, our knowledge database contains volumes with SOI

labels. Given an input volume, our CBR-TF approach retrieves relevant volumes (with SOI labels) from the knowledge

database; the retrieved labels are then used to generate and optimize TFs of the input. This approach largely reduces man-

ual TF navigation and fine tuning. For our CBR-TF approach, we introduce a novel volumetric image feature which in-

cludes both a local primitive intensity profile along the SOIs and regional spatial semantics available from the co-planar

images to the profile. For the regional spatial semantics, we adopt a convolutional neural network to obtain high-level im-

age feature representations.  For the intensity profile,  we extend the dynamic time warping technique to address subtle

alignment differences between similar profiles (SOIs). Finally, we propose a two-stage CBR scheme to enable the use of

these two different feature representations in a complementary manner, thereby improving SOI retrieval performance. We

demonstrate  the  capabilities  of  our  CBR-TF approach  with  comparison  with  a  conventional  approach  in  visualization,

where an intensity profile matching algorithm is used, and also with potential use-cases in medical volume visualization.
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1    Introduction

Modern imaging modalities, such as computed to-

mography (CT) or magnetic resonance (MR), is volu-

metric in nature, e.g., the shape, size, and location of

structures  can  be  natively  described  in  3D (three-di-
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mensional) space.  They are represented as a stack of

2D  (two-dimensional)  image  slices  that  collectively

show  volumetric  information.  In  conventional  inter-

pretation  approaches,  users  manually  navigate

through  an  entire  volume,  slice-by-slice,  and  then

mentally  reconstruct  the  volumetric  information  de-

rived from 2D image slices. In an attempt to comple-

ment the 2D visualization,  3D rendering,  such as  di-

rect volume rendering (DVR), is used to provide volu-

metric visualization of the data.

Fig.1 shows  the  advantages  of  a  3D  DVR  for  a

human CT volume compared with its 2D counterpart

cross-sectional  views,  where  the  DVR  provides  an

overview of the entire data, the shape of the kidneys,

and its spatial relationship with the neighboring spine

and  rib  cage.  Such  visualization  demonstrates  the

complementary  view  that  is  offered  by  the  3D  DVR

to the 2D cross-sectional views.
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Fig.1.   Quarter-view  visualization  example  of  complementary
2D and  3D for  a  human CT volume.  The  three  2D cross-sec-
tional views are shown in (a) axial, (b) coronal, and (c) sagit-
tal  views,  respectively.  3D DVR of  the same volume is  shown
in  (d).  We  use  3D Slicer  software[1] to  generate  the  visualiza-
tions.
 

There  are  many  challenges  for  DVR  to  be  more

broadly  employed  for  volumetric  imaging.  A  major

technical issue lies with the data-specific visualization

requirements, i.e., to identify and emphasize different

structures  of  interest  (SOIs)  in  a  volume.  Transfer

functions (TFs) play a key role in this[2]; for instance,

in  a  conventional  one-dimensional  (1D) TFs that  as-

sociate data density (intensity) with rendering param-

eters (color and opacity), a user must specify the in-

tensity ranges (to identify SOIs) and then assign col-

or  and  opacity  values  to  the  selected  range  (to  em-

phasize  the  SOIs).  As  such,  it  involves  non-intuitive

trial-and-error adjustments of the TF parameters un-

til  the  user “discovers” the  desired  visualizations,

which is time-consuming and inefficient[2]. There have

been  several  researches  that  have  been  directed  at

techniques  to  improve  TF  design  such  as  dominant
approaches  including  multi-dimensional  TFs[3–6],  im-
age-centric[7, 8],  and  automated  parameter  optimiza-
tion approaches[9–12].

An alternative technique to TF design is with the

use  of “knowledge” from  similar  cases[13, 14],  when

compared with the other dominant approaches solely

relying  on  input  data.  Pioneering  work  by  Marks

et  al.[13] and  Guo et  al.[14] introduced  knowledge

databases  that  consist  of  a  collection  of  pre-designed

TFs by domain experts. In the above work, instead of

generating effective TFs from scratch, a user manual-

ly  navigates  the  pre-designed  TF  cases  in  the

database, with the visual aid of paired DVRs, and se-

lects the most suitable one for the input volume. Al-

though  these  researches  demonstrated  the  feasibility

of  knowledge  databases  in  TF  design,  they  still  re-

quire  manual  navigation  of  pre-designed  TFs  in  the

knowledge  databases.  In  addition,  pre-defined  TFs

from the knowledge database may not be always opti-

mal for the input volume.

One solution to improve knowledge databases  for

TF design  is  to  automate  the  manual  searching  pro-

cess.  Content-based  retrieval  (CBR)  is  a  technique

that  enables  automated  searching  of  similar  cases

against  an  input  query  by  using  content  matching.

The term “content” refers to any features that can be

derived from data itself for use in representing the da-

ta.  For  example,  with  image  data,  conventional  low-

level  features  include  intensity,  texture,  and  color,

with  recent  work  reliant  on  deep  learned  features  to

better  describe  complex  patterns  and  high-level  se-

mantics[15].  CBRs have shown great success in gener-

al  images,  as  well  as  with  medical  images,  for  their

ability to effectively identify and retrieve similar cas-

es from large databases[16].

There  has  been  a  paucity  of  work  on  the  use  of

CBR  for  TF  design.  As  a  pioneering  and  only  rele-

vant research, Kohlmann et al.[17] made use of an in-

tensity profile,  as content, to represent an SOI along

a viewing ray. In their quarter-view visualization ap-

proach, a user-defined ray in 3D DVR is used to link

a  slice  position  of  2D  cross-sectional  views;  the  slice

position  is  computed  by  automatically  matching  the

intensity  profile  of  the  input  ray  query  to  pre-calcu-

lated profile templates for different SOIs in the knowl-

edge  database.  As  such,  their  use  of  CBR  is  highly

optimized to provide complimentary 2D cross-section-

al  views for  a single  SOI,  and is  not  suitable  for  the

TF  design  that  associates  with  multiple  SOIs.  The
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proposed intensity profile matching only relies on low-

level  primitive  features  and  may  not  be  sufficient  to

identify  and  retrieve  multiple  SOIs.  A  conventional

Euclidean  distance  (ED)  measure  used,  in  addition,

only considers voxel pairs that are exactly in the same

position and cannot match subtle differences (e.g., the

two same SOIs but with different lengths).

