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Abstract
achieved substantial and noteworthy results in the field of image colorization, video colorization presents more formidable

Video colorization aims to add color to grayscale or monochrome videos. Although existing methods have

obstacles due to the additional necessity for temporal consistency. Moreover, there is rarely a systematic review of video
colorization methods. In this paper, we aim to review existing state-of-the-art video colorization methods. In addition,
maintaining spatial-temporal consistency is pivotal to the process of video colorization. To gain deeper insight into the
evolution of existing methods in terms of spatial-temporal consistency, we further review video colorization methods from
a novel perspective. Video colorization methods can be categorized into four main categories: optical-flow based methods,
scribble-based methods, exemplar-based methods, and fully automatic methods. However, optical-flow based methods rely
heavily on accurate optical-flow estimation, scribble-based methods require extensive user interaction and modifications,
exemplar-based methods face challenges in obtaining suitable reference images, and fully automatic methods often strug-
gle to meet specific colorization requirements. We also discuss the existing challenges and highlight several future research
opportunities worth exploring.

Keywords video colorization, deep convolutional neural network, spatial-temporal consistency

1 Introduction restoring high-quality colorized videos remains a chal-

lenging problem.

Video colorization aims at adding color to black
and white (monochrome) videos, making them more
vivid and visually appealing. Due to technological
constraints, a large amount of existing videos, which
possess high historical value and carry profound hu-
man emotions, remain in black and white. Moreover,
the replication of these videos is infeasible due to the
considerable lapse of time. Therefore, the necessity for
colorizing these videos is increasingly significant.
However, video colorization is highly ill-posed and
usually struggles with spatial-temporal inconsisten-
cies, i.e., variations in the quality of individual frames
consecutive

and noticeable fluctuations between

frames. Although great progress has been made,

Video colorization methods can generally be cate-
gorized into four main categories: optical-flow based
methods, scribble-based methods,
methods, and fully automatic methods. Compared

exemplar-based

with image colorization methods, the simplest way for
video colorization is initially applying an image col-
orization technique, followed by post-processing en-
hancement to promote temporal consistency in
videos[!3l. These methods utilize optical flow to prop-
agate information between frames, thereby yielding
smooth results. However, optical-flow based methods
rely on the performance of employed image coloriza-
tion methods and the accuracy of estimated optical

flow, consequently constraining the performance of
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these methods. To achieve better each-frame perfor-
mance, several methods incorporate the propagation
of color information from a color reference frame or
sparse user scribbles throughout the entire videolt 21,
However, it is not easy to obtain a qualified reference
image which requires extensive user interaction and
revisions.

To avoid non-trivial human effort involved in ex-
emplar-based or scribble-based methods, fully auto-
matic video colorization methods[?234 have increas-
ingly gained popularity. These methods predominant-
ly rely on the potent expressive power and learning
capacity of deep convolutional neural networks. They
enrich color representation and offer an end-to-end
optimization approach. These methods can be trained
on large-scale datasets to learn complex color map-
ping relationships and can automate and refine the
colorization process without user interference. Fur-
thermore, the flexibility and applicability furnished by
deep learning based frameworks contribute to their
capability to handle a vast array of video content and
circumstances, thereby substantially enhancing the
quality of colorization.

Deep learning based methods greatly improve the
performance of video colorization, owing significantly
to their powerful representational capacity. In these
methods, how to enhance spatial-temporal consisten-
cy is of great significance. In terms of spatial informa-
tion, existing methodsl! 12, 16, 18, 19, 24, 26, 30, 33, 35] ygya]-
ly extract features by pre-trained models, such as
VGGEBY or ResNets37. Video colorization methods
that consider temporal consistency generally fall into
four categories: optical-flow based methods, recurrent
neural networks (RNNs) based methods, 3D convolu-
tion based methods, and bi-directional based meth-
ods. Optical-flow based methods aim to estimate the
similarities between consecutive or far-away frames by
utilizing calculated optical flow thus enforcing color
consistency for frames within a video. These methods
typically pay more attention to how to improve the
accuracy of estimated optical flow and alleviate the
influence of inaccurate flow, e.g., utilize a confidence
mask to lower the weights of uncertain flow[l3l. Dif-
ferent from optical-flow based methods that concen-
trate on detecting motion through pixel variations,
RNN-based methods are designed for general se-
quence learning, which can include various types of
temporal pattern recognition beyond motion. They
can handle variable-length sequence input by main-
taining a hidden state that effectively captures infor-
mation from previously seen elements in the
sequencell2 18,19, 23, 4] Qptical flow can be part of the
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input features for an RNN, enabling the network to
leverage detailed motion information for its task. 3D
convolution based methods apply 3D convolutions to
a stack of consecutive video frames to capture tempo-
ral consistency[l® 38, Bi-directional based methods
add reference images at the beginning and end of the
video, followed by propagating the color information
from these reference images to the intermediate
frames. These methods strive to amplify the spatial-
temporal consistency in generated videos. However,
they struggle to achieve an optimal balance between
model complexity and performance. Future work still
considers strengthening the performance of video col-
orization methods from a spatial-temporal perspec-
tive.

