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Abstract    Data partitioning techniques are pivotal for optimal data placement across storage devices, thereby enhanc-

ing resource utilization and overall system throughput. However, the design of effective partition schemes faces multiple

challenges, including considerations of the cluster environment, storage device characteristics, optimization objectives, and

the balance between partition quality and computational efficiency. Furthermore, dynamic environments necessitate ro-

bust partition detection mechanisms. This paper presents a comprehensive survey structured around partition deployment

environments, outlining the distinguishing features and applicability of various partitioning strategies while delving into

how these challenges are addressed. We discuss partitioning features pertaining to database schema, table data, workload,

and runtime metrics. We then delve into the partition generation process, segmenting it into initialization and optimiza-

tion stages. A comparative analysis of partition generation and update algorithms is provided, emphasizing their suitabili-

ty for different scenarios and optimization objectives. Additionally, we illustrate the applications of partitioning in preva-

lent database products and suggest potential future research directions and solutions. This survey aims to foster the imple-

mentation, deployment, and updating of high-quality partitions for specific system scenarios.
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1    Introduction

In the era of big data, effectively processing mas-

sive  data  has  emerged  as  a  critical  issue.  Database

partitioning, a fundamental yet challenging task, sim-

plifies  data  manipulations  by  breaking  down  large

datasets into smaller, easy-to-manage partitions based

on  specified  criteria  and  storing  them  separately

across multiple data blocks. A well-designed partition

scheme significantly  impacts  system performance,  re-

source utilization, and manageability, making it an in-

dispensable  strategy  for  database  administrators

(DBAs).  Partitioning  is  often  optimized  for  specific

purposes  in  various  database  management  systems

(DBMSs). In multi-disk databases, it distributes data

across various disks to facilitate better disk collabora-

tion  and  accelerate  read/write  operations.  In  dis-

tributed  databases,  partitioning  effectively  mitigates

machine node imbalances caused by overloading data

and  queries.  Moreover,  distributing  large-scale

datasets  to  multiple  nodes,  inclusive  of  replicas,  can

boost  system  availability  and  scalability.  In  parallel

databases,  it  enables  multiple  processing  units  or

cores to work on different parts of the data simultane-

ously. In NoSQL databases, driven by new data types

and data storage/retrieval mechanisms, partitioning is

crafted  to  better  manage  large  volumes  of  unstruc-

tured or semi-structured data.

From  the  perspective  of  physical  characteristics,

partitioning can be broadly classified into three types:
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horizontal  partitioning  (HP),  vertical  partitioning

(VP),  and  irregular  partitioning  (IP),  as  detailed  in

Table 1.  HP  operates  on  a  row-wise  basis,  keeping

complete  tuples  within  each  partition,  whereas  VP

functions column-wise, allowing incomplete yet consis-

tent  column data.  IP,  on  the  other  hand,  focuses  on

the data itself, without imposing strict restrictions on

how  it  is  partitioned.  Thus,  in  terms  of  partition

shape,  both  HP  and  VP  divide  the  table  space  into

rectangular areas, whereas IP allows partitions of ar-

bitrary shapes, including rectangles. IP designs parti-

tion  shapes  tailored  to  query  access  patterns  to

achieve optimal query efficiency, ideal for online ana-

lytical  processing  (OLAP)  and  hybrid  transactional/

analytical  processing  (HTAP)  applications.  HP  and

VP also take into account partial  record integrity to

facilitate online transaction processing (OLTP), there-

by making them suitable for any load scenario.

Data  partitioning  can  be  designed  based  on  the

database  schema,  data  and  load  distribution,  or  a

combination  of  these  features.  Schema-driven  ap-

proaches examine the join relationships among tables

to centrally allocate tuples involved in join operations.

Data-driven  approaches  commonly  employ  domain

and hash values of column values to create partitions.

Query-driven approaches concentrate on mining nest-

ed filtering rules from queries to ensure each tuple is

assigned to the most appropriate partition.

Other  physical  designs  also  significantly  impact

query  latency,  disk  space  usage,  and more.  To eluci-

date the role of partitioning, we next briefly describe

how it differs from other design strategies.

Partition vs Storage Structure. Partitioning speci-

fies  which  data  should  be  stored  in  the  same  block

file, while storage structure solves how the data is or-

ganized  within  a  block.  For  example,  Parquet[1],  a

widely  adopted  column-store  file  format  in  HDFS

(Hadoop  Distributed  File  System)①,  provides  effi-

cient  data  compression  and  encoding  schemes  to  en-

hance the performance of read-intensive queries.

Partition  vs  Index. Index  is  an  auxiliary  data

structure designed for quickly locating and retrieving

tuples,  such  as  1-dimensional  indexes  (B-tree[2]),  and

n-dimensional indexes (KD-tree[3], R-tree[4]). However,

its performance tends to degrade when handling high-

dimensional  data  or  certain  types  of  queries.  In  con-

trast, partitioning performs well in these scenarios.

Partition vs Materialized View. Materialized view

techniques[5, 6] adopt a  space-for-time strategy,  creat-

ing views separating queried data copies from raw da-

ta  and  routing  relevant  queries  to  the  most  suitable

view for faster execution. However, copying the com-

plete query results requires additional storage space.

We  present  a  detailed  partitioning  workflow  and

review a wide spectrum of existing partitioning stud-

ies.  Some  studies[7, 8] share  a  similar  topic  to  ours;

however,  their  focus  lies  on  data-driven  horizontal

partitioning  for  specific  environments  (e.g.,  Hadoop

cluster②). Our survey, in contrast, considers a broad-

er range of  generalized scenarios.  We explore various

partition  types  and  place  greater  emphasis  on  parti-

tioning  requirements,  design  details,  and  the  imple-

mentation process.  We further  delve  into the feature

extraction and cost  model  design before  partitioning,

along  with  addressing  the  data  and  load  update  is-

sues after partitioning.

This  paper is  organized as follows: Section 2 pro-

vides  an  overview  of  data  partitioning,  including  its

four-stage  workflow  and  core  modules. Sections 3–5
explore the development trajectory of partitioning, in-

corporating  classical  approaches  to  horizontal,  verti-

cal,  and irregular partitioning,  respectively. Section 6

summarizes  the  support  for  partitioning  in  industry-

leading database products. Section 7 gives open prob-

lems in this field and potential  solutions.  Finally,  we

conclude the survey in Section 8. 

2    Data Partitioning Overview

The partitioning workflow typically comprises four

stages,  as  depicted  in Fig.1.  Stage  1,  feature  extrac-

tion, addresses the issue of what to use for partition-
 

Table  1.    Comparison of Three Common Partition Types

Type Partition Strategy Partition Shape Scenario

OLTP OLAP HTAP

HP Row-wise Rectangular ✔ ✔ ✔

VP Column-wise Rectangular ✔ ✔ ✔

IP Data-wise Arbitrary ✘ ✔ ✔
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①https://hadoop.apache.org/docs/r1.2.1/hdfs_design.html, Mar. 2024.
 

②https://hadoop.apache.org/docs/stable/index.html, Mar. 2024.
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ing.  This  stage  entails  analyzing  the  database  (DB)

schema,  parsing  representative  queries,  conducting

column data statistics, and selecting system optimiza-

tion  metrics.  Stage  2,  partition  generation,  includes

two  subtasks:  partition  initialization,  which  quickly

establishes  initial  partitions  using  a  low-complexity

algorithm,  and  partition  optimization,  where  the  ini-

tial solution is iteratively refined based on predefined

cost  models.  Stage  3,  partition  deployment,  involves

routing  data  to  partition  files  via  automated  write

transactions  based  on  created  partition  structures.

Stage  4,  automatic  partition  update,  timely  adjusts

partitions to sustain stable system performance amid

data,  load,  and  hardware  resource  uncertainties,

which includes deciding update timings and formulat-

ing detailed update plans accordingly.

, . . . ,

Consider  a  teaching  system  comprising  three  ta-

bles: student (S), course (C), student course (SC). Be-

fore partitioning a table (e.g., S), we first analyze its

entity-relationship  (E-R)  graph  and  common  column

data  distributions,  gathering  query  information  and

system  metrics  as  necessary.  Assuming  the  age  col-

umn  has  been  selected  as  the  partition  key,  initial

partitioning  rules  are  derived  from its  value  domain,

and skew partitions are further split according to the

column  histogram  statistics.  With  the  partitions,

eight  given tuples  (T0 T7) are  distributed across

three  machines  (M1,  M2,  M3).  Subsequently,  a  ser-

vice  is  established  to  continuously  monitor  the  envi-

ronment. When detecting an overload on M2, the par-

[21, 23] ⇒ [21, 22]

[24, 25] ⇒ [23, 25]

tition boundaries for M2 ( ) and M3

( ) are promptly adjusted, and a da-

ta  migration  plan  is  devised  to  move  tuple  T7  from

M2 to M3.

Fig.2 displays  a  framework  comprising  five  key

modules  used in the partitioning workflow.  This  sur-

vey concentrates on the modules highlighted in green.

1) Deployment  Scenario. Partitioning  optimiza-

tion  objectives,  such  as  performance,  manageability,

and device costs, are greatly affected by system envi-

ronments,  user requirements,  and the storage devices

used.  For  instance,  in  a  distributed  database,  parti-

tioning tasks are more complex, necessitating the con-

siderations  of  factors  like  multi-node  clusters,  node

replicas, and network latency, to ensure uniform par-

tition  access  and  reduce  cross-node  operations. Ta-

bles 2 and 3 offer categorizations and symbolic repre-

sentations  of  common  optimization  objectives  and

database environments, respectively.

2) Partition  Type. Before  designing  partitions,  it

is necessary to choose the partition type to use based

on the given scenario, as shown in Table 1.

3) Cost  Model. After  identifying  the  deployment

scenario and deciding the partition type, a cost mod-

el is created to assess the given partition scheme and

its  associated  update  plan.  There  are  three  types  of

cost  estimations:  optimizer-based  models,  simplifying

cost design at the expense of accuracy; network-based

learning models,  offering high precision but requiring

sufficient metric samples and extensive training over-

 

Fig.1.  Data partitioning workflow. (a) Feature extraction. (b) Partition generation. (c) Partition deployment. (d) Partition update.
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head;  and  function-based  models,  being  more  bal-

anced due to their flexible and comprehensive design.

