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Abstract    Image enhancement is a widely used technique in digital image processing that aims to improve image aes-

thetics and visual quality. However, traditional methods of enhancement based on pixel-level or global-level modifications

have limited effectiveness. Recently, as learning-based techniques gain popularity, various studies are now focusing on uti-

lizing networks for image enhancement. However, these techniques often fail to optimize image frequency domains. This

study addresses this gap by introducing a transformer-based model for improving images in the wavelet domain. The pro-

posed model refines various frequency bands of an image and prioritizes local details and high-level features. Consequently,

the proposed technique produces superior enhancement results. The proposed model’s performance was assessed through

comprehensive benchmark evaluations, and the results suggest it outperforms the state-of-the-art techniques.
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1    Introduction

In  the  past  decade,  the  field  of  digital  photogra-

phy  has  seen  remarkable  growth  and  development,

largely due to the significant strides made in camera

sensor  technology.  This  technological  evolution  has

not only improved the quality of photographs, but al-

so has expanded the potential for creativity and inno-

vation  in  this  medium.  However,  despite  these  ad-

vancements,  there  remain  substantial  challenges  in

the  area  of  image  enhancement,  specifically  in  the

realm of post-processing techniques. Professional soft-

ware applications such as Adobe Photoshop provide a

range  of  interactive  and  semi-automated  capabilities

that enable users to make a plethora of modifications

to  their  photographs.  However,  these  tools  often  ne-

cessitate a high level of skill and technical expertise to

be  used  effectively,  which  can  be  a  barrier  for  many

users.  The  complexity  inherent  in  these  software  ap-

plications may make manual adjustments a daunting

task,  especially  for  amateur  photographers  who  may

lack  the  necessary  technical  prowess  or  the  aesthetic

acuity to retouch their photographs successfully.

The challenges  associated with manual  image en-
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hancement have led to the development of fully auto-

mated  strategies.  The  said  strategies  aim  to  replace

non-expert users' work or offer experienced artists an

improved starting point for manual editing. In image

enhancement,  photographers  frequently  use  both  lo-

cal  filters  and  global  modifications  in  combination.

However,  learning-based  automatic  image  enhance-

ment  is  now  being  optimized  with  neural  networks

due  to  the  emergence  of  deep  learning.  These  learn-

ing-based  models  offer  the  promise  of  greatly  im-

proved  results.  By  training  neural  networks  on  large

datasets  of  professionally  retouched  photographs,

these algorithms can learn the intricate, nuanced ad-

justments that expert photographers make. They can

then  apply  these  learned  techniques  to  new  pho-

tographs,  effectively replicating the skills  of  a profes-

sional. This opens up new possibilities for non-expert

users, who can now achieve high-quality results with-

out the need of extensive technical skills  or aesthetic

judgment.  A  large  number  of  excellent  studies  have

emerged, such as [1–9].

Although image enhancement has been extensive-

ly studied, there are still significant challenges. First,

certain studies limit themselves to modifying individu-

al pixels or the image as a whole, which can overlook

both the global tone and subtle changes as shown in

Fig.1.  Second,  the  optimization  of  images  using  di-

verse frequency priors is rare, resulting in suboptimal

outcomes.

To  tackle  these  challenges,  this  study  derives  in-

spiration from two sources: the wavelet transform and

the vision transformer (ViT)[12].  The method aims to

extract  new  features  from  photos  and  enhance  them

in  various  frequency  domains,  which  allows  the  net-

work  to  extract  information  from different  frequency

subbands  and  improve  the  model's  ability  to  handle

various  image  structures  and  patterns.  In  this  case,

we  can  improve  the  overall  quality  of  the  enhanced

image by capturing more detailed and accurate infor-

mation from the input image.

This study's primary contributions are as follows.

1)  Inadequate  research  conducted  solely  on  the

pixel  or  global  level  yields  unsatisfactory  outcomes.

This work proposes the WavEnhancer, a novel frame-

work  based  on  the  wavelet  domain  transformer.  The

WavEnhancer  framework  places  emphasis  on  both

pixel and global levels.