In  this  work,  we  propose  a  new  TF  design  ap-

proach, CBR-TF, using a knowledge database that is

searched using a new CBR method, which we refer to

as CBR-TF. Instead of pre-defined TFs[17], our knowl-

edge database consists of a collection of volumes with

SOI  labels.  Given  an  input  volume,  CBR-TF  auto-

matically retrieves similar cases by matching the con-

tent  pair  based  on  a  volumetric  image  feature.  The

retrieved cases enable us to identify SOIs of the input,

which  are  then  used  to  generate  a  component-based

1D TF[7]. The main technical contributions of the pa-

per can be summarized as follows.

• We  propose  a  “triplet  input  query” (TIQ)  to

formulate  a  volumetric  image  feature  from  an  input

volume.  A TIQ comprises  a user-defined ray of  SOIs

and  two  co-planar  images  to  the  ray  in  3D  coordi-

nates.

• For  the  two  co -planar  images,  we  propose  the

use  of  a  pre-trained  convolutional  neural  network

(CNN)[18] to obtain image feature representations that

carry high-level of regional spatial semantics. We fur-

ther  make  use  of  an  intensity  profile  along  the  SOIs

for  locating  them,  using  dynamic  time  warping

(DTW) technique[19] to  address  subtle  alignment  dif-

ferences between similar profiles.

• We propose a two-stage CBR method to enable

the use of the two different types of CNN and DTW

in a complementary manner through a rank-based se-

quential combination of the two individual retrievals.

• We  adopt  a  stroke -based  image-centric  appro-

ach[7, 8] for simple and intuitive user TIQ interactions.

Using  a  typical  quarter-view  visualization  (as  in

Fig.1), in our user interface, a user only needs to draw

a single  ray (on 2D cross-sectional  views)  or  select  a

single point (on 3D DVR) to derive the TIQ.

• For  situations  where  particular  SOIs  are  re-

quired to be emphasized, a visibility-based TF param-

eter optimization[9, 10] can be applied to TF design.

• We demonstrate the application of our CBR-TF

approach using a public medical imaging data reposi-

tory  of  3D  Image  Reconstruction  for  Comparison  of

Algorithm Database (3D-IRCADb-01)[20]. 

2    Related Work
 

2.1    Multi-Dimensional TF Designs

TF design has been advanced from traditional in-

tensity-based  1D  TFs  toward  multi-dimensional  TFs

to  facilitate  the  identification  of  SOIs.  A  pioneer

study  by  Kindlmann et  al.[3] proposed  2D TFs  using

intensity  with  its  first  or  second  order  derivatives.

Projecting  these  additional  derived  features  as  sec-

ondary  dimensions  on  the  TFs  improves  SOIs  explo-

ration; the new dimension typically acts as additional

“indicators” to guide users during TF design to help

identify gradient information along the intensity (rep-

resenting SOI) and visually emphasize the boundaries

of  SOIs.  Similarly,  Correa et  al.[4] identified SOIs ac-

cording to the local  size.  Some work used more than

two dimensions (features), for example, the use of 20

local  texture  features  by  Caban et  al.[5],  to  enable

greater differentiation among SOIs. As the number of

TF  dimensions  increases,  there  is  a  greater  need  for

manual optimizations in a complex multi-dimensional

space[2].  The  aim  of  this  work  is  to  substantially  re-

duce  the  manual  optimization  by  introducing  auto-

matic identification of SOIs based on a CBR process. 

2.2    Image-Centric TF Designs

Image-centric  approaches  make  TF  design  intu-

itive by allowing users to identify and optimize SOIs

directly on an initial DVR visualization through man-

ual gestures. Ropinski et al.[7] enabled intuitive selec-

tion of SOIs by users drawing one or more strokes di-

rectly onto the DVR visualization near the silhouette

of the SOIs. Then based on the stokes(s), an intensi-

ty histogram analysis is done to identify the intended

SOIs in the intensity 1D TF widget. Guo et al.[8] ma-

nipulated  the  appearance  of  the  intended  SOIs

through  high-level  painting  metaphors,  e.g.,  eraser,

contrast, and peeling. They used a 2D graph-cut algo-

rithm  to  identify  SOIs.  Users,  however,  often  have

difficulty in precisely  inferring SOIs from their  inter-

action,  especially,  when  the  SOIs  are  fuzzy,  semi-

transparent, and multi-layered in the initial visualiza-

tion. As such, these image-centric approaches may re-

quire  manual  and  repetitive  user  interactions  for  de-

sired  visualizations.  In  this  work,  our  approach  re-

quires  a  user  to  indicate  SOIs  in  an  image  slice,  not

the visualization where a stack of image slices is ren-

dered, thereby making the inference intuitive and ac-

curate. 
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2.3    Automated  Parameter  Optimization  for

TF Designs

Some  investigators[9–11] focused  on  using  parame-

ter optimization algorithms to lessen the need for ex-

tensive user TF interaction. They assume if SOIs in a

volume were known, the initial  TF parameters  could

be automatically adjusted. These SOI-based TF opti-

mizations  ensure  that  the  visibility  of  the  SOIs  is

maintained  by  reducing  the  opacity  parameters  of

other  structures/voxels  that  are  occluding  the  SOIs.

They  generally  rely  on  greedy  implementation  that

searches  for  locally  optimal  solutions,  due to the un-

availability of exhaustive search of huge TF parame-

ters space.  Such greedy solutions are sensitive to the

initial  parameters,  which  are  often  not  properly  de-

fined by the users. A suboptimal initialization may re-

sult  in  the  undesirable  visualization  of  a  local  mini-

mum.  The  CBR-TF approach  proposed  in  this  work

aims to generate a TF that properly represents SOIs

(in  our  case,  along  a  viewing  ray).  CBR-TF  can  be

complementary with the automated optimization in a

way that the TF result can be used as the proper ini-

tial parameters, if further optimization is required. 

