

Enhancing Storage Efficiency and Performance: A Survey of Data
Partitioning Techniques

Peng-Ju Liu (刘鹏举), Cui-Ping Li* (李翠平), Distinguished Member, CCF
and Hong Chen (陈　红), Distinguished Member, CCF

School of Information, Renmin University of China, Beijing 100872, China

Key Laboratory of Data Engineering and Knowledge Engineering of the Ministry of Education, Beijing 100872, China

E-mail: liupengju@ruc.edu.cn; licuiping@ruc.edu.cn; chong@ruc.edu.cn

Received June 21, 2023; accepted February 29, 2024.

Abstract Data partitioning techniques are pivotal for optimal data placement across storage devices, thereby enhanc-

ing resource utilization and overall system throughput. However, the design of effective partition schemes faces multiple

challenges, including considerations of the cluster environment, storage device characteristics, optimization objectives, and

the balance between partition quality and computational efficiency. Furthermore, dynamic environments necessitate ro-

bust partition detection mechanisms. This paper presents a comprehensive survey structured around partition deployment

environments, outlining the distinguishing features and applicability of various partitioning strategies while delving into

how these challenges are addressed. We discuss partitioning features pertaining to database schema, table data, workload,

and runtime metrics. We then delve into the partition generation process, segmenting it into initialization and optimiza-

tion stages. A comparative analysis of partition generation and update algorithms is provided, emphasizing their suitabili-

ty for different scenarios and optimization objectives. Additionally, we illustrate the applications of partitioning in preva-

lent database products and suggest potential future research directions and solutions. This survey aims to foster the imple-

mentation, deployment, and updating of high-quality partitions for specific system scenarios.

Keywords data partitioning, survey, partitioning feature, partition generation, partition update

1 Introduction

In the era of big data, effectively processing mas-

sive data has emerged as a critical issue. Database

partitioning, a fundamental yet challenging task, sim-

plifies data manipulations by breaking down large

datasets into smaller, easy-to-manage partitions based

on specified criteria and storing them separately

across multiple data blocks. A well-designed partition

scheme significantly impacts system performance, re-

source utilization, and manageability, making it an in-

dispensable strategy for database administrators

(DBAs). Partitioning is often optimized for specific

purposes in various database management systems

(DBMSs). In multi-disk databases, it distributes data

across various disks to facilitate better disk collabora-

tion and accelerate read/write operations. In dis-

tributed databases, partitioning effectively mitigates

machine node imbalances caused by overloading data

and queries. Moreover, distributing large-scale

datasets to multiple nodes, inclusive of replicas, can

boost system availability and scalability. In parallel

databases, it enables multiple processing units or

cores to work on different parts of the data simultane-

ously. In NoSQL databases, driven by new data types

and data storage/retrieval mechanisms, partitioning is

crafted to better manage large volumes of unstruc-

tured or semi-structured data.

From the perspective of physical characteristics,

partitioning can be broadly classified into three types:

Survey

The work was supported by the National Key Research and Development Program of China under Grant No. 2023YFB4503603,
the National Natural Science Foundation of China under Grant Nos. 62072460, 62076245, and 62172424, and the Beijing Natural
Science Foundation under Grant No. 4212022.

*Corresponding Author

Liu PJ, Li CP, Chen H. Enhancing storage efficiency and performance: A survey of data partitioning techniques. JOUR-

NAL OF COMPUTER SCIENCE AND TECHNOLOGY 39(2): 346−368 Mar. 2024. DOI: 10.1007/s11390-024-3538-1

©Institute of Computing Technology, Chinese Academy of Sciences 2024

https://doi.org/10.1007/s11390-024-3538-1
https://doi.org/10.1007/s11390-024-3538-1
https://doi.org/10.1007/s11390-024-3538-1
https://doi.org/10.1007/s11390-024-3538-1
https://doi.org/10.1007/s11390-024-3538-1
https://doi.org/10.1007/s11390-024-3538-1
https://doi.org/10.1007/s11390-024-3538-1

horizontal partitioning (HP), vertical partitioning

(VP), and irregular partitioning (IP), as detailed in

Table 1. HP operates on a row-wise basis, keeping

complete tuples within each partition, whereas VP

functions column-wise, allowing incomplete yet consis-

tent column data. IP, on the other hand, focuses on

the data itself, without imposing strict restrictions on

how it is partitioned. Thus, in terms of partition

shape, both HP and VP divide the table space into

rectangular areas, whereas IP allows partitions of ar-

bitrary shapes, including rectangles. IP designs parti-

tion shapes tailored to query access patterns to

achieve optimal query efficiency, ideal for online ana-

lytical processing (OLAP) and hybrid transactional/

analytical processing (HTAP) applications. HP and

VP also take into account partial record integrity to

facilitate online transaction processing (OLTP), there-

by making them suitable for any load scenario.

Data partitioning can be designed based on the

database schema, data and load distribution, or a

combination of these features. Schema-driven ap-

proaches examine the join relationships among tables

to centrally allocate tuples involved in join operations.

Data-driven approaches commonly employ domain

and hash values of column values to create partitions.

Query-driven approaches concentrate on mining nest-

ed filtering rules from queries to ensure each tuple is

assigned to the most appropriate partition.

Other physical designs also significantly impact

query latency, disk space usage, and more. To eluci-

date the role of partitioning, we next briefly describe

how it differs from other design strategies.

Partition vs Storage Structure. Partitioning speci-

fies which data should be stored in the same block

file, while storage structure solves how the data is or-

ganized within a block. For example, Parquet[1], a

widely adopted column-store file format in HDFS

(Hadoop Distributed File System)①, provides effi-

cient data compression and encoding schemes to en-

hance the performance of read-intensive queries.

Partition vs Index. Index is an auxiliary data

structure designed for quickly locating and retrieving

tuples, such as 1-dimensional indexes (B-tree[2]), and

n-dimensional indexes (KD-tree[3], R-tree[4]). However,

its performance tends to degrade when handling high-

dimensional data or certain types of queries. In con-

trast, partitioning performs well in these scenarios.

Partition vs Materialized View. Materialized view

techniques[5, 6] adopt a space-for-time strategy, creat-

ing views separating queried data copies from raw da-

ta and routing relevant queries to the most suitable

view for faster execution. However, copying the com-

plete query results requires additional storage space.

We present a detailed partitioning workflow and

review a wide spectrum of existing partitioning stud-

ies. Some studies[7, 8] share a similar topic to ours;

however, their focus lies on data-driven horizontal

partitioning for specific environments (e.g., Hadoop

cluster②). Our survey, in contrast, considers a broad-

er range of generalized scenarios. We explore various

partition types and place greater emphasis on parti-

tioning requirements, design details, and the imple-

mentation process. We further delve into the feature

extraction and cost model design before partitioning,

along with addressing the data and load update is-

sues after partitioning.

This paper is organized as follows: Section 2 pro-

vides an overview of data partitioning, including its

four-stage workflow and core modules. Sections 3–5
explore the development trajectory of partitioning, in-

corporating classical approaches to horizontal, verti-

cal, and irregular partitioning, respectively. Section 6

summarizes the support for partitioning in industry-

leading database products. Section 7 gives open prob-

lems in this field and potential solutions. Finally, we

conclude the survey in Section 8.

2 Data Partitioning Overview

The partitioning workflow typically comprises four

stages, as depicted in Fig.1. Stage 1, feature extrac-

tion, addresses the issue of what to use for partition-

Table 1. Comparison of Three Common Partition Types

Type Partition Strategy Partition Shape Scenario

OLTP OLAP HTAP

HP Row-wise Rectangular ✔ ✔ ✔

VP Column-wise Rectangular ✔ ✔ ✔

IP Data-wise Arbitrary ✘ ✔ ✔

Peng-Ju Liu et al.: Enhancing Storage Efficiency and Performance: Survey of Data Partitioning Techniques 347

①https://hadoop.apache.org/docs/r1.2.1/hdfs_design.html, Mar. 2024.

②https://hadoop.apache.org/docs/stable/index.html, Mar. 2024.

https://hadoop.apache.org/docs/r1.2.1/hdfs_design.html
https://hadoop.apache.org/docs/r1.2.1/hdfs_design.html
https://hadoop.apache.org/docs/r1.2.1/hdfs_design.html
https://hadoop.apache.org/docs/stable/index.html

ing. This stage entails analyzing the database (DB)

schema, parsing representative queries, conducting

column data statistics, and selecting system optimiza-

tion metrics. Stage 2, partition generation, includes

two subtasks: partition initialization, which quickly

establishes initial partitions using a low-complexity

algorithm, and partition optimization, where the ini-

tial solution is iteratively refined based on predefined

cost models. Stage 3, partition deployment, involves

routing data to partition files via automated write

transactions based on created partition structures.

Stage 4, automatic partition update, timely adjusts

partitions to sustain stable system performance amid

data, load, and hardware resource uncertainties,

which includes deciding update timings and formulat-

ing detailed update plans accordingly.

, . . . ,

Consider a teaching system comprising three ta-

bles: student (S), course (C), student course (SC). Be-

fore partitioning a table (e.g., S), we first analyze its

entity-relationship (E-R) graph and common column

data distributions, gathering query information and

system metrics as necessary. Assuming the age col-

umn has been selected as the partition key, initial

partitioning rules are derived from its value domain,

and skew partitions are further split according to the

column histogram statistics. With the partitions,

eight given tuples (T0 T7) are distributed across

three machines (M1, M2, M3). Subsequently, a ser-

vice is established to continuously monitor the envi-

ronment. When detecting an overload on M2, the par-

[21, 23] ⇒ [21, 22]

[24, 25] ⇒ [23, 25]

tition boundaries for M2 () and M3

() are promptly adjusted, and a da-

ta migration plan is devised to move tuple T7 from

M2 to M3.

Fig.2 displays a framework comprising five key

modules used in the partitioning workflow. This sur-

vey concentrates on the modules highlighted in green.

1) Deployment Scenario. Partitioning optimiza-

tion objectives, such as performance, manageability,

and device costs, are greatly affected by system envi-

ronments, user requirements, and the storage devices

used. For instance, in a distributed database, parti-

tioning tasks are more complex, necessitating the con-

siderations of factors like multi-node clusters, node

replicas, and network latency, to ensure uniform par-

tition access and reduce cross-node operations. Ta-

bles 2 and 3 offer categorizations and symbolic repre-

sentations of common optimization objectives and

database environments, respectively.

2) Partition Type. Before designing partitions, it

is necessary to choose the partition type to use based

on the given scenario, as shown in Table 1.

3) Cost Model. After identifying the deployment

scenario and deciding the partition type, a cost mod-

el is created to assess the given partition scheme and

its associated update plan. There are three types of

cost estimations: optimizer-based models, simplifying

cost design at the expense of accuracy; network-based

learning models, offering high precision but requiring

sufficient metric samples and extensive training over-

Fig.1. Data partitioning workflow. (a) Feature extraction. (b) Partition generation. (c) Partition deployment. (d) Partition update.

348 J. Comput. Sci. & Technol., Mar. 2024, Vol.39, No.2

head; and function-based models, being more bal-

anced due to their flexible and comprehensive design.

4) Partition Generation Module. The partition

generation process, encompassing both initialization

and optimization phases, is shared across most tech-

niques and is guided by specifically designed cost

models. Here, we categorize existing methods accord-

ing to their algorithm types, as detailed in Table 4.

5) Partition Update Module. This module timely

updates inefficient partitions, especially those that are

query-driven and become fragile under new loads. It

features two core components. a) The monitoring ser-

vice uses five optional mechanisms (refer to Table 5)

to determine repartition times. The term “window” in
M-QW denotes a container for monitoring queries,

cleared in time after each repartitioning. M-TH sets

threshold conditions as feature boundaries like fixed

time intervals and minimum query latency. b) Once

repartitioning is triggered, a data migration plan is

strictly made using a specific strategy (refer to Table

6), with considerations for data transfer overhead and

potential benefits of new partitions. These plans are

Partition Type

Determine

Deployment Scenario

Environment

Centralized DB

Distributed DB

Storage Device

HDD/SSD

RAM

Optimization Objective

Performance Manageability Device Cost

Strategy

Query-Driven

Method

Empirical-

Based

Greedy-Based

Partition Generation Module

Two-Phase

Initialization Phase

Optimization Phase

Cost Model

Partition Update Module

Machine Learning

(ML)-Based

Mathematical

Programing

(MP)-Based

Deep Learning

(DL)-Based

Optimizer-

Based

Function-

Based

Network-

Based

Horizontal

Partitioning

Vertical

Partitioning

Irregular

Partitioning

Monitoring Service

Query Window

(QW)-Based

Control

Theory (CT)
RL-Based

Data Migration Plan

Random

(RM)-Based

Heuristic

(HC)-Based
MP-Based

Call

Determine

Feature

Database

Schema/Metrics

Data/Load

Call

Monitor

Rule

(RE)-Based

Threshold

(TH)-Based

Data/Schema-Driven

Fig.2. Overview of a modular framework for data partitioning technologies.

Table 2. Classification of Optimization Objectives

Symbol Description

O1 Data balancing

O2 Load balancing

O3 Query cost estimation

O4 Query latency or system throughput

O5 Data transfer overhead

O6 Number of distributed transactions

O7 Coordination cost between machines

O8 Layout generation time

O9 Memory footprint

O10 Cache utilization

O11 Device cost

O12 Storage space

Table 3. Classification of System Environments

Symbol Description

E-CH/S Centralized database (HDD or SSD)

E-DH/S Distributed database (HDD or SSD)

E-CM Centralized database (RAM)

E-DM Distributed database (RAM)

Table 4. Classification of Partitioning Generation Methods

Symbol Description

Greedy-based Making partitioning decisions at each step
based on predefined heuristic rules

Empirical-based Developing schemes manually based on
observation and experience

ML-based Using traditional machine learning models

DL-based Using deep learning algorithms

MP-based Constructing mathematical programming
equations with objectives and constraints

Table 5. Classification of Monitoring Methods

Symbol Description

M-QW Monitoring whether a window is filled as new
queries arrive

M-TH Monitoring whether threshold conditions are met

M-CT A feedback mechanism to determine the
repartition timing

M-RL Training an agent to automatically take
repartition action based on the environmental
feedback

M-SD Service on demand

Peng-Ju Liu et al.: Enhancing Storage Efficiency and Performance: Survey of Data Partitioning Techniques 349

executed in the background, uniformly controlled by

the master node, to ensure minimal impact on nor-

mal transaction execution.

3 Horizontal Partitioning

In Subsection 3.1, we define the static and dynam-

ic horizontal partitioning (HP) problems, followed by

an introduction to the extracted features in HP (Sub-

section 3.2). We then describe and summarize the re-

search development of HP methods (Subsections 3.3

and 3.4), and the design of the HP-wise cost models

(Subsection 3.5), based on different system environ-

ments. Fig.3 depicts the timeline of HP methods.

3.1 Formalization

ϕ(·)
m D = (e1, e2, . . . , em) n

Q = (q1, q2, . . . , qn)

ϕ

P P = ϕ(e), ∀e ∈ D.

k

P = (P1, P2, . . . , Pk)

Definition 1 (Static Horizontal Partitioning). Stat-
ic horizontal partitioning aims to find a classifier
for a table with tuples and

collected queries . When a new
tuple arrives, the classifier assigns it to the speci-
fied partition in time, i.e., The
classifier partitions all tuples into distinct parti-
tions, represented as , to achieve
optimal system objectives such as low query latency
and high system throughput. The total cost of process-

Q P C(ϕ, Q)ing over is denoted by .