In this paper, we focus on recently published video
colorization methods. The aims of this paper are:

e to review the preliminaries for video coloriza-
tion, including problem definitions, choice of color
spaces, benchmark datasets for performance evalua-
tion, and video quality assessment;

e to discuss developments of video colorization
methods and provide a taxonomy for categorizing the
existing methods;

e to review video colorization methods from a new
perspective in terms of spatial-temporal consistency;

e to analyze the challenges of video colorization
and discuss research opportunities.

The rest of this paper is organized as follows. Sec-
tion 2 introduces problem setting and terminology for
video colorization. Section 3 summarizes various met-
rics for evaluating the quality of video colorization.
Section 4 lists commonly used datasets for video col-
orization. In Section 5, we introduce state-of-the-art
video colorization methods, which are further grouped
into four subcategories. In Section 6, we summarize
several strategies for maintaining spatial consistency
in videos. In Section 7, we evaluate the performances
of various video colorization methods. Section 8 dis-
cusses the loss functions used in video colorization
methods. Section 9 and Section 10 outline the main
challenges of video colorization and suggest possible
next steps in the field. In Section 11, we provide a
summary of this video colorization review.

2 Problem Setting and Terminology
2.1 Problem Definitions

Video colorization is a computer vision task that
aims to generate fully colorized videos from their gray-
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scale (monochrome) versions. Fig.1 shows a timeline
of representative methods for video colorization. Giv-
en the input grayscale video X, we first split it to N
grayscale frames as X = {x,}~ , where x, € R¥**">!
H x W denotes the spatial resolution, N is the num-
ber of frames of the input video. Our target is to
restore the colorized video Z = {z,},, where z, €
R#>*Wx3 To better restore the color videos based on
the input grayscale frames, the selection of color space
is critical in colorization tasks. It impacts color repre-
sentation, deep learning model performance, align-
ment with human color perception, and handling of
visual artifacts. The RGB, YUV, and CIELab color
spaces are the most commonly used standards in col-
orization. Fig.2(a) shows that there is a predominant
utilization of both the RGB and CIELab color spaces
in comparison with the adoption of the YUV color
space.
2.1.1 RGB Color Space

The RGB color space is an additive color model
leveraging the primary colors: red (R), green (G), and
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blue (B), to which human vision is particularly sensi-
tive. It is a crucial model in computer vision, graph-
ics, and digital media. A way to model the luminance
Y, (absolute amount of light emitted by an object per
unit area), which is close to human perception is:

Y, =0.298 9R + 0.587 0G + 0.114 0B.

Several video colorization methods(2 3: 6 24, 26, 30-32]
use RGB color space. They predict three channels R,
G, and B in the RGB color space. While the RGB
color space highlights the intensity of primary colors
to which human eyes are sensitive, exploring the dis-
tinct information contained within each individual
channel remains challenging. Additionally, the inter-
pretability of information in each channel of the RGB
color space is limited, thereby impeding the design of
more effective neural network models.

2.1.2 YUV Color Space

Besides the RGB color space, the YUV color
space is also widely used for video colorization. The
YUV color space is used primarily in video systems
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Fig.1. Timeline of video colorization methods. Different colors represent methods of different categories, as shown in the lower right.
The initial emergence is the scribble-based methods, which are subsequently followed by the popularity of optical-flow based meth-
ods and exemplar-based methods. After that, fully automatic methods began to appear.
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Fig.2. Statistical analysis of video methods, including (a) color space, (b) category, and (c) temporal enhancement.

and broadcasting. It is known for its separation of lu-
minance Y, from chrominance (color information, rep-
resented by U and V). The term YUV signifies these
three components. Note that Y, in YUV represents
luminance exclusively based on human perception,
whereas the luminance Y; in RGB is a composite
function of the three color channels and is not specifi-
cally tailored to human perception. Unlike RGB,
which directly denotes the intensities of Red, Green,
and Blue, YUV discloses color information in a way
that is more perceptually relevant and closer to how
humans perceive color. Y, component aligns with the
overall brightness seen by human eyes, while U and
V' summarize the color difference from gray at the
same luminance level.