2)  In  this  study,  we  propose  a  model  that  com-

bines  multi-frequency  and  global  refinement  tech-

niques.  We  evaluate  its  superior  performance  com-

pared  with  the  state-of-the-art  methods  using  public

benchmark  datasets  MIT-Adobe  FiveK[13] and

HDR+[14].

The  remainder  of  this  paper  is  organized  as  fol-

lows.  In Section 2,  we  present  a  comprehensive  re-

view of related work, focusing on image enhancement

and the application of wavelet transforms in this do-

main. Section 3 describes our proposed method in de-

tail,  including  the  mathematical  formulation  and the

algorithmic  steps  involved.  In Section 4,  we  present

our  experimental  setup,  discuss  the  results  obtained,

and provide a comparative analysis with state-of-the-

art  methods.  We  also  discuss  the  limitations  of  our

model and potential future directions. Finally, in Sec-

tion 5,  we  conclude  the  paper  by  summarizing  our

contributions and highlighting the significance of  our

work  in  the  context  of  image  enhancement  and

wavelet-based methods. 

2    Related Work
 

2.1    Image Enhancement

In  recent  years,  deep  learning  has  emerged  as  a

powerful contender in image enhancement. Many im-

age enhancement studies have focused on either local

or global aspects.

 

(a) (b) (c)

(d) (e) (f)

Fig.1.   This  photograph displays  both (a)  an input image and
(f) a target image. For white balance and exposure, (b) DPE[10],
(c)  UPE[11],  and (d) CSRNet[5] produce results  that are incon-
sistent  with  the  ground  truth.  (e)  The  image  we  enhanced  is
closer to the target.
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Several methods aim at improving local image re-

finement.  For  instance,  UPE  (Underexposed  Photo

Enhancement)[11] uses  an  encoder-decoder  architec-

ture  to  detect  scaling  luminance  maps,  while  DPE

(Deep Photo Enhancer)[10] creates  intermediate light-

ing  connections  to  predict  enhancement  outcomes.

HDRNet[15] applies bilateral grid processing and local

affine  color  transforms,  whereas  CSRNet  (Condition-

al  Sequential  Modulation Network)[5] is  a lightweight

retouching  framework.  DeepLPF  (Deep  Local  Para-

metric  Filters)[1] trains  spatially  local  filters  to  en-

hance images.

Other methods focus on enhancing the overall im-

age.  Bychkovsky et  al.[13] created  the  MIT-Adobe

FiveK  dataset  and  employed  regression-based  tech-

niques  to  detect  photographers'  alterations  in  image

pairs.  STAR-DCE[8] introduces  a  lightweight  trans-

former network that enhances real-time image quality.

3D-LUT[7] learns 3D look-up tables (LUTs) using an-

notated  data,  whereas  SepLUT[6] decomposes  a  color

transformation into component-independent and com-

ponent-correlated sub-transformations. 

2.2    Wavelet Transform

The  wavelet  transform  is  a  time-tested,  conven-

tional technique that enables images to be downsam-

pled and upsampled without loss. The transform also

enables multi-frequency refinement.

Deep learning  has  rapidly  advanced,  leading  to  a

combination of  wavelet  transform with deep learning

in numerous studies. As an example, WCT2 (Wavelet

Corrected  Transfer  Based  on  Whitening  and  Color-

ing  Transforms)[16] preserves  structural  information

and  statistical  properties  when  stylizing  features  in

the  latent  feature  space.  MWCNN  (Multi-Level

Wavelet Convolutional Neural Network)[17] integrates

wavelet  transform  into  the  convolutional  neural  net-

work  (CNN)  architecture  to  reduce  the  feature  map

resolution  and  increase  the  receptive  field  simultane-

ously.  FP-GAN  (Fine  Perceptive  Generative  Adver-

sarial  Network)[18] produces high-resolution images in

multi-frequency by converting low-resolution magnet-

ic  resonance  images.  Wave-ViT[19] unites  invertible

downsampling with wavelet transforms and self-atten-

tion  learning  to  achieve  self-attention  learning  with

lossless downsampling.