2.4    Knowledge Databases and CBR in DVR

Visualization

Marks et  al.[13] firstly  generated  a  knowledge

database with a collection of pre-designed TFs by do-

main  experts  for  TF  design.  This  database  is  com-

prised of pairs of a DVR and its corresponding TF. It

is then used manually by the users to search through

the TF cases that are most suitable to the input vol-

ume,  with  aid  of  paired  DVRs.  Guo et  al.[14] struc-

tured their knowledge database into a 2D search rep-

resentation  of  TF  cases  via  multi-dimensional  reduc-

tion  (MDS)  for  effective  manual  knowledge  database

navigation. In this search space, similar TF cases are

grouped  into  clusters  via  the  density  field  of  their

MDS. Although these researches demonstrate the po-

tential of how to use knowledge databases in TF de-

sign, they only partially reduce the workload to gener-

ate  TFs  as  they  require  manual  exhaustive  naviga-

tions of the TF cases from the knowledge database, as

well as the potential need for additional adjustment of

the selected TFs to be best mapped to the input vol-

ume. Apart from TF design, Kohlmann et al.[17] inves-

tigated  the  use  of  a  knowledge  database  to  provide

complementary  visualization  in  2D  cross-sectional

views and 3D DVR. They introduced CBR concept to

automate  search  through  the  knowledge  database,

where the intensity profiles are used to represent the

“content”,  such  as  an  SOI  along  the  profile.  This  is

the only work that demonstrates the use of the CBR-

based knowledge database for DVR visualization. Our

motivation for this work is to introduce the CBR con-

cept to TF design. 

3    Proposed CBR-TF Approach
 

3.1    Overview

An overview of our CBR-TF approach is shown in

Fig.2 exemplified with an input volume of the human

upper-abdomen. We construct, as an offline process, a

knowledge  database  using  a  set  of  labeled  volumes

(Subsection 3.2).  In  the  quarter-view  visualization  of

the input volume with 2D cross-sectional views and a

3D DVR, a user draws a line (a ray) to visualize cer-

tain  SOIs  in  any  of  the  2D views.  With  the  user-se-

lected ray, we generate a TIQ comprising a pair of co-

planar images to the ray and its intensity profile. The

TIQ  is  then  used  to  query  the  knowledge  database

(Subsection 3.3).  We  use  the  SOI  labels  provided

from  the  retrieved  results  to  generate  an  intensity-

based 1D TF for the SOIs (Subsection 3.4), which can

be further  optimized with the input volume to make

sure  that  particular  SOIs  prioritize  the  visibility  in

the final 3D DVR (Subsection 3.5). 

3.2    Knowledge Database Construction

We  use  a  set  of  volumes  where  every  voxel  has

two information: intensity value and SOI label (name

of structures in our setting) it  represents.  A primary

element in our knowledge database is a ray. Ray ex-

traction  from  a  volume  is  illustrated  in Fig.3.  We

choose  a  point  on  a  plane  surface  of  the  cube  (vol-

ume) aligned with two of the three primary axes (x, y,
z)  and cast  a  ray down to the  third axis.  We derive

ray  representations  comprising  four  items  from  the

extracted  ray:  1)  an  image  pair  co-planar  to  the  ray

according to the primary axes; 2) a profile of intensi-

ty  values  along  the  ray;  3)  the  corresponding  profile

of  the  SOI  labels;  and  4)  location  coordinates  of  en-

try- and  exit-point  of  the  ray.  We uniformly  extract

multiple rays along a dimension (axis), with the con-

sistent number of rays from all the three axes. Emp-

ty  backgrounds  of  a  volume are  excluded  during  the
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ray extraction. A volume consists of 192 rays in total

and 64 rays from each of the three axes. The extrac-

tion interval, i.e., the number of rays, is experimental-

ly  determined  to  reduce  the  likelihood  of  extracting

highly  similar  rays  as  well  as  lowering  the  computa-

tional complexity of our CBR process. 

3.3    Two-Stage CBR Method

q

qi qp
c

q c

qi ci N

For  a  TIQ  from  a  user-selected  ray :  a  pair  of

images  and an intensity profile ,  we retrieve the

most  similar  counterpart  from  the  knowledge

database  by  calculating  the  similarity  distances  be-

tween the triplet pairs (  and ) in a two-stage man-

ner. We first match  with . Among the top  re-

trieval  results  based  on  the  image  matching,  as  the

second stage, we re-rank them according to the simi-

qp cplarity of intensity profiles (  and ).

CNN-Based Image Matching. We use a well-estab-

lished  CNN,  AlexNet[18],  which  is  pre-trained  using

1.2  million  natural  images  from  the  ImageNet

database[18].  The architecture of  AlexNet is  shown in

Fig.4.  It  consists  of  total  seven  trainable  layers  with

60 million parameters; the first five are convolutional

layers, and the remaining two are fully-connected lay-

ers.  The output of  the last  fully-connected layer  is  a

vector of 4 096 dimensions.

qi ci
qi

ci
qi ci

We use it as a feature vector for the image match-

ing.  We  measure  the  image  similarity  distances  by

calculating  Euclidean  distances  (EDs)  between  CNN

image features  extracted from  and .  Each image

from  is only compared with the corresponding im-

age from  aligned with the same primary axes.  We

use the image similarity distance between  and : 

 

2D and 3D Visualization

Retrieval Method

(CNN and DTW)

Visibility-Based TF
Parameter Optimization

Retrieved Case
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Artery Bone Kidney Liver Lung Spleen Unlabeled

…
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…

Knowledge Database

Intensity-Based 1D TF

TIQ (Image Pair and
Intensity Profile)

SOI-Based
TF Generation

Updated 3D DVR
(Vascular and Bone SOIs Visible)

Input Volume

Fig.2.  Overview of our CBR-TF approach.
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Fig.3.  Ray extraction example and the ray representations (four items) used for our knowledge database construction. A point (cyan
circle) is selected on a plane surface (cyan lines) of a volume (black line cube) in the two primary axes (Y- and Z-axes). A ray (or-
ange arrow dot line) is determined by casting it down to the third axis (X-axis). The four components were obtained as an image
pair co-planar to the ray in X-Z axes and X-Y axes (two rectangles with orange lines), and an intensity and SOI label profile along
the ray with its location coordinates.
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Image Similarity Distance(qi, ci)

=
2∑

j=1

4 096∑
b=1

√
(F b

qij
− F b

cij
)2,

qij
cij

F b

where  is the j-th image from the input image pair,

 is  the j-th  image  from  the  image  pair  from  the

knowledge  database,  and  is  the b-th  CNN image

feature.

qp cp
Lqp × Lcp

qp cp Lqp

qp Lcp cp P

P1

P2, . . . , PK

DTW-Based Intensity Profile Matching.  We mea-

sure  the  intensity  profile  similarity  distance  between

 and  by calculating the cost of an optimal warp-

ing path using DTW. An  distance matrix is

created  which  presets  all  pairwise  distances  between

each element in  and , where  is the length of

 and  is to . A warping path  is then defined

to pass through the contiguous low-cost parts of dis-

tance  matrix  to  create  a  sequence  of  points  =  ( ,

) as shown in Fig.5.