Compared with RGB, YUYV is resilient to changes
in lighting conditions and beneficial for data compres-
sion. Deep learning based video colorization
methodsl* 1] use the YUV color space and achieve fa-
vorable performance. However, when employing this
color space for video colorization tasks, artifacts re-
main unpredictable.

2.1.3 CIELab Color Space

The CIELab color space is widely used in [1, 5,
7-10, 12-19, 21-23, 25, 2729, 31]. It is a color-oppo-
nent space with dimensions L for lightness and a*
and b* for the green-red and blue-yellow color compo-
nents respectively. The CIELab color space was devel-
oped by the International Commission on Ilumina-
tion® (CIE) to create a space that is more perceptual-

ly uniform than its counterparts, meaning that a giv-
en numerical change corresponds approximately to
the same perceived change in color.

Unlike the RGB color space, which provides an
additive color model based on how much red, green,
and blue light is emitted, the CIELab color space de-
scribes how a color appears to the human eye. It does
not rely on a specific device (like a monitor or print-
er) for interpretation and is, therefore, considered de-
vice-independent. This is a marked contrast from the
RGB model which can have substantial variation
across different devices due to their distinct color-en-
hancing methodologies.

Similarly, while the YUV color space separates lu-
minance (brightness) and chrominance (color informa-
tion) which is particularly useful for color television
broadcasting, it is not designed to align with the hu-
man perception of color. Hence CIELab, with its in-
tention to mimic the human perceptual experience of
color, offers a better understanding of color, particu-
larly beneficial for precise color manipulations and
color difference calculations.

3 Video Quality Assessment Metrics

For the purpose of assessing the quality of video
colorization in regard to subjective assessment, objec-
tive assessment, temporal consistency evaluation, col-
or diversity evaluation, color diversity evaluation, and
semantic interpretability evaluation, existing video
colorization methods employ a variety of evaluation
metrics. Here are several key measures.

Ohttp://cie.co.at, May 2024.
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3.1 Subjective Assessment

This typically involves human observers rating the
quality of colorized videos. It is considered the most
accurate way to measure colorization quality since hu-
man perception is the ultimate arbiter. However, it is
time-consuming.

3.2 Objective Assessment

This uses mathematical models and neural net-
work models to evaluate colorization quality against a
reference colorized version of the grayscale video.

Image Quality FEvaluations. The commonly used
metrics include: peak signal-to-noise ratio (PSNR),
mean squared error (MSE), root mean squared error
(RMSE), structural similarity index measurement
(SSIM)B9, Fréchet (FID)M“0],
learned perceptual image patch similarity (LPIPS)41]

inception distance

raw accuracy (RA)) and color consistency (CC)=20l.

Temporal Consistency Fvaluations. Temporal con-
sistency in the context of video colorization refers to
the stability of colorization results across consecutive
frames. In a colorized video, the colors of the same
object or scene must remain consistent throughout
the video sequence to avoid flickering or sudden color
changes that can disrupt the experience of viewers.
For temporal consistency, the warp error (F,,,,) pro-
posed in [1] is widely used in video colorization.

1 n ) ‘ ‘
—— > M|V =V,

M(i) i=1
; t

Ewarp (‘/ta ‘/t+l ) 3

Ewarp(‘/;a ‘/H»l) =

Ewar) = 7 1
T —1

t=1

where V, 41 represents the warped frame of V, ,; M,
denotes the non-occluded mask for the non-occluded
regions, with values of 0 or 1; t represents the time
step, and n represents the total number of pixels in a
frame.

However, E.,, does not correlate with video col-
or and can be significantly influenced by the perfor-
mance of the flow estimation models employed in its
measurement. Consequently, Liu et all23 proposed
the color distribution consistency (CDC) to measure
temporal consistency, which is specially devised for
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video colorization tasks. As F is unrelated to the

warp
colors of videos and is susceptible to the performance
of the flow estimation module, CDC which is specifi-
cally designed for video colorization tasks is em-
ployed to measure the temporal consistency of color
distributions. Specifically, CDC is a metric that can
estimate the Jensen-Shannon (JS) divergence of color

distributions between consecutive frames:

S SIS, ),

ce{R,G, B} i=1

1
R

where N represents the length of the video sequence,
t represents the time step, and P.(I’) represents the
normalized probability distribution of color image ¢
on channel ¢, which can be computed using the im-
age histogram.

Color Diversity Evaluation. To evaluate the vivid-
ness of generated videos, the colorfulness score
(CF)12 is employed in existing video colorization
methods to measure the color diversity. The CF can
be written as:

CF = O_rgyb(zt) + 0.3 x /,Lrgyb(zt),

where 0,,,(-) and pi,.,(-) represent the standard devi-
ation and the mean value of the pixel cloud in the
color plane, respectively, as explained in [42], and z,
is the output frame at time ¢.