ϕ∗ = argmin
ϕ

C
(
P ⇐ ϕ(D), Q

)
.

n

T = (t1, t2, . . . , tn)

Q = (Q1, Q2, . . . , Qn)

P0

G∗

ti
Pi

(Pi = Pi−1)

Definition 2 (Dynamic Horizontal Partitioning).

For a database running over future intervals
, where the corresponding submit-

ted queries are , and the initial
partition scheme is , our goal is to design an opti-
mal controller . This controller analyzes current
partitions and queries at each interval to decide
whether to deploy new partitions () or maintain ex-
isting ones . The aim is to minimize the
sum of I/O costs for achieving optimization objec-
tives and data migration costs during the entire run-
ning process.

min
n∑

i=1

(
C(1)

i + C(2)
i

)
,

s.t.


Pi = G (Qi−1,Pi−1) ,
C(1)

i = Cr (Pi−1,Pi) ,

C(2)
i =

∑
q∈Qi

C (Pi, q) ,

Cr(Pi, Pj)

Pi Pj

where calculates the minimum data migra-
tion cost required to reorganize the partition files
when the partition scheme changes from to .

3.2 Feature Extraction

Database Schema. Depending on the given

database schema, we can 1) classify tables into

large/small ones based on the number of tuples, and

static/dynamic ones based on data changes; 2) ana-

lyze the characteristics of numerical columns, includ-

ing data type, constraints, indexes, and triggers, etc.;

3) learn the foreign key relationships and constraints

between tables to help construct co-partitions[19, 28, 32, 33].

Table Data. When analyzing numerical column

data, distribution types (e.g., uniform, skewed/hot

Table 6. Classification of Data Migration Plans

Symbol Description

D-RM One partition is randomly selected from those that
need adjustment for partial reorganization

D-RE Partitions are swapped using predefined rules,
operators, structures, and algorithms

D-HC Using heuristic information such as evaluation
functions and metrics to guide data migration

D-MP Converting the data migration into mathematical
optimization problems, e.g., dynamic programing
(DP), integer linear programming (ILP)

MP-Based

Range

Hash KD-Tree

2014

SOP

Round-Robin
Ameoba

2017

AdaptDB

2020

QdTree

2021

MTO

2022

PAW

2002 2006

Rao Agrawal06 DYFRAM

2010

Schism

DynPart

2013

SWORD

2015

SOAP

2018

NashDBHorti-
culture

2012

E-Store

2016

Clay SAHARA

2008

REF

PREF
GPT

BaW

Advisor

Earlier

ML-Based DL-Based Greedy-Based Empirical-Based

2011

MESA

Cumulus

Hash, Range

Round-Robin

Kangaroo

AQWA

Fig.3. Timeline of HP research development, including general empirical-based approaches (round-robin, range, and hash), as well
as on-axis studies (KD-tree[3], SOP[9], AQWA[10], Kangaroo[11], Ameoba[12], AdaptDB[13], QdTree[14], MTO[15], and PAW[16]) focused
on centralized environments and off-axis studies (Rao[17], Agrawal06[18], REF[19], DYFRAM[20], Schism[21], MESA[22], Horticulture[23],
DynPart[24], SWORD[25], E-Store[26], SOAP[27], PREF[28], Cumulus[29], Clay[30], NashDB[31], GPT[32], BaW[33], Advisor[34], and SA-
HARA[35]) on distributed environments.

350 J. Comput. Sci. & Technol., Mar. 2024, Vol.39, No.2

spot[20, 23, 24, 26, 35], discrete) and domain statistical

metrics (e.g., median[12, 13, 16], maximum, and mini-

mum values[15, 16]) are considered. These can also be

depicted using histogram technologies[15, 20].

Workload. In HP, important query logical fea-

tures (e.g., filter conditions, join keys, operator cost

estimates, and SQL keywords) and physical features

(e.g., read-to-write ratios, occurrence frequencies, sub-

mission/completion times, and inserted/updated

rows) can be extracted from query plans. Some stud-

ies count partition or tuple access frequencies[21, 25, 30]

to identify hot and cold data[26, 35] by tracking query-

tuple accesses. Furthermore, load can be classified as

either heavy or light based on the average query ar-

rival rate.

Database Runtime Metric. OS-level metrics relat-

ed to HP are chosen to monitor the database state,

including resource usage (e.g., memory, CPU, disk),

performance (e.g., query latency, throughput), and

machine hotspots.

3.3 Partitioning Process in Centralized

Databases

In this subsection, we discuss studies designed for

centralized systems or those that neglect factors such

as multi-nodes, replicas, and network costs.

N

i i mod N

Empirical-Based. Range partitioning typically

splits data based on a pre-defined range of values de-

rived from partition keys. This method is suitable for

data with prior statistics but requires careful selec-

tion of partition boundaries, which is difficult for

large-scale datasets. Hash partitioning maps tuples to

specific partitions using a hash function, ideal for un-

ordered data. Round-robin partitioning is a special

type of hash partitioning that assigns data to avail-

able machine nodes in a circular fashion, i.e., as-

signing the -th data row to the ()-th node,

to ensure equi-sized balanced partitions. These tradi-

tional methods are data-driven and do not require

prior load knowledge.

m

m

ML-Based. SOP[9] (Skipping-Oriented Partition-

ing) adopts the Apriori algorithm[36] to extract rep-

resentative filter predicates from load, and converts

each tuple into an -bit one-hot feature vector with

each bit indicating tuple-predicate satisfaction. These

vectors are clustered into different blocks via the

Ward algorithm[37], with each block generating a

union vector (as known as partition map) by perform-

ing bitwise OR operations on its vectors. These maps

act as a classifier, partitioning new data and guiding

incoming queries to skip unnecessary blocks. Kanga-

roo[11] utilizes grid and tree structures for partitioning.

In a 2D table space, the grids are represented by two

bit strings, with positions marked as 1 acting as the

partition boundaries. Kangaroo then applies a genet-

ic algorithm (GA) for partition initialization and

merging, deriving the optimal partition scheme. Its

tree-based approach replaces the grid with a tree rep-

resentation within the GA process.

Greedy-Based. To solve SOP limitations, such as

the exponential growth in execution time with more

predicates, Yang et al.[14] proposed a greedy-built

query data routing tree (QdTree). QdTree is a bina-

ry tree created by selecting the predicate with the

maximum split benefit as the split condition at each

tree expansion step until no further splits are possible.

Each leaf node maintains metadata for routing, with

the path from root to leaf serving as the search pro-

cess for assigning tuples to partitions. Ding et al.[15]

extended QdTree to multi-table datasets with a mul-

ti-table optimizer (MTO), leveraging sideways infor-

mation passing through joins. MTO periodically com-

putes a reward value to decide the best repartition

timing and then uses dynamic programming (DP) to

find the optimal reorganization set of non-overlap-

ping subtrees. Li et al.[16] proposed PAW (Partition-

ing Aware of Workload Variance), focusing on creat-

ing partitions adaptable to future load variances by

scaling historical queries and employing multi-step

splits to replace multiple one-step predicate splits in

QdTree when splitting smaller nodes.

However, in a new environment where query logs

are unavailable, query-driven physical design tech-

niques will become ineffective, leading to the

database's cold start issue. Moreover, collecting repre-

sentative queries is sometimes difficult; for instance, a

study[13] on IoT startups revealed that, even after an-

alyzing the first 80% of historical queries, the remain-

ing 20% still contained 57% new queries previously

unseen. To tackle this issue, Aly et al.[10] developed an

adaptive query-workload-aware partitioning (AQWA).

AQWA utilizes the KD-tree[3] structure for creating

initial partitions with equal spatial points distribu-

tion. It dynamically maintains update plans for all

visited nodes, considering split gain and data migra-

tion costs. To support KNN queries, AQWA uses

MinDist and MaxDist indicators[38] along with the vir-

tual grid technology to compute query boundaries.

Amoeba[12] initializes a heterogeneous binary tree,

similar to KD-tree, and dynamically modifies it for in-

Peng-Ju Liu et al.: Enhancing Storage Efficiency and Performance: Survey of Data Partitioning Techniques 351

coming queries using three node update operations:

swap, pushup, and rotate. AdaptDB[13] adapts Amoe-

ba for join operations by splitting each Amoeba tree

based on joined columns. It employs a greedy search

strategy to co-partition joined blocks, yielding a supe-

rior hyper-join operation over shuffle-join. AdaptDB

manages repartitioning via a fixed-length query win-

dow, refreshing the tree for new queries, and reallo-

cating old nodes.

⟳

Table 7 summarizes the horizontal partitioning

techniques discussed above for centralized environ-

ments. The “Cost” column indicates whether a cost

model is used or not. The “Deployment” column indi-

cates whether the partitions have been deployed in a

real database environment. The “Method Content”
column uses various symbols to represent different

partitioning stages: partition initialization (∇), parti-

tion optimization (〇), and partition update (). The

representations are applied to all subsequent tables.

3.4 Partitioning Process in Distributed

Databases

Data-driven approaches are universally applicable

to various database environments and can always

achieve data balancing. However, the performance of

query-driven approaches, tailored for E-CH/S envi-

ronments, might be limited by new factors in E-DH/S

environments. Thus, in this subsection, we introduce

the studies specifically designed for distributed envi-

ronments.

3.4.1 Disk Storage Environment

Optimizing data placement on hard and solid-

state drives has greater potential in boosting system

throughput, due to their slower read/write speeds

than memory drives. Early partitioning studies[39–41]

in E-DH/S environments relate to physical design

tools offering layout suggestions for data and load

balancing. However, they do not design a cost func-

tion for accurate evaluation of alternative solutions.

Rao et al.[17] combined a rank-based method with cost

estimations derived from query optimizer statistics to

quickly recommend partition keys. Agrawal et al.[18]

refined this by treating workload as a sequence with

temporal features, eliminating redundant and ineffi-

cient designs. Other similar studies[42, 43] utilize opti-

mizer and load information, adopting greedy and

heuristic-based strategies for effective partitioning.

However, while these strategies mentioned above

excel in large-scale data scans, they easily incur dis-

tributed (i.e., cross-node) calls during small transac-

tions touching only a few tuples.

ML-Based. Schism[21] addresses this issue by mini-

mizing distributed transactions. Fig.4 illustrates its

partitioning process. 1) Data preparation, inputting

table data and transaction information (omitted). 2)

Partitioning. A hypergraph is created, with nodes rep-

resenting tuples or tuple replicas. Replication edges

connect a tuple to its replicas, while transaction edges

connect all tuples accessed by the same transaction. A

Metis partitioner[44] then splits the hypergraph into

multiple balanced partitions with minimal cross-parti-

tion transactions. In the illustrated example with five

tuples, we get partitions 0 and 1 after graph splitting.

3) Explanation and validation. Decision trees are con-

structed based on tuple features within each parti-

tion to find predicate-based explanations for adapt-

ing new data. In Fig.4, the decision tree is construct-

Table 7. Major Horizontal Partitioning Strategies for Centralized Environments

Category Work Baseline Objective Automatic Cost Deployment Method Content

Empirical Range, hash,
round-robin

N/A O1, O2 ✘ ✘ ✔ Partitioning by columns or
data insertion order∇

ML SOP[9] SimpleRange O3 ✘ ✔ ✔ Frequent itemset+Ward clustering∇

ML Kangaroo[11] Random
schemes

O4, O8 ✘ ✔ ✔ GA-based grid/tree generation∇; partition
initialization using DPΟ

Greedy AQWA[10] Uniform grids O4, O8 M-TH+
D-RE

✔ ✔
⟳

Spatial data-based recursive KD-tree∇; greedy
tree node split selection

Greedy Ameoba[12],
AdaptDB[13]

FullScan,
SOP[9]

O3, O5 M-QW+
D-RE/RM

✔ ✔
⟳

Heterogeneous tree∇; heuristic-groupΟ;
predicate-based tree update

Greedy QdTree[14] SOP[9] O3 ✘ ✘ ✔ Greedy-based binary predicate tree

Greedy MTO[15] QdTree[14] O3, O8 M-TH+
D-MP

✘ ✔
⟳

QdTree∇; join-induced predicatesΟ; tree update
using DP

Greedy PAW[16] QdTree[14] O3 ✘ ✘ ✔ Query deviation prediction+ multi-group split∇;
data replicationΟ

352 J. Comput. Sci. & Technol., Mar. 2024, Vol.39, No.2

a1

a1 = 1 2 ⩽ a1 < 4 a1 ⩾ 4

ed with the column serving as the decision point,

using criteria such as , , and

for decision branches. The leaf nodes indicate that tu-

ples meeting the specified criteria are allocated to

their respective partitions. Nehme et al.[22] developed

the MEMO-based search algorithm (MESA) for long-

running analytical transactions touching large-scale

tuples, while Schism adapts to small short-lived trans-

actions. The MEMO structure is a search space for

parallel query optimization. MESA generates MEM-

Os for each query and then faster simulates and ex-

plores tree-style partition candidate configurations us-

ing a branch and bound strategy.

To adapt Schism to load changes, SWORD[25]

compresses the hypergraph into virtual nodes, periodi-

cally monitors load variations, and sets a threshold

for distributed transaction ratios to determine reparti-

tion timings, employing virtual node swaps for incre-

mental graph updates to minimize data movement.

Cumulus[29] filters out infrequent transactions and

predicts future transaction frequency with an expo-

nential moving average. It dynamically re-partitions

data in a user-driven live migration to avoid poten-

tial hotspots, balancing the increase in repartitioning

overhead with the decrease in distributed transaction

costs.

Greedy-Based. DYFRAM[20] addresses the cold

start problem by initially creating simple range parti-

tions for equi-width data distribution histograms,

then periodically evaluates whether to replicate parti-

tions based on partition size limitations and cross-par-

tition overheads. DynPart[24], designed for continuous-

ly growing database (e.g., observation and log data).

As data volume increases, DynPart models the affini-

ty between data and partition based on given queries,

proposing heuristic rules for efficiently distributing in-

coming data. Unlike SWORD's approach of isolating

updated data during repartitioning, SOAP[27] inte-

grates repartition operations into normal transactions

for smooth partition management. SOAP employs a

cost-based method to prioritize repartition transac-

tions and utilizes a feedback model for scheduling

their executions. NashDB[31] supports user-defined

query prioritization and efficient resource use, com-

bining economic models, dynamic programming, and

the Munkres algorithm[45] to optimize node usage and

minimize data migration costs.

Table 8 summarizes common horizontal partition-

ing techniques for distributed disk storage environ-

ments.

3.4.2 Distributed Partition Key Recommendation

in Disk Storage Environments

Non-co-located joins cause excessive data transfer

overhead among machine nodes, adversely affecting

join performance. Co-partitioning tables using shared

join keys can significantly reduce data shuffling. We

term this problem as Distributed Partition Key Rec-

ommendation (DKR). For example, in Spark SQL,

data can be organized into multiple buckets accord-

ing to the hash or range values of selected partition

keys. Costa et al.[46] verified that creating a consis-

tent number of buckets for join keys across two large

tables can significantly boost join performance over

traditional sort-merge joins.

Empirical-Based. When facing joins with refer-

ence constraints, the query executor requires copying

partition keys and strategies from parent to child ta-

bles, and subsequently repeats partition merging,

splitting, or key updates across all parent-child tables.

Eadon et al.[19] proposed reference partitioning (REF)

that enables partition maintenance operations per-

formed on parent tables to be extended to child ta-

bles, ensuring the migration of child tuples is handled

as a single atomic operation when the partition key in

the parent table is modified.