4) Partition  Generation  Module. The  partition

generation  process,  encompassing  both  initialization

and optimization  phases,  is  shared  across  most  tech-

niques  and  is  guided  by  specifically  designed  cost

models.  Here, we categorize existing methods accord-

ing to their algorithm types, as detailed in Table 4.

5) Partition  Update  Module. This  module  timely

updates inefficient partitions, especially those that are

query-driven  and  become  fragile  under  new  loads.  It

features two core components. a) The monitoring ser-

vice uses five optional  mechanisms (refer  to Table 5)

to determine repartition times. The term “window” in
M-QW  denotes  a  container  for  monitoring  queries,

cleared  in  time  after  each  repartitioning.  M-TH  sets

threshold  conditions  as  feature  boundaries  like  fixed

time  intervals  and  minimum query  latency.  b)  Once

repartitioning  is  triggered,  a  data  migration  plan  is

strictly made using a specific strategy (refer to Table

6), with considerations for data transfer overhead and

potential  benefits  of  new  partitions.  These  plans  are
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Fig.2.  Overview of a modular framework for data partitioning technologies.

 

Table  2.    Classification of Optimization Objectives

Symbol Description

O1 Data balancing

O2 Load balancing

O3 Query cost estimation

O4 Query latency or system throughput

O5 Data transfer overhead

O6 Number of distributed transactions

O7 Coordination cost between machines

O8 Layout generation time

O9 Memory footprint

O10 Cache utilization

O11 Device cost

O12 Storage space

 

Table  3.    Classification of System Environments

Symbol Description

E-CH/S Centralized database (HDD or SSD)

E-DH/S Distributed database (HDD or SSD)

E-CM Centralized database (RAM)

E-DM Distributed database (RAM)

 

Table  4.    Classification of Partitioning Generation Methods

Symbol Description

Greedy-based Making partitioning decisions at each step
based on predefined heuristic rules

Empirical-based Developing schemes manually based on
observation and experience

ML-based Using traditional machine learning models

DL-based Using deep learning algorithms

MP-based Constructing mathematical programming
equations with objectives and constraints

 

Table  5.    Classification of Monitoring Methods

Symbol Description

M-QW Monitoring whether a window is filled as new
queries arrive

M-TH Monitoring whether threshold conditions are met

M-CT A feedback mechanism to determine the
repartition timing

M-RL Training an agent to automatically take
repartition action based on the environmental
feedback

M-SD Service on demand
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executed  in  the  background,  uniformly  controlled  by

the  master  node,  to  ensure  minimal  impact  on  nor-

mal transaction execution. 

3    Horizontal Partitioning

In Subsection 3.1, we define the static and dynam-

ic horizontal partitioning (HP) problems, followed by

an introduction to the extracted features in HP (Sub-

section 3.2). We then describe and summarize the re-

search  development  of  HP  methods  (Subsections 3.3

and 3.4),  and the  design of  the  HP-wise  cost  models

(Subsection 3.5),  based  on  different  system  environ-

ments. Fig.3 depicts the timeline of HP methods. 

3.1    Formalization

ϕ(·)
m D = (e1, e2, . . . , em) n

Q = (q1, q2, . . . , qn)

ϕ

P P = ϕ(e), ∀e ∈ D.

k

P = (P1, P2, . . . , Pk)

Definition 1 (Static Horizontal Partitioning). Stat-
ic horizontal partitioning aims to find a classifier 
for a table with  tuples  and 

collected  queries . When  a  new
tuple  arrives,  the  classifier  assigns  it  to  the  speci-
fied partition  in time, i.e.,  The
classifier  partitions  all  tuples  into  distinct  parti-
tions, represented as , to achieve
optimal  system  objectives  such  as  low  query  latency
and high system throughput. The total cost of process-

Q P C(ϕ, Q)ing  over  is denoted by . 

ϕ∗ = argmin
ϕ

C
(
P ⇐ ϕ(D), Q

)
.

n

T = (t1, t2, . . . , tn)

Q = (Q1, Q2, . . . , Qn)

P0

G∗

ti
Pi

(Pi = Pi−1)

Definition  2 (Dynamic  Horizontal  Partitioning).

For  a  database  running  over  future  intervals
, where the  corresponding submit-

ted queries are , and the initial
partition scheme is , our goal is to design an opti-
mal  controller . This  controller  analyzes  current
partitions  and  queries  at  each  interval  to  decide
whether to deploy new partitions ( ) or maintain ex-
isting  ones . The  aim  is  to  minimize  the
sum  of  I/O  costs  for  achieving  optimization  objec-
tives  and data migration costs  during the entire run-
ning process. 

min
n∑

i=1

(
C(1)

i + C(2)
i

)
,

s.t.


Pi = G (Qi−1,Pi−1) ,
C(1)

i = Cr (Pi−1,Pi) ,

C(2)
i =

∑
q∈Qi

C (Pi, q) ,

Cr(Pi, Pj)

Pi Pj

where  calculates the minimum data migra-
tion  cost  required  to  reorganize  the  partition  files
when the partition scheme changes from  to . 

3.2    Feature Extraction

Database  Schema. Depending  on  the  given

database  schema,  we  can  1)  classify  tables  into

large/small  ones based on the number of  tuples,  and

static/dynamic  ones  based  on  data  changes;  2)  ana-

lyze the characteristics  of  numerical  columns,  includ-

ing data type, constraints, indexes, and triggers, etc.;

3) learn the foreign key relationships and constraints

between tables to help construct co-partitions[19, 28, 32, 33].

Table  Data. When  analyzing  numerical  column

data,  distribution  types  (e.g.,  uniform,  skewed/hot

 

Table  6.    Classification of Data Migration Plans

Symbol Description

D-RM One partition is randomly selected from those that
need adjustment for partial reorganization

D-RE Partitions are swapped using predefined rules,
operators, structures, and algorithms

D-HC Using heuristic information such as evaluation
functions and metrics to guide data migration

D-MP Converting the data migration into mathematical
optimization problems, e.g., dynamic programing
(DP), integer linear programming (ILP)
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Fig.3.  Timeline of HP research development, including general empirical-based approaches (round-robin, range, and hash), as well
as on-axis studies (KD-tree[3],  SOP[9],  AQWA[10],  Kangaroo[11],  Ameoba[12],  AdaptDB[13],  QdTree[14],  MTO[15],  and PAW[16]) focused
on centralized environments and off-axis studies (Rao[17], Agrawal06[18], REF[19], DYFRAM[20], Schism[21], MESA[22], Horticulture[23],
DynPart[24],  SWORD[25],  E-Store[26],  SOAP[27],  PREF[28],  Cumulus[29],  Clay[30],  NashDB[31],  GPT[32],  BaW[33],  Advisor[34],  and  SA-
HARA[35]) on distributed environments.
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spot[20, 23, 24, 26, 35],  discrete)  and  domain  statistical

metrics  (e.g.,  median[12, 13, 16],  maximum,  and  mini-

mum values[15, 16])  are  considered.  These  can  also  be

depicted using histogram technologies[15, 20].

Workload. In  HP,  important  query  logical  fea-

tures  (e.g.,  filter  conditions,  join  keys,  operator  cost

estimates,  and  SQL  keywords)  and  physical  features

(e.g., read-to-write ratios, occurrence frequencies, sub-

mission/completion  times,  and  inserted/updated

rows) can be extracted from query plans. Some stud-

ies count partition or tuple access frequencies[21, 25, 30]

to identify hot and cold data[26, 35] by tracking query-

tuple accesses. Furthermore, load can be classified as

either  heavy or  light  based on the  average  query ar-

rival rate.

Database  Runtime Metric. OS-level  metrics  relat-

ed  to  HP  are  chosen  to  monitor  the  database  state,

including  resource  usage  (e.g.,  memory,  CPU,  disk),

performance  (e.g.,  query  latency,  throughput),  and

machine hotspots. 

3.3    Partitioning Process in Centralized

Databases

In this subsection, we discuss studies designed for

centralized systems or those that neglect factors such

as multi-nodes, replicas, and network costs.

N

i i mod N

Empirical-Based. Range  partitioning  typically

splits data based on a pre-defined range of values de-

rived from partition keys. This method is suitable for

data  with  prior  statistics  but  requires  careful  selec-

tion  of  partition  boundaries,  which  is  difficult  for

large-scale datasets. Hash partitioning maps tuples to

specific partitions using a hash function, ideal for un-

ordered  data.  Round-robin  partitioning  is  a  special

type  of  hash  partitioning  that  assigns  data  to  avail-

able  machine  nodes  in  a  circular  fashion,  i.e.,  as-

signing the -th data row to the ( )-th node,

to ensure equi-sized balanced partitions.  These tradi-

tional  methods  are  data-driven  and  do  not  require

prior load knowledge.

m

m

ML-Based. SOP[9] (Skipping-Oriented  Partition-

ing) adopts the Apriori algorithm[36] to extract  rep-

resentative  filter  predicates  from  load,  and  converts

each tuple into an -bit one-hot feature vector with

each bit indicating tuple-predicate satisfaction. These

vectors  are  clustered  into  different  blocks  via  the

Ward  algorithm[37],  with  each  block  generating  a

union vector (as known as partition map) by perform-

ing bitwise OR operations on its vectors. These maps

act as a classifier,  partitioning new data and guiding

incoming  queries  to  skip  unnecessary  blocks.  Kanga-

roo[11] utilizes grid and tree structures for partitioning.

In a 2D table space, the grids are represented by two

bit  strings,  with  positions  marked as  1  acting  as  the

partition boundaries.  Kangaroo then applies  a  genet-

ic  algorithm  (GA)  for  partition  initialization  and

merging,  deriving  the  optimal  partition  scheme.  Its

tree-based approach replaces the grid with a tree rep-

resentation within the GA process.

Greedy-Based. To solve  SOP limitations,  such as

the  exponential  growth  in  execution  time  with  more

predicates,  Yang et  al.[14] proposed  a  greedy-built

query data routing tree (QdTree).  QdTree is  a bina-

ry  tree  created  by  selecting  the  predicate  with  the

maximum split  benefit  as  the split  condition at  each

tree expansion step until no further splits are possible.