Semantic Interpretability FEvaluation. To deter-
mine semantic interpretability, the measure of top-1
and top-5 accuracy is employed in existing video col-
orization methods based on a pre-trained VGG-16/[36],

4 Datasets for Video Colorization

For video colorization, colorization models need to
be trained and tested on high-quality datasets. These
datasets should contain a large number of video se-
quences with high resolution, good brightness and
contrast, consistent colors, and a wide range of scenes.
Multiple datasets are available for video colorization,
and each comes with its unique characteristics. The
datasets listed below fully meet the requirements for
video colorization and have been adopted by many
state-of-the-art methods[12, 13, 15, 18-20, 22-24],

Kinetics 600%. It is a large-scale, high-quality
dataset for human action recognition introduced by
Google DeepMind®. Despite the primary use case, its

@https:/ /github.com/cvdfoundation /kinetics-dataset, May 2024.

O@https://deepmind.google, May 2024.
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diverse and extensive collection of YouTube video
URLs can be used for video colorization tasks, provid-
ed the videos are converted to grayscale before col-
orization. It comprises a total of 480000 video clips,
divided into 600 categories. Each category in the
training dataset, the validation dataset, and the test
dataset includes about 390000, 50000, and 60000
video clips, respectively.

Vimeo-90K®. This dataset has a large variety of
videos that makes it suitable for the colorization
taskl43l. It contains 90 000 video clips from 39 000 dif-
ferent videos from Vimeo®, a website where users can
upload, share, and view videos. The Vimeo-90K uses
64 612 clips for training and 7 824 clips for testing.

ImageNet VID®. ImageNet VID is a large-scale
public dataset for video object detection and contains
more than 1 million frames for training and more
than 100 thousand frames for validation[44].

UCF101@. Tt is a dataset of realistic action videos
collected from YouTube, and it is highly versatile
because it comprises 101 action categories!sl. It con-
sists of 13 320 video clips, totaling 27 hours. Follow-
ing the most popular setting used in the UCF101
dataset, [46, 47] adopt three training/testing splits for
evaluation.

DAVIS®. The DAVIS (Densely Annotated Video
Segmentation) dataset consists of high-quality video
sequences and provides pixel-level annotations, main-
ly for video object segmentation tasks[*3%0, Nonethe-
less, its varied contents and detailed segmentation can
further facilitate video colorization research. During
training and testing, it employs 60 and 30 video clips,
respectively.

Videvo®. Videvo is an online platform that offers
free stock videos and motion graphics. Lai et al.ll
have gathered 100 high-quality videos from
Videvo.net® to constitute the Videvo dataset. Its vast
and diverse content can be utilized for training and
testing on video processing tasks, such as video col-
orization. The Videvo dataset comprises 80 videos for
training and 20 videos for testing.

J. Comput. Sci. & Technol., May 2024, Vol.39, No.3

YouTube-8MYP. This is a massive multi-genre
dataset containing links to YouTube videosPl. It pri-
marily focuses on the task of video understanding.
However, its large scale and variety make it suitable
for adapting to video colorization tasks. The
YouTube-8M dataset consists of 8 264 650 video clips,
which are divided into the training, validation, and
test set in a ratio of 70% : 20% : 10%.

ACT®. ACT (Actor-Action) is a large-scale video
dataset meticulously annotated for different facets, in-
cluding human actions, actors, and interactions. Made
up of 383 hours of soap opera videos, it contains over
75 000 unique clips of 430 actors performing over 15 000
categories of actions. For video colorization, the di-
verse and rich content in ACT provides a challenging
environment that tests the robustness and adaptabili-
ty of colorization algorithms to different scenes and
actor motions. It comprises a total of 3782 video
clips, with 3036 videos used for training and 746
videos used for testing.

MS-COCO®. MS-COCO (Microsoft Common Ob-
jects in Context) is a widely used dataset for object
detection, segmentation, and captioning studies. Al-
though it consists of static images, it can still be ben-
eficial for video colorization. MS-COCO contains a
vast selection of images with complex scenes, provid-
ing a rich variety of color textures that learning algo-
rithms can leverage while training to colorize videos.
In the 2014 version, it contains 164 062 images, divid-
ed into the training set (82783), the validation set
(40504), and the test set (40775). In the 2015 ver-
sion, there are 165 482 images used for training, 81 208
images used for validation and 81 434 images used for
testing. In the 2017 version, the training, validation,
and test sets consist of 118 287, 5000, and 40670 im-
ages, respectively.