Greedy-Based. PREF[28] (Predicate-Based Refer-

ence Partitioning) improves REF by supporting co-

partitioning of tables for any join predicate, not just

foreign keys, through tuple duplication. A join graph

is defined with each node denoting a table and each

edge indicating joins over two tables. PREF assigns

weights to each edge as the connected smaller table

size, and extracts candidate key configurations from

(a)

…

1

2
3
4
5

1

2

3

5

4

1
1

5

2

5
5

Transaction Edges
Replication Edges

2

Tuple
ID

1
2
3
4
5

(b)(c)

Partit
ion 0

Partition 1All Tuples

Partition
0

…

…

…

…

…

Partitions
0, 1

Partition
1









 <<- <- 

Fig.4. Graph partitioning process introduced in [21]. (a) Input:
table data. (b) Hypergraph creation and partitioning. (c) Deci-
sion tree construction.

Peng-Ju Liu et al.: Enhancing Storage Efficiency and Performance: Survey of Data Partitioning Techniques 353

each query, greedily merging them to minimize the

graph weights. GPT[32] reduces data redundancy in

PREF. It first selects vertices and edges to be added

from the join graph by considering both the storage

overhead and shuffle-free query benefits, and then

adopts a multi-column partitioning to hash partition

key values for each edge. BAW[33] (Best of All

Worlds) is an assumption-free framework that uses

exact integer linear programming and heuristic vari-

ants to transform the DKR problem into a graph

matching problem, unlike prior studies[19, 28] that rely

on many assumptions not generally applicable.

RL-Based. Hilprecht et al.[34] introduced a parti-

tion advisor using Q-learning[47] to automatically as-

sess and recommend partition keys under varying

loads. The advisor refines a network-centric cost mod-

el with actual runtimes and designs a training envi-

ronment consisting of three parts: 1) State, which is a

one-hot encoding of table attributes indicating

whether an attribute at each position is a partition

key. 2) Action, comprising a candidate set that in-

cludes actions to replicate or (de-)activate edges be-

tween partition keys. 3) Reward function, which uti-

lizes the cost model to calculate the performance

gains of each action as the reward, disregarding data

migration overheads.

Table 9 summarizes the partition key recommen-

dation techniques for distributed disk environments.

3.4.3 Main Memory Storage Environment

In modern OLTP systems with small, repetitive,

and short-lived transactions, applications can keep

their entire dataset in memory through widely shared

server clusters, making it more feasible to develop

new storage system prototypes than to add indexes to

traditional disk-oriented DBMSs. H-Store[48] is such a

main memory database that supports user-defined

layout designs. The studies[23, 26, 30, 35] discussed below

are all designed on H-Store, where network latency

Table 8. Major Horizontal Partitioning Strategies for Distributed Disk Storage Environments

Category Work Baseline Objective Automatic Cost Deployment Method Content

ML Schism[21] Manual partitions O1, O2, O6 ✘ ✘ ✔ Metis∇, decision treeΟ

ML MESA[22] Rao et al.[17],
Schism[21]

O3, O8 ✘ ✘ ✘ Memo-based search∇;
pruning branch and
bound treeΟ

ML SWORD[25] Schism[21], simple
hash partitions

O1, O2, O4, O7 M-TH+D-HC ✔ ✔

⟳

Graph
compression/partition∇;
node
swapping/replication

ML Cumulus[29] Schism[21] O2, O7 M-SD+D-RE ✔ ✔

⟳

Multi-objective cost
model;
on-demand repartition

Greedy DYFRAM[20] Optimal solution O3, O7 M-TH+D-HC ✔ ✘ Histogram+rule-based
replication/partitioning∇

Greedy DynPart[24] Schism[21] O3, O7 M-TH+D-HC ✔ ✘ Single partition∇;
affinity-based heuristic
strategyΟ

Greedy SOAP[27] SWORD[25] O2, O4 M-CT ✔ ✔ ⟳PID-controller

Greedy NashDB[31] SWORD[25],
optimal solution

O2, O4, O5 ✘ ✔ ✔

⟳

Economic model∇;
greedy Munkres
algorithm

Table 9. Major Distributed Partition Key Recommendation Strategies for Optimizing Join Operations

Category Work Baseline Objective Automatic Cost Deployment Method Content

Empirical REF[19] N/A O4, O12 ✘ ✘ ✔ Reference partitioning∇

Greedy PREF[28] REF[19] O4, O12 ✘ ✔ ✔ Schema/query driven design∇

Greedy GPT[32] PREF[28] O4, O12 ✘ ✔ ✔ Join graph+hash-based
multi-column partitioning∇

Greedy BAW[33] Greedy
matching

O4, O7 ✘ ✘ ✔ Integer linear programming∇;
graph matching∇

DL Hilprecht et al.[34] PREF[28] O4 M-RL ✔ ✔
⟳

Network-centric cost model+
Q-learning algorithm

354 J. Comput. Sci. & Technol., Mar. 2024, Vol.39, No.2

and resource utilization have become critical factors.

Horticulture[23] estimates the coordination and

skew costs between machine nodes to achieve load

balancing and reduce distributed transactions. To

handle complex database schemas and a larger num-

ber of partitions, it uses a large neighborhood search

algorithm converging to near-optimal partitioning so-

lutions within a reasonable time overhead. However,

it does not provide any partition update strategy. E-

Store[26] dynamically reallocates resource to accommo-

date demand spikes and new transactions. It periodi-

cally collects metrics at the tuple, partition, OS levels,

identifies hot keys for hot tuple assignment, and even-

ly distributes cold data in large chunks for the re-

maining space. If CPU utilization exceeds a given

threshold, E-Store scales cluster nodes and uses a

two-tiered bin packing algorithm to optimize tuple-to-

partition assignments. Clay[30] enhances E-Store by

addressing the issue of accessing tuples in multiple

blocks and non-colocated on the same cluster node. It

adopts a two-tier partitioning with fine-grained map-

ping (Metis[44] for hypergraphs) for hot tuples and

coarse-grained mapping (simple range/hash strate-

gies) for cold tuples. When some partitions become

overloaded, Clay employs a threshold-based sub-graph

migration algorithm to update them.

Reducing hardware expenses alongside improving

performance is also an important research topic. SA-

HARA[35] minimizes resource overhead while satisfy-

ing all performance objectives by leveraging query ac-

cess skew to move cold data to cheaper storage layers,

retaining only hot data in main memory.

Table 10 summarizes major horizontal partition-

ing techniques for distributed memory environments.

3.5 Cost Estimation for Horizontal

Partition Scheme

Table 11 compares representative HP cost models.

Notably, function-based cost models are prevalent, fo-

cusing on a wide range of elements including block

skipping, join overhead, and hardware resources.

3.5.1 Centralized Environment

Q n

F = (F1, F2, . . . , Fn)

Fi zi
f(P, Fi)

Most studies[9, 12–16] evaluate partition quality by

calculating the number of scanned tuples using a skip-

ping-based cost function. In the SOP[9] model, the giv-

en query set is initially encoded into distinct fea-

ture vectors . The number of

queries satisfying is represented as . A function

 returns the number of accessed tuples when

Table 10. Major Horizontal Partitioning Strategies for Distributed Main Memory Environments

Category Work Baseline Objective Automatic Cost Deployment Method Content

Greedy Horticulture[23] Schism[21], manual partitions O2, O6 ✘ ✔ ✔ Skew-aware model+
large-neighborhood search∇

Greedy E-Store[26] Optimal solution O5 M-TH+D-MP ✘ ✔
⟳

Two-tiered partitioning∇;
greedy/first-fit

Greedy SAHARA[35] Unpartitioned state, DB-expert O9, O11 ✘ ✔ ✔ Hot/cold data division∇;
MaxMinDiff range partitionsΟ

ML Clay[30] E-Store[26], Metis[44] O2, O5 M-TH+D-RE ✘ ✔
⟳

Tuple grouping+graph split∇;
heuristic data migration plan

Table 11. Comparative Analysis of Major Horizontal Partitioning Cost Models in Diverse Environments

Category Cost Model Objective Environment Characteristic

Optimizer Rao et al.[17], MESA[22] O3, O8 E-DH/S Adjusting query plan node costs for different
partitions based on table/index statistics

Function SOP[9], AdaptDB[13],
MTO[15]

O3, O5 E-C(D)H/S Skipping-based block scan cost and join cost

Function Horticulture[23] O2, O6 E-DM Quantifying the effects of load skew on the cluster

Function DYFRAM[20], SOAP[27],
SWord[25], E-Store[26],
Clay[30]

O5, O4, O6, O10 E-DH/S,
E-DM

Costs for dynamic environments (replication/reparti-
tion operations, cold/hot data)

Function PREF[28], GPT[32],
BAW[33]

O3, O12 E-DH/S Fine-grained cost designs for the PKR problem

Function NashDB[31] O1, O3 E-DH/S A monetary value function for tuples; converting the
HP problem into an economic problem

Function SAHARA[35] O11 E-DM A novel objective for reducing hardware cost

Learning Hilprecht et al.[34] O4, O8 E-DH/S A network-centric cost model

Peng-Ju Liu et al.: Enhancing Storage Efficiency and Performance: Survey of Data Partitioning Techniques 355

Fi P

C(P, Q)

P Q

running over the given partition . The total

query cost equals the sum of scanning tu-

ples in the data layout when executing , i.e.,

C(P, Q) =
∑
P∈P

n∑
i=1

f(P, Fi)× zi.

However, this model has a significant issue, i.e.,

the number of scanned block files only affects the cost

of scan operators and is not linearly correlate with the

final query latency, despite a positive relationship.

Thus, it is crucial to consider more factors that affect

the overall execution of query plans, such as filter,

join, and write operators.

3.5.2 Distributed Environment

C(P, Q)

Ccoo Fskew

In distributed environments, query execution costs

are often associated with the number of local and dis-

tributed transactions, as well as the uniformity of da-

ta and load distribution. Horticulture[23] considers

both factors. It defines as the weighted sum

of coordination cost and skew factor , i.e.,

C(P, Q) =
wcoo × Ccoo(P, Q) + wskew × Fskew(P, Q)

wcoo + wskew
,

wcoo wskew

Ccoo P
Q Ccoo

N̄par

N̂par

Ndtxn

Ntxn

where and are user-specified weights for the

coordination and skew costs of machine nodes, respec-

tively; measures how effectively reduces dis-

tributed transactions in . is computed as the

ratio of accessed partitions () to the maximum

possible partitions (), which is then scaled by the

ratio of cross-partition transactions () to all ac-

cessing transactions (). We have:

Ccoo(P, Q) =
N̄par

Ntxn × N̂par

×
(
1 +

Ndtxn

Ntxn

)
.

Fskew

t SKt

To get the skew factor , Horticulture first

computes the skew factor for each -th interval ()

by dividing the average partition skew value by the

ideal skew value, i.e.,

SKt(P, Q) =

(
|P|∑
i=1

log
(
N i

par/Npar

ρ̄txn

)
/N̂par

)
/ log

1

ρ̄txn
,

N i
par

i ρ̄txn
1/N̂par

where represents the number of transactions ac-

cessing the -th partition, and represents the ide-

al transaction distribution, estimated as .

Next, Horticulture accumulates them to obtain

the final skew factor, i.e.,

Fskew(P, Q) =

n∑
t=0

SKt(P, Q)×N t
txn

Ntxn
,

n N t
txn

t

where is the number of time intervals, and is

the number of accessing transactions during the -th

interval.

β

Another representative cost model, as seen in SA-

HARA[35], utilizes limited device resources to improve

performance in two ways: 1) optimizing performance

under a given maximum resource budget; 2) optimiz-

ing resource budgets for given optimization objec-

tives (denoted as SLA). SAHARA employs the latter,

using the -second rule to classify the given partition

as cold or hot and estimating their memory footprint

to achieve the set objective.

β

|Pi|
CRAM

Mhot (|Pi|) = CRAM × |Pi|
Pi N̂ col

i

Cdisk Spage

Mcold

(
|Pi|, N̂ col

i , SLA
)
=

N̂ col
i

SLA
×
⌈
|Pi|
Spage

⌉
× Cdisk

PS
.

Pi

If a partition is accessed more frequently than ev-

ery seconds, it is classified as hot; otherwise, it is

deemed cold. Data from cold partitions is loaded from

disk as necessary, while data from hot partitions is

kept entirely in memory. Given a partition size in

bytes () and the memory overhead cost per unit of

buffer pool (), the memory footprint of a hot

partition is . Considering the

estimated access frequency of denoted as , an

allowed maximum query execution time (i.e., SLA),

I/O operations per second (PS), the disk cost per

page (), and the page size (), the memory

footprint of a cold partition can be expressed as:

Therefore, the memory footprint cost of a partition

that fulfills SLA is

M
(
|Pi|, N̂ col

i , SLA, β
)
={

Mhot (|Pi|) , if SLA/N̂ col
i ⩽ β,

Mcold

(
|Pi|, N̂ col

i , SLA
)
, otherwise.

Finally, we discuss the partition update costs,

which typically consider cost savings of new parti-

tions and data migration expenses. They directly de-

termine whether the repartition scheme is executed.

The cost savings arise from lower transaction execu-

tion and resource costs, whereas data migration ex-

penses cover the overheads tied to partition and repli-

ca modifications.

3.6 Summary

We summarize key characteristics of HP as fol-

lows: 1) It is crucial to survey the storage and deploy-

356 J. Comput. Sci. & Technol., Mar. 2024, Vol.39, No.2

ment environments before designing partitions. 2)

When query features are scarce, query-driven meth-

ods often utilize data features as a supplement to

build finer-grained or size-constrained partitions. 3)

Each partitioning strategy has unique strengths and

weaknesses. Mathematical programming requires fea-

sibility verification due to partitioning's NP-hard na-

ture. Learning-based algorithms exhibit high perfor-

mance but adapt poorly to environmental changes.

Conversely, greedy algorithms offer more flexibility

for existing partitioning constraints, but may lack sta-

ble performance, which could be improved with addi-

tional optimization phases.

4 Vertical Partitioning

Subsection 4.1 and Subsection 4.2 provide the def-

inition and feature extraction of the vertical partition-

ing (VP) problem, respectively. Mainstream VP con-

struction strategies for centralized and distributed en-

vironments are presented in Subsections 4.3 and 4.4,

respectively, and their cost models are introduced in

Subsection 4.5. Fig.5 depicts the development trajec-

tory of VP methods.

4.1 Formalization

Q D

CGs

k

P = (P1, P2, . . . , Pk)

P

P

CGs P
C Q

(CGs∗)

Definition 3 (Static Vertical Partitioning). Static
VP is a two-phase partitioning technique for process-
ing the collected queries . A table data is initially
divided vertically into disjoint column groups ,
which are subsequently split horizontally into dis-
tinct partitions through two
candidate strategies: 1) all CGs are split into as a
whole containing aligned tuples; 2) each CG is inde-
pendently split into partitions and then merged into .

The objective of VP is to generate the optimal combi-
nation of and that minimizes the final process-
ing cost of . VP first identifies optimal column
groups by introducing an additional cost func-

Ccg

(ϕ∗) P
tion to evaluate only the division of each CG, and
then finds optimal classifier to generate .

CGs∗ = argmin
CGs

∑
CG∈CGs

Ccg(CG, Q),

Pi =ϕ(e, CGs∗), ∀e ∈ D,

ϕ∗ = argmin
ϕ

C
(
P ⇐ ϕ(D, CGs∗), Q

)
. (1)

Definition 4 (Dynamic Vertical Partitioning). This
concept exhibits parallel characteristics to dynamic
HP and will not be defined repeatedly here.