This work is inspired by the previous studies men-

tioned and proposes a novel methodology to optimize

images  using  a  combination  of  wavelet  and  trans-

former techniques for multi-frequency refinement and

low-cost  downsampling.  It  is  important  to  note  that

the  typical  Haar  wavelet  transform  is  the  technique

used in our model due to its ability to split the initial

image into distinct channels that encapsulate various

elements, thereby facilitating enhanced stylization[16, 20].

By  utilizing  multi-frequency  refinement,  we  enhance

images  at  both  the  local  and  global  levels,  thereby

achieving superior results. 

3    Methodology
 

3.1    Overall Framework

The proposed image enhancement model compris-

es  of  three  main  components,  namely  the  wavelet

transform,  a  global  stylization  remapping  module

(GSR),  and a detailed parametric  refinement module

(DPR). The entire workflow of the proposed model is

illustrated  and  presented  in Fig.2.  Specifically,  our

method uses multi-frequency feature extraction to ob-

tain  richer  information  and  then  uses  global  refine-

ment to fuse this information together to further im-

prove the restoration quality.

Wavelet  transform  is  an  extensively  used  tech-

nique for downsampling images efficiently at minimal

computational cost while ensuring no loss of informa-

tion.  This  makes  it  highly  suitable  for  our  multi-fre-

quency optimization method.

The initial stage in our model involves subjecting

the input image to a discrete wavelet  transformation

(DWT)  process  that  results  in  a  low-low  (LL)  sub-

band channel representing the low-frequency region as

well  as  high-low (HL),  low-high  (LH),  and  high-high

(HH) subband channels describing high-frequency sec-

tors.  This  process  retains  approximation  coefficients,

which represent the geometric features and color con-

text of the low-frequency regions, within the LL chan-

nel.  Meanwhile,  the  high-frequency  regions  retrieve

textural information from the HL, LH, and HH chan-

nels.

The  high-frequency  channels  undergo  processing

using  U-Net  blocks[21, 22] with  Smooth  L1  regulariza-

tion  to  enable  convergence,  while  the  low-frequency

region serves as an input for the GSR module. Subse-

quently,  both  modules  generate  their  corresponding

refined components, and these outputs are integrated

using  the  inverse  discrete  wavelet  transformation

(IDWT) technique to  reconstruct  the image.  Finally,

we introduce our detailed parametric refinement mod-

ule to produce an enhanced stylized output. 
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3.2    Global Stylization Remapping

The use of  global  feature encoder in GSR simpli-

fies the integration of global color information, result-

ing  in  improved  picture  enhancement  performance.

The  LL  band  derived  from  the  wavelet  transformer

serves  as  a  summary of  the  image  content,  retaining

all  of  the  original  image's  content  information.  To

stylize  and  remap  this  component,  we  adopt  the

Restormer[23] and utilize transformer blocks. The self-

attention  module  of  the  transformer  is  effective  in

gathering  global  information,  making  it  highly  suit-

able for the LL component,  which requires color and

texture refinement.

3× 3

(H/2)× (W/2)× C

In the initial stage of the LL refinement process, a

 convolution is applied to the LL features, result-

ing in an output shape of , where

H represents height, W represents width, and C repre-

sents channel. Four symmetric encoder-decoder trans-

former  blocks  are  used  subsequently  to  convert  the

LL  features  into  deep  features.  To  ensure  efficiency,

the  number  of  transformer  blocks  increases  from top

to bottom. Conversely,  pixel  reshuffle  enables the up

and  down  sampling  among  the  four  blocks.  Each

transformer block incorporates  the  information filter-

ing  module  (IFM)  and  multi-channel  attention  mod-

ule  (MCA)  as  shown  in Fig.3.  To  reduce  computa-

tional  effort,  MCA  is  employed  in  place  of  the  con-

ventional  self-attention,  which  involves  significant

computational effort.  At each level,  the IFMs govern

the flow of information, enabling minor aspects to be

focused on and complementing the other levels.