Hollywood2®. The Hollywood2 dataset is a popu-
lar dataset used in video classification research but
can also contribute to video colorization tasks. In the
context of video colorization, its diversity provides a
challenging training environment due to the high de-

©@https://github.com/anchen1011/toflow, May 2024.
©https://github.com/vimeo, May 2024.
©https://image-net.org/challenges/LSVRC, May 2024.
@https://www.crev.ucf.edu/data/UCF101.php, May 2024.
©https://davischallenge.org, May 2024.

Ohttps://github.com/phoenix104104/fast_blind video consistency, May 2024.

Ohttps://www.videvo.net, May 2024.
®httpsz//research.google.com/youtubeSm, May 2024.

@https:/ /www.cs.cmu.edu/xiaclonw /actioncvpr.html, May 2024.
®https://www.di.ens.fr/laptev/actions/hollywood2, May 2024.
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gree of scene variety, actor appearance variation, and
dynamic lighting changes. The Hollywood2 dataset is
collected from 69 films, 33 of which are used for train-
ing and 36 for testing.

5  Classification of Video Colorization
Methods

We classify video colorization methods into four
categories: optical-flow based methods, scribble-based
methods, exemplar-based methods, and fully automat-
ic methods. In the following subsections, we discuss
representative methods of each category (see Table 1).
Fig.2(b) shows that exemplar-based methods account
for the majority.

5.1 Optical-Flow Based Methods

A critical challenge in video colorization is the
spatial-temporal consistency of video frames. The spa-
tial-temporal consistency effectively assesses the quali-
ty of a video colorization algorithm. Current methods
based on optical flow enhance spatial-temporal consis-
tency by accurately aligning features across consecu-
tive frames after effectively calculating location corre-
spondences between neighboring frames.

The simplest video colorization methods are to di-
rectly apply image colorization techniques on each
frame. However, these techniques often lead to flicker-
ing issues. To address this issue, Lei et alB3 intro-
duced a novel algorithm named Deep Video Prior
(DVP) to effectively propagate color information over
the video frames without relying on the computation
of similarity between adjacent pixels. The algorithm
is based on the fact that similar inputs will yield simi-
lar output results from convolutional neural networks
(CNNs) and the same object in different video frames
has similar appearances. In DVP, fully convolutional
networks are employed to simulate the original image
processing algorithm and maintain temporal consis-
tency in the video. The fully convolutional network
can be adjusted accordingly to adopt U-Net or other
suitable CNN architectures (e.g., FCNP2), based on
different tasks. Additionally, the method utilizes an
iterative weighted training strategy to address the is-
sue of multimodal inconsistency.

Similarly, Bonneel et al.l2l proposed a post-process-
ing method aiming to enhance the flickering colorized
frames obtained by applying the image colorization
method to each frame independently and generating
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temporally consistent video sequences. The core of the
method is exploring the temporal regularity from the
original grayscale video, and using it as a temporal
consistency guidance to stabilize the processed se-
quence. Notably, the method uses the frequency do-
main to propagate color. And the predicted frames
are compared with the original unprocessed video
frames by minimizing the least-squares energy. Exper-
iments show that this method improves temporal
smoothing and is able to produce high-quality results
on a wide variety of applications independently of
their inner workings.

Due to the robust performance of the optical-flow
techniques, some methods whose primary goal is not
colorization can still generate satisfactory colors. To
reduce the significant human labor costs of anima-
tion video production, the work by Siyao et al.[33 pri-
marily focuses on interpolating animation frames and
predicting the colors of the animated frames. This
method combines segmentation techniques, the recur-
rent flow refinement (RFR) network, and feature ex-
traction using the pre-trained VGG-19 network[30l.
The RFR network in this method draws inspiration
from the architecture of the Transformer model to
achieve recurrent refinement of optical flow. Addition-
ally, Laplacian filters are employed to extract the
edge contours of video frames, and the trapdball algo-
rithm[4 is utilized to fill these contours and generate
color patches. By using this combined technique, the
researchers can obtain intermediate animation frames
that have vivid color and clear details, providing an
enhanced visual sense.

Applying optical flow can achieve satisfactory col-
orization performance in some simple scenes. Howev-
er, when faced with scenarios involving large-scale
motion of objects, the issue of color bleeding remains.

5.2 Scribble-Based Methods

Due to the performance limitations of optical-flow
based video colorization methods, which are depen-
dent on the performance of image colorization and the
accuracy of flow estimation, researchers have adopt-
ed an approach combined with scribbles. Scribble-
based video colorization methods first introduce color
points into video frames and then propagate the col-
ors of these points to the corresponding target ob-
jects.