4.2 Feature Extraction

Database Schema. 1) VP is essentially an exten-

sion of table splitting, and high-frequency column

groups can be directly extracted from independent

business scenarios in advance. 2) Distinguishing be-

tween indexed and non-indexed columns[52, 64, 72] con-

siderably affects column grouping. 3) Small/large ta-

bles are categorized based on the number of at-

tributes to verify algorithms' execution efficiency.

Table Data. When constructing column groups,

examining attribute types, such as primary/con-

strained keys, can help reduce join costs. When creat-

ing range-based horizontal splits, the attribute distri-

bution characteristic[73] serves as a crucial reference

factor in determining partition keys.

Workload. Query features[50, 53, 60, 65] such as access-

ing attributes (projection, filter, and join columns),

affected rows, selectivity, SQL keywords[57, 69, 73], and

submission time are commonly extracted in VP. Here,

accessing attributes are used to calculate co-occur-

rence frequency between attributes; selectivity[72, 73]

reflects the proportion of scanned tuples in the total

table tuples, with higher selectivity typically indi-

cates a greater query weight.

Database Runtime Metric. Similar to HP, the VP

layout primarily focuses on key metrics like system

throughput, processor stalls, and resource utilization.

Hoffer
Grid

Formation

2017

Active
DB

2019

AutoVP

2021

SCVP

1993 2003

OBP HillClimb

2011

Dyvep

2013 201820162004

AutoPart

1975 1984-1989

Navathe84

Agrawal04

2008

VF AutoStore

Smopd

PelotonTrojan CasperHYRISE

2010

CHAC

2012

GSOP

GA Lisbeth

2014

Smopdc

Navathe89 HYF

ML-Based DL-Based Greedy-Based Empirical-BasedMP-Based

Fig.5. Timeline of VP research development, including on-axis studies (Hoffer[49], Navathe84[50], Navathe89[51], OBP[52], GA[53], Hill-
Climb[54], AutoPart[55], Agrawal04[56], VF[57], Lisbeth[58], AutoStore[59], Smopd[60], Dyvep[61], Smopdc[62], GSOP[63], HYF[64],
ActiveDB[65], GridFormation[66], AutoVP[67], and SCVP[68]) based on centralized environments and off-axis studies (HYRISE[69], Tro-
jan[70], CHAC[71], Peloton[72], and Casper[73]) based on distributed environments.

Peng-Ju Liu et al.: Enhancing Storage Efficiency and Performance: Survey of Data Partitioning Techniques 357

4.3 Partitioning Process in Centralized

Databases

Recent research[66, 67] has highlighted the benefits

of applying reinforcement learning algorithms for dy-

namic partition updates. This marks a major evolu-

tion from earlier methods[49–51, 53, 55–58, 64], which de-

pended on the partitioning feature of attribute affini-

ty. These methods aimed to enhance performance but

often at the cost of increased execution time. Howev-

er, as the field progressed, there was a shift towards

more efficient, lightweight, end-to-end partitioning

methods[59–63, 65, 68], reflecting a continuous effort to

balance system design's efficiency and effectiveness.

ML-Based. Hoffer et al.[49] calculated an attribute

affinity matrix (AAM) from column accesses and ap-

plied the BEA[74] algorithm to cluster the AAM into

column groups (CGs). Navathe et al.[50] refined this

approach by introducing a two-phase partitioning

with a cost model to select appropriate cost types for

the given environment. Initially, they used Hoffer's

method to obtain CGs, followed by a binary parti-

tioning to recursively split each candidate CG into

two finer-grained ones. Navathe et al.[51] reduced the

time complexity of previous work[50]. They created an

undirected weighted graph with nodes representing

table attributes and edge weights denoting attribute

affinity, and identified minimal-weight closed “loops”
as the final CGs. Ng et al.[53] designed a cost function

focusing solely on the transaction's page access and

the penalty cost for cross-partition transactions. A

GA model was trained to find optimal CGs and tuple

clusters within each CG.

Greedy-Based. OBP[52] (Optimal Binary Partition-

ing) treats transaction attributes as basic units for

building a binary search tree. Each leaf node is ex-

panded by assigning attributes referenced from the se-

lected unit to its left branch and remaining at-

tributes to its right. AutoPart[55] identifies discrete

condition values in queries as horizontal splits to cre-

ate atomic partitions. Each atomic partition contains

all attributes referenced by its access queries, with no

query accessing merely a subset of its attributes. To

reduce join overhead, AutoPart merges atomic parti-

tions and adds redundant attributes to form compos-

ite partitions. Agrawal et al.[56] considered partition

manageability, introducing an interestingness score

for CG effectiveness and employing greedy approach-

es to generate CG candidates. They designed algo-

rithms MergeColumns and MergeRanges to identify

the optimal CG solution meeting partition aligned

|a1|a2|a3|a4|a5|a6|
a1 a2

a5 a6

|a1a2a3|a4a5a6|

constraints. PAX[75] (Partition Attributes Across) lay-

out decomposes relations at the page level to avoid

the join expenses of prior VP studies[49–53] that break

down a table into multiple subtables. HillClimb[54] ex-

tends PAX by defining a finer page layout. Starting

with PAX's single-column partitions, it merges the

two partitions offering the largest query cost reduc-

tion in iterative rounds until no further reduction is

possible. Fig.6 illustrates this process. The CGs

 are the initial page layout. The first

round merges and for their greatest merging

benefit. Then we update merging benefits of valid

candidate mergers, and and are next merged.

The process continues until reaching the optimal state

 with no feasible mergers left.

Initial

Partitions

Merged Benefit

10

8
8

…

7
6

…

8

6
…

6
…

Termination

Partition

Optimization

  

 

 

  

  

  

  

, ..., -8

 
 

  

     

     

     

     

Fig.6. Exemplary case of the HillClimb algorithm[54] for col-
umn group creation.

MP-Based. Sun et al.[63] generalized the SOP[9]

model (GSOP) by introducing column grouping (ver-

tical splits) before local feature selection (horizontal

splits). To obtain CGs, GSOP constructs an ILP

equation to balance block skipping and tuple recon-

struction.

k

ML-Based. Several studies[57, 58, 64, 68] leveraged

frequent itemset mining algorithms to identify key

column groups from loads. Gorla et al.[57] introduced a

vertical fragmentation (VF) method that selects the

top- non-overlapping Apriori[36]-generated patterns

for forming complete CGs, along with a cost function

for assessing the partition scanning and concatena-

tion overheads in transaction operations. Lisbeth et
al.[58] proposed a VP technique that sets the mini-

mum support threshold automatically, while VF re-

quires manual specification. HYF[64] assigns new

weights to frequent patterns by multiplying their sup-

port value with the cosine similarity of all patterns. It

generates multiple candidate complete schemes like

VF and designs a cost function considering sequence/

358 J. Comput. Sci. & Technol., Mar. 2024, Vol.39, No.2

index scans for optimal selection. SCVP[68] improves

HYF's cost model by incorporating tuple reconstruc-

tion costs. Leveraging the cost independence proper-

ty between CGs, SCVP first designs an estimation

function for rapid CG division gain calculation, mak-

ing it suitable for large tables and heavy loads. It

then applies spectral clustering on AAM to form ini-

tial CGs and adopts a greedy search strategy to split

and merge CGs based on frequent patterns.

Constructing a self-adaptive VP layout is crucial.

AutoStore[59] introduces O2P (One-dimensional On-

line Partitioning) to monitor query changes through a

query window and updates AAM online. O2P uses the

BEA algorithm to recluster only the CGs referenced

by new queries, and designs a transforming benefit

model to decide whether the repartition decision

should be executed. SMOPD[60] improves on Auto-

Store by determining appropriate checkpoint inter-

vals for repartitioning based on historical data analy-

sis, employing AutoClust[76] for partition updates.

SMOPD-C[62] further adapts SMOPD to distributed

settings by updating monitoring procedures. To solve

cold start issues of VP, DYVEP[61] designs a statistic

collector to monitor the changes in query patterns

and database schema, creating new partitions or trig-

gering repartitioning when query latency increases or

table attributes are deleted.

Empirical-Based. ActiveDB[65] uses 21 active rules

to monitor both internal and external system and us-

er activities. The first 15 rules gather query-related

statistical indicator changes. Two rules estimate the

current performance change to determine the necessi-

ty for partition updates. The final four rules use sta-

tistical features to create new partitions and access

their performance improvement threshold.

DL-Based. GridFormation[66] is the first learning-

based agent using Q-learning[47] for online VP layout

design. The state is defined as a collection of sets,

each indicating a partition containing a list of tuple

IDs. GridFormation's partitioning process follows a

Markov decision process (MDP), with rewards calcu-

lated based on touched partitions and tuple access ra-

tio of each query. AutoVP[67] redesigns the GridFor-

mation agent to accelerate training, offering three op-

tional DQN variants[77] and using HillClimb[54] and

HDD[78] to evaluate temporary partitions. It simpli-

fies state representation to a 2D array, with each row

corresponding to a query and each column to a table

attribute. Rewards are based on the cost difference

between the current state and HillClimb's ideal state,

enabling faster experience learning and MDP process.

Table 12 summarizes vertical partitioning tech-

niques for centralized environments.

4.4 Partitioning Process in Distributed

Databases

In big data systems, VP layouts are commonly

built on page-level stores like [75]. Trojan[70] defines

an interestingness score to reflect how effectively the

CG accelerates most queries, then solves a 0-1 knap-

sack problem to select the optimal CG combinations.

Trojan achieves layout-aware replication by design-

ing unique CGs for each replica, better adapting to

given queries. CHAC[71] (Column-oriented Hadoop At-

tribute) extracts frequent closed item sets from a fre-

quency-weighted AAM to generate overlapping and

non-overlapping candidate clustering solutions, and

designs a cost model to select the optimal solution.

k

VP-based hybrid storage is customized for HTAP

databases. HYRISE[69] measures cache misses result-

ing from data movement from RAM to cache, miti-

gating cache pollution in update operations using

non-temporal writes. It creates CG layouts that adapt

to cache lines to accelerate read operations. Peloton[72]

clusters queries by their co-accessed attributes via the

-means algorithm, selecting representative queries

for each cluster by optimizer estimates and submis-

sion time. It then prioritizes these queries, using a

greedy policy to extract CGs and maintains recent

query statistics in a time series graph to periodically

replace old CGs. Casper[73], a column layout that

works with VP algorithms like HYRISE and Peloton,

optimizes HTAP load processing in in-memory

DBMS. It estimates block read/write I/O costs for

various transaction operations, aligns block sizes with

cache lines, and track each operation access via block

domain histograms. This helps establish ILP equa-

tions to allocate data while satisfying constraints re-

lated to read/update latencies.

Table 13 summarizes vertical partitioning tech-

niques for distributed environments.

4.5 Cost Estimation for Vertical Partition

Scheme

This subsection reviews common function-based

cost models (see Table 14) employed for VP evalua-

tion, including two-phase partitioning and partition

updates. They consider query execution on VP lay-

outs, partition updates, and the impact of indexes,

Peng-Ju Liu et al.: Enhancing Storage Efficiency and Performance: Survey of Data Partitioning Techniques 359

joins, and map-reduce operations. For non-PAX VP

techniques, the additional tuple reconstruction cost

for cross-partition queries is another crucial factor.

4.5.1 Centralized Environment

To determine when to repartition, some studies[59] Btf

use a fixed query window, while [60–62] employ dy-

namic windows based on query performance thresh-

olds. The choice of monitoring approach does not im-

pact the modeling of repartitioning benefits. However,

AutoStore[59] differs from other approaches by consid-

ering potential benefits of new partitions rather than

solely evaluating them based on historical loads. It in-

troduces a transformation benefit , resulting from

Table 12. Major Vertical Partitioning Strategies for Centralized Environments

Category Work Baseline Objective Automatic Cost Deployment Method Content

ML Navathe[50] Hoffer et al.[49] O3 ✘ ✔ ✘ BEA∇; binary partitioningΟ

ML DYVEP[61] AutoPart[55] O4 M-TH ✘ ✔ ⟳Query table +Navathe84∇Ο

ML SMOPD(-C)[60, 62] Static VP using AutoClust[76] O2, O4, O8 M-QW ✘ ✘ ⟳Statistics monitoring +
filtered AutoClust∇

ML VF[57] Unpartitioned state O3 ✘ ✔ ✘ Apriori∇; greedy searchΟ

ML HYF[64] Lisbeth et al.[58], VF[57] O3 ✘ ✔ ✘ Aprior with cosine similarity∇;
greedy searchΟ

ML SCVP[68] HillClimb[54], HYF[64] O3, O8 ✘ ✔ ✘ Spectrum clustering∇,
greedy splitting/mergingΟ

Greedy OBP[52] Navathe et al.[51] O3 ✘ ✔ ✘ Binary search tree using
transaction-based splits∇

Greedy HillClimb[54] Navathe et al.[50, 51] O10 ✘ ✔ ✔ HillClimb algorithm∇

Greedy AutoPart[55] Navathe et al.[50] O3 ✘ ✘ ✘ Composite partitions∇;
pair-wise mergingΟ

Greedy Agrawal[56] Navathe et al.[51] O12 ✘ ✔ ✘ Interesting column groups∇

greedy selection/mergingΟ

Greedy AutoStore[59] HillClimb[54] O3, O8 M-QW ✔ ✔ ⟳O2P+query window

MP GSOP[63] SOP[9], HillClimb[54] O7O3, ✘ ✔ ✔ ILP∇; Apriori+WardΟ

DL GridFormation[66] Manual partitions O3 M-RL ✘ ✘ ⟳Q-learning algorithm∇

DL AutoVP[67] AutoPart[55], O2P[59] O3 ✘ ✘ ✘ DQN and its variants∇

Table 13. Major Vertical Partitioning Strategies for Distributed Environments

Category Work Baseline Objective Automatic Cost Deployment Method Content

Greedy HYRISE[69] Simple partitions O10 ✘ ✔ ✔ Kmetis∇; greedy mergingΟ

Greedy CHAC[71] Hoffer et al.[49] O3 ✘ ✔ ✘ AAM+frequent closed items∇

ML Peloton[72] Simple row/column
partitioning

O3 M-TH+D-RE ✘ ✔ k-means∇; greedy selectionΟ

MP Trojan[70] Hadoop-row,
Hadoop-PAX, HYRISE[69]

O3, O8 ✘ ✔ ✘ Interestingness grouping∇;
0-1 knapsack programmingΟ

MP Casper[73] DSM+leading columns,
DSM+equi-width partitions

O3 ✘ ✔ ✔ Equ-size partitions+
histogram-based frequency
model+ILP∇

Table 14. Comparative Analysis of Function-Based Vertical Partitioning Cost Models in Diverse Environments

Cost Model Objective Environment Characteristic

VF[57], GSOP[63] O3 E-CH/S Incorporating the cost of tuple construct across partitions

ACO[78] O3 E-CH/S Cost designs for bandwidth-based disk access operations

AutoPart[55], HYF[64] O3 E-CH/S Approximating the costs of index scans and block joins

AutoStore[59] O3, O5 E-CH/S Considering the repartitioning potential benefit

CHAC[71], Trojan[70] O3, O5 E-DH/S Finer cost estimations for map-reduce phases

DataMorhing[54], HYRISE[69] O10 E-DM Estimating cache misses for diverse data access operations

Casper[73] O3 E-DM Modeling costs for five distinct data access operations

360 J. Comput. Sci. & Technol., Mar. 2024, Vol.39, No.2

P P′

n Q

Btf Ccg(Q,P)− Ccg(Q,P′) Ccg

γ

freq = 1/(1− γ−n)

Br = freq ×Btf − Ccg

Br > 0

updating current partitions to a new scheme

when executing queries collected in the window.

 is calculated as , with de-

noting the query processing cost over a given vertical

layout. AutoStore assumes the presence of multiple

future windows with workloads similar to the current

window, and estimates their frequency using an expo-

nential decaying model with a shape parameter ,

i.e., . The potential benefit of up-

dating current partitions is then calculated as

, and new partitions are de-

ployed only if .