Each leaf  node maintains  metadata for  routing,  with

the path from root to leaf serving as the search pro-

cess  for  assigning  tuples  to  partitions.  Ding et  al.[15]

extended QdTree to multi-table datasets with a mul-

ti-table  optimizer  (MTO),  leveraging  sideways  infor-

mation passing through joins. MTO periodically com-

putes  a  reward  value  to  decide  the  best  repartition

timing and then uses dynamic programming (DP) to

find  the  optimal  reorganization  set  of  non-overlap-

ping  subtrees.  Li et  al.[16] proposed  PAW (Partition-

ing Aware of Workload Variance), focusing on creat-

ing  partitions  adaptable  to  future  load  variances  by

scaling  historical  queries  and  employing  multi-step

splits  to  replace  multiple  one-step  predicate  splits  in

QdTree when splitting smaller nodes.

However, in a new environment where query logs

are  unavailable,  query-driven  physical  design  tech-

niques  will  become  ineffective,  leading  to  the

database's cold start issue. Moreover, collecting repre-

sentative queries is sometimes difficult; for instance, a

study[13] on IoT startups revealed that, even after an-

alyzing the first 80% of historical queries, the remain-

ing  20%  still  contained  57%  new  queries  previously

unseen. To tackle this issue, Aly et al.[10] developed an

adaptive query-workload-aware partitioning (AQWA).

AQWA  utilizes  the  KD-tree[3] structure  for  creating

initial  partitions  with  equal  spatial  points  distribu-

tion.  It  dynamically  maintains  update  plans  for  all

visited  nodes,  considering  split  gain  and  data  migra-

tion  costs.  To  support KNN  queries,  AQWA  uses

MinDist and MaxDist indicators[38] along with the vir-

tual  grid  technology  to  compute  query  boundaries.

Amoeba[12] initializes  a  heterogeneous  binary  tree,

similar to KD-tree, and dynamically modifies it for in-
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coming  queries  using  three  node  update  operations:

swap, pushup, and rotate. AdaptDB[13] adapts Amoe-

ba for  join operations  by splitting each Amoeba tree

based on joined columns.  It  employs a greedy search

strategy to co-partition joined blocks, yielding a supe-

rior  hyper-join  operation  over  shuffle-join.  AdaptDB

manages  repartitioning  via  a  fixed-length  query  win-

dow,  refreshing  the  tree  for  new  queries,  and  reallo-

cating old nodes.

⟳

Table 7 summarizes  the  horizontal  partitioning

techniques  discussed  above  for  centralized  environ-

ments.  The “Cost” column  indicates  whether  a  cost

model is used or not. The “Deployment” column indi-

cates whether the partitions have been deployed in a

real  database  environment.  The “Method  Content”
column  uses  various  symbols  to  represent  different

partitioning stages: partition initialization (∇), parti-

tion optimization (〇), and partition update ( ). The

representations are applied to all subsequent tables. 

3.4    Partitioning Process in Distributed

Databases

Data-driven approaches are universally applicable

to  various  database  environments  and  can  always

achieve data balancing.  However,  the performance of

query-driven  approaches,  tailored  for  E-CH/S  envi-

ronments, might be limited by new factors in E-DH/S

environments.  Thus,  in  this  subsection,  we introduce

the  studies  specifically  designed  for  distributed  envi-

ronments. 

3.4.1    Disk Storage Environment

Optimizing  data  placement  on  hard  and  solid-

state  drives  has  greater  potential  in  boosting  system

throughput,  due  to  their  slower  read/write  speeds

than  memory  drives.  Early  partitioning  studies[39–41]

in  E-DH/S  environments  relate  to  physical  design

tools  offering  layout  suggestions  for  data  and  load

balancing.  However,  they  do  not  design  a  cost  func-

tion  for  accurate  evaluation  of  alternative  solutions.

Rao et al.[17] combined a rank-based method with cost

estimations derived from query optimizer statistics to

quickly  recommend  partition  keys.  Agrawal et  al.[18]

refined this  by  treating  workload as  a  sequence  with

temporal  features,  eliminating  redundant  and  ineffi-

cient  designs.  Other  similar  studies[42, 43] utilize  opti-

mizer  and  load  information,  adopting  greedy  and

heuristic-based strategies for effective partitioning.

However,  while  these  strategies  mentioned  above

excel  in  large-scale  data  scans,  they  easily  incur  dis-

tributed  (i.e.,  cross-node)  calls  during  small  transac-

tions touching only a few tuples.

ML-Based. Schism[21] addresses this issue by mini-

mizing  distributed  transactions. Fig.4 illustrates  its

partitioning  process.  1)  Data  preparation,  inputting

table  data  and  transaction  information  (omitted).  2)

Partitioning. A hypergraph is created, with nodes rep-

resenting  tuples  or  tuple  replicas.  Replication  edges

connect a tuple to its replicas, while transaction edges

connect all tuples accessed by the same transaction. A

Metis  partitioner[44] then  splits  the  hypergraph  into

multiple balanced partitions with minimal cross-parti-

tion transactions. In the illustrated example with five

tuples, we get partitions 0 and 1 after graph splitting.

3) Explanation and validation. Decision trees are con-

structed  based  on  tuple  features  within  each  parti-

tion  to  find  predicate-based  explanations  for  adapt-

ing new data. In Fig.4, the decision tree is construct-
 

Table  7.    Major Horizontal Partitioning Strategies for Centralized Environments

Category Work Baseline Objective Automatic Cost Deployment Method Content

Empirical Range, hash,
round-robin

N/A O1, O2 ✘ ✘ ✔ Partitioning by columns or
data insertion order∇

ML SOP[9] SimpleRange O3 ✘ ✔ ✔ Frequent itemset+Ward clustering∇

ML Kangaroo[11] Random
schemes

O4, O8 ✘ ✔ ✔ GA-based grid/tree generation∇; partition
initialization using DPΟ

Greedy AQWA[10] Uniform grids O4, O8 M-TH+
D-RE

✔ ✔
⟳

Spatial data-based recursive KD-tree∇; greedy
tree node split selection

Greedy Ameoba[12],
AdaptDB[13]

FullScan,
SOP[9]

O3, O5 M-QW+
D-RE/RM

✔ ✔
⟳

Heterogeneous tree∇; heuristic-groupΟ;
predicate-based tree update

Greedy QdTree[14] SOP[9] O3 ✘ ✘ ✔ Greedy-based binary predicate tree

Greedy MTO[15] QdTree[14] O3, O8 M-TH+
D-MP

✘ ✔
⟳

QdTree∇; join-induced predicatesΟ; tree update
using DP

Greedy PAW[16] QdTree[14] O3 ✘ ✘ ✔ Query deviation prediction+ multi-group split∇;
data replicationΟ
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a1

a1 = 1 2 ⩽ a1 < 4 a1 ⩾ 4

ed with the  column serving as  the decision point,

using  criteria  such  as , ,  and 

for decision branches. The leaf nodes indicate that tu-

ples  meeting  the  specified  criteria  are  allocated  to

their  respective  partitions.  Nehme et  al.[22] developed

the MEMO-based search algorithm (MESA) for long-

running  analytical  transactions  touching  large-scale

tuples, while Schism adapts to small short-lived trans-

actions.  The  MEMO  structure  is  a  search  space  for

parallel  query  optimization.  MESA  generates  MEM-

Os  for  each  query  and  then  faster  simulates  and  ex-

plores tree-style partition candidate configurations us-

ing a branch and bound strategy.

To  adapt  Schism  to  load  changes,  SWORD[25]

compresses the hypergraph into virtual nodes, periodi-

cally  monitors  load  variations,  and  sets  a  threshold

for distributed transaction ratios to determine reparti-

tion timings, employing virtual node swaps for incre-

mental  graph  updates  to  minimize  data  movement.

Cumulus[29] filters  out  infrequent  transactions  and

predicts  future  transaction  frequency  with  an  expo-

nential  moving  average.  It  dynamically  re-partitions

data  in  a  user-driven  live  migration  to  avoid  poten-

tial  hotspots,  balancing the increase in repartitioning

overhead with the decrease in distributed transaction

costs.

Greedy-Based. DYFRAM[20] addresses  the  cold

start problem by initially creating simple range parti-

tions  for  equi-width  data  distribution  histograms,

then periodically evaluates whether to replicate parti-

tions based on partition size limitations and cross-par-

tition overheads. DynPart[24], designed for continuous-

ly growing database (e.g.,  observation and log data).

As data volume increases, DynPart models the affini-

ty between data and partition based on given queries,

proposing heuristic rules for efficiently distributing in-

coming data.  Unlike  SWORD's  approach of  isolating

updated  data  during  repartitioning,  SOAP[27] inte-

grates repartition operations into normal transactions

for  smooth  partition  management.  SOAP  employs  a

cost-based  method  to  prioritize  repartition  transac-

tions  and  utilizes  a  feedback  model  for  scheduling

their  executions.  NashDB[31] supports  user-defined

query  prioritization  and  efficient  resource  use,  com-

bining  economic  models,  dynamic  programming,  and

the Munkres algorithm[45] to optimize node usage and

minimize data migration costs.

Table 8 summarizes common horizontal partition-

ing  techniques  for  distributed  disk  storage  environ-

ments. 

3.4.2    Distributed Partition Key Recommendation

in Disk Storage Environments

Non-co-located joins cause excessive data transfer

overhead  among  machine  nodes,  adversely  affecting

join performance.  Co-partitioning tables using shared

join  keys  can  significantly  reduce  data  shuffling.  We

term this  problem as Distributed Partition Key Rec-

ommendation  (DKR).  For  example,  in  Spark  SQL,

data  can  be  organized  into  multiple  buckets  accord-

ing  to  the  hash  or  range  values  of  selected  partition

keys.  Costa et  al.[46] verified  that  creating  a  consis-

tent number of buckets for join keys across two large

tables  can  significantly  boost  join  performance  over

traditional sort-merge joins.

Empirical-Based. When  facing  joins  with  refer-

ence constraints,  the query executor requires copying

partition keys and strategies from parent to child ta-

bles,  and  subsequently  repeats  partition  merging,

splitting, or key updates across all parent-child tables.

Eadon et al.[19] proposed reference partitioning (REF)

that  enables  partition  maintenance  operations  per-

formed  on  parent  tables  to  be  extended  to  child  ta-

bles, ensuring the migration of child tuples is handled

as a single atomic operation when the partition key in

the parent table is modified.