P ∗The optimal warping path  is calculated as the

path with the minimum cost: 

Profile Similarity Distance(qp, cp)

= min


√√√√ K∑

k=1

pk/K

 ,

K

P

P

P

where  is  the  length  of  a  sequence,  and  there  are

three  constraints:  1)  boundary  condition:  starts

and ends in the diagonally opposite corners of the dis-

tance matrix;  2)  continuity:  each step in  proceeds

from,  and  moves  to,  an  adjacent  cell;  and  3)  mono-

tonicity:  does not take a step backwards in spatial

locations. 

3.4    SOI-Based TF Generation

Tm Sm, m = 1, . . . , M,

M

We  generate  a  conventional  intensity-based  1D

TF for SOIs of a TIQ using SOI labels retrieved from

the knowledge database. We formulate a separate TF

component  for  each  SOI 

where  is  the  number  of  SOI  labels.  Each  compo-

nent  is  a  tent-shape  in  the  TF  parameter  space  (in-

tensity-opacity), and is specified as follows: 

Tj = {(Il,m, 0), (Im, σm), (Ih,m, 0)},

Il,m Sm Ih,m
Sm Im

Sm σm

σm

where  is the lowest intensity value in ,  is

the  highest  intensity  value  in ,  is  the  average

intensity value in , and  is the initial opacity of

a  tent  peak  set  to  0.3  (where =1.0  indicates  full

opacity). The initial TF is given by the union of the

tent shapes: 

∪M
m=1Tm.

We use the tent shapes since they reveal the iso-

surface of their corresponding SOIs, allowing a TF to

visualize multiple SOIs in a semi-transparent manner.
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Fig.4.  Illustration of AlexNet architecture[18]. The 1st convolutional (Conv1) layer filters the  input image with 96 kernels
of size  with a stride of 4 pixels. The 2nd convolutional (Conv2) layer takes as input the (max pooled) output of Conv1 and
filters it with 256 kernels of size . The 3rd, 4th, and 5th convolutional layers are connected to one another without any pooling.
The 5th layer is max pooled to the fully-connected (FC) 6th layer. We use FC7 as a feature extractor for image matching.
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Fig.5.  Warping path between an intensity profile pair example
(  and ) in DTW.
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This  is  a  desirable  property  in  the  visualization  of

complex SOIs. Nevertheless, our TF generation is not

limited to this particular shape and can be re-parame-

terized  to  other  shapes  depending  on  specific  visual-

ization and data needs[21]. We finally assign each tent

apex  to  unique  colors  using  ColorBrewer[22] and  all

tent  end  points  to  a  single  color  (black)  to  improve

visual color depth perception among SOIs[6]. However,

there is no limitation to apply different color schemes,

e.g., the tent end points and apex can have the same

color. 

3.5    Visibility-Based TF Parameter

Optimization

E

Visibility-based TF parameter optimization[9, 10] is

an iterative process: the initial TF and target visibili-

ties of SOIs are entered as the inputs. Each iteration

calculate  an  intermediate  new  TF  and  the  resulting

visibility  of  SOIs.  The  visibility  calculation  is  ex-

plained later in this subsection. The iteration contin-

ues  until  it  converges  to  a  minimum  of  an  energy

function  of visibility tolerance: 

minθ E(θ) =
M∑

m=1

(VTm
− VRm

)2,

M θ

VT

VR

V

V

VT

where  is the total number of SOIs, and  is a set

of opacity parameters of tent apexes forming the ini-

tial TF. The visibility tolerance is used to control how

much the SOIs are visible in the optimized visualiza-

tions,  and  it  can  be  calculated  via  the  sum  of  the

squared  differences  between  target  visibility  and

resultant  visibility  for  individual  SOIs.  The value

of  is  the  visibility  proportion  among  all  SOIs

(where  = 1.0 means the corresponding SOI exclu-

sively priorities visibility); the assignment of  is ei-

ther  automatically  uniformly  set  to  all  SOIs  or  user-

defined to enhance the visibility of particular SOIs.

We use a downhill simplex method[23] to solve the

optimization  problem.  This  method  is  effective  in  a

variety  of  practical  non-linear  optimization  problems

with  multiple  local  minima[24].  However,  there  is  no

limitation  to  apply  other  gradient-based  approaches,

e.g., gradient-descent.

F (p)

h p

The visibility  for a voxel is the front-to-back

opacity  composition  of  all  the  voxels  of  a  volume

starting from a view-point  to  according to [10]: 

F (p) = e−
∫ h
p

A(g)dg,
 

A(p) = A(p−∆p) + (1.0− A(p−∆p))O(p),

A(p)

p O(p)

∆p

where  is the composited opacity of the voxel co-

ordinate ,  is its opacity, which is defined by a

TF, and  is the size of the sampling step. The visi-

bilities of all voxels, weighted as the product of their

opacity, are then added to determine the visibility of

SOI (intensity range) given by: 

V isibilityofSOI =
∑

p∈SOI

O(p)F (p).

 

3.6    Evaluation Procedure

The  3D-IRCADb-01  dataset[20] is  used  for  the

evaluation. It consists of 20 CT volumes of the upper-

abdomen (10 males and 10 females). Since the dataset

is  mainly  designed  for  benchmarking  liver  segmenta-

tion algorithms, there are limited manual labels avail-

able. We select six SOIs that commonly appear at the

abdomen,  which  consist  of  the  artery  (1 058 occur-

rences among all the images slices), bone (1 824), kid-

ney  (506),  liver  (1 645),  lung  (1 101),  and  spleen

(306).
We  believe  that  our  chosen  SOIs  have  sufficient

complexity  to  measure  the  retrieval  performances
since the multiple SOIs, e.g., kidney, liver, and spleen,
are  similar  in  image  features  such  as  intensity  and
shape, and accurate retrieval among the SOIs is chal-
lenging.  In  total,  our  knowledge  database  is  made of
3 840 ray elements derived from the 20 volumes, with
each having 192 rays.