CcgVarious approaches[57, 59, 63, 64, 78] calculate by

breaking down the total query cost into scan and tu-

ple reconstruction costs of multiple accessed CGs. The

scan cost counts the number of both random and se-

quential I/O blocks, with random I/O accounting for

unclustered and clustered index scan costs plus index

lookup costs. The tuple reconstruction cost considers

only the join cost (e.g., hash and sort-merge joins) if

tuples between different CGs are not aligned; other-

wise, a minimal tuple addressing cost is considered.

4.5.2 Distributed Environment

VP layout is prevalent in distributed Hadoop en-

vironments. For example, both Trojan[70] and

CHAC[71] consider the impact of column groups dur-

ing the map phase as the main cost factor. However,

unlike Trojan, CHAC estimates costs roughly, focus-

ing solely on data access volume and omitting disk

read/write characteristics and network cost considera-

tions. We will introduce the Trojan cost model next.

Sb

n m

Ssplit Ssplit

q

Nb

Nmap = Nb × Sb/(Ssplit ×m× n)

To avoid tuple reconstruction, Trojan is based on

PAX and considers data reading and network costs.

The known parameters include the block size , num-

ber of machines , map tasks , and the split size

. determines the number of data slices, with

each being handled by a single mapper. When pro-

cessing a query , the number of blocks read is denot-

ed as , and then the number of map phases is cal-

culated as .

Crand(q) = Frand × (Ssplit ×
∣∣C ′

cg

∣∣/(Sbuffer×
|Ccg|)) Cseq(q) = Ssplit ×

∣∣C ′
cg

∣∣/
(BWdisk × |Ccg|) Frand

Ssplit Ccg C ′
cg

Sbuffer

BWdisk

The read cost for each map phase includes both

random I/O,

, and sequential I/O,

. denotes the average random

seek time (0.005 s); is set to 256 MB; and

represent the complete and accessed column sets, re-

spectively; is the buffer size (512 KB), and

 is the average disk bandwidth (100 MB/s).

Ctr

Ctr = (1− ptr)× (Ssplit/BWnet) BWnet

ptr

Cinit

q

(Ctr(q) + Crand(q) + Cseq(q) + Cinit)×Nmap

When local data is not available, the network cost

arises from transferring data from one machine to an-

other, i.e., . de-

notes the network bandwidth (1 GB/s) and is the

occurrence probability (0.97) of remote accesses. As-

suming a map initialization time of 0.1 s (), the

total latency of query over the Trojan layout is

computed as .

4.6 Summary

Differing from HP, VP involves a two-phase pro-

cess of column grouping and horizontal division of tu-

ples, with each phase being NP-hard. In the first

phase, mathematical programming algorithms effi-

ciently identify CGs in small tables, while greedy and

ML-based algorithms are preferred for large tables. In

the second phase, partitions within each CG are typi-

cally generated using hash or range values of keys.

Additionally, cost models play a crucial role in the

VP process, calculating scan costs for CGs and cross-

CG reconstruction costs for selecting candidate parti-

tions. Despite its advantages, deploying and evaluat-

ing VP in real-world databases is challenging due to

the limited native support for VP creation.

5 Irregular Partitioning

Irregular partitioning (IP) is a cutting-edge tech-

nique for handling analytical and mixed loads. How-

ever, deploying it poses challenges such as maintain-

ing storage structure, updating partitions, and coordi-

nating query executors. Furthermore, there is a

scarcity of relevant studies according to [8, 81]. In

this section, we define the IP problem in Subsection

5.1. The partitioning features required by IP dis-

cussed in Section 3 and Section 4, will not be reintro-

duced. Subsequently, we describe several classic IP

techniques in Subsection 5.2 and provide a summary

in Subsection 5.3. Fig.7 depicts a simple development

trajectory of IP methods.

2016 2020

Teradata GridTable Jigsaw

Proteus

Greedy-BasedEmpirical-Based

20222021

Fig.7. Timeline of IP research development, including on-axis
studies (Teradata[79], GridTable[80], and Jigsaw[81]) based on
centralized environments and off-axis studies (Proteus[82]) based
on distributed environments.

Peng-Ju Liu et al.: Enhancing Storage Efficiency and Performance: Survey of Data Partitioning Techniques 361

5.1 Formalization

ϕ(·)

P = (P1, P2, . . . , Pk)

m D = (e1, e2, . . . , em)

e n y

x ex T ex,y

ex,y
Q

Definition 5 (Static Irregular Partitioning). The
IP problem uses a predefined classifier to gener-
ate a set of partitions with arbitrary shapes for a giv-
en table, denoted as . The table
data consists of tuples , where
each tuple has attributes. The -th attribute value
of the -th tuple in is represented as . The
objective of IP is to assign specific irregular partition
for each in order to minimize the I/O cost of pro-
cessing load .

ϕ∗ = argmin
ϕ

C
(
P ⇐ ϕ(D), Q

)
,

Pi = ϕ(ex,y), ∀ex ∈ D and y = 1, . . . , n.

Definition 6 (Dynamic Irregular Partitioning).

This concept adheres to the identical update mecha-
nism employed by both the HP and VP algorithms,
and will not be detailed further in this context.

5.2 Partitioning Process

Empirical-Based. Teradata[79] introduces a hybrid

row-column layout via multi-level definitions, with

the first level for column partitions and subsequent

levels for further row partitions. Teradata uses a par-

tition number combining row IDs and partition levels

to make file systems identify arbitrary partition

shapes, reducing partition scanning and optimizing

DML operations. GridTable[80] extends VP layouts

like HYRISE and Peloton with a flexible grid layout.

Each grid is self-contained, organizing tuples column-

wise or row-wise independently. It supports tuple-cen-

tric read/write operations and efficient range query

executions. However, neither study provides any par-

tition creation guidance.

Greedy-Based. Jigsaw[81] provides ultimate data

skipping for static queries with tetris-shaped parti-

tions managed by logical segments. These segments

are classified as active or frozen based on if they can

be split for I/O reduction. Jigsaw first partitions ta-

bles into frozen segments using a split function, then

merges or splits these segments for adapting block

size. Jigsaw layout requires a hash table for tuple re-

construction and manages partitions effectively by

materializing logical segments into rectangular physi-

cal ones storing tuples with the same columns. Pro-

teus[82] adaptively designs and updates storage lay-

outs for different table areas, aligning partition shapes

with queried data areas and selecting appropriate row

or column formats for specific transactions to sup-

port efficient data reads and updates. When storage

limits are reached or performance issues arise, Pro-

teus optimizes storage formats and reorganizes hot

partitions and replicas. To evaluate the potential ben-

efits of data migration plans, Proteus uses recurrent

neural networks (RNNs) and linear predictors to pre-

dict future data access patterns.

→
↓

P1−2, P3−4, P5−6

P1, P2 P3, P4

Fig.8 displays four distinct layouts, with the right
arrow () indicating row-wise storage and the down
arrow () indicating column-wise storage. 1) Terada-
ta vertically splits the table into three column parti-
tions (), each further hierarchically
partitioned by rows; 2) GridTable breaks the table in-
to six grids of variable rows and columns, each sup-
porting either row-major or column-major storage;
3) Jigsaw supports arbitrary partition shapes, similar
to Tetris; 4) Proteus generates column partitions
() and row partitions () without hierar-
chical order. It can be observed that Teradata and
Jigsaw layouts prefer row-oriented storage, while
GridTable and Proteus layouts exhibit flexibility in
their storage formats.

Table 15 summarizes the characteristics of the
four irregular partitioning techniques.

5.3 Summary

The IP field aims to enhance mixed and analyti-
cal loads by maximizing the optimization potential of
query-driven strategies. It fully utilizes current query
distributions to create complex partitioning rules to
satisfy diverse query access patterns. Despite its ad-
vantages, IP still faces several challenges, such as the
need to develop a unified transaction execution inter-
face and handling the management complexities asso-















 














  

(b)(a) (c) (d)

Fig.8. Comparison of four IP designs. (a) Teradata layout[79]. (b) GridTable layout[80]. (c) Jigsaw layout[81]. (d) Proteus layout[82].

362 J. Comput. Sci. & Technol., Mar. 2024, Vol.39, No.2

ciated with irregular partition replication, mainte-

nance, and joins.

6 Data Partitioning in Industry

Table 16 compares popular database products and

their partitioning support. Most DBMSs, e.g., Red-

shift③, Firebolt④, Databricks⑤, GaussDB⑥, TiDB⑦,

OceanBase⑧, and SingleStore⑨, offer user-defined HP

strategies such as range, hash, key, list, and round-

robin, where partition keys necessitate manual selec-

tion and updates. These systems prioritize balanced

resource utilization among nodes and cluster scalabili-

ty/parallelism through partitioning, rather than fo-

cusing solely on maximizing system performance. Be-

sides, their simplicity enables DBAs to effortlessly

create and manage partitions. Organizing data based

on data distribution can also makes it easier to con-

duct data analysis, particularly for time-series data.

In contrast, certain products (e.g., Vertica⑩,

Greenplum⑪, and VoltDB⑫) incorporate load analy-

sis into their partitioning design. VoltDB is an in-

memory DMBS for fast data processing tasks like on-

line gaming and IoT sensors. By analyzing historical

load and data distribution, it scales transaction pro-

cessing capacity, creating optimal range partitions.

This ensures load balancing and allows high-frequen-

cy transactions to be executed locally.

Some products, e.g., ClickHouse⑬, StarRocks⑭,

Apache Hudi⑮, Oracle Autonomous Database⑯, and

Snowflake⑰, provide automated partition key selec-

Table 15. Summary of Irregular Partitioning Strategies in Centralized and Distributed Environments

Category Work Baseline Objective Automatic Cost Composition Content

Empirical Teradata[79] Simple range
partitions

O3, O10 ✘ Optimizer-based I/O costs;
CPU metrics

Rowid-based storage+ multi-
level range partitioning∇

Empirical GridTable[80] N/A O4 ✘ Access and transition costs
between grids

Three level-specific data
manipulation operations

Greedy Jigsaw[81] Schism,
Schism+Peloton

O3 ✘ Read I/Os of layouts; memory
for hash tables

Segment partitioning∇;
greedy mergingΟ

Greedy Proteus[82] TiDB O4 M-TH+D-RE Costs for layout-aware/
-agnostic storages ⟳

Layout creation rules∇;
hybird predictors for queries

Table 16. Partitioning Support Comparison of Popular Database Products for OLAP, OLTP, and HTAP Scenarios

Scenario Type Partitioning Strategy Strategy Type Automatic Representative Product

OLAP HP Key, hash, range, list, round-robin Data-driven ✘ Redshift③, Firebolt④, Databricks⑤, GaussDB⑥

HP Round-robin, list, hash, range Data-driven M-TH ClickHouse⑬, StarRocks⑭, Apache Hudi⑮

HP Automatic interval/list Data-/query-driven M-SD Oracle Autonomous Database⑯

HP Auto clustering Data-driven M-TH Snowflake⑰

HP&VP Range, table projections+hash Data-/query-driven ✘ Vertica⑩, Greenplum⑪

OLTP HP Key, hash, range, list Data-driven ✘ PostgreSQL, MySQL, Oracle, SQLServer

HP Key, hash, range, list Data-/query-driven ✘ VoltDB⑫

VP Sharding+table views Data-/query-driven ✘ PostgreSQL, MySQL, Oracle, SQLServer

HTAP HP Key, hash, range, list Data-driven ✘ TiDB⑦, OceanBase⑧

HP Hash Data-driven ✘ SingleStoreDB⑨

Peng-Ju Liu et al.: Enhancing Storage Efficiency and Performance: Survey of Data Partitioning Techniques 363

③https://docs.aws.amazon.com/redshift/latest/dg/c-spectrum-external-tables.html, Mar. 2024.

④https://docs.firebolt.io/working-with-partitions.html, Mar. 2024.

⑤https://docs.databricks.com/sql/language-manual/sql-ref-partition.html, Mar. 2024.

⑥https://support.huaweicloud.com/intl/en-us/twp-dws/dws_11_0013.html, Mar. 2024.

⑦https://docs.pingcap.com/zh/tidb/v7.0/partitioned-table, Mar. 2024.

⑧https://en.oceanbase.com/docs/common-oceanbase-database-10000000001105730, Mar. 2024.

⑨https://docs.singlestore.com/cloud/create-a-database/choosing-a-table-storage-type, Mar. 2024.

⑩https://docs.vertica.com/12.0.x/en/admin/projections, Mar. 2024.

⑪https://docs.vmware.com/en/VMware-Greenplum/7/greenplum-database/admin_guide-ddl-ddl-partition.html, Mar. 2024.

⑫https://docs.voltactivedata.com/UsingVoltDB/DesignPartition.php, Mar. 2024.

⑬https://clickhouse.com/docs/en/engines/table-engines/mergetree-family/custom-partitioning-key, Mar. 2024.

⑭https://docs.starrocks.io/docs/table_design/dynamic_partitioning, Mar. 2024.

⑮https://hudi.apache.org/docs/file_layouts, Mar. 2024.

⑯https://docs.oracle.com/en/cloud/paas/autonomous-database, Mar. 2024.