Greedy-Based. PREF[28] (Predicate-Based  Refer-

ence  Partitioning)  improves  REF  by  supporting  co-

partitioning of  tables  for  any join predicate,  not just

foreign keys, through tuple duplication. A join graph

is  defined  with  each  node  denoting  a  table  and each

edge  indicating  joins  over  two  tables.  PREF  assigns

weights  to  each  edge  as  the  connected  smaller  table

size,  and  extracts  candidate  key  configurations  from
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Fig.4.  Graph partitioning process introduced in [21]. (a) Input:
table data. (b) Hypergraph creation and partitioning. (c) Deci-
sion tree construction.
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each  query,  greedily  merging  them  to  minimize  the

graph  weights.  GPT[32] reduces  data  redundancy  in

PREF. It first selects vertices and edges to be added

from  the  join  graph  by  considering  both  the  storage

overhead  and  shuffle-free  query  benefits,  and  then

adopts  a  multi-column partitioning  to  hash  partition

key  values  for  each  edge.  BAW[33] (Best  of  All

Worlds)  is  an  assumption-free  framework  that  uses

exact  integer  linear  programming  and  heuristic  vari-

ants  to  transform  the  DKR  problem  into  a  graph

matching problem, unlike prior studies[19, 28] that rely

on many assumptions not generally applicable.

RL-Based. Hilprecht et  al.[34] introduced  a  parti-

tion  advisor  using  Q-learning[47] to  automatically  as-

sess  and  recommend  partition  keys  under  varying

loads. The advisor refines a network-centric cost mod-

el  with  actual  runtimes  and  designs  a  training  envi-

ronment consisting of three parts: 1) State, which is a

one-hot  encoding  of  table  attributes  indicating

whether  an  attribute  at  each  position  is  a  partition

key.  2)  Action,  comprising  a  candidate  set  that  in-

cludes  actions  to  replicate  or  (de-)activate  edges  be-

tween partition keys.  3)  Reward function,  which uti-

lizes  the  cost  model  to  calculate  the  performance

gains of each action as the reward, disregarding data

migration overheads.

Table 9 summarizes  the  partition  key  recommen-

dation techniques for distributed disk environments. 

3.4.3    Main Memory Storage Environment

In  modern  OLTP  systems  with  small,  repetitive,

and  short-lived  transactions,  applications  can  keep

their entire dataset in memory through widely shared

server  clusters,  making  it  more  feasible  to  develop

new storage system prototypes than to add indexes to

traditional disk-oriented DBMSs. H-Store[48] is such a

main  memory  database  that  supports  user-defined

layout designs. The studies[23, 26, 30, 35] discussed below

are  all  designed  on  H-Store,  where  network  latency

 

Table  8.    Major Horizontal Partitioning Strategies for Distributed Disk Storage Environments

Category Work Baseline Objective Automatic Cost Deployment Method Content

ML Schism[21] Manual partitions O1, O2, O6 ✘ ✘ ✔ Metis∇, decision treeΟ

ML MESA[22] Rao et al.[17],
Schism[21]

O3, O8 ✘ ✘ ✘ Memo-based search∇;
pruning branch and
bound treeΟ

ML SWORD[25] Schism[21], simple
hash partitions

O1, O2, O4, O7 M-TH+D-HC ✔ ✔

⟳

Graph
compression/partition∇;
node
swapping/replication

ML Cumulus[29] Schism[21] O2, O7 M-SD+D-RE ✔ ✔

⟳

Multi-objective cost
model;
on-demand repartition

Greedy DYFRAM[20] Optimal solution O3, O7 M-TH+D-HC ✔ ✘ Histogram+rule-based
replication/partitioning∇

Greedy DynPart[24] Schism[21] O3, O7 M-TH+D-HC ✔ ✘ Single partition∇;
affinity-based heuristic
strategyΟ

Greedy SOAP[27] SWORD[25] O2, O4 M-CT ✔ ✔ ⟳PID-controller

Greedy NashDB[31] SWORD[25],
optimal solution

O2, O4, O5 ✘ ✔ ✔

⟳

Economic model∇;
greedy Munkres
algorithm

 

Table  9.    Major Distributed Partition Key Recommendation Strategies for Optimizing Join Operations

Category Work Baseline Objective Automatic Cost Deployment Method Content

Empirical REF[19] N/A O4, O12 ✘ ✘ ✔ Reference partitioning∇

Greedy PREF[28] REF[19] O4, O12 ✘ ✔ ✔ Schema/query driven design∇

Greedy GPT[32] PREF[28] O4, O12 ✘ ✔ ✔ Join graph+hash-based
multi-column partitioning∇

Greedy BAW[33] Greedy
matching

O4, O7 ✘ ✘ ✔ Integer linear programming∇;
graph matching∇

DL Hilprecht et al.[34] PREF[28] O4 M-RL ✔ ✔
⟳

Network-centric cost model+
Q-learning algorithm
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and resource utilization have become critical factors.

Horticulture[23] estimates  the  coordination  and

skew  costs  between  machine  nodes  to  achieve  load

balancing  and  reduce  distributed  transactions.  To

handle complex database schemas and a larger  num-

ber of partitions,  it  uses a large neighborhood search

algorithm converging to near-optimal partitioning so-

lutions  within  a  reasonable  time  overhead.  However,

it does not provide any partition update strategy. E-

Store[26] dynamically reallocates resource to accommo-

date demand spikes and new transactions. It periodi-

cally collects metrics at the tuple, partition, OS levels,

identifies hot keys for hot tuple assignment, and even-

ly  distributes  cold  data  in  large  chunks  for  the  re-

maining  space.  If  CPU  utilization  exceeds  a  given

threshold,  E-Store  scales  cluster  nodes  and  uses  a

two-tiered bin packing algorithm to optimize tuple-to-

partition  assignments.  Clay[30] enhances  E-Store  by

addressing  the  issue  of  accessing  tuples  in  multiple

blocks and non-colocated on the same cluster node. It

adopts a two-tier partitioning with fine-grained map-

ping  (Metis[44] for  hypergraphs)  for  hot  tuples  and

coarse-grained  mapping  (simple  range/hash  strate-

gies)  for  cold  tuples.  When  some  partitions  become

overloaded, Clay employs a threshold-based sub-graph

migration algorithm to update them.

Reducing  hardware  expenses  alongside  improving

performance is  also an important research topic.  SA-

HARA[35] minimizes  resource  overhead  while  satisfy-

ing all performance objectives by leveraging query ac-

cess skew to move cold data to cheaper storage layers,

retaining only hot data in main memory.

Table 10 summarizes  major  horizontal  partition-

ing techniques for distributed memory environments. 

3.5    Cost Estimation for Horizontal

Partition Scheme

Table 11 compares representative HP cost models.

Notably, function-based cost models are prevalent, fo-

cusing  on  a  wide  range  of  elements  including  block

skipping, join overhead, and hardware resources. 

3.5.1    Centralized Environment

Q n

F = (F1, F2, . . . , Fn)

Fi zi
f(P, Fi)

Most  studies[9, 12–16] evaluate  partition  quality  by

calculating the number of scanned tuples using a skip-

ping-based cost function. In the SOP[9] model, the giv-

en query set  is initially encoded into  distinct fea-

ture  vectors .  The  number  of

queries  satisfying  is  represented  as .  A function

 returns the number of accessed tuples when
 

Table  10.    Major Horizontal Partitioning Strategies for Distributed Main Memory Environments

Category Work Baseline Objective Automatic Cost Deployment Method Content

Greedy Horticulture[23] Schism[21], manual partitions O2, O6 ✘ ✔ ✔ Skew-aware model+
large-neighborhood search∇

Greedy E-Store[26] Optimal solution O5 M-TH+D-MP ✘ ✔
⟳

Two-tiered partitioning∇;
greedy/first-fit

Greedy SAHARA[35] Unpartitioned state, DB-expert O9, O11 ✘ ✔ ✔ Hot/cold data division∇;
MaxMinDiff range partitionsΟ

ML Clay[30] E-Store[26], Metis[44] O2, O5 M-TH+D-RE ✘ ✔
⟳

Tuple grouping+graph split∇;
heuristic data migration plan

 

Table  11.    Comparative Analysis of Major Horizontal Partitioning Cost Models in Diverse Environments

Category Cost Model Objective Environment Characteristic

Optimizer Rao et al.[17], MESA[22] O3, O8 E-DH/S Adjusting query plan node costs for different
partitions based on table/index statistics

Function SOP[9], AdaptDB[13],
MTO[15]

O3, O5 E-C(D)H/S Skipping-based block scan cost and join cost

Function Horticulture[23] O2, O6 E-DM Quantifying the effects of load skew on the cluster

Function DYFRAM[20], SOAP[27],
SWord[25], E-Store[26],
Clay[30]

O5, O4, O6, O10 E-DH/S,
E-DM

Costs for dynamic environments (replication/reparti-
tion operations, cold/hot data)

Function PREF[28], GPT[32],
BAW[33]

O3, O12 E-DH/S Fine-grained cost designs for the PKR problem

Function NashDB[31] O1, O3 E-DH/S A monetary value function for tuples; converting the
HP problem into an economic problem

Function SAHARA[35] O11 E-DM A novel objective for reducing hardware cost

Learning Hilprecht et al.[34] O4, O8 E-DH/S A network-centric cost model
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Fi P

C(P, Q)

P Q

running  over  the  given  partition .  The  total

query  cost  equals  the  sum  of  scanning  tu-

ples in the data layout  when executing , i.e.,
 

C(P, Q) =
∑
P∈P

n∑
i=1

f(P, Fi)× zi.

However,  this  model  has  a  significant  issue,  i.e.,

the number of scanned block files only affects the cost

of scan operators and is not linearly correlate with the

final  query  latency,  despite  a  positive  relationship.

Thus, it is crucial to consider more factors that affect

the  overall  execution  of  query  plans,  such  as  filter,

join, and write operators.
 