Scribble-based video colorization methods are the
earliest techniques employed in the field of coloriza-
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Table 1. Summarization of Representative Video Colorization Methods
Year Method Category Space  Backbone  Feature Loss Experimental Evaluation Venue
Propagation Function Dataset Metric
2009 Heu et al.l'V S YUV - - - “Funny Face” Visual ICIP
movie comparison
2009 Jacob and S RGB - - - “City Lights” Visual ICIP
Guptal¥ movie comparison
2013 Sheng et al.l? S YUV - - - Several videos Visual TCSVT
comparison
2015 Bonneel et al.? O RGB - - - Several videos Visual TOG
comparison
2015 Dogan et al.l% S RGB - - - Several videos Visual WICED
comparison
2015 Ben-Zrihem and E RGB — - - Several videos Visual CVPR
Zelnik-Manor!? comparison
2016 Xia et al.ll¥ RGB - - - Several videos PSNR ICIP
2017 Paul et al.l" S YUV - - - Several videos PSNR TCSVT
2017 Jampani et al.! YUV Bilateral Ly DAVIS PSNR CVPR
network
2018 Lai et al.l¥ O RGB - Recurrent CP, ST, LT DAVIS, Videvo Eyarp, Dpercoptual ECCV
2018 Vondrick et al.l'?] E CIELab ResNet-1857 3D CE Kinetics Visual ECCV
convolutions comparison
2018 Liu et al.[?? E CIELab CNN Bi-directional L, ACT, PSNR, RMSE ECCV
propagation MS-COCO
2018 Meyer et al.' E YUV  CNN Local and L1, Bearp DAVIS PSNR BMVC
global
propagation
2019 lizuka and E CIELab CNN 3D L, YouTube-8M PSNR ACM TOG
Simo-Serral!?! convolutions
2019 Zhang et al.ll? E CIELab VGG-198%  Recurrent L, PL, CT, DAVIS, PSNR, Top-1, CVPR
SL, Adv, TC Videvo, Top-5, FID, CF
Hollywood2
2019 Lei and Chenl?4 F RGB  VGG-1988  Recurrent SR, DL, TC DAVIS, Videvo PSNR, LPIPS CVPR
2019 Kouzouglidis F CIELab CNN 3D Ly, Adv Real films PSNR, RA, CC ISVC
et al.[5] convolutions
2019 Thasarathan F  RGB  VGG-198Y Recurrent TC, CL, Adv Anime, PSNR, SSIM, CRV
et al.l20) Dragonball FID
2020 Lei et al.l¥ O  CIELab CNN Deep video I DAVIS Byorps Fuata NIPS
prior
2020 Mahajan et al.l*"] F CIELab VGG-198%  Recurrent L, PL DAVIS PSNR, MSE MIDAS
2021 Liu et al.l?? F  CIELab CNN Bi-directional TC DAVIS, Videvo PSNR, CDC,  arXiv
propagation CF, Eyarp
2021 Liu et al.l0 E CIELab VGG-16B%  Recurrent PL, Adv, TC DAVIS, Videvo PSNR, LPIPS, ICIP
FID, Eyarp
2021 Zhang et al.[3’) F RGB  ResNetB  Recurrent L, PL Cartoon, films PSNR, SSIM ~ WACV
2022 Zhao et al.l27 F RGB  ResNetB”7  Recurrent L, PL, Adv, DAVIS, Videvo PSNR, SSIM, ACM TMM
ST, LT Eyarp
2022 Yang et al.ll7] E YUV CNN 3D L, DAVIS, Videvo PSNR, SSIM ICIGP
convolutions
2022 Yang et al.l'8] E CIELab VGG-198¢  Bi-directional L;, PL, CT, DAVIS, Videvo PSNR, SSIM,  arXiv
propagation SL, Adv, TC, LPIPS, CDC,
HL, EL FID, CF
2022 Wan et al.*] E CIELab VGG-19B%  Recurrent L, PL, Adv DAVIS, Videvo PSNR, SSIM, CVPR
LPIPS, Eyarp
2023 Jampour et al.?] F RGB GAN 3D Adv Several, Videos PSNR, SSIM,  JAIHC
convolutions RMSE, MAE,
FID

(to be continued)
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Table 1. Summarization of Representative Video Colorization Methods (Continued)
Year Method Category Space  Backbone  Feature Loss Experimental Evaluation Venue
Propagation Function Dataset Metric
2023 Shi et al. E RGB  VGG-198 3D L,, PL, Sty, Animation PSNR, SSIM, TVCG
convolutions Adv MSE, FID
2023 Zhao et al.2) S CIELab VGG-168P%  Recurrent Iy DAVIS, Videvo PSNR, SSIM  TIP

Note: CP, content perceptual loss!!l. ST, short-term temporal lossl!l. LT, long-term temporal lossl!l. CE, cross entropy loss. Dperceptuals

perceptual distance. CT, contextual loss!'2).