⑰https://docs.snowflake.com/en/user-guide/tables-auto-reclustering, Mar. 2024.

https://docs.aws.amazon.com/redshift/latest/dg/c-spectrum-external-tables.html
https://docs.aws.amazon.com/redshift/latest/dg/c-spectrum-external-tables.html
https://docs.aws.amazon.com/redshift/latest/dg/c-spectrum-external-tables.html
https://docs.aws.amazon.com/redshift/latest/dg/c-spectrum-external-tables.html
https://docs.aws.amazon.com/redshift/latest/dg/c-spectrum-external-tables.html
https://docs.aws.amazon.com/redshift/latest/dg/c-spectrum-external-tables.html
https://docs.aws.amazon.com/redshift/latest/dg/c-spectrum-external-tables.html
https://docs.firebolt.io/working-with-partitions.html
https://docs.firebolt.io/working-with-partitions.html
https://docs.firebolt.io/working-with-partitions.html
https://docs.firebolt.io/working-with-partitions.html
https://docs.firebolt.io/working-with-partitions.html
https://docs.databricks.com/sql/language-manual/sql-ref-partition.html
https://docs.databricks.com/sql/language-manual/sql-ref-partition.html
https://docs.databricks.com/sql/language-manual/sql-ref-partition.html
https://docs.databricks.com/sql/language-manual/sql-ref-partition.html
https://docs.databricks.com/sql/language-manual/sql-ref-partition.html
https://docs.databricks.com/sql/language-manual/sql-ref-partition.html
https://docs.databricks.com/sql/language-manual/sql-ref-partition.html
https://support.huaweicloud.com/intl/en-us/twp-dws/dws_11_0013.html
https://support.huaweicloud.com/intl/en-us/twp-dws/dws_11_0013.html
https://support.huaweicloud.com/intl/en-us/twp-dws/dws_11_0013.html
https://support.huaweicloud.com/intl/en-us/twp-dws/dws_11_0013.html
https://support.huaweicloud.com/intl/en-us/twp-dws/dws_11_0013.html
https://support.huaweicloud.com/intl/en-us/twp-dws/dws_11_0013.html
https://support.huaweicloud.com/intl/en-us/twp-dws/dws_11_0013.html
https://support.huaweicloud.com/intl/en-us/twp-dws/dws_11_0013.html
https://support.huaweicloud.com/intl/en-us/twp-dws/dws_11_0013.html
https://docs.pingcap.com/zh/tidb/v7.0/partitioned-table
https://docs.pingcap.com/zh/tidb/v7.0/partitioned-table
https://docs.pingcap.com/zh/tidb/v7.0/partitioned-table
https://en.oceanbase.com/docs/common-oceanbase-database-10000000001105730
https://en.oceanbase.com/docs/common-oceanbase-database-10000000001105730
https://en.oceanbase.com/docs/common-oceanbase-database-10000000001105730
https://en.oceanbase.com/docs/common-oceanbase-database-10000000001105730
https://en.oceanbase.com/docs/common-oceanbase-database-10000000001105730
https://en.oceanbase.com/docs/common-oceanbase-database-10000000001105730
https://en.oceanbase.com/docs/common-oceanbase-database-10000000001105730
https://docs.singlestore.com/cloud/create-a-database/choosing-a-table-storage-type
https://docs.singlestore.com/cloud/create-a-database/choosing-a-table-storage-type
https://docs.singlestore.com/cloud/create-a-database/choosing-a-table-storage-type
https://docs.singlestore.com/cloud/create-a-database/choosing-a-table-storage-type
https://docs.singlestore.com/cloud/create-a-database/choosing-a-table-storage-type
https://docs.singlestore.com/cloud/create-a-database/choosing-a-table-storage-type
https://docs.singlestore.com/cloud/create-a-database/choosing-a-table-storage-type
https://docs.singlestore.com/cloud/create-a-database/choosing-a-table-storage-type
https://docs.singlestore.com/cloud/create-a-database/choosing-a-table-storage-type
https://docs.singlestore.com/cloud/create-a-database/choosing-a-table-storage-type
https://docs.singlestore.com/cloud/create-a-database/choosing-a-table-storage-type
https://docs.singlestore.com/cloud/create-a-database/choosing-a-table-storage-type
https://docs.singlestore.com/cloud/create-a-database/choosing-a-table-storage-type
https://docs.vertica.com/12.0.x/en/admin/projections
https://docs.vmware.com/en/VMware-Greenplum/7/greenplum-database/admin_guide-ddl-ddl-partition.html
https://docs.vmware.com/en/VMware-Greenplum/7/greenplum-database/admin_guide-ddl-ddl-partition.html
https://docs.vmware.com/en/VMware-Greenplum/7/greenplum-database/admin_guide-ddl-ddl-partition.html
https://docs.vmware.com/en/VMware-Greenplum/7/greenplum-database/admin_guide-ddl-ddl-partition.html
https://docs.vmware.com/en/VMware-Greenplum/7/greenplum-database/admin_guide-ddl-ddl-partition.html
https://docs.vmware.com/en/VMware-Greenplum/7/greenplum-database/admin_guide-ddl-ddl-partition.html
https://docs.vmware.com/en/VMware-Greenplum/7/greenplum-database/admin_guide-ddl-ddl-partition.html
https://docs.vmware.com/en/VMware-Greenplum/7/greenplum-database/admin_guide-ddl-ddl-partition.html
https://docs.vmware.com/en/VMware-Greenplum/7/greenplum-database/admin_guide-ddl-ddl-partition.html
https://docs.vmware.com/en/VMware-Greenplum/7/greenplum-database/admin_guide-ddl-ddl-partition.html
https://docs.vmware.com/en/VMware-Greenplum/7/greenplum-database/admin_guide-ddl-ddl-partition.html
https://docs.vmware.com/en/VMware-Greenplum/7/greenplum-database/admin_guide-ddl-ddl-partition.html
https://docs.vmware.com/en/VMware-Greenplum/7/greenplum-database/admin_guide-ddl-ddl-partition.html
https://docs.voltactivedata.com/UsingVoltDB/DesignPartition.php
https://clickhouse.com/docs/en/engines/table-engines/mergetree-family/custom-partitioning-key
https://clickhouse.com/docs/en/engines/table-engines/mergetree-family/custom-partitioning-key
https://clickhouse.com/docs/en/engines/table-engines/mergetree-family/custom-partitioning-key
https://clickhouse.com/docs/en/engines/table-engines/mergetree-family/custom-partitioning-key
https://clickhouse.com/docs/en/engines/table-engines/mergetree-family/custom-partitioning-key
https://clickhouse.com/docs/en/engines/table-engines/mergetree-family/custom-partitioning-key
https://clickhouse.com/docs/en/engines/table-engines/mergetree-family/custom-partitioning-key
https://clickhouse.com/docs/en/engines/table-engines/mergetree-family/custom-partitioning-key
https://clickhouse.com/docs/en/engines/table-engines/mergetree-family/custom-partitioning-key
https://docs.starrocks.io/docs/table_design/dynamic_partitioning
https://docs.starrocks.io/docs/table_design/dynamic_partitioning
https://docs.starrocks.io/docs/table_design/dynamic_partitioning
https://docs.starrocks.io/docs/table_design/dynamic_partitioning
https://docs.starrocks.io/docs/table_design/dynamic_partitioning
https://hudi.apache.org/docs/file_layouts
https://hudi.apache.org/docs/file_layouts
https://hudi.apache.org/docs/file_layouts
https://docs.oracle.com/en/cloud/paas/autonomous-database
https://docs.oracle.com/en/cloud/paas/autonomous-database
https://docs.oracle.com/en/cloud/paas/autonomous-database
https://docs.snowflake.com/en/user-guide/tables-auto-reclustering
https://docs.snowflake.com/en/user-guide/tables-auto-reclustering
https://docs.snowflake.com/en/user-guide/tables-auto-reclustering
https://docs.snowflake.com/en/user-guide/tables-auto-reclustering
https://docs.snowflake.com/en/user-guide/tables-auto-reclustering
https://docs.snowflake.com/en/user-guide/tables-auto-reclustering
https://docs.snowflake.com/en/user-guide/tables-auto-reclustering

tion and updates. The Oracle Autonomous Database

service is a resource-intensive and time-consuming op-

eration, invoked on-demand rather than running peri-

odically. Analyzing workload information, it automat-

ically identifies candidate partitioning tables and rec-

ommends partitions for optimal I/O reduction using

strategies: automatic interval, automatic list, and

hash. Snowflake creates micro-partitions via ZoneMap

indexes and column distribution histograms. Data is

organized in a natural order (unclustered state), then

clustered by selected keys to prevent cluster key val-

ue duplication across partitions (clustered state). As

new data arrives, the number of duplicate key values

across different partitions increases; each partition's

depth is quantified by the count of its overlapping

partitions. To preserve overall data order, Snowflake

prioritizes selecting micro-partitions with higher

depths and sorts and merges them independently.

Vertica and Greenplum are among the few prod-

ucts natively supporting VP creation for efficient par-

tition pruning. This is achieved by creating local col-

umn group projections on disk for partitioned tables

and evenly distributing projected data to partitions

via hashing. By storing related data together, Vertica

can more efficiently utilize system resources. Fine-

grained projection replicas make it easier to achieve

high availability and data recovery. Conversely, oth-

er products simulate VP by combining sharding and

views, an approach complicating table schema, sub-

table data consistency, and query planning, which

may lead to performance issues like overloaded shards

and increased partition maintenance costs.

7 Open Problems

In this section, we explore remaining challenges

and potential solutions in the current data partition-

ing community.

Partitioning for Non-Numeric Columns. Query ac-

cess patterns pertaining to non-numeric columns are

often ignored, which greatly limits the optimization

space of partitioning. A feasible solution to this dilem-

ma involves transforming non-numeric column data

into numeric data via data encoding. Date columns

can be transformed into numeric values through

timestamp functions, while enumeration columns are

dictionary-encoded based on their semantic or alpha-

betical order. For more complex column values, a trie-

based index tree[83] can be built, with a depth-first

traversal to derive encoding keys.

Block Allocation Within VP. Current research

adopts simple data-driven methods to allocate tuples

into blocks after obtaining column groups (CGs). Al-

though [53, 56] have considered load information,

they still encounter convergence or performance is-

sues. This inefficiency prevents the VP algorithm

from achieving its optimal potential, even when the

CG division is aligned with column access patterns. A

promising solution is to incorporate proven effective

query-driven HP algorithms like QdTree[14] into VP.

Reliability of Partition Updating. Monitoring ser-

vices frequently rely on recently collected query logs

to design new partitions; however, this method ne-

glects the similarity between future and historical

loads, making it challenging to estimate updated par-

titions' potential performance. While [34, 59, 82] have

tried to model special scenarios to calculate future

benefits of new partitions, these assumptions often

prove unrealistic. This issue presents significant opti-

mization potential in two aspects: firstly, improving

the prediction accuracy of future load for generating

better new partitions; and secondly, reducing the

number of problem assumptions.

Deep Learning Models for Cost Estimation. To

the best of our knowledge, no public, network-centric

cost model exists for partitioning. However, the learn-

ing and generalization capabilities of deep neural net-

works render them particularly suitable for such

tasks. The main challenge lies in collecting sufficient

training samples due to the high partition deploy-

ment cost and the vast partition solution space. A vi-

able solution entails compressing or trimming the so-

lution space by identifying factors influencing the

query plan. This could be achieved by using a pruned

branch bounding tree for candidate partitions and re-

moving the deployment and metric measurements of

cold data. Subsequently, query plans and execution

metrics for various partitions are collected to train an

RNN-stacked tree network.

8 Conclusions

In this paper, we modularized the partitioning

technique, emphasizing the significance of cluster and

storage environments in formulating an efficient parti-

tioning path. Our approach enhances the tracking of

partitioning progress and clarifies the considerations

necessary at each partitioning stage, ensuring opti-

mal designs. Before partitioning, it is crucial to align

cost models and partition types with specific environ-

mental characteristics. Furthermore, the intricate re-

364 J. Comput. Sci. & Technol., Mar. 2024, Vol.39, No.2

lationship between data migration plans during parti-

tion updates and cluster configuration underscores the

importance of a holistic approach. We also classified

partition generation strategies based on algorithm

types, distinguishing key features such as model con-

vergence and partition quality to aid in strategy selec-

tion. For future research, we would like to explore

feasible solutions for addressing existing key chal-

lenges including non-numeric column-based partition-

ing and the reliability of partition updating. We hope

our framework and findings could contribute to the

advancement of partitioning systems and provide

practical insights for DBAs in various environments.

Conflict of Interest The authors declare that

they have no conflict of interest.

References

 Melnik S, Gubarev A, Long J J et al. Dremel: A decade of

interactive SQL analysis at web scale. Proceedings of the

VLDB Endowment, 2020, 13(12): 3461–3472. DOI: 10.

14778/3415478.3415568.

[1]

 Bayer R, McCreight E. Organization and maintenance of

large ordered indices. In Proc. the 1970 ACM SIGFIDET

(Now SIGMOD) Workshop on Data Description, Access

and Control, Nov. 1970, pp.107–141. DOI: 10.1145/1734663.

1734671.

[2]

 Bentley J L. Multidimensional binary search trees used

for associative searching. Communications of the ACM,

1975, 18(9): 509–517. DOI: 10.1145/361002.361007.

[3]

 Guttman A. R-trees: A dynamic index structure for spa-

tial searching. In Proc. the 1984 ACM SIGMOD Interna-

tional Conference on Management of Data, Jun. 1984,

pp.47–57. DOI: 10.1145/602259.602266.

[4]

 Yuan H T, Li G L, Feng L, Sun J, Han Y. Automatic

view generation with deep learning and reinforcement

learning. In Proc. the 36th IEEE International Confer-

ence on Data Engineering, Apr. 2020, pp.1501–1512. DOI:

10.1109/ICDE48307.2020.00133.

[5]

 Han Y, Li G L, Yuan H T, Sun J. An autonomous mate-

rialized view management system with deep reinforce-

ment learning. In Proc. the 37th IEEE International Con-

ference on Data Engineering, Apr. 2021, pp.2159–2164.
DOI: 10.1109/ICDE51399.2021.00217.

[6]

 Zhang H, Chen G, Ooi B C, Tan K L, Zhang M H. In-

memory big data management and processing: A survey.

IEEE Trans. Knowledge and Data Engineering, 2015,

27(7): 1920–1948. DOI: 10.1109/TKDE.2015.2427795.

[7]

 Mahmud M S, Huang J Z, Salloum S et al. A survey of

data partitioning and sampling methods to support big

data analysis. Big Data Mining and Analytics, 2020, 3(2):

85–101. DOI: 10.26599/BDMA.2019.9020015.

[8]

 Sun L W, Franklin M J, Krishnan S, Xin R S. Fine-

grained partitioning for aggressive data skipping. In Proc.

the 2014 ACM SIGMOD International Conference on

[9]

Management of Data, Jun. 2014, pp.1115–1126. DOI: 10.

1145/2588555.2610515.

 Aly A M, Mahmood A R, Hassan M S, Aref W G, Ouz-

zani M, Elmeleegy H, Qadah T. AQWA: Adaptive query

workload aware partitioning of big spatial data. Proceed-

ings of the VLDB Endowment, 2015, 8(13): 2062–2073.
DOI: 10.14778/2831360.2831361.

[10]

 Aly A M, Elmeleegy H, Qi Y, Aref W. Kangaroo: Work-

load-aware processing of range data and range queries in

Hadoop. In Proc. the 9th ACM International Conference

on Web Search and Data Mining, Feb. 2016, pp.397–
406. DOI: 10.1145/2835776.2835841.

[11]

 Shanbhag A, Jindal A, Madden S, Quiane J, Elmore A J.

A robust partitioning scheme for ad-hoc query workloads.

In Proc. the 2017 Symposium on Cloud Computing, Sept.

2017, pp.229–241. DOI: 10.1145/3127479.3131613.

[12]

 Lu Y, Shanbhag A, Jindal A, Madden S. AdaptDB:

Adaptive partitioning for distributed joins. Proceedings of

the VLDB Endowment, 2017, 10(5): 589–600. DOI: 10.

14778/3055540.3055551.

[13]

 Yang Z H, Chandramouli B, Wang C et al. Qd-tree:

Learning data layouts for big data analytics. In Proc. the

2020 ACM SIGMOD International Conference on Man-

agement of Data, Jun. 2020, pp.193–208. DOI: 10.1145/

3318464.3389770.

[14]

 Ding J L, Minhas U F, Chandramouli B et al. Instance-

optimized data layouts for cloud analytics workloads. In

Proc. the 2021 International Conference on Management

of Data, Jun. 2021, pp.418–431. DOI: 10.1145/3448016.

3457270.

[15]

 Li Z, Yiu M L, Chan T N. PAW: Data partitioning meets

workload variance. In Proc. the 38th IEEE International

Conference on Data Engineering, May 2022, pp.123–135.
DOI: 10.1109/icde53745.2022.00014.

[16]

 Rao J, Zhang C, Megiddo N, Lohman G. Automating

physical database design in a parallel database. In Proc.

the 2002 ACM SIGMOD International Conference on

Management of Data, Jun. 2002, pp.558–569. DOI: 10.

1145/564691.564757.

[17]

 Agrawal S, Chu E, Narasayya V. Automatic physical de-

sign tuning: Workload as a sequence. In Proc. the 2006

ACM SIGMOD International Conference on Manage-

ment of Data, Jun. 2006, pp.683–694. DOI: 10.1145/

1142473.1142549.