We compare our CBR-TF approach with the ap-
proach  published  in  the  visualization  community  by
Kohlmann et  al.[17].  This  baseline  approach  relies  on
intensity profile matching using ED for measuring the
similarity  between  the  input  and  the  cases  from  the
knowledge  database.  For  this  comparison,  only  the
second  stage  of  our  CBR-TF approach,  which  is  the
intensity  profile  matching  using  DTW,  is  applied  in
the  knowledge  database  retrieval.  We  evaluate  the
first  stage  of  our  CBR-TF approach,  which  is  image
matching using pre-trained AlexNet[18],  by comparing
with  two  established  pre-trained  CNNs  of
GoogleNet[25] and  ResNet[26] by  measuring  the  re-
trieval accuracy. The pre-trained AlexNet is also com-
pared  with  the  fine-tuned  counterpart  using  a  fine-
tuning method[27].  We note that there are no compa-
rable work that uses image retrieval in TF design as
well as DVR visualization.

The most common retrieval  evaluation metrics of
recall  and  precision  are  used.  Recall  refers  to  the
number of times the SOI is correctly identified out of
the number of  times the SOI occurs.  Precision refers
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to the number of times the SOI is correctly identified
out of the number of times the SOI is identified by a
retrieval approach. The values of both recall and pre-
cision range from 0.0 to 1.0, where a value of 1.0 indi-
cates that all  instances of  an SOI type are identified
by  a  retrieval  approach.  In  our  evaluation,  recall  is
considered  the  most  representative  in  evaluating  re-
trieval  performances;  if  false-positive occurs,  the user
can  manually  eliminate  it  in  the  subsequent  TF  de-
sign,  but  such  manual  optimization  can  be  much
more challenging in missing SOIs (i.e., false-negative).
We,  therefore,  discuss  the  recall  results  and  include
the precision results in the online resource (see Table
A1  in  the  supplementary  file①).  We  conduct  10-fold
cross  validation  for  the  evaluation,  where  for  each
fold,  18  CT  volumes  are  acted  as  the  knowledge
database, and the other two CT volumes are used as
the queries. We rotate this process nine times to cov-
er all 20 CT volumes.

For all these experiments, we use a consumer PC

with  an  Intel  i7  CPU  and  an  Nvidia  GTX  980  Ti

GPU,  running  Windows  7  (x64),  and implement  our

CBR-TF  approach  using  volume  rendering  engine

(Voreen)[28]. 

4    Results
 

4.1    CBR Analysis

We show the recall metrics for retrieval among six

different  SOIs  between  the  ED  baseline[17] and  our

two-stage  CBR  method  in Table 1.  We  also  present

results  from  using  individual  compartments  of  our

method DTW and AlexNet to analyze their individu-

al  performances  and  their  contributions  to  the  com-

bined  results.  Compared  with  the  ED  baseline

method[17],  our  two-stage  method  outperform  in  ev-

ery SOI retrieval by 0.201 on average and kidney re-

trieval by 0.304 as the largest improvement.

Our two-stage CBR method outperform both the

individual  compartments  in  all  the  SOIs.  Within  the

two  compartments,  the  AlexNet  method  is  better

than the DTW method for artery, bone, and kidney.

These SOIs tend to globally exhibit in an image, and

regional spatial semantics available from the AlexNet

method  plays  an  important  role  in  identifying  them.

In contrast,  the DTW can provide the primitive fea-

tures that better represent the local SOIs of the liver,

lung,  and  spleen.  The  DTW  method  improves  upon

the ED baseline counterpart across all the SOIs.

Our  image  retrieval  compartment  method  is  not

limited to the particular CNN backbone of AlexNet[18]

and  can  be  applied  to  other  CNNs.  In Table 2,  we

show the retrieval accuracies of pre-trained CNNs in-

cluding AlexNet[18] and two other  CNNs with deeper

layers, GoogleNet[25] and ResNet[26]. Our results show

that  the  pre-trained  AlexNet,  our  default,  has  the

highest  average  recall  across  all  the  SOIs  except  for

lung  where  the  pre-trained  GoogleNet  results  in

marginal  improvement  with  0.007.  Regardless  of  the

type of CNNs, AlexNet, GoogleNet, and ResNet out-

perform  the  ED  baseline  counterpart[17] across  every

SOI. The comparison result in Table 3 shows that the

fine-tuned AlexNet is not always able to achieve high-

er  recall  accuracy  compared  with  the  pre-trained

AlexNet;  only  spleen  produces  some  meaningful  im-

provement  from  the  fine-tuned  AlexNet  by  0.044.

This means that the fine-tuning method used[27] might
 

Table  1.    Recall for Retrieval Among Six Different SOIs for the ED Baseline[17] and Our Two-Stage CBR Method with Two Indi-
vidual Compartments

Method Artery Bone Kidney Liver Lung Spleen All

ED baseline 0.453 0.491 0.344 0.649 0.552 0.363 0.518

Our two-stage CBR method 0.612 0.692 0.648 0.778 0.829 0.644 0.719

DTW (individual compartment) 0.530 0.645 0.542 0.760 0.808 0.569 0.672

AlexNet (individual compartment) 0.549 0.681 0.615 0.745 0.795 0.454 0.679

Note: The bold numbers are the highest.
 

Table   2.      Recall  for  Retrieval  Among Six  Different  SOIs  for  Our  Two-Stage  CBR Method with  Three  Different  Types  of  Pre-
Trained CNNs[18, 25, 26] in Comparison with the ED Baseline[17]

Method Artery Bone Kidney Liver Lung Spleen All

With pre-trained AlexNet 0.612 0.692 0.648 0.778 0.829 0.644 0.719

With pre-trained GoogleNet 0.591 0.681 0.616 0.770 0.836 0.608 0.707

With pre-trained ResNet 0.543 0.624 0.547 0.682 0.668 0.487 0.620

ED baseline 0.453 0.491 0.344 0.649 0.552 0.363 0.518

Note: The bold numbers are the highest.
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not be optimal for our application.
 

4.2    Qualitative  Analysis  of  Our  Two-Stage

CBR Method

Fig.6 exemplifies  the  capability  of  our  two-stage

method  for  SOI  retrieval  with  comparison  with  the

ED  baseline  method  using  only  the  intensity

profile[17].  The  results  show  that  the  ED  baseline

method  incorrectly  labels  the  arteries  and  kidney

along  the  TIQ.  In  contrast,  all  the  SOIs  along  the

TIQ are correctly retrieves when our two-stage CBR

method is applied.