Y ∈ RĤ×Ŵ×Ĉ

Q K V

1× 1

The MCA calculates channel-wise attention to en-

code  global  contextual  information  implicitly,  rather

than  spatially.  First,  a  normalized  layer  tensor

 is  subjected  to  depth-wise  convolution

operations  to  generate  (query),  (key),  and 

(value).  These  computations  enable  self-attentive

maps  that  emphasize  local  information.  Pixel-wise

cross-channel context is aggregated using  convo-
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3× 3

Q = WQ
d WQ

p Y K = WK
d WK

p Y

V = W V
d W V

p W (·)
p W (·)

d 1× 1

3× 3

A

RĈ×Ĉ

lutions,  and  then  depth-wise  convolutions  en-

code  channel-wise  spatial  context,  accomplishing

MCA.  Here, , ,  and

,  with  and  denoting the 

point-wise convolution and  depth-wise convolu-

tion,  respectively.  Subsequently,  the  query  and  key

projections are reshaped, and their dot-product inter-

action produces a transposed-attention map  of size

, resulting in the formulation of MCA as (1) and

(2). 

X̂ = Wp × Attention(Q̂, K̂, V̂ ) +X, (1)
 

Attention(Q̂, K̂, V̂ ) = V̂ · softmax(K̂ · Q̂/α), (2)

X X̂

RĤ×Ŵ×Ĉ

Q̂ ∈ RĤŴ×Ĉ K̂ ∈ RĈ×ĤŴ V̂ ∈ RĤŴ×Ĉ

α

K Q

softmax

where  the  input  and  output  feature  maps  are  repre-

sented  by  and ,  respectively.  We  reshape  ten-

sors from their original dimensions of  to ob-

tain , ,  and .  A

learnable scaling parameter  controls the magnitude

of  the  dot  product  of  and  before  applying  the

 function. Similar to the conventional multi-

head self-attention methods[12, 24], we divide the num-

ber  of  channels  into  heads  and  simultaneously  learn

different attention maps.

GatingThe  mechanism is elaborated in (3). 

Gating(X) = ϕ
(
W 1

dW
1
p (LN(X))

)
⊙W 2

dW
2
p (LN(X)),

(3)

⊙ ϕ

GELU LN

where  denotes  the  element-wise  multiplication, 

represents  the  non-linearity,  and  stands

for layer normalization[25]. IFM has a unique role com-

pared  with  MCA,  which  focuses  on  contextually  en-

hancing features. Considering that the proposed IFM

implements more operations than the regular feed-for-

ward network[12], we reduce the expansion ratio to en-

sure that the number of parameters and computation-

al expense are consistent.

3× 3

(H/2)× (W/2)× C

LR

To complete the process, the LL component is re-

stored via a  convolution, resulting in a shape of

. We define the refinement loss as

 through (4). 

LR =
N∑
i=1

{
ωLab

∥∥∥Lab(Ŷi

)
− Lab (Yi)

∥∥∥
1
+

ωMS-SSIMMS-SSIM
(
L
(
Ŷi

)
, L (Yi)

)}
, (4)

Yi

Ŷi Lab(x)

L(x)

L MS-SSIM

where the ground truth LL is represented by , and

the  enhanced  LL  is  denoted  by .  Here,  re-

turns  CIELab  channels  that  correspond  to  the  RGB

channels in the original images, whereas  returns

the image's CIELab  channel.  stands for

ωLab ωMS-SSIM

multi-scale structural similarity function, and the hy-

perparameters  and  indicate  the  relative

importance  of  different  components  in  the  loss  func-

tion.

The next  step involves  merging the  enhanced LL

and  the  refined  high-frequency  domain  via  IDWT,

which then generates a refined intermediate result. 

3.3    Detailed Parametric Refinement

Our  model  design  is  inspired  by  CSRNet[5].  The

intermediate result from the preceding stage is fed in-

to our detailed parametric refinement module for im-

proved  processing.  Within  the  DPR,  the  pixel  refine

module  takes  in the low-quality image and generates

the stylized image.  In parallel,  the global  feature  en-

coder  estimates  priors  based on the input image and

controls  the  pixel  refine  module  by  means  of  global

feature modulation (GFM) operations.

N N × 1

1× 1

The pixel refine module is a fully convolutional ar-

chitecture  that  consists  of  layers  with  Re-

LU activations. The module's unique property is that

all filter sizes are , enabling individual manipula-

tion of each pixel in the input image. Thus, the pixel

refine module processes each pixel independently and

glides  across  the input image.  The global  feature en-

coder  contains  three  blocks:  convolution,  ReLU,  and

downsampling  layers,  to  capture  global  information.