3.5.2    Distributed Environment

C(P, Q)

Ccoo Fskew

In distributed environments, query execution costs

are often associated with the number of local and dis-

tributed transactions, as well as the uniformity of da-

ta  and  load  distribution.  Horticulture[23] considers

both factors. It defines  as the weighted sum

of coordination cost  and skew factor , i.e.,
 

C(P, Q) =
wcoo × Ccoo(P, Q) + wskew × Fskew(P, Q)

wcoo + wskew
,

wcoo wskew

Ccoo P
Q Ccoo

N̄par

N̂par

Ndtxn

Ntxn

where  and  are user-specified weights for the

coordination and skew costs of machine nodes, respec-

tively;  measures  how  effectively  reduces  dis-

tributed  transactions  in .  is  computed  as  the

ratio  of  accessed  partitions  ( )  to  the  maximum

possible partitions ( ), which is then scaled by the

ratio  of  cross-partition  transactions  ( )  to  all  ac-

cessing transactions ( ). We have:
 

Ccoo(P, Q) =
N̄par

Ntxn × N̂par

×
(
1 +

Ndtxn

Ntxn

)
.

Fskew

t SKt

To  get  the  skew  factor ,  Horticulture  first

computes the skew factor for each -th interval ( )

by  dividing  the  average  partition  skew  value  by  the

ideal skew value, i.e.,
 

SKt(P, Q) =

(
|P|∑
i=1

log
(
N i

par/Npar

ρ̄txn

)
/N̂par

)
/ log

1

ρ̄txn
,

N i
par

i ρ̄txn
1/N̂par

where  represents the number of transactions ac-

cessing the -th partition, and  represents the ide-

al transaction distribution, estimated as .

Next,  Horticulture  accumulates  them  to  obtain

the final skew factor, i.e.,
 

Fskew(P, Q) =

n∑
t=0

SKt(P, Q)×N t
txn

Ntxn
,

n N t
txn

t

where  is  the number of  time intervals,  and  is

the  number  of  accessing transactions  during the -th

interval.

β

Another representative cost model, as seen in SA-

HARA[35], utilizes limited device resources to improve

performance  in  two  ways:  1)  optimizing  performance

under a given maximum resource budget; 2) optimiz-

ing  resource  budgets  for  given  optimization  objec-

tives (denoted as SLA). SAHARA employs the latter,

using the -second rule to classify the given partition

as cold or hot and estimating their memory footprint

to achieve the set objective.

β

|Pi|
CRAM

Mhot (|Pi|) = CRAM × |Pi|
Pi N̂ col

i

Cdisk Spage

Mcold

(
|Pi|, N̂ col

i , SLA
)
=

N̂ col
i

SLA
×
⌈
|Pi|
Spage

⌉
× Cdisk

PS
.

Pi

If a partition is accessed more frequently than ev-

ery  seconds,  it  is  classified  as  hot;  otherwise,  it  is

deemed cold. Data from cold partitions is loaded from

disk  as  necessary,  while  data  from  hot  partitions  is

kept  entirely  in  memory.  Given  a  partition  size  in

bytes ( ) and the memory overhead cost per unit of

buffer  pool  ( ),  the  memory  footprint  of  a  hot

partition is .  Considering the

estimated access  frequency of  denoted as ,  an

allowed  maximum  query  execution  time  (i.e., SLA),

I/O  operations  per  second  (PS),  the  disk  cost  per

page  ( ),  and  the  page  size  ( ),  the  memory

footprint  of  a  cold  partition  can  be  expressed  as:

Therefore, the memory footprint cost of a partition 

that fulfills SLA is 

M
(
|Pi|, N̂ col

i , SLA, β
)
={

Mhot (|Pi|) , if SLA/N̂ col
i ⩽ β,

Mcold

(
|Pi|, N̂ col

i , SLA
)
, otherwise.

Finally,  we  discuss  the  partition  update  costs,

which  typically  consider  cost  savings  of  new  parti-

tions and data migration expenses.  They directly de-

termine  whether  the  repartition  scheme  is  executed.

The  cost  savings  arise  from lower  transaction  execu-

tion  and  resource  costs,  whereas  data  migration  ex-

penses cover the overheads tied to partition and repli-

ca modifications. 

3.6    Summary

We  summarize  key  characteristics  of  HP  as  fol-

lows: 1) It is crucial to survey the storage and deploy-
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ment  environments  before  designing  partitions.  2)

When  query  features  are  scarce,  query-driven  meth-

ods  often  utilize  data  features  as  a  supplement  to

build  finer-grained  or  size-constrained  partitions.  3)

Each  partitioning  strategy  has  unique  strengths  and

weaknesses.  Mathematical  programming  requires  fea-

sibility verification due to partitioning's NP-hard na-

ture.  Learning-based  algorithms  exhibit  high  perfor-

mance  but  adapt  poorly  to  environmental  changes.

Conversely,  greedy  algorithms  offer  more  flexibility

for existing partitioning constraints, but may lack sta-

ble performance, which could be improved with addi-

tional optimization phases. 

4    Vertical Partitioning

Subsection 4.1 and Subsection 4.2 provide the def-

inition and feature extraction of the vertical partition-

ing (VP) problem, respectively.  Mainstream VP con-

struction strategies for centralized and distributed en-

vironments  are  presented  in Subsections 4.3 and 4.4,

respectively,  and  their  cost  models  are  introduced  in

Subsection 4.5. Fig.5 depicts  the  development  trajec-

tory of VP methods. 

4.1    Formalization

Q D

CGs

k

P = (P1, P2, . . . , Pk)

P

P

CGs P
C Q

(CGs∗)

Definition  3 (Static  Vertical  Partitioning). Static
VP is a two-phase partitioning technique for process-
ing the collected queries . A table data  is initially
divided  vertically  into  disjoint  column  groups ,
which  are  subsequently  split  horizontally  into  dis-
tinct  partitions  through  two
candidate strategies: 1) all  CGs are split  into  as a
whole  containing  aligned  tuples; 2) each  CG is  inde-
pendently split into partitions and then merged into .

The objective of VP is to generate the optimal combi-
nation of  and  that minimizes the final process-
ing  cost  of . VP  first  identifies  optimal  column
groups  by introducing an additional cost func-

Ccg

(ϕ∗) P
tion  to evaluate only the division of each CG, and
then finds optimal classifier  to generate .
 

CGs∗ = argmin
CGs

∑
CG∈CGs

Ccg(CG, Q),

Pi =ϕ(e, CGs∗), ∀e ∈ D,

ϕ∗ = argmin
ϕ

C
(
P ⇐ ϕ(D, CGs∗), Q

)
. (1)

Definition 4 (Dynamic Vertical Partitioning). This
concept  exhibits  parallel  characteristics  to  dynamic
HP and will not be defined repeatedly here. 

4.2    Feature Extraction

Database  Schema. 1)  VP  is  essentially  an  exten-

sion  of  table  splitting,  and  high-frequency  column

groups  can  be  directly  extracted  from  independent

business  scenarios  in  advance.  2)  Distinguishing  be-

tween indexed and non-indexed columns[52, 64, 72] con-

siderably  affects  column grouping.  3)  Small/large  ta-

bles  are  categorized  based  on  the  number  of  at-

tributes to verify algorithms' execution efficiency.

Table  Data. When  constructing  column  groups,

examining  attribute  types,  such  as  primary/con-

strained keys, can help reduce join costs. When creat-

ing range-based horizontal splits, the attribute distri-

bution  characteristic[73] serves  as  a  crucial  reference

factor in determining partition keys.

Workload. Query features[50, 53, 60, 65] such as access-

ing  attributes  (projection,  filter,  and  join  columns),

affected rows, selectivity, SQL keywords[57, 69, 73],  and

submission time are commonly extracted in VP. Here,

accessing  attributes  are  used  to  calculate  co-occur-

rence  frequency  between  attributes;  selectivity[72, 73]

reflects  the  proportion  of  scanned tuples  in  the  total

table  tuples,  with  higher  selectivity  typically  indi-

cates a greater query weight.

Database Runtime Metric. Similar to HP, the VP

layout  primarily  focuses  on  key  metrics  like  system

throughput, processor stalls, and resource utilization. 
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Fig.5.  Timeline of VP research development, including on-axis studies (Hoffer[49], Navathe84[50], Navathe89[51], OBP[52], GA[53], Hill-
Climb[54],  AutoPart[55],  Agrawal04[56],  VF[57],  Lisbeth[58],  AutoStore[59],  Smopd[60],  Dyvep[61],  Smopdc[62],  GSOP[63],  HYF[64],
ActiveDB[65], GridFormation[66], AutoVP[67], and SCVP[68]) based on centralized environments and off-axis studies (HYRISE[69], Tro-
jan[70], CHAC[71], Peloton[72], and Casper[73]) based on distributed environments.
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4.3    Partitioning Process in Centralized

Databases

Recent  research[66, 67] has  highlighted  the  benefits

of applying reinforcement learning algorithms for dy-

namic  partition  updates.  This  marks  a  major  evolu-

tion  from  earlier  methods[49–51, 53, 55–58, 64],  which  de-

pended on the partitioning feature of attribute affini-

ty. These methods aimed to enhance performance but

often at the cost of increased execution time. Howev-

er,  as  the  field  progressed,  there  was  a  shift  towards

more  efficient,  lightweight,  end-to-end  partitioning

methods[59–63, 65, 68],  reflecting  a  continuous  effort  to

balance system design's efficiency and effectiveness.

ML-Based. Hoffer et al.[49] calculated an attribute

affinity matrix (AAM) from column accesses and ap-

plied  the  BEA[74] algorithm to  cluster  the  AAM into

column  groups  (CGs).  Navathe et  al.[50] refined  this

approach  by  introducing  a  two-phase  partitioning

with a cost model to select appropriate cost types for

the  given  environment.  Initially,  they  used  Hoffer's

method  to  obtain  CGs,  followed  by  a  binary  parti-

tioning  to  recursively  split  each  candidate  CG  into

two finer-grained ones.  Navathe et  al.[51] reduced the

time complexity of previous work[50]. They created an

undirected  weighted  graph  with  nodes  representing

table  attributes  and  edge  weights  denoting  attribute

affinity,  and  identified  minimal-weight  closed “loops”
as the final CGs. Ng et al.[53] designed a cost function

focusing  solely  on  the  transaction's  page  access  and

the  penalty  cost  for  cross-partition  transactions.  A

GA model was trained to find optimal CGs and tuple

clusters within each CG.