In Fig.7,  we show the SOIs retrieval  results  from

our  two-stage  method  in  a  comparison  with  the  two

individual  compartments.  The  results  demonstrate

that none of the compartment methods are sufficient

for the adequate retrieval  of  SOIs present within the

TIQ. In contrast, the two-stage method produces the

same SOI labels as in the TIQ.

In  the  online  resource  (see  Fig.A1  in  the  supple-

mentary  file②),  we  include  an  intensity  profile  re-

 

Table  3.    Recall for Retrieval Among Six Different SOIs for the Pre-Trained AlexNet[18] and Its Fine-Tuning Counterpart[27]

Method Artery Bone Kidney Liver Lung Spleen All

With pre-trained AlexNet 0.612 0.692 0.648 0.778 0.829 0.644 0.719

With fine-tuned AlexNet 0.609 0.700 0.617 0.765 0.816 0.688 0.714

Note: The bold numbers are the highest.

 

Fig.6.  Comparison of our two-stage method with the ED base-
line method[17] using (a) a TIQ that encounters three SOIs: the
liver  (bright  green  color),  arteries  (red  color),  and  the  kidney
(blue color). The right column shows the intensity profiles with
the SOI labels, and the other two left columns show the associ-
ated image pair, respectively. The bounding boxes with orange
lines indicate the compartments used for the retrieval computa-
tion. (b) Retrieval from our two-stage method (an image pair +
an intensity  profile).  (c)  Retrieval  from ED (an intensity  pro-
file).

 

Fig.7.  Comparison of our two-stage method with the two indi-
vidual compartments: the image based AlexNet method and the
intensity profile based DTW method, with (a) a TIQ that pass-
es through three SOIs: the liver (bright green color), the artery
(red color), and bones (brown color). The bounding boxes with
orange  lines  indicate  the  compartments  used  for  the  retrieval
computation. (b) Retrieval from our two-stage method (an im-
age  pair  +  an  intensity  profile).  (c)  Retrieval  from  AlexNet
compartment  (an  image  pair).  (d)  Retrieval  from  DTW com-
partment (an intensity profile).
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trieval  comparison  between  our  DTW  compartment

and the ED baseline method[17] using another volume,

where our DTW compartment method correctly iden-

tifies all three SOIs while only one SOI is achieved in

the ED baseline method.

We  illustrate  the  characteristics  of  our  two-stage

method,  which  searches  across  the  entire  image

knowledge database, and then refines the retrieved re-

sults using the intensity profile matching. In Fig.8, we

show the four most similar image retrieval results.

We  can  see  that  these  images  are  similar  to  the

image query pair, with greater similarity (i.e., consis-

tency in the same SOIs) in the coronal views (the 2nd

column).  With  the  inclusion  of  the  intensity  profile

matching results  to  the top 4 ranked image retrieval

results,  we  see  that  the  best  intensity  profile  match-

ing  is  with  the  4th  best  image  retrieval,  among  the

only  two  results  that  are  able  to  match  the  spleen

(with  the  other  result  being  the  3rd  best  image  re-

trieval). Thus, in the combined result, the 4th image

retrieval  result  will  become  the  1st  ranked  final  re-

trieval result and has the overall best matching. 

4.3    Automated TF Design Using Our CBR-

TF Approach

In Fig.9,  a  use-case  of  our  CBR-TF  approach  is

presented to effectively explore a medical volume and

generate an SOI-based DVR visualization. The user is

only required to draw a line (a ray) onto any of  the

2D cross-sectional views for our CBR-TF approach to

identify and visualize SOIs. In this example, a line is

drawn to contain the kidneys and bones in the axial

view.  An  image  pair  and  intensity  profile  associated

with the ray are then used as the TIQ to retrieve an-

notations  (labels)  from  the  knowledge  database  to

generate  3D  DVR for  the  SOIs.  The  resultant  DVR

visualization  provides  the  user  with  3D  information

about the SOIs, including volumetric shapes and spa-

tial  relationships  among  the  SOIs,  which  comple-

ments the 2D cross-sectional views.

In Fig.10,  we  present  another  use-case  of  our

CBR-TF  approach.  Instead  of  drawing  a  line  in  2D

cross-sectional views, the user can select a single point

directly  on  an  initial  DVR  visualization.  From  the

selected point, a viewing ray perpendicular to a cam-

era origin is constructed and used to generate a TIQ

of an image pair and an intensity profile. This exam-

ple  illustrates  how  different  SOIs  can  be  identified

based  on  the  simple  point  selection,  and  how  the

TIQs can be used to automatically design the TF pa-

rameters such as to emphasize the local SOIs: the liv-

er, the kidney, and the bone.

We  compare  the  TF  generation  results  of  our

CBR-TF  approach  and  the  ED  baseline

counterpart[17],  in Fig.11.  The  results  show  that  our

CBR-TF approach produces  the enhanced DVR out-

comes,  i.e.,  the  correct  identification  of  the  SOIs,  in

comparison  with  the  ED  baseline  counterpart.  With

the ED baseline,  the bone fails  to be identified,  thus

resulting in the missing TF component. 

4.4    Computational Performance

Computational  time  among  the  ED  baseline[17]

and our two-stage CBR method for retrieval from the

knowledge  database  is  presented  in Table 4.  Our

DTW compartment is marginally slower (30 ms) than

the ED baseline counterpart. As expected, the greater

computation  is  required  for  the  retrieval  of  images

(AlexNet)  compared  with  intensity  profiles  (DTW).

In  addition,  the  TF  generation  computation  time  to

obtain  final  DVR visualizations  is  1  s  in  all  the  fig-

ures in this work. 

5    Discussion and Future Work

The results demonstrate that with few user inter-

actions, our CBR-TF is able to identify SOIs and gen-

erate TFs for an input volume. We also show simple

and intuitive usability of our CBR-TF. 

5.1    CBR

We attribute our superior retrieval performance to

our two-stage method, which utilizes a rich volumet-

ric  image  feature  derived  from  our  TIQ:  1)  DTW

characterized local primary intensity profiles from the

ray  of  a  TIQ,  and  2)  regional  high-level  spatial  se-

mantics extracted by a CNN from the two co-planar

images  along  the  ray,  in  a  complementary  manner.