SL, smoothness loss!*2).

Adv, adversarial loss. TC, temporal consistency loss!'2. PL,

perceptual loss!'?. SR, self-regularization loss?¥. DL, diversity lossi?4. HL, hard example mining loss!'®. EL, edge-enhancing loss!'®l.

Sty, style loss(!

. Eywarp, temporal warping errorl?. Fy,., data ﬁdelity[3]. S, scribble-based method. O, optical-flow based method. E,

exemplar-based method. F, fully automated method. Top-1 and Top-5 denote the best top-1 and top-5 class accuracy, respectively.

«_»

tion. Early methods based on scribbles utilize tradi-
tional methods to achieve color propagation without
deep learning techniques such as the work by Levin
et alP and the work by Yatziv and Sapirol4. The
former relies on an assumption that neighboring pix-
els in space-time that have similar intensity may ex-
hibit similar colors. And it employs a quadratic cost
function to formulate an optimization problem which
can be solved by standard approaches. The latter is
based on the techniques of luminance-weighted
chrominance blending and fast intrinsic distance com-
putations. With fewer chrominance scribbles, the
method can rapidly achieve high-quality colorization,
significantly reducing both complexity and computa-
tional costs compared with previous techniques.

Given that the aforementioned methods rely on
traditional techniques rather than deep learning, their
spatial-temporal coherence in video colorization is not
satisfactory. Therefore, Heu et alllll proposed a
method to propagate the colors through the scribbles
from the initial frame in the video or an example im-
age in deep learning techniques. They employed a
block-matching technique to estimate the differences
between the last colorized frame and the current
frame, effectively preserving the spatial-temporal co-
herence of the video. However, this algorithm ex-
hibits several shortcomings. For instance, it requires
that the video frames and the scribble image have
similar brightness, potentially limiting its applicabili-
ty. Moreover, when dealing with long videos, occlud-
ed objects may cause noticeable color bleeding, thus
affecting the overall quality of video colorization. The
algorithm follows the following execution flow. Initial-
ly, users are required to paint corresponding colors on
the first frame of the grayscale video sequences. Sub-
sequently, it utilizes motion compensation prediction
to colorize the current frame using colors from the
previous frame. Then, it interpolates colors according
to adjacent pixels. This process iterates continuously
until all video frames are colorized.

means this item is not available or not indicated in its paper.

To overcome the color bleeding issue in the afore-
mentioned method during the color propagation pro-
cess, Sheng et all) proposed a method to maintain
temporal coherence by using optimization in the rota-
tion-aware Gabor feature space. The method clusters
video frames and applies the Gabor filter to optical
flow computation to achieve real-time color propaga-
tion within and between frames. Temporal coherence
is further enhanced through scribbles provided by
users in video frames. The main procedure of this
method is as follows: 1) establish rotation-aware Ga-
bor filters to identify texture features of the images,
2) divide the feature space generated by Gabor filters
into K-D tree subgraphs adaptively, 3) represent the
correspondence between different subgraphs through
the constructed Gabor flow, and 4) propagate the cor-
responding colors to the pixels of these subgraphs in
parallel.

Most previous scribble-based video colorization
methods are highly labor-intensive and suffer from in-
accurate scribble propagation. Dogan et all®l applied
semi-automatic permeability-guided filtering tech-
niques to expand the colors from the scribbles over
entire input frames. They consider the local features
of object boundaries to avoid color bleeding and the
utilization of global entropy helps maintain overall
image spatial consistency. In this approach, users are
initially required to manually provide scribbles for
some keyframes of the input video. Subsequently, an
automatic propagation method is applied to process
the scribbles and the input video, generating spa-
tiotemporally propagated scribble colors.

In the process of video colorization, the issue of
object occlusion often leads to color bleeding. There-
fore, Paul et al.") proposed a technique based on spa-
tiotemporal color propagation in the 3D volume to
address this problem. The approach proposed by Paul
et all® differs from other methods by employing a
steerable pyramid decomposition technique to propa-
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gate color without the need for bi-directional propaga-
tion. By employing spatial-temporal color propaga-
tion in the 3D space instead of using motion vector
computation, this approach helps to avoid the propa-
gation of inaccurate color caused by object occlusion
in intermediate frames, resulting in more accurate and
continuous color generation. In this algorithm(7, the
process of color propagation is as follows. Scribbles
are first added to the selected keyframes. Then, the
spatial-temporal features of the video are extracted by
a pyramid composed of filters. Finally, by incorporat-
ing spatial-temporal information from surrounding
pixels, this method can generate colorized videos
while preserving both temporal and spatial consisten-
cy.