Greedy-Based. OBP[52] (Optimal Binary Partition-

ing)  treats  transaction  attributes  as  basic  units  for

building  a  binary  search  tree.  Each  leaf  node  is  ex-

panded by assigning attributes referenced from the se-

lected  unit  to  its  left  branch  and  remaining  at-

tributes  to  its  right.  AutoPart[55] identifies  discrete

condition values in queries as horizontal splits to cre-

ate atomic partitions. Each atomic partition contains

all attributes referenced by its access queries, with no

query  accessing  merely  a  subset  of  its  attributes.  To

reduce join overhead,  AutoPart merges atomic parti-

tions and adds redundant attributes to form compos-

ite  partitions.  Agrawal et  al.[56] considered  partition

manageability,  introducing  an  interestingness  score

for CG effectiveness and employing greedy approach-

es  to  generate  CG  candidates.  They  designed  algo-

rithms  MergeColumns  and  MergeRanges  to  identify

the  optimal  CG  solution  meeting  partition  aligned

|a1|a2|a3|a4|a5|a6|
a1 a2

a5 a6

|a1a2a3|a4a5a6|

constraints. PAX[75] (Partition Attributes Across) lay-

out  decomposes  relations  at  the  page  level  to  avoid

the join expenses of prior VP studies[49–53] that break

down a table into multiple subtables. HillClimb[54] ex-

tends  PAX by  defining  a  finer  page  layout.  Starting

with  PAX's  single-column  partitions,  it  merges  the

two  partitions  offering  the  largest  query  cost  reduc-

tion  in  iterative  rounds  until  no  further  reduction  is

possible. Fig.6 illustrates  this  process.  The  CGs

 are the initial page layout. The first

round  merges  and  for  their  greatest  merging

benefit.  Then  we  update  merging  benefits  of  valid

candidate  mergers,  and  and  are  next  merged.

The process continues until reaching the optimal state

 with no feasible mergers left.
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Fig.6.   Exemplary  case  of  the  HillClimb  algorithm[54] for  col-
umn group creation.
 

MP-Based. Sun et  al.[63] generalized  the  SOP[9]

model (GSOP) by introducing column grouping (ver-

tical  splits)  before  local  feature  selection  (horizontal

splits).  To  obtain  CGs,  GSOP  constructs  an  ILP

equation  to  balance  block  skipping  and  tuple  recon-

struction.

k

ML-Based. Several  studies[57, 58, 64, 68] leveraged

frequent  itemset  mining  algorithms  to  identify  key

column groups from loads. Gorla et al.[57] introduced a

vertical  fragmentation  (VF)  method  that  selects  the

top-  non-overlapping  Apriori[36]-generated  patterns

for forming complete CGs, along with a cost function

for  assessing  the  partition  scanning  and  concatena-

tion  overheads  in  transaction  operations.  Lisbeth et
al.[58] proposed  a  VP  technique  that  sets  the  mini-

mum  support  threshold  automatically,  while  VF  re-

quires  manual  specification.  HYF[64] assigns  new

weights to frequent patterns by multiplying their sup-

port value with the cosine similarity of all patterns. It

generates  multiple  candidate  complete  schemes  like

VF and designs a cost function considering sequence/
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index  scans  for  optimal  selection.  SCVP[68] improves

HYF's  cost  model  by  incorporating  tuple  reconstruc-

tion  costs.  Leveraging  the  cost  independence  proper-

ty  between  CGs,  SCVP  first  designs  an  estimation

function for rapid CG division gain calculation, mak-

ing  it  suitable  for  large  tables  and  heavy  loads.  It

then applies spectral clustering on AAM to form ini-

tial CGs and adopts a greedy search strategy to split

and merge CGs based on frequent patterns.

Constructing a self-adaptive VP layout is crucial.

AutoStore[59] introduces  O2P  (One-dimensional  On-

line Partitioning) to monitor query changes through a

query window and updates AAM online. O2P uses the

BEA algorithm to  recluster  only  the  CGs  referenced

by  new  queries,  and  designs  a  transforming  benefit

model  to  decide  whether  the  repartition  decision

should  be  executed.  SMOPD[60] improves  on  Auto-

Store  by  determining  appropriate  checkpoint  inter-

vals for repartitioning based on historical data analy-

sis,  employing  AutoClust[76] for  partition  updates.

SMOPD-C[62] further  adapts  SMOPD  to  distributed

settings by updating monitoring procedures. To solve

cold start issues of VP, DYVEP[61] designs a statistic

collector  to  monitor  the  changes  in  query  patterns

and database schema, creating new partitions or trig-

gering repartitioning when query latency increases or

table attributes are deleted.

Empirical-Based. ActiveDB[65] uses 21 active rules

to monitor both internal and external system and us-

er  activities.  The  first  15  rules  gather  query-related

statistical  indicator  changes.  Two  rules  estimate  the

current performance change to determine the necessi-

ty for partition updates. The final four rules use sta-

tistical  features  to  create  new  partitions  and  access

their performance improvement threshold.

DL-Based. GridFormation[66] is  the  first  learning-

based agent using Q-learning[47] for online VP layout

design.  The  state  is  defined  as  a  collection  of  sets,

each  indicating  a  partition  containing  a  list  of  tuple

IDs.  GridFormation's  partitioning  process  follows  a

Markov decision process (MDP), with rewards calcu-

lated based on touched partitions and tuple access ra-

tio  of  each  query.  AutoVP[67] redesigns  the  GridFor-

mation agent to accelerate training, offering three op-

tional  DQN  variants[77] and  using  HillClimb[54] and

HDD[78] to  evaluate  temporary  partitions.  It  simpli-

fies state representation to a 2D array, with each row

corresponding to a query and each column to a table

attribute.  Rewards  are  based  on  the  cost  difference

between the current state and HillClimb's ideal state,

enabling faster experience learning and MDP process.

Table 12 summarizes  vertical  partitioning  tech-

niques for centralized environments. 

4.4    Partitioning Process in Distributed

Databases

In  big  data  systems,  VP  layouts  are  commonly

built  on  page-level  stores  like  [75].  Trojan[70] defines

an interestingness  score to reflect  how effectively the

CG accelerates most queries,  then solves a 0-1 knap-

sack problem to select the optimal CG combinations.

Trojan  achieves  layout-aware  replication  by  design-

ing  unique  CGs  for  each  replica,  better  adapting  to

given queries. CHAC[71] (Column-oriented Hadoop At-

tribute) extracts frequent closed item sets from a fre-

quency-weighted  AAM  to  generate  overlapping  and

non-overlapping  candidate  clustering  solutions,  and

designs a cost model to select the optimal solution.

k

VP-based hybrid storage is customized for HTAP

databases.  HYRISE[69] measures  cache  misses  result-

ing  from  data  movement  from  RAM to  cache,  miti-

gating  cache  pollution  in  update  operations  using

non-temporal writes. It creates CG layouts that adapt

to cache lines to accelerate read operations. Peloton[72]

clusters queries by their co-accessed attributes via the

-means  algorithm,  selecting  representative  queries

for  each  cluster  by  optimizer  estimates  and  submis-

sion  time.  It  then  prioritizes  these  queries,  using  a

greedy  policy  to  extract  CGs  and  maintains  recent

query statistics  in a time series  graph to periodically

replace  old  CGs.  Casper[73],  a  column  layout  that

works with VP algorithms like HYRISE and Peloton,

optimizes  HTAP  load  processing  in  in-memory

DBMS.  It  estimates  block  read/write  I/O  costs  for

various transaction operations, aligns block sizes with

cache lines, and track each operation access via block

domain  histograms.  This  helps  establish  ILP  equa-

tions  to  allocate  data  while  satisfying  constraints  re-

lated to read/update latencies.

Table 13 summarizes  vertical  partitioning  tech-

niques for distributed environments. 

4.5    Cost  Estimation  for  Vertical  Partition

Scheme

This  subsection  reviews  common  function-based

cost  models  (see Table 14)  employed  for  VP  evalua-

tion,  including  two-phase  partitioning  and  partition

updates.  They  consider  query  execution  on  VP  lay-

outs,  partition  updates,  and  the  impact  of  indexes,
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joins,  and  map-reduce  operations.  For  non-PAX  VP

techniques,  the  additional  tuple  reconstruction  cost

for cross-partition queries is another crucial factor.
 

4.5.1    Centralized Environment

To determine when to repartition, some studies[59] Btf

use  a  fixed  query  window,  while  [60–62]  employ  dy-

namic  windows  based  on  query  performance  thresh-

olds. The choice of monitoring approach does not im-

pact the modeling of repartitioning benefits. However,

AutoStore[59] differs from other approaches by consid-

ering potential benefits of new partitions rather than

solely evaluating them based on historical loads. It in-

troduces  a  transformation  benefit ,  resulting  from

 

Table  12.    Major Vertical Partitioning Strategies for Centralized Environments

Category Work Baseline Objective Automatic Cost Deployment Method Content

ML Navathe[50] Hoffer et al.[49] O3 ✘ ✔ ✘ BEA∇; binary partitioningΟ

ML DYVEP[61] AutoPart[55] O4 M-TH ✘ ✔ ⟳Query table +Navathe84∇Ο

ML SMOPD(-C)[60, 62] Static VP using AutoClust[76] O2, O4, O8 M-QW ✘ ✘ ⟳Statistics monitoring +
filtered AutoClust∇

ML VF[57] Unpartitioned state O3 ✘ ✔ ✘ Apriori∇; greedy searchΟ

ML HYF[64] Lisbeth et al.[58], VF[57] O3 ✘ ✔ ✘ Aprior with cosine similarity∇;
greedy searchΟ

ML SCVP[68] HillClimb[54], HYF[64] O3, O8 ✘ ✔ ✘ Spectrum clustering∇,
greedy splitting/mergingΟ

Greedy OBP[52] Navathe et al.[51] O3 ✘ ✔ ✘ Binary search tree using
transaction-based splits∇

Greedy HillClimb[54] Navathe et al.[50, 51] O10 ✘ ✔ ✔ HillClimb algorithm∇

Greedy AutoPart[55] Navathe et al.[50] O3 ✘ ✘ ✘ Composite partitions∇;
pair-wise mergingΟ

Greedy Agrawal[56] Navathe et al.[51] O12 ✘ ✔ ✘ Interesting column groups∇

greedy selection/mergingΟ

Greedy AutoStore[59] HillClimb[54] O3, O8 M-QW ✔ ✔ ⟳O2P+query window

MP GSOP[63] SOP[9], HillClimb[54] O7O3, ✘ ✔ ✔ ILP∇; Apriori+WardΟ

DL GridFormation[66] Manual partitions O3 M-RL ✘ ✘ ⟳Q-learning algorithm∇

DL AutoVP[67] AutoPart[55], O2P[59] O3 ✘ ✘ ✘ DQN and its variants∇

 