The  results  demonstrate  that  none  of  the  individual

compartments can outperform our combined use (see

Fig.7). Our two-stage method is particularly effective

in  the  cases  where  individual  compartments  produce

poor performance,  such as artery,  kidney,  and spleen

SOIs  (see Table 1).  This  is  consistent  with  the  find-

ings  from  existing  work  such  as  [29],  which  demon-

strates the advantages in retrieval performance when

leveraging  two  different  yet  complementary  feature

sets.
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Our  two-stage  method  compliments  the  intensity

profile  retrieval[17],  with  co-planar  image  retrieval.

One  of  the  benefits  of  introducing  image  retrieval  is

that it can provide regional image semantics, e.g., not

only shapes or textures of SOIs as well as the spatial

relationship  among  the  SOIs.  This  contributes  to-

wards  differentiating  the  SOIs  that  have  similar  in-

tensity  values,  and  this  differentiation  is  not  able  to

be  with the  intensity  profile  retrieval  only  (see Fig.6

with the SOIs of the liver, artery, and kidney).

 

Fig.8.  (a) Complex TIQ that passes through four SOIs: the liver (bright green color), bones (brown color), the kidney (blue color),
and the spleen (peach color). (b)–(e) The four most similar retrieval results from our two-stage method. The smallest similarity dis-
tance (the best matching) is colored in orange for each compartment (each column). (e) The overall best result from our two-stage
method, denoted by “*”.
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Our results  from DTW-based intensity profile  re-

trieval  outperform  the  ED  baseline  counterpart[17].

The  ED  baseline  only  considers  voxel  pairs  that  are

exactly in the same position and cannot match subtle

differences.  Our  DTW-based  method  addresses  tim-

ing differences by warping the primary axis of one, so

that  the  maximum  coincidence  is  attached  with  the

other.  This  characteristic  is  important  for  our  medi-

cal imaging application where the extents of the same

SOIs (the intensity profiles) are widely varied among

the  patient  volumes.  In  such  a  scenario,  a  retrieval

method  must  be  able  to  accommodate  these  varia-

tions.  A  representative  example  is  shown  in  the  on-

line resource (see Fig.A1 in the supplementary file③).

For image retrieval, we choose the high-level CNN

features  learned  from  the  large-scale  knowledge

database rather than relying on the low-level features

of  an  input  volume  manually  engineered  by  a  user.

Our choice is attributed to the findings that although

requiring  the  increased  cost  of  computational  com-

plexity and the long period of a training process, the

high-level  CNN  features  better  represent  SOIs  and

more accurately perform the CBR retrieval task[30]. It

may  be  useful  to  compare  our  application  (i.e.,  the

quality  of  ROI  visualizations)  using  the  high-level

CNN features  with  that  using  the  low-level  features.

The  comparison  would  be  an  interesting  addition  to

our  current  work.  We  use  a  pre-trained  AlexNet[18]

due  to  its  highest  average  recall  of  0.719  when com-

pared  with  the  two  pre-trained  deeper  CNNs,

GoogleNet[25] and  ResNet[26] (see Table 2).  This  can

be because the deeper networks learn more data-spe-

cific features that are relevant to general images, i.e.,

less generalizable to medical images.

 

Artery Bone Kidney Liver Lung Spleen Unlabeled

(b)(a)

(c) (d)

Fig.9.  Example of a use-case for our CBR-TF approach, where
the  typical  quarter-view  visualization  of  a  medical  volume  is
used: 2D cross-sectional (a) axial,  (b) coronal,  and (c) sagittal
view, together with (d) a 3D DVR. A user specifies SOIs such
as  the  kidneys  (blue  color)  and  the  spine  (brown  color)  by
drawing a line containing them onto (a) the axial  view (a ray
with gray color) and our CBR-TF approach updates the DVR
to emphasize them in 3D.
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Fig.10.   Example  of  a  use-case  for  our  CBR-TF  approach  for
the visual enhancement of local SOIs directly from DVR visual-
ization: (b) the liver (bright green color),  (c) the kidney (blue
color), and (d) the bone (brown color), within (a) an upper-ab-
domen  DVR.  Each  of  the  SOIs  is  selected  by  a  single  mouse
click  (yellow  circles)  on  (a)  the  initial  DVR  where  we  con-
struct a viewing ray perpendicular to the camera origin which
contains each SOI.

 

Lung Bone

(b)(a) (c)

Fig.11.  Comparison of TF and DVR visualization results from
(b) our CBR-TF approach and (c) the ED baseline approach[17]

using  (a)  TIQ  that  consists  of  two  SOIs  of  the  lungs  (dark
green color) and bones (brown color).

 

Table   4.      Average  Time  to  Calculate  the  Retrieval  Results
from the Knowledge Database Among the Four Different CBR
Methods

CBR Method Time (s)

ED baseline 0.84

Our two-stage method 15.93

DTW (individual compartment) 1.14

AlexNet (individual compartment) 15.70
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N

N

N

Our  two-stage  method,  i.e.,  the  rank-based  se-

quential  combination  of  the  two  individual  compart-

ments, is experimentally designed based on the obser-

vation  that  the  two individual  compartments  can  be

complimentary, but this advantage is not properly en-

coded when two individual compartments are used at

the  same  time  (i.e.,  a  single-stage  retrieval).  In  the

first  stage  of  image  retrieval,  we  use  the  top  40  re-

trieval results (i.e.,  = 40), with the second stage of

intensity profile retrieval only executed within the 

retrievals.  This  is  empirically  derived with variations

in  having  a  minor  impact  on the  overall  retrieval

performances.  Full  details  of  this  experiment  are  in-

cluded  in  the  online  resource  (see  Table  A2  in  the

supplementary file④).

In this work, we use a well-established recall met-

ric to evaluate the retrieval performances. As a com-

plementary metric, we also include precision results in

the  online  resource  (see  Table  A1  in  the  supplemen-

tary file④); we note that, as with recall, our two-stage

method perform better in precision compared with the

ED baseline[17]. 

5.2    TF Design

Our  results  show  that  our  image-centric  interac-

tion  for  TF  design  is  intuitive  and  effective.  Our

CBR-TF  approach  requires  a  user  to  simply  draw  a

line in 2D cross-sectional views (see Fig.9) or a point

in 3D DVRs (see Fig.10) to select SOIs. The usabili-

ty of  such image-centric interaction to directly select

SOIs  in  a  visualization  space,  not  in  an  indirect  TF

widget  space,  is  investigated  by  the  early  work[7],

where  positive  informal  feedback from clinicians  who

conducted interaction using a medical CT volume was

observed.