The  output  of  the  global  feature  encoder  is  a  condi-

tion vector that is subsequently fed into the pixel re-

fine module.

gi
1× 1

xi

γ β

GFM is a variant of AdaFM[26]. When the filter 

has  dimensions  of ,  AdaFM morphs  into  GFM.

Additionally, as demonstrated in (5), GFM can scale

and shift  the  feature  map  using affine  parameters

 and  without normalizing it. This leads to a more

effective adaptation of the feature map to the specific

characteristics of the input image. 

GFM(xi) = γ × xi + β. (5)
 

3.4    Objective Function

To  achieve  an  ideal  color  effect  in  diverse  con-

texts  via  feature-level  information,  we  need  to  com-

pare  the  actual  picture's  feature  with  the  feature

yielded  by  the  generated  image  for  closer  high-level

information. The prevalent perceptual loss[27, 28] mea-

sures  overall  perception  in  low-level  computer  vision

tasks  and  has  proved  to  be  effective  because  it  uses

specific layers of a pre-trained VGG-16. Thus, in our
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implementation, we employ perceptual loss and VGG-

16 as the backbone to ensure model convergence. 

LΦ =
5∑

k=0

λl||Φk(I
′
)− Φk(I)||1, (6)

I
′

I

k = 1, . . . , 5
k = 0

Φ

smoothL1
LR

LR

where  and  indicate  the  reference  image  and  in-

put  image,  respectively.  We  compare  the  differences

between CONVk2 ( ) and the original im-

ages  (  in  (6))  with  respect  to  the  ground truth

and the enhanced image. The VGG16 model, , pre-

trained  on  the  ImageNet  dataset  is  used  to  evaluate

the  differences.  Furthermore,  we  use  smooth  L1  loss

( )  and  to  constrain  our  pixel-wise  en-

hancement  model.  The  refinement  loss  is  defined

as (4).

The final loss function of our model, which incor-

porates all regularization items, is presented in (7): 

Ltotal = LΦ + λRλR + λsmoothL1
smoothL1

. (7)

λR

λsmoothL1

λR = 2

λsmoothL1
= 2

Here, we utilize two constant parameters,  and

, to govern the effects of features and pixel reg-

ularization  terms,  respectively.  The  values  of  these

parameters  are  set  empirically  as  and

 to achieve optimal results. 

4    Experiments and Results
 

4.1    Experimental Setup

We  use  the  MIT-Adobe  FiveK[13] and  HDR+[14]

datasets  for  training  and  evaluation  purposes.  The

MIT-Adobe  FiveK  dataset,  which  contains  five  re-

touched copies of 5 000 original photos from a variety

of  contexts,  is  currently  the  largest  image  enhance-

ment  dataset.  The  HDR+  dataset,  intended  for  the

high-dynamic  range  and  low-light  imagery  captured

using  Google  Camera  burst  photography,  consists  of

3 640 scenes.  To  ensure  a  fair  comparison,  we  follow

the  same  dataset  configuration  as  3D-LUT[7] and

transform all images in the standard PNG format and

a resolution of 480p. 

4.2    Implementation Detail

1× 10−4

We  implement  our  model  using  PyTorch  on  an

RTX A6000. To train the model, we employ the stan-

dard  Adam  Optimizer  with  default  settings,  with  a

learning  rate  of  and  a  batch  size  of  1,  and

set the number of epoch to 200. Additionally, we uti-

lize  data  augmentation  techniques  such  as  random

cropping,  horizontal  flipping,  as  well  as  brightness

512× 512

and  saturation  adjustments.  All  the  images  are  re-

sized to  at the training stage and tested on

the original size at the inference stage. The number of

transformer blocks is set to 6, and the number of U-

Net  blocks  is  set  to  3,  which  is  consistent  with  the

number of high-frequency components. 