[18]

 Eadon G, Chong E I, Shankar S, Raghavan A, Srini-

vasan J, Das S. Supporting table partitioning by refer-

ence in oracle. In Proc. the 2008 ACM SIGMOD Interna-

tional Conference on Management of Data, Jun. 2008,

pp.1111–1122. DOI: 10.1145/1376616.1376727.

[19]

 Hauglid J O, Ryeng N H, Nørvåg K. DYFRAM: Dynam-

ic fragmentation and replica management in distributed

database systems. Distributed and Parallel Databases,

2010, 28(2): 157–185. DOI: 10.1007/s10619-010-7068-1.

[20]

 Curino C, Jones E, Zhang Y, Madden S. Schism: A work-

load-driven approach to database replication and parti-

tioning. Proceedings of the VLDB Endowment, 2010,

3(1/2): 48–57. DOI: 10.14778/1920841.1920853.

[21]

 Nehme R, Bruno N. Automated partitioning design in

parallel database systems. In Proc. the 2011 ACM SIG-

[22]

Peng-Ju Liu et al.: Enhancing Storage Efficiency and Performance: Survey of Data Partitioning Techniques 365

https://doi.org/10.14778/3415478.3415568
https://doi.org/10.14778/3415478.3415568
https://doi.org/10.14778/3415478.3415568
https://doi.org/10.14778/3415478.3415568
https://doi.org/10.1145/1734663.1734671
https://doi.org/10.1145/1734663.1734671
https://doi.org/10.1145/361002.361007
https://doi.org/10.1145/602259.602266
https://doi.org/10.1109/ICDE48307.2020.00133
https://doi.org/10.1109/ICDE51399.2021.00217
https://doi.org/10.1109/TKDE.2015.2427795
https://doi.org/10.26599/BDMA.2019.9020015
https://doi.org/10.1145/2588555.2610515
https://doi.org/10.1145/2588555.2610515
https://doi.org/10.14778/2831360.2831361
https://doi.org/10.1145/2835776.2835841
https://doi.org/10.1145/3127479.3131613
https://doi.org/10.14778/3055540.3055551
https://doi.org/10.14778/3055540.3055551
https://doi.org/10.1145/3318464.3389770
https://doi.org/10.1145/3318464.3389770
https://doi.org/10.1145/3448016.3457270
https://doi.org/10.1145/3448016.3457270
https://doi.org/10.1109/icde53745.2022.00014
https://doi.org/10.1145/564691.564757
https://doi.org/10.1145/564691.564757
https://doi.org/10.1145/1142473.1142549
https://doi.org/10.1145/1142473.1142549
https://doi.org/10.1145/1376616.1376727
https://doi.org/10.1007/s10619-010-7068-1
https://doi.org/10.1007/s10619-010-7068-1
https://doi.org/10.1007/s10619-010-7068-1
https://doi.org/10.1007/s10619-010-7068-1
https://doi.org/10.1007/s10619-010-7068-1
https://doi.org/10.1007/s10619-010-7068-1
https://doi.org/10.1007/s10619-010-7068-1
https://doi.org/10.14778/1920841.1920853

MOD International Conference on Management of Data,

Jun. 2011, pp.1137–1148. DOI: 10.1145/1989323.1989444.

 Pavlo A, Curino C, Zdonik S. Skew-aware automatic

database partitioning in shared-nothing, parallel OLTP

systems. In Proc. the 2012 ACM SIGMOD International

Conference on Management of Data, May 2012, pp.61–72.
DOI: 10.1145/2213836.2213844.

[23]

 Liroz-Gistau M, Akbarinia R, Pacitti E et al. Dynamic

workload-based partitioning algorithms for continuously

growing databases. In Transactions on Large-Scale Data-

and Knowledge-Centered Systems XII, Hameurlain A,

Küng J, Wagner R (eds.), Springer, 2013, pp.105–128.

DOI: 10.1007/978-3-642-45315-1_5.

[24]

 Quamar A, Kumar K A, Deshpande A. 2013. SWORD:

Scalable workload-aware data placement for transaction-

al workloads. In Proc. the 16th International Conference

on Extending Database Technology, Mar. 2013, pp.430–
441. DOI: 10.1145/2452376.2452427.

[25]

 Taft R, Mansour E, Serafini M, Duggan J, Elmore A J,

Aboulnaga A, Pavlo A, Stonebraker M. E-store: Fine-

grained elastic partitioning for distributed transaction

processing systems. Proceedings of the VLDB Endow-

ment, 2014, 8(3): 245–256. DOI: 10.14778/2735508.2735514.

[26]

 Chen K J, Zhou Y L, Cao Y. Online data partitioning in

distributed database systems. In Proc. the 18th Interna-

tional Conference on Extending Database Technology,

Mar. 2015, pp.1–12. DOI: 10.5441/002/edbt.2015.02.

[27]

 Zamanian E, Binnig C, Salama A. Locality-aware parti-

tioning in parallel database systems. In Proc. the 2015

ACM SIGMOD International Conference on Manage-

ment of Data, May 2015, pp.17–30. DOI: 10.1145/2723372.

2723718.

[28]

 Fetai I, Murezzan D, Schuldt H. Workload-driven adap-

tive data partitioning and distribution—The Cumulus ap-

proach. In Proc. the 2015 IEEE International Conference

on Big Data, Oct. 29–Nov. 1, 2015, pp.1688–1697. DOI:

10.1109/BigData.2015.7363940.

[29]

 Serafini M, Taft R, Elmore A J et al. Clay: Fine-grained

adaptive partitioning for general database schemas. Pro-

ceedings of the VLDB Endowment, 2016, 10(4): 445–456.

DOI: 10.14778/3025111.3025125.

[30]

 Marcus R, Papaemmanouil O, Semenova S, Garber S.

NashDB: An end-to-end economic method for elastic

database fragmentation, replication, and provisioning. In

Proc. the 2018 International Conference on Management

of Data, May 2018, pp.1253–1267. DOI: 10.1145/3183713.

3196935.

[31]

 Nam Y M, Kim M S, Han D. A graph-based database

partitioning method for parallel OLAP query processing.

In Proc. the 34th IEEE International Conference on Data

Engineering, Apr. 2018, pp.1025–1036. DOI: 10.1109/ICDE.

2018.00096.

[32]

 Parchas P, Naamad Y, Van Bouwel P, Faloutsos C,

Petropoulos M. Fast and effective distribution-key recom-

mendation for amazon redshift. Proceedings of the VLDB

Endowment, 2020, 13(12): 2411–2423. DOI: 10.14778/3407

790.3407834.

[33]

 Hilprecht B, Binnig C, Röhm U. Learning a partitioning

advisor for cloud databases. In Proc. the 2020 ACM SIG-

[34]

MOD International Conference on Management of Data,

Jun. 2020, pp.143–157. DOI: 10.1145/3318464.3389704.

 Brendle M, Weber N, Valiyev M, May N, Schulze R,

Böhm A, Moerkotte G, Grossniklaus M. SAHARA: Mem-

ory footprint reduction of cloud databases with automat-

ed table partitioning. In Proc. the 25th International Con-

ference on Extending Database Technology, Mar. 29–Apr.

1, 2022. DOI: 10.5441/002/edbt.2022.02.

[35]

 Agrawal R, Srikant R. Fast algorithms for mining associa-

tion rules in large databases. In Proc. the 20th Interna-

tional Conference on Very Large Data Bases, Sept. 1994,

pp.487–499.

[36]

 Ward J H Jr. Hierarchical grouping to optimize an objec-

tive function. Journal of the American Statistical Associa-

tion, 1963, 58(301): 236–244. DOI: 10.1080/01621459.1963.

10500845.

[37]

 Roussopoulos N, Kelley S, Vincent F. Nearest neighbor

queries. In Proc. the 1995 ACM SIGMOD International

Conference on Management of Data, May 1995, pp.71–79.
DOI: 10.1145/223784.223794.

[38]

 Sacca D, Wiederhold G. Database partitioning in a clus-

ter of processors. ACM Trans. Database Systems, 1985,

10(1): 29–56. DOI: 10.1145/3148.3161.

[39]

 Copeland G, Alexander W, Boughter E, Keller T. Data

placement in Bubba. In Proc. the 1988 ACM SIGMOD

International Conference on Management of Data, Jun.

1988, pp.99–108. DOI: 10.1145/50202.50213.

[40]

 Stöhr T, Märtens H, Rahm E. Multi-dimensional database

allocation for parallel data warehouses. In Proc. the 26th

International Conference on Very Large Data Bases, Sept.

2000, pp.273–284.

[41]

 Bruno N, Chaudhuri S. An online approach to physical

design tuning. In Proc. the 23rd IEEE International Con-

ference on Data Engineering, Apr. 2007, pp.826–835. DOI:

10.1109/ICDE.2007.367928.

[42]

 Garcia-Alvarado C, Raghavan V, Narayanan S, Waas F

M. Automatic data placement in MPP databases. In

Proc. the IEEE 28th International Conference on Data

Engineering Workshops, Apr. 2012, pp.322–327. DOI: 10.

1109/ICDEW.2012.45.

[43]

 Karypis G, Kumar V. METIS: A software package for

partitioning unstructured graphs, partitioning meshes,

and computing fill-reducing orderings of sparse matrices.

Technical Report, TR 97-061, Univeristy of Minnesota,

1997. https://hdl.handle.net/11299/215346, Mar. 2024.

[44]

 Kuhn H W. The Hungarian method for the assignment

problem. In 50 Years of Integer Programming 1958-2008,

Jünger M, Liebling T M, Naddef D, Nemhauser G L, Pul-

leyblank W R, Reinelt G, Rinaldi G, Wolsey L A (eds.),

Springer, 2010, pp.29–47. DOI: 10.1007/978-3-540-68279-

0_2.

[45]

 Costa E, Costa C, Santos M Y. Evaluating partitioning

and bucketing strategies for hive-based big data ware-

housing systems. Journal of Big Data, 2019, 6(1): 34.

DOI: 10.1186/s40537-019-0196-1.

[46]

 Mnih V, Kavukcuoglu K, Silver D, Graves A, Antonoglou

I, Wierstra D, Riedmiller M. Playing Atari with deep re-

inforcement learning. arXiv: 1312.5602, 2013. https://arx-

iv.org/abs/1312.5602, Mar. 2024.

[47]

366 J. Comput. Sci. & Technol., Mar. 2024, Vol.39, No.2

https://doi.org/10.1145/1989323.1989444
https://doi.org/10.1145/2213836.2213844
https://doi.org/10.1007/978-3-642-45315-1_5
https://doi.org/10.1007/978-3-642-45315-1_5
https://doi.org/10.1007/978-3-642-45315-1_5
https://doi.org/10.1007/978-3-642-45315-1_5
https://doi.org/10.1007/978-3-642-45315-1_5
https://doi.org/10.1007/978-3-642-45315-1_5
https://doi.org/10.1007/978-3-642-45315-1_5
https://doi.org/10.1007/978-3-642-45315-1_5
https://doi.org/10.1007/978-3-642-45315-1_5
https://doi.org/10.1007/978-3-642-45315-1_5
https://doi.org/10.1007/978-3-642-45315-1_5
https://doi.org/10.1007/978-3-642-45315-1_5
https://doi.org/10.1145/2452376.2452427
https://doi.org/10.14778/2735508.2735514
https://doi.org/10.5441/002/edbt.2015.02
https://doi.org/10.1145/2723372.2723718
https://doi.org/10.1145/2723372.2723718
https://doi.org/10.1109/BigData.2015.7363940
https://doi.org/10.14778/3025111.3025125
https://doi.org/10.14778/3025111.3025125
https://doi.org/10.14778/3025111.3025125
https://doi.org/10.1145/3183713.3196935
https://doi.org/10.1145/3183713.3196935
https://doi.org/10.1109/ICDE.2018.00096
https://doi.org/10.1109/ICDE.2018.00096
https://doi.org/10.14778/3407790.3407834
https://doi.org/10.14778/3407790.3407834
https://doi.org/10.1145/3318464.3389704
https://doi.org/10.5441/002/edbt.2022.02
https://doi.org/10.1080/01621459.1963.10500845
https://doi.org/10.1080/01621459.1963.10500845
https://doi.org/10.1145/223784.223794
https://doi.org/10.1145/3148.3161
https://doi.org/10.1145/50202.50213
https://doi.org/10.1109/ICDE.2007.367928
https://doi.org/10.1109/ICDEW.2012.45
https://doi.org/10.1109/ICDEW.2012.45
https://hdl.handle.net/11299/215346
https://doi.org/10.1007/978-3-540-68279-0_2
https://doi.org/10.1007/978-3-540-68279-0_2
https://doi.org/10.1007/978-3-540-68279-0_2
https://doi.org/10.1007/978-3-540-68279-0_2
https://doi.org/10.1007/978-3-540-68279-0_2
https://doi.org/10.1007/978-3-540-68279-0_2
https://doi.org/10.1007/978-3-540-68279-0_2
https://doi.org/10.1007/978-3-540-68279-0_2
https://doi.org/10.1007/978-3-540-68279-0_2
https://doi.org/10.1007/978-3-540-68279-0_2
https://doi.org/10.1007/978-3-540-68279-0_2
https://doi.org/10.1186/s40537-019-0196-1
https://doi.org/10.1186/s40537-019-0196-1
https://doi.org/10.1186/s40537-019-0196-1
https://doi.org/10.1186/s40537-019-0196-1
https://doi.org/10.1186/s40537-019-0196-1
https://doi.org/10.1186/s40537-019-0196-1
https://doi.org/10.1186/s40537-019-0196-1
https://arxiv.org/abs/1312.5602
https://arxiv.org/abs/1312.5602
https://arxiv.org/abs/1312.5602

 Kallman R, Kimura H, Natkins J, Pavlo A, Rasin A,

Zdonik S, Jones E P C, Madden S, Stonebraker M, Zhang

Y, Hugg J, Abadi D J. H-store: A high-performance, dis-

tributed main memory transaction processing system.

Proceedings of the VLDB Endowment, 2008, 1(2): 1496–
1499. DOI: 10.14778/1454159.1454211.

[48]

 Hoffer J A, Severance D G. The use of cluster analysis in

physical data base design. In Proc. the 1st International

Conference on Very Large Data Bases, Sept. 1975, pp.69–
86. DOI: 10.1145/1282480.1282486.

[49]

 Navathe S, Ceri S, Wiederhold G, Dou J L. Vertical par-

titioning algorithms for database design. ACM Trans.

Database Systems, 1984, 9(4): 680–710. DOI: 10.1145/

1994.2209.

[50]

 Navathe S B, Ra M. Vertical partitioning for database de-

sign: A graphical algorithm. ACM SIGMOD Record,

1989, 18(2): 440–450. DOI: 10.1145/66926.66966.

[51]

 Chu W W, Ieong I T. A transaction-based approach to

vertical partitioning for relational database systems. IEEE

Trans. Software Engineering, 1993, 19(8): 804–812. DOI:

10.1109/32.238583.

[52]

 Ng V, Law D M, Gorla N, Chan C K. Applying genetic

algorithms in database partitioning. In Proc. the 2003

ACM Symposium on Applied Computing, Mar. 2003,

pp.544–549. DOI: 10.1145/952532.952639.

[53]

 Hankins R A, Patel J M. Data morphing: An adaptive,

cache-conscious storage technique. In Proceedings 2003

VLDB Conference, Freytag J C, Lockemann P, Abite-

boul S, Carey M, Selinger P, Heuer A (eds.), Elsevier,

2003, pp.417–428. DOI: 10.1016/B978-012722442-8/50044-

6.