The  use-case  with  the  quarter-view  visualization

(see Fig.9) can be effective in medical image visualiza-

tion  where  the  users,  i.e.,  clinicians,  generally  have

prerequisite knowledge of their data; they can readily

define  a  line  (a  ray)  with  SOIs  on  the  2D  cross-sec-

tional  views.  The  fact  that  they  are  novice  users  for

TF  design  makes  our  CBR-TF  approach  more  valu-

able.  They  do  not  need  to  rely  on  the  TF  widgets

which are complicated to and unfamiliar  with novice

users. Instead, the SOIs can be simply defined in the

2D cross-sectional views where they are usually work-

ing on in the clinical routine.

With another use-case (see Fig.10) where the sin-

gle  point  selection  is  directly  done  in  an  initial  3D

DVR for  the  SOI  identification,  we  suggest  that  our

CBR-TF  approach  enables  a  user  to  obtain  a  more

detailed  visualization  of  specific  SOIs  intuitively  and

automatically,  thereby  easily  inspecting  information

that might be hidden in the initial DVR.

Our  CBR-TF  approach  focuses  on  generating

opacity parameters of  TFs,  and color parameters are

not  much  investigated.  We  note  that  static  opacity

settings, even one that has been carefully pre-defined

by  domain  experts,  cannot  be  universally  applied  to

all  cases,  and  manual  opacity  manipulation  must  be

involved to some extent for new volumes and visual-

ization  scenarios.  In  contrast,  color  settings  can  be

relatively  consistent  in  multiple  cases,  e.g.,  the  same

blueish color can be applied to lung tissues in differ-

ent volumes. This observation is the basis to develop

our  TF  usage  scenarios.  Our  CBR-TF  approach  en-

ables the user to generate an opacity TF that guaran-

tees the visibility of SOIs, and then applies to pre-de-

fined  color  settings  to  add  similar  visual  perceptions

to the same SOIs. As such, we consider all the opaci-

ty and color parameters in the TF generation.

VT VT

In our CBR-TF approach, we adopt an automat-

ed  visibility-based  TF parameter  optimization  to  en-

sure that some of the identified SOIs prioritize visibil-

ity in resulting DVRs. The user, therefore, can avoid

additional  manual  TF  fine  tuning  that  may  be  re-

quired  for  the  cases  where  the  TFs  from  knowledge

databases  are  not  optimal  for  the  particular  SOIs  of

the  input  volume.  A  TF parameter  optimization  ap-

plication example is  shown in Fig.11,  where the visi-

bility of the bones is prioritized over the lungs by set-

ting  of the bones to 0.7 and  of the lungs to the

rest (0.3).

In  our  CBR-TF  approach,  TFs  are  comprised  of

individual  tent-shape  components  to  represent  each

SOI.  In  the  cases  when  the  false-positive  from  our

SOI  retrieval  occurs,  we  note  that  the  user  needs  to

manually  eliminate  the  TF  component  of  the  false-

positive  SOI.  Such  manual  TF  optimization  can  be

more challenging in missing structures (i.e., false-neg-

ative).  However,  our  CBR-TF approach is  still  effec-

tive  because  the  user  does  not  need  to  start  TF  de-

sign from scratch, and it is easier to add new SOIs to

the TF that already contains other SOIs.

In terms of  the generation of  knowledge databas-

es,  existing  approaches[14, 17] collect  pre-designed TFs
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by  domain  experts,  whereas  our  CBR-TF  approach

relies  on  SOI  labels  of  raw volumes.  In  terms  of  the

perspective  of  experts  in  knowledge database  genera-

tion, generating TFs may take much effort compared

with generating SOI labels. 

5.3    Future Work

The image retrieval results (Table 2) demonstrate

the  adaptability  of  our  CBR-TF  approach  to  differ-

ent  CNNs.  As  such,  our  CBR-TF  approach  is  not

constrained  to  a  particular  CNN backbone.  We note

that recent advances in CNNs, e.g., large visual mod-

els for segmentation or classification tasks[31] and self-

supervised learning with limited or unlabeled data[32],

demonstrate the capabilities  to better describe image

features to represent SOIs[33]. These backbones can be

leveraged  for  our  CBR-TF  approach,  but  optimal

adoption  should  be  investigated  to  improve  SOI  re-

trieval performance (see Table 3). Similarly, our rank-

ing-based  sequential  combination  for  the  SOI  re-

trieval  still  has  room  for  improvement.  We  experi-

mentally  determine  the  adoption  of  our  ranking

method  because  it  outperforms  other  established  ad-

hoc  counterparts,  e.g.,  ranking  based  on  the  sum  of

the  normalized  distances  from CNN and  DTW com-

partments.  We  suggest  that  it  can  be  further  ex-

plored  to  develop  a  learning-based  ranking,  e.g.,  by

using  ensemble  learning[34].  We  consider  these  chal-

lenging  while  interesting  investigations  as  our  future

work.

Our  CBR-TF  approach  does  not  require  any

dataset-specific  parameter  settings  for  the  knowledge

database construction. Furthermore, we automate the

entire  construction  procedure  including  ray  extrac-

tion,  representation,  and  storage.  Different  types  of

imaging modalities can be easily integrated for differ-

ent  application  domains.  We  limit  the  scope  of  this

work  to  medical  imaging  data,  but  we  suggest  that

our CBR-TF approach can be applied to non-medical

imaging datasets.

We  demonstrate  our  CBR-TF  approach  with  in-

tensity-based  1D  TF  design,  because  it  is  commonly

used in a wide range of visualization applications and

has fewer variables that influence visualization experi-

ments.  Our  CBR-TF  approach,  however,  is  not  re-

stricted  to  1D  TFs  and  can  be  adapted  to  multi-di-

mensional TFs[3, 4] for greater differentiation of SOIs.

Huang et al.[35] proposed an approach to generate 2D

TFs when the identification of SOIs in the 2D cross-

sectional views are available. We regard this as an im-

portant new avenue of research. 

6    Conclusions

We present CBR-TF, a new transfer function de-

sign  approach  by  proposing  an  automated  two-stage

content-based  retrieval  method  for  a  knowledge

database, and the use of its retrieved results in gener-

ating  transfer  functions.  Our  experimental  results

demonstrate that our CBR-TF is capable of identify-

ing and visualizing structures of interests (SOIs) from

the combination of the complementary image seman-

tics with the intensity profile matching. 
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