4.3    Evaluation Metrics

∆E

∆E

∆E

We assess the effectiveness of various methods us-

ing  three  different  metrics:  peak  signal-to-noise  ratio

(PSNR),  structural  similarity  index  measure  (SSIM),

and .  PSNR is  an  engineering  term for  the  ratio

between the maximum possible power of a signal and

the power of corrupting noise that affects the fidelity

of its representation. The SSIM index is the measure-

ment or prediction of  image quality based on an ini-

tial  uncompressed  or  distortion-free  image  as  refer-

ence.  The  metric  evaluates  color  variation  per-

ceived  by  the  human  eye  within  the  CIELab  color

space[29].  Higher values for both PSNR and SSIM in-

dicate  superior  performance,  while  a  lower  value  for

 indicates a more visually appealing color. 

4.4    Quantitative Comparisons

∆E

↑
↓

We  benchmark  our  method  with  eight  state-of-

the-art  methods:  HDRNet[15],  DPE[10],  UPE[11],  CSR-

Net[5],  DeepLPF[1],  3D-LUT[7],  STAR-DCE[8],  and Se-

pLUT[6].  The  results  of  our  quantitative  evaluations,

which  includes  PSNR,  SSIM,  and  metrics,  are

displayed in Table 1. The notation “ ” indicates that

a larger  value implies  better  metrics,  while “ ” indi-

cates that a lower value implies better metrics. In cas-

es  where  a  result  is  not  available,  it  is  marked  as

“N/A”.  The  top-performing  result  is  highlighted  in

bold.  Our  method  outperforms  all  the  others  in  all

metrics, as displayed in the table. While possible, we
 

Table   1.      Quantitative  Comparisons  of  Various  Image  En-
hancement  Methods  on  the  MIT-Adobe  FiveK  and  HDR+
Datasets

Method FiveK HDR+

↑PSNR ↑SSIM ∆E ↓ ↑PSNR ↑SSIM ∆E ↓ 
HDRNet 19.93 0.798 14.42 23.04 0.879 8.97

DPE 17.66 0.725 17.71 22.56 0.872 10.45

UPE 21.88 0.853 10.80 21.21 0.816 13.05

CSRNet 17.85 0.790 18.27 N/A N/A N/A

DeepLPF 24.55 0.846 8.62 N/A N/A N/A

3D-LUT 24.59 0.846 8.30 23.54 0.885 7.93

STAR-DCE 24.50 0.893 N/A 26.50 0.883 5.77

SepLUT 25.02 0.873 7.91 N/A N/A N/A

Ours 25.46 0.896 7.28 28.68 0.905 4.89
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perform an additional evaluation of each model using

their available pre-trained models on both datasets.

Fig.4 and Fig.5 present the qualitative results ob-

tained by our method in terms of landscape and por-
 

(a) (b) (c) (d) (e) (f) (g) (h)

Fig.4.  We conduct a visual comparison of different image enhancement methods for natural scenes and constructions. The visual re-
sults are pleasing and satisfactory. (a) Input. (b) DPE[10]. (c) UPE[11]. (d) CSRNet[5]. (e) 3D-LUT[7]. (f) SepLUT[6]. (g) Ours. (h) Tar-
get.

 

(a) (b) (c) (d) (e) (f) (g) (h)

Fig.5.   Our portrait  retouching result  yields  substantial  improvements.  (a)  Input.  (b)  DPE[10].  (c)  UPE[11].  (d)  CSRNet[5].  (e)  3D-
LUT[7]. (f) SepLUT[6]. (g) Ours. (h) Target.
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trait  scenario,  respectively.  In Fig.4,  it  can  be  seen

that  our  method  outperforms  the  methods  of  DPE,

UPE,  and  CSRNet  in  these  areas,  whose  results  dif-

fer significantly from the desired outcome. Specifical-

ly, the color, exposure, and detail reproduction perfor-

mances  of  the  aforementioned  methods  do  not  meet

high  quality.  Comparatively,  3D-LUT  and  SepLUT

produce superior outcomes, although their tone map-

ping is not completely satisfactory, causing the result-

ing  images  to  be  either  too  bright  or  too  dark  com-

pared with the target.  Our model  underlines  the im-

portance  of  selecting  the  most  effective  image  en-

hancement method to achieve superior image quality.