Table  13.    Major Vertical Partitioning Strategies for Distributed Environments

Category Work Baseline Objective Automatic Cost Deployment Method Content

Greedy HYRISE[69] Simple partitions O10 ✘ ✔ ✔ Kmetis∇; greedy mergingΟ

Greedy CHAC[71] Hoffer et al.[49] O3 ✘ ✔ ✘ AAM+frequent closed items∇

ML Peloton[72] Simple row/column
partitioning

O3 M-TH+D-RE ✘ ✔ k-means∇; greedy selectionΟ

MP Trojan[70] Hadoop-row,
Hadoop-PAX, HYRISE[69]

O3, O8 ✘ ✔ ✘ Interestingness grouping∇;
0-1 knapsack programmingΟ

MP Casper[73] DSM+leading columns,
DSM+equi-width partitions

O3 ✘ ✔ ✔ Equ-size partitions+
histogram-based frequency
model+ILP∇

 

Table  14.    Comparative Analysis of Function-Based Vertical Partitioning Cost Models in Diverse Environments

Cost Model Objective Environment Characteristic

VF[57], GSOP[63] O3 E-CH/S Incorporating the cost of tuple construct across partitions

ACO[78] O3 E-CH/S Cost designs for bandwidth-based disk access operations

AutoPart[55], HYF[64] O3 E-CH/S Approximating the costs of index scans and block joins

AutoStore[59] O3, O5 E-CH/S Considering the repartitioning potential benefit

CHAC[71], Trojan[70] O3, O5 E-DH/S Finer cost estimations for map-reduce phases

DataMorhing[54], HYRISE[69] O10 E-DM Estimating cache misses for diverse data access operations

Casper[73] O3 E-DM Modeling costs for five distinct data access operations
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P P′

n Q

Btf Ccg(Q,P)− Ccg(Q,P′) Ccg

γ

freq = 1/(1− γ−n)

Br = freq ×Btf − Ccg

Br > 0

updating  current  partitions  to  a  new  scheme 

when executing  queries  collected in the window.

 is calculated as , with  de-

noting the query processing cost over a given vertical

layout.  AutoStore  assumes  the  presence  of  multiple

future windows with workloads similar to the current

window, and estimates their frequency using an expo-

nential  decaying  model  with  a  shape  parameter ,

i.e., .  The  potential  benefit  of  up-

dating  current  partitions  is  then  calculated  as

,  and  new  partitions  are  de-

ployed only if .

CcgVarious  approaches[57, 59, 63, 64, 78] calculate  by

breaking down the total query cost into scan and tu-

ple reconstruction costs of multiple accessed CGs. The

scan cost counts the number of both random and se-

quential I/O blocks, with random I/O accounting for

unclustered and clustered index scan costs plus index

lookup costs.  The tuple  reconstruction cost  considers

only the join cost (e.g.,  hash and sort-merge joins) if

tuples  between  different  CGs  are  not  aligned;  other-

wise, a minimal tuple addressing cost is considered. 

4.5.2    Distributed Environment

VP layout is prevalent in distributed Hadoop en-

vironments.  For  example,  both  Trojan[70] and

CHAC[71] consider  the  impact  of  column groups  dur-

ing the map phase as the main cost factor. However,

unlike  Trojan,  CHAC estimates  costs  roughly,  focus-

ing  solely  on  data  access  volume  and  omitting  disk

read/write characteristics and network cost considera-

tions. We will introduce the Trojan cost model next.

Sb

n m

Ssplit Ssplit

q

Nb

Nmap = Nb × Sb/(Ssplit ×m× n)

To avoid tuple reconstruction, Trojan is based on

PAX  and  considers  data  reading  and  network  costs.

The known parameters include the block size , num-

ber  of  machines ,  map  tasks ,  and  the  split  size

.  determines the number of data slices, with

each  being  handled  by  a  single  mapper.  When  pro-

cessing a query , the number of blocks read is denot-

ed as , and then the number of map phases is cal-

culated as .

Crand(q) = Frand × (Ssplit ×
∣∣C ′

cg

∣∣/(Sbuffer×
|Ccg|)) Cseq(q) = Ssplit ×

∣∣C ′
cg

∣∣/
(BWdisk × |Ccg|) Frand

Ssplit Ccg C ′
cg

Sbuffer

BWdisk

The  read  cost  for  each  map  phase  includes  both

random  I/O, 

,  and  sequential  I/O, 

.  denotes  the  average  random

seek time (0.005 s);  is set to 256 MB;  and 

represent  the complete  and accessed column sets,  re-

spectively;  is  the  buffer  size  (512  KB), and

 is  the  average  disk  bandwidth  (100  MB/s).

Ctr

Ctr = (1− ptr)× (Ssplit/BWnet) BWnet

ptr

Cinit

q

(Ctr(q) + Crand(q) + Cseq(q) + Cinit)×Nmap

When local data is not available, the network cost 

arises from transferring data from one machine to an-

other,  i.e., .  de-

notes the network bandwidth (1 GB/s) and  is the

occurrence  probability  (0.97)  of  remote  accesses.  As-

suming  a  map  initialization  time  of  0.1  s  ( ),  the

total  latency  of  query  over  the  Trojan  layout  is

computed as .
 

4.6    Summary

Differing from HP, VP involves a two-phase pro-

cess of column grouping and horizontal division of tu-

ples,  with  each  phase  being  NP-hard.  In  the  first

phase,  mathematical  programming  algorithms  effi-

ciently identify CGs in small tables, while greedy and

ML-based algorithms are preferred for large tables. In

the second phase, partitions within each CG are typi-

cally  generated  using  hash  or  range  values  of  keys.

Additionally,  cost  models  play  a  crucial  role  in  the

VP process, calculating scan costs for CGs and cross-

CG reconstruction costs for selecting candidate parti-

tions.  Despite  its  advantages,  deploying and evaluat-

ing  VP in  real-world  databases  is  challenging  due  to

the limited native support for VP creation. 

5    Irregular Partitioning

Irregular  partitioning  (IP)  is  a  cutting-edge  tech-

nique  for  handling  analytical  and  mixed  loads.  How-

ever,  deploying  it  poses  challenges  such as  maintain-

ing storage structure, updating partitions, and coordi-

nating  query  executors.  Furthermore,  there  is  a

scarcity  of  relevant  studies  according  to  [8, 81].  In

this  section,  we  define  the  IP  problem in Subsection

5.1.  The  partitioning  features  required  by  IP  dis-

cussed in Section 3 and Section 4, will not be reintro-

duced.  Subsequently,  we  describe  several  classic  IP

techniques  in Subsection 5.2 and  provide  a  summary

in Subsection 5.3. Fig.7 depicts a simple development

trajectory of IP methods.

 
 

2016 2020

Teradata GridTable Jigsaw

Proteus

Greedy-BasedEmpirical-Based

20222021

Fig.7.   Timeline  of  IP research development,  including on-axis
studies  (Teradata[79],  GridTable[80],  and  Jigsaw[81])  based  on
centralized environments and off-axis studies (Proteus[82]) based
on distributed environments. 
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5.1    Formalization

ϕ(·)

P = (P1, P2, . . . , Pk)

m D = (e1, e2, . . . , em)

e n y

x ex T ex,y

ex,y
Q

Definition  5 (Static  Irregular  Partitioning). The
IP problem uses a predefined classifier  to gener-
ate a set of partitions with arbitrary shapes for a giv-
en  table,  denoted  as . The  table
data consists of  tuples , where
each tuple  has  attributes. The -th attribute value
of  the -th  tuple  in  is  represented  as . The
objective of IP is to assign specific irregular partition
for each  in order to minimize the I/O cost of pro-
cessing load . 

ϕ∗ = argmin
ϕ

C
(
P ⇐ ϕ(D), Q

)
,

Pi = ϕ(ex,y), ∀ex ∈ D and y = 1, . . . , n.

Definition  6 (Dynamic  Irregular  Partitioning).

This  concept  adheres  to  the  identical  update  mecha-
nism  employed  by  both  the  HP  and  VP  algorithms,
and will not be detailed further in this context. 

5.2    Partitioning Process

Empirical-Based. Teradata[79] introduces  a hybrid

row-column  layout  via  multi-level  definitions,  with

the  first  level  for  column  partitions  and  subsequent

levels for further row partitions. Teradata uses a par-

tition number combining row IDs and partition levels

to  make  file  systems  identify  arbitrary  partition

shapes,  reducing  partition  scanning  and  optimizing

DML  operations.  GridTable[80] extends  VP  layouts

like HYRISE and Peloton with a flexible grid layout.

Each grid is self-contained, organizing tuples column-

wise or row-wise independently. It supports tuple-cen-

tric  read/write  operations  and  efficient  range  query

executions. However, neither study provides any par-

tition creation guidance.

Greedy-Based. Jigsaw[81] provides  ultimate  data

skipping  for  static  queries  with  tetris-shaped  parti-

tions  managed  by  logical  segments.  These  segments

are classified as active or frozen based on if they can

be  split  for  I/O reduction.  Jigsaw first  partitions  ta-

bles into frozen segments using a split function, then

merges  or  splits  these  segments  for  adapting  block

size. Jigsaw layout requires a hash table for tuple re-

construction  and  manages  partitions  effectively  by

materializing logical segments into rectangular physi-

cal  ones  storing  tuples  with  the  same  columns.  Pro-

teus[82] adaptively  designs  and  updates  storage  lay-

outs for different table areas, aligning partition shapes

with queried data areas and selecting appropriate row

or  column  formats  for  specific  transactions  to  sup-

port  efficient  data  reads  and  updates.  When  storage

limits  are  reached  or  performance  issues  arise,  Pro-

teus  optimizes  storage  formats  and  reorganizes  hot

partitions and replicas. To evaluate the potential ben-

efits  of  data  migration  plans,  Proteus  uses  recurrent

neural networks (RNNs) and linear predictors to pre-

dict future data access patterns.