[54]

 Papadomanolakis S, Ailamaki A. AutoPart: Automating

schema design for large scientific databases using data

partitioning. In Proc. the 16th International Conference

on Scientific and Statistical Database Management, Jun.

2004, pp.383–392. DOI: 10.1109/SSDM.2004.1311234.

[55]

 Agrawal S, Narasayya V, Yang B. Integrating vertical

and horizontal partitioning into automated physical

database design. In Proc. the 2004 ACM SIGMOD Inter-

national Conference on Management of Data, Jun. 2004,

pp.359–370. DOI: 10.1145/1007568.1007609.

[56]

 Gorla N, Betty P W Y. Vertical fragmentation in

databases using data-mining technique. International

Journal of Data Warehousing and Mining (IJDWM),

2008, 4(3): 35–53. DOI: 10.4018/jdwm.2008070103.

[57]

 Rodríguez L, Li X O. A support-based vertical partition-

ing method for database design. In Proc. the 8th Interna-

tional Conference on Electrical Engineering, Computing

Science and Automatic Control, Oct. 2011. DOI: 10.1109/

ICEEE.2011.6106682.

[58]

 Jindal A, Dittrich J. Relax and let the database do the

partitioning online. In Proc. the 5th International Work-

shop on Enabling Real-Time Business Intelligence, Sept.

2011, pp.65–80. DOI: 10.1007/978-3-642-33500-6_5.

[59]

 Li L Z, Gruenwald L. Self-managing online partitioner for

databases (SMOPD): A vertical database partitioning sys-

tem with a fully automatic online approach. In Proc. the

17th International Database Engineering & Applications

Symposium, Oct. 2013, pp.168–173. DOI: 10.1145/2513591.

[60]

2513649.

 Rodríguez L, Li X O, Cuevas-Rasgado A D, García-Lam-

ont F. DYVEP: An active database system with vertical

partitioning functionality. In Proc. the 10th IEEE Inter-

national Conference on Networking, Sensing and Control,

Apr. 2013, pp.457–462. DOI: 10.1109/ICNSC.2013.6548782.

[61]

 Li L Z, Gruenwald L. SMOPD-C: An autonomous verti-

cal partitioning technique for distributed databases on

cluster computers. In Proc. the 15th IEEE International

Conference on Information Reuse and Integration, Aug.

2014, pp.171–178. DOI: 10.1109/IRI.2014.7051887.

[62]

 Sun L W, Franklin M J, Wang J N, Wu E. Skipping-ori-

ented partitioning for columnar layouts. Proceedings of

the VLDB Endowment, 2016, 10(4): 421–432. DOI: 10.

14778/3025111.3025123.

[63]

 Huang Y F, Lai C J. Integrating frequent pattern cluster-

ing and branch-and-bound approaches for data partition-

ing. Information Sciences, 2016, 328: 288–301. DOI: 10.

1016/j.ins.2015.08.047.

[64]

 Rodríguez-Mazahua L, Alor-Hernández G, Li X O, Cer-

vantes J, López-Chau A. Active rule base development for

dynamic vertical partitioning of multimedia databases.

Journal of Intelligent Information Systems, 2017, 48(2):

421–451. DOI: 10.1007/s10844-016-0420-9.

[65]

 Durand G C, Pinnecke M, Piriyev R et al. GridForma-

tion: Towards self-driven online data partitioning using

reinforcement learning. In Proc. the 1st International

Workshop on Exploiting Artificial Intelligence Tech-

niques for Data Management, Jun. 2018, Article No. 1.

DOI: 10.1145/3211954.3211956.

[66]

 Durand G C, Piriyev R, Pinnecke M et al. Automated

vertical partitioning with deep reinforcement learning. In

New Trends in Databases and Information Systems,

Welzer T et al. (eds.), Springer, 2019, pp.126–134. DOI:

10.1007/978-3-030-30278-8_16.

[67]

 Liu P J, Li H Y, Wang T Y et al. Multi-stage method for

online vertical data partitioning based on spectral cluster-

ing. Journal of Software, 2023, 34(6): 2804–2832. DOI: 10.

13328/j.cnki.jos.006496.

[68]

 Grund M, Krüger J, Plattner H, Zeier A, Cudre-Mauroux

P, Madden S. HYRISE: A main memory hybrid storage

engine. Proceedings of the VLDB Endowment, 2010, 4(2):

105–116. DOI: 10.14778/1921071.1921077.

[69]

 Jindal A, Quiané-Ruiz J A, Dittrich J. Trojan data lay-

outs: Right shoes for a running elephant. In Proc. the 2nd

ACM Symposium on Cloud Computing, Oct. 2011, Arti-

cle No. 21. DOI: 10.1145/2038916.2038937.

[70]

 Gu X Y, Yang X F, Wang W P, Jin Y, Meng D. CHAC:

An effective attribute clustering algorithm for large-scale

data processing. In Proc. the 7th International Confer-

ence on Networking, Architecture, and Storage, Jun.

2012, pp.94–98. DOI: 10.1109/NAS.2012.16.

[71]

 Arulraj J, Pavlo A, Menon P. Bridging the archipelago

between row-stores and column-stores for hybrid work-

loads. In Proc. the 2016 International Conference on Man-

agement of Data, Jun. 2016, pp.583–598. DOI: 10.1145/

2882903.2915231.

[72]

 Athanassoulis M, Bøgh K S, Idreos S. Optimal column

layout for hybrid workloads. Proceedings of the VLDB

[73]

Peng-Ju Liu et al.: Enhancing Storage Efficiency and Performance: Survey of Data Partitioning Techniques 367

https://doi.org/10.14778/1454159.1454211
https://doi.org/10.1145/1282480.1282486
https://doi.org/10.1145/1994.2209
https://doi.org/10.1145/1994.2209
https://doi.org/10.1145/66926.66966
https://doi.org/10.1109/32.238583
https://doi.org/10.1145/952532.952639
https://doi.org/10.1016/B978-012722442-8/50044-6
https://doi.org/10.1016/B978-012722442-8/50044-6
https://doi.org/10.1016/B978-012722442-8/50044-6
https://doi.org/10.1016/B978-012722442-8/50044-6
https://doi.org/10.1016/B978-012722442-8/50044-6
https://doi.org/10.1016/B978-012722442-8/50044-6
https://doi.org/10.1016/B978-012722442-8/50044-6
https://doi.org/10.1109/SSDM.2004.1311234
https://doi.org/10.1145/1007568.1007609
https://doi.org/10.4018/jdwm.2008070103
https://doi.org/10.1109/ICEEE.2011.6106682
https://doi.org/10.1109/ICEEE.2011.6106682
https://doi.org/10.1007/978-3-642-33500-6_5
https://doi.org/10.1007/978-3-642-33500-6_5
https://doi.org/10.1007/978-3-642-33500-6_5
https://doi.org/10.1007/978-3-642-33500-6_5
https://doi.org/10.1007/978-3-642-33500-6_5
https://doi.org/10.1007/978-3-642-33500-6_5
https://doi.org/10.1007/978-3-642-33500-6_5
https://doi.org/10.1007/978-3-642-33500-6_5
https://doi.org/10.1007/978-3-642-33500-6_5
https://doi.org/10.1007/978-3-642-33500-6_5
https://doi.org/10.1007/978-3-642-33500-6_5
https://doi.org/10.1145/2513591.2513649
https://doi.org/10.1145/2513591.2513649
https://doi.org/10.1109/ICNSC.2013.6548782
https://doi.org/10.1109/IRI.2014.7051887
https://doi.org/10.14778/3025111.3025123
https://doi.org/10.14778/3025111.3025123
https://doi.org/10.1016/j.ins.2015.08.047
https://doi.org/10.1016/j.ins.2015.08.047
https://doi.org/10.1007/s10844-016-0420-9
https://doi.org/10.1007/s10844-016-0420-9
https://doi.org/10.1007/s10844-016-0420-9
https://doi.org/10.1007/s10844-016-0420-9
https://doi.org/10.1007/s10844-016-0420-9
https://doi.org/10.1007/s10844-016-0420-9
https://doi.org/10.1007/s10844-016-0420-9
https://doi.org/10.1145/3211954.3211956
https://doi.org/10.1007/978-3-030-30278-8_16
https://doi.org/10.1007/978-3-030-30278-8_16
https://doi.org/10.1007/978-3-030-30278-8_16
https://doi.org/10.1007/978-3-030-30278-8_16
https://doi.org/10.1007/978-3-030-30278-8_16
https://doi.org/10.1007/978-3-030-30278-8_16
https://doi.org/10.1007/978-3-030-30278-8_16
https://doi.org/10.1007/978-3-030-30278-8_16
https://doi.org/10.1007/978-3-030-30278-8_16
https://doi.org/10.1007/978-3-030-30278-8_16
https://doi.org/10.1007/978-3-030-30278-8_16
https://doi.org/10.13328/j.cnki.jos.006496
https://doi.org/10.13328/j.cnki.jos.006496
https://doi.org/10.13328/j.cnki.jos.006496
https://doi.org/10.13328/j.cnki.jos.006496
https://doi.org/10.14778/1921071.1921077
https://doi.org/10.1145/2038916.2038937
https://doi.org/10.1109/NAS.2012.16
https://doi.org/10.1145/2882903.2915231
https://doi.org/10.1145/2882903.2915231

Endowment, 2019, 12(13): 2393–2407. DOI: 10.14778/

3358701.3358707.

 McCormick W T, Schweitzer P J, White T W. Problem

decomposition and data reorganization by a clustering

technique. Operations Research, 1972, 20(5): 993–1009.
DOI: 10.1287/opre.20.5.993.

[74]

 Ailamaki A, DeWitt D J, Hill M D, Skounakis M. Weav-

ing relations for cache performance. In Proc. the 27th In-

ternational Conference on Very Large Data Bases, Sept.

2001, pp.169–180.

[75]

 Li L Z, Gruenwald L. Autonomous database partitioning

using data mining on single computers and cluster com-

puters. In Proc. the 16th International Database Engi-

neering & Applications Sysmposium, Aug. 2012, pp.32–41.
DOI: 10.1145/2351476.2351481.

[76]

 van Hasselt H, Guez A, Silver D. Deep reinforcement

learning with double Q-learning. In Proc. the 30th AAAI

Conference on Artificial Intelligence, Feb. 2016, pp.2094–
2100. DOI: 10.1609/aaai.v30i1.10295.

[77]

 Jindal A, Palatinus E, Pavlov V, Dittrich J. A compari-

son of knives for bread slicing. Proceedings of the VLDB

Endowment, 2013, 6(6): 361–372. DOI: 10.14778/2536336.

2536338.

[78]

 Al-Kateb M, Sinclair P, Au G, Ballinger C. Hybrid row-

column partitioning in Teradata®. Proceedings of the

VLDB Endowment, 2016, 9(13): 1353–1364. DOI: 10.14778/

3007263.3007273.

[79]

 Pinnecke M, Durand G C, Broneske D, Zoun R, Saake G.

GridTables: A One-Size-Fits-Most H2TAP data store.

Datenbank-Spektrum, 2020, 20(1): 43–56. DOI: 10.1007/

s13222-019-00330-x.

[80]

 Kang D H, Jiang R C, Blanas S. Jigsaw: A data storage

and query processing engine for irregular table partition-

ing. In Proc. the 2021 International Conference on Man-

agement of Data, Jun. 2021, pp.898–911. DOI: 10.1145/

3448016.3457547.

[81]

 Abebe M, Lazu H, Daudjee K. Proteus: Autonomous

adaptive storage for mixed workloads. In Proc. the 2022

International Conference on Management of Data, Jun.

2022, pp.700–714. DOI: 10.1145/3514221.3517834.

[82]

 Wang J Y, Chai C L, Liu J B, Li G L. FACE: A normal-

izing flow based cardinality estimator. Proceedings of the

VLDB Endowment, 2021, 15(1): 72–84. DOI: 10.14778/

3485450.3485458.

[83]

Peng-Ju Liu received his B.S. de-

gree in information management and

information system from Dalian Mar-

itime University, Dalian, in 2020. He

is currently pursuing his Ph.D. degree

at the School of Information, Renmin

University of China, Beijing. His re-

search interests include adaptable data partitioning,

load forecasting, and learning-based query optimization.

Cui-Ping Li is currently a profes-

sor at Renmin University of China,

Beijing. She received her Ph.D. de-

gree from Chinese Academy of Sci-

ences, Beijing, in 2003. Before that,

she received her B.S. and M.S. de-

grees from Xi'an Jiaotong University,

Xi'an, in 1994 and 1997, respectively. She received the

Second Prize of the National Award for Science and

Technology Progress in 2018. Her main research inter-

ests include social network analysis, social recommenda-

tion, and big data analysis.

Hong Chen is currently a professor

at Renmin University of China, Bei-

jing. She received her Ph.D. degree

from Chinese Academy of Sciences,

Beijing, in 2000. Before that, she re-

ceived her B.S. and M.S. degrees from

Renmin University of China, Beijing,

in 1986 and 1989, respectively. She received the Second

Prize of the National Award for Science and Technolo-

gy Progress in 2018. Her research interests include

database technology and high-performance computing.

368 J. Comput. Sci. & Technol., Mar. 2024, Vol.39, No.2

https://doi.org/10.14778/3358701.3358707
https://doi.org/10.14778/3358701.3358707
https://doi.org/10.1287/opre.20.5.993
https://doi.org/10.1145/2351476.2351481
https://doi.org/10.1609/aaai.v30i1.10295
https://doi.org/10.14778/2536336.2536338
https://doi.org/10.14778/2536336.2536338
https://doi.org/10.14778/3007263.3007273
https://doi.org/10.14778/3007263.3007273
https://doi.org/10.1007/s13222-019-00330-x
https://doi.org/10.1007/s13222-019-00330-x
https://doi.org/10.1007/s13222-019-00330-x
https://doi.org/10.1007/s13222-019-00330-x
https://doi.org/10.1007/s13222-019-00330-x
https://doi.org/10.1007/s13222-019-00330-x
https://doi.org/10.1007/s13222-019-00330-x
https://doi.org/10.1007/s13222-019-00330-x
https://doi.org/10.1145/3448016.3457547
https://doi.org/10.1145/3448016.3457547
https://doi.org/10.1145/3514221.3517834
https://doi.org/10.14778/3485450.3485458
https://doi.org/10.14778/3485450.3485458

	1 Introduction
	2 Data Partitioning Overview
	3 Horizontal Partitioning
	3.1 Formalization
	3.2 Feature Extraction
	3.3 Partitioning Process in Centralized Databases
	3.4 Partitioning Process in Distributed Databases
	3.4.1 Disk Storage Environment
	3.4.2 Distributed Partition Key Recommendation in Disk Storage Environments
	3.4.3 Main Memory Storage Environment

	3.5 Cost Estimation for Horizontal Partition Scheme
	3.5.1 Centralized Environment
	3.5.2 Distributed Environment

	3.6 Summary

	4 Vertical Partitioning
	4.1 Formalization
	4.2 Feature Extraction
	4.3 Partitioning Process in Centralized Databases
	4.4 Partitioning Process in Distributed Databases
	4.5 Cost Estimation for Vertical Partition Scheme
	4.5.1 Centralized Environment
	4.5.2 Distributed Environment

	4.6 Summary

	5 Irregular Partitioning
	5.1 Formalization
	5.2 Partitioning Process
	5.3 Summary

	6 Data Partitioning in Industry
	7 Open Problems
	8 Conclusions
	Conflict of Interest
	References