In Fig.5, it can be observed that our method can re-

cover finer details, like sharpness of hair and watches,

which  tend  to  vanish  in  prior  techniques.  Further-

more, our tone mapping generates visually similar re-

sults to the ground truth. 

4.5    Ablation Studies

In  this  subsection,  we  analyze  our  ablation  stud-

ies  to  investigate  the  impact  and  selection  of  our

modules. Table 2 displays the acronyms for our GSR

and DPR. The top-performing result is highlighted in

bold.  We  offer  two  alternative  modules  to  GSR  and

DPR:  ConvNet[30] and  U-Net[21].  ConvNet  is  a  popu-

lar  cascaded  aggregation  network  that  has  been

shown to be an effective substitute for GSR in image

restoration,  while  U-Net  uses  the  equivalent  down-

sampling pattern of GSR.
 
 

Table   2.      Ablation  Study  on  the  MIT-Adobe  FiveK  and
HDR+ Datasets

Method FiveK HDR+

↑PSNR ↑SSIM ∆E ↓ ↑PSNR ↑SSIM ∆E ↓ 
GSR+UNet 24.28 0.874 8.57 24.17 0.823 8.89

ConvNet+DPR 24.40 0.873 8.43 26.84 0.867 6.34

ConvNet+UNet 21.43 0.815 12.23 25.85 0.860 7.28

UNet+DPR 24.06 0.879 9.42 25.48 0.862 7.87

UNet+UNet 22.04 0.838 11.72 23.87 0.840 9.49

Ours 25.46 0.896 7.28 28.68 0.905 4.89
 

The first half of the ablation experiments aims to

enhance  the  low-frequency  component,  whereas  the

second half focuses on global optimization. We do not

alter  our  U-Net  block for  refining high-frequency do-

mains.

We first  attempt to  replace  DPR with U-Net  for

global optimization, but this leads to a decline in met-

rics.  Subsequently,  we  replace  GSR  with  ConvNet

and use both DPR and U-Net, but metrics are not so

strong  as  our  model,  and  significantly  decline  with

ConvNet and U-Net.  Additionally,  we try pairing U-

Net with both DPR and U-Net after  replacing GSR,

but  the  results  are  not  so  good  as  our  full  model.

Therefore,  our  study  shows  that  the  most  effective

combination  for  achieving  the  highest  metrics  and

best visual impression is GSR and DPR. 

4.6    Limitations

Our proposed neural network has limitations that

must  be  considered.  Firstly,  the  network  includes  a

vast  number  of  parameters,  which  prolongs  training

time, leading to a significant challenge. This is partic-

ularly problematic in real-time systems where process-

ing  speed  is  critical.  Secondly,  while  our  model

demonstrates promising outcomes on various datasets,

some discrepancies still exist between our results and

the  ground  truth.  In  some  instances,  the  network's

outcomes  are  over-enhanced,  resulting  in  excessive

brightness and inadequate detail.

The  highlighted  challenges  emphasize  the  impor-

tance  of  conducting  additional  research  to  optimize

the efficiency and precision of deep learning based im-

age  enhancement  methods.  Moreover,  identifying

these  challenges  can  provide  direction  for  future  re-

search to experiment with alternative network frame-

works  and  loss  functions  that  may  help  overcome

these limitations. 

5    Conclusions

This  paper  proposed  a  new  model  for  improving

the  different  frequency  bands  of  an  image.  The

method employs a transformer-based model that oper-

ates  within  the  wavelet  domain,  combining  DWT

modules  with  transformer  modules  to  optimize  the

low-frequency  region  of  the  image.  The  IDWT  pro-

duced  by  the  transformer  undergoes  additional  pro-

cessing through U-Net's optimized high-frequency do-

main  before  being  fed  into  our  global  stylization

remapping  module  for  further  improvement.  Our

method  emphasizes  not  only  regional  but  also  global

optimization, setting it apart from other state-of-the-

art  methods.  As  a  future  direction,  we  seek  to  en-

hance  performance  further  by  increasing  the  down-

sampling multiplier of wavelet pooling and incorporat-

ing an attention mechanism into the model. 
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