→
↓

P1−2, P3−4, P5−6

P1, P2 P3, P4

Fig.8 displays four distinct layouts, with the right
arrow ( ) indicating row-wise storage and the down
arrow ( ) indicating column-wise storage. 1) Terada-
ta vertically splits  the table into three column parti-
tions  ( ),  each  further  hierarchically
partitioned by rows; 2) GridTable breaks the table in-
to  six  grids  of  variable  rows  and  columns,  each  sup-
porting  either  row-major  or  column-major  storage;
3) Jigsaw supports arbitrary partition shapes, similar
to  Tetris;  4)  Proteus  generates  column  partitions
( )  and  row  partitions  ( )  without  hierar-
chical  order.  It  can  be  observed  that  Teradata  and
Jigsaw  layouts  prefer  row-oriented  storage,  while
GridTable  and  Proteus  layouts  exhibit  flexibility  in
their storage formats.

Table 15 summarizes  the  characteristics  of  the
four irregular partitioning techniques. 

5.3    Summary

The IP field  aims  to  enhance  mixed and analyti-
cal loads by maximizing the optimization potential of
query-driven strategies.  It fully utilizes current query
distributions  to  create  complex  partitioning  rules  to
satisfy  diverse  query  access  patterns.  Despite  its  ad-
vantages, IP still faces several challenges, such as the
need to develop a unified transaction execution inter-
face and handling the management complexities asso-
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Fig.8.  Comparison of four IP designs. (a) Teradata layout[79]. (b) GridTable layout[80]. (c) Jigsaw layout[81]. (d) Proteus layout[82].
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ciated  with  irregular  partition  replication,  mainte-

nance, and joins.
 

6    Data Partitioning in Industry

Table 16 compares popular database products and

their  partitioning  support.  Most  DBMSs,  e.g.,  Red-

shift③,  Firebolt④,  Databricks⑤,  GaussDB⑥,  TiDB⑦,

OceanBase⑧, and SingleStore⑨, offer user-defined HP

strategies  such  as  range,  hash,  key,  list,  and  round-

robin,  where  partition  keys  necessitate  manual  selec-

tion  and  updates.  These  systems  prioritize  balanced

resource utilization among nodes and cluster scalabili-

ty/parallelism  through  partitioning,  rather  than  fo-

cusing solely on maximizing system performance. Be-

sides,  their  simplicity  enables  DBAs  to  effortlessly

create and manage partitions.  Organizing data based

on data distribution can also  makes  it  easier  to  con-

duct data analysis, particularly for time-series data.

In  contrast,  certain  products  (e.g.,  Vertica⑩,

Greenplum⑪,  and  VoltDB⑫)  incorporate  load  analy-

sis  into  their  partitioning  design.  VoltDB  is  an  in-

memory DMBS for fast data processing tasks like on-

line  gaming  and  IoT sensors.  By  analyzing  historical

load  and  data  distribution,  it  scales  transaction  pro-

cessing  capacity,  creating  optimal  range  partitions.

This  ensures  load balancing and allows high-frequen-

cy transactions to be executed locally.

Some  products,  e.g.,  ClickHouse⑬,  StarRocks⑭,

Apache  Hudi⑮,  Oracle  Autonomous  Database⑯,  and

Snowflake⑰,  provide  automated  partition  key  selec-

 

Table  15.    Summary of Irregular Partitioning Strategies in Centralized and Distributed Environments

Category Work Baseline Objective Automatic Cost Composition Content

Empirical Teradata[79] Simple range
partitions

O3, O10 ✘ Optimizer-based I/O costs;
CPU metrics

Rowid-based storage+ multi-
level range partitioning∇

Empirical GridTable[80] N/A O4 ✘ Access and transition costs
between grids

Three level-specific data
manipulation operations

Greedy Jigsaw[81] Schism,
Schism+Peloton

O3 ✘ Read I/Os of layouts; memory
for hash tables

Segment partitioning∇;
greedy mergingΟ

Greedy Proteus[82] TiDB O4 M-TH+D-RE Costs for layout-aware/
-agnostic storages ⟳

Layout creation rules∇;
hybird predictors for queries

 

Table  16.    Partitioning Support Comparison of Popular Database Products for OLAP, OLTP, and HTAP Scenarios

Scenario Type Partitioning Strategy Strategy Type Automatic Representative Product

OLAP HP Key, hash, range, list, round-robin Data-driven ✘ Redshift③, Firebolt④, Databricks⑤, GaussDB⑥

HP Round-robin, list, hash, range Data-driven M-TH ClickHouse⑬, StarRocks⑭, Apache Hudi⑮

HP Automatic interval/list Data-/query-driven M-SD Oracle Autonomous Database⑯

HP Auto clustering Data-driven M-TH Snowflake⑰

HP&VP Range, table projections+hash Data-/query-driven ✘ Vertica⑩, Greenplum⑪

OLTP HP Key, hash, range, list Data-driven ✘ PostgreSQL, MySQL, Oracle, SQLServer

HP Key, hash, range, list Data-/query-driven ✘ VoltDB⑫

VP Sharding+table views Data-/query-driven ✘ PostgreSQL, MySQL, Oracle, SQLServer

HTAP HP Key, hash, range, list Data-driven ✘ TiDB⑦, OceanBase⑧

HP Hash Data-driven ✘ SingleStoreDB⑨
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tion  and updates.  The  Oracle  Autonomous  Database

service is a resource-intensive and time-consuming op-

eration, invoked on-demand rather than running peri-

odically. Analyzing workload information, it automat-

ically identifies candidate partitioning tables and rec-

ommends  partitions  for  optimal  I/O  reduction  using

strategies:  automatic  interval,  automatic  list,  and

hash. Snowflake creates micro-partitions via ZoneMap

indexes  and  column  distribution  histograms.  Data  is

organized in a natural order (unclustered state), then

clustered by selected keys to prevent cluster key val-

ue  duplication  across  partitions  (clustered  state).  As

new data arrives, the number of duplicate key values

across  different  partitions  increases;  each  partition's

depth  is  quantified  by  the  count  of  its  overlapping

partitions.  To  preserve  overall  data  order,  Snowflake

prioritizes  selecting  micro-partitions  with  higher

depths and sorts and merges them independently.

Vertica  and Greenplum are  among the  few prod-

ucts natively supporting VP creation for efficient par-

tition pruning. This is achieved by creating local col-

umn group  projections  on  disk  for  partitioned  tables

and  evenly  distributing  projected  data  to  partitions

via hashing. By storing related data together, Vertica

can  more  efficiently  utilize  system  resources.  Fine-

grained  projection  replicas  make  it  easier  to  achieve

high  availability  and  data  recovery.  Conversely,  oth-

er  products  simulate  VP by  combining  sharding  and

views,  an  approach  complicating  table  schema,  sub-

table  data  consistency,  and  query  planning,  which

may lead to performance issues like overloaded shards

and increased partition maintenance costs. 

7    Open Problems

In  this  section,  we  explore  remaining  challenges

and potential solutions in the current data partition-

ing community.

Partitioning for Non-Numeric Columns. Query ac-

cess  patterns  pertaining  to  non-numeric  columns  are

often  ignored,  which  greatly  limits  the  optimization

space of partitioning. A feasible solution to this dilem-

ma  involves  transforming  non-numeric  column  data

into  numeric  data  via  data  encoding.  Date  columns

can  be  transformed  into  numeric  values  through

timestamp  functions,  while  enumeration  columns  are

dictionary-encoded based on their semantic or alpha-

betical order. For more complex column values, a trie-

based  index  tree[83] can  be  built,  with  a  depth-first

traversal to derive encoding keys.

Block  Allocation  Within  VP. Current  research

adopts simple data-driven methods to allocate tuples

into blocks after obtaining column groups (CGs). Al-

though  [53, 56]  have  considered  load  information,

they  still  encounter  convergence  or  performance  is-

sues.  This  inefficiency  prevents  the  VP  algorithm

from  achieving  its  optimal  potential,  even  when  the

CG division is aligned with column access patterns. A

promising  solution  is  to  incorporate  proven  effective

query-driven HP algorithms like QdTree[14] into VP.

Reliability  of  Partition  Updating. Monitoring  ser-

vices  frequently  rely  on  recently  collected  query  logs

to  design  new  partitions;  however,  this  method  ne-

glects  the  similarity  between  future  and  historical

loads, making it challenging to estimate updated par-

titions' potential performance. While [34, 59, 82] have

tried  to  model  special  scenarios  to  calculate  future

benefits  of  new  partitions,  these  assumptions  often

prove unrealistic. This issue presents significant opti-

mization  potential  in  two  aspects:  firstly,  improving

the  prediction  accuracy  of  future  load  for  generating

better  new  partitions;  and  secondly,  reducing  the

number of problem assumptions.

Deep  Learning  Models  for  Cost  Estimation. To

the best of our knowledge, no public, network-centric

cost model exists for partitioning. However, the learn-

ing and generalization capabilities of deep neural net-

works  render  them  particularly  suitable  for  such

tasks.  The  main  challenge  lies  in  collecting  sufficient

training  samples  due  to  the  high  partition  deploy-

ment cost and the vast partition solution space. A vi-

able solution entails compressing or trimming the so-

lution  space  by  identifying  factors  influencing  the

query plan. This could be achieved by using a pruned

branch bounding tree for candidate partitions and re-

moving  the  deployment  and  metric  measurements  of

cold  data.  Subsequently,  query  plans  and  execution

metrics for various partitions are collected to train an

RNN-stacked tree network. 

8    Conclusions

In  this  paper,  we  modularized  the  partitioning

technique, emphasizing the significance of cluster and

storage environments in formulating an efficient parti-

tioning path.  Our approach enhances  the  tracking of

partitioning  progress  and  clarifies  the  considerations

necessary  at  each  partitioning  stage,  ensuring  opti-

mal designs. Before partitioning, it is crucial to align

cost models and partition types with specific environ-

mental  characteristics.  Furthermore,  the  intricate  re-
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lationship between data migration plans during parti-

tion updates and cluster configuration underscores the

importance  of  a  holistic  approach.  We  also  classified

partition  generation  strategies  based  on  algorithm

types, distinguishing key features such as model con-

vergence and partition quality to aid in strategy selec-

tion.  For  future  research,  we  would  like  to  explore

feasible  solutions  for  addressing  existing  key  chal-

lenges including non-numeric column-based partition-

ing and the reliability of partition updating. We hope

our  framework  and  findings  could  contribute  to  the

advancement  of  partitioning  systems  and  provide

practical insights for DBAs in various environments. 
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