In recent times, scribble-based video colorization
methods have become less attractive due to the re-
quirement of a significant amount of manual interven-
tion and human effort. Moreover, most scribbles pro-
vided cannot meet the need for accurate colorization
of details and edges of objects.

5.3 Exemplar-Based Methods

Although scribble-based video colorization meth-
ods provide users with personalized colorization opti-
ons, they are time-consuming due to the extensive man-
ual operations. To address this issue, researchers have
proposed exemplar-based video colorization methods.
Exemplar-based colorization methodsl® 12-19, 21, 22, 31]
have been highly praised in the field of video coloriza-
tion recently, in light of their distinct advantages in
colorization efficiency, color coherence, and color ac-
curacy compared with scribble-based methods. Its ba-
sic principle is to extract corresponding colors from
reference frames and transfer these colors to grayscale
video frames.

Considering the high cost of collecting large-scale
annotated datasets, Vondrick et al.['3] employed a self-
supervised approach to train their network, reducing
the need for human efforts. They proposed an exem-
plar-based colorization method, utilizing a visual
tracker network to transfer colors from reference
frames to the grayscale frames. Specifically, feature
representations of the example frames and grayscale
frames extracted by convolutional neural networks are
mapped in a shared feature space. Subsequently, a
similarity matrix is generated by calculating the simi-
larities between these features. In the similarity ma-
trix, each element represents the correspondence of
each feature element between the reference frame and
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the grayscale frame. This algorithm(!3! primarily em-
phasizes pixel-level similarities while paying less at-
tention to temporal consistency. Consequently, flick-
ering artifacts usually occur in the results.

In previous video colorization methods, the lack of
sufficient utilization of semantic information from the
scenes often leads to color artifacts during color prop-
agation, thereby affecting colorization quality. To ad-
dress this issue, a method proposed by Meyer et al.l14],
incorporating the global and local propagation of fea-
tures from reference frames to avoid spatial-temporal
degradation during the frame-by-frame propagation
process, has excellent colorization performance and
maintains color coherence effectively. Furthermore,
this method employs a softmax layer for feature inter-
polation, thereby expediting the convergence speed
during the training process and enhancing the robust-
ness of the model. Besides, this method also incorpo-
rates an object color preservation mechanism to bet-
ter colorize the occluded objects by retaining global
information in video frames.

Exemplar-based colorization methods often as-
sume the first frame is colorized and then propagate
its color to subsequent frames. However, this frame-
by-frame propagation may lead to the accumulation
of errors, affecting the colorization quality of subse-
quent frames. In the method developed by Zhang
et all12l, they did not use traditional convolutional
neural networks but employed recurrent neural net-
works (RNNs) to transfer colors from reference frames
to grayscale video frames. The main characteristic of
this method is the simultaneous utilization of the col-
ors from both the reference frame image and previous
frames to jointly guide the colorization of the current
frame. As a result, this method is capable of propa-
gating more accurate colors to each frame relieving
the the accumulation of color errors during propaga-
tion. Although this method achieves good coloriza-
tion results in some simple video scenes, there are still
occurrences of color bleeding when handling compli-
cated scenes.

Due to poor storage conditions, many old movies
have suffered severe damage. To restore the bril-
liance of these classic films, Tizuka and Simo-Serrall?]
applied attention mechanisms to video colorization
and their proposed algorithm notably demonstrates
the capability to restore the visual quality of old
films. To ensure good spatial-temporal consistency in
videos, this algorithm introduces spatial-temporal
convolutional layers and utilizes multiple reference
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images to guide the video colorization process. This
algorithm primarily consists of two sub-networks: the
visual enhancement network and the colorization net-
work. The visual enhancement network, based on the
U-Net architecture, is mainly employed for denoising
and deblurring video frames to enhance image visual
quality and recover details. The colorization network
utilizes an attention mechanism to explore semantic
correspondences between multiple example frames
and grayscale frames and then transfers the corre-
sponding colors to the entire grayscale frame based on
semantic information, generating accurate and spa-
tial-temporarily consistent colors.

Due to non-local semantic correspondences in ex-
isting methods, adverse effects such as color bleed-
ings between objects and color averaging have oc-
curred. To improve the colorization performance, Aki-
moto et al.[56] proposed a method focused on reducing
color bleeding. This method utilizes a self-attention
based network to assign the reference frame and the
previous frame to the same group. Additionally, this
method uses generated semantic masks of objects in
each frame to guide the colorization process for con-
sistent color propagation. This method primarily com-
prises three components: the estimation process of
spatial-temporal correspondence between the refer-
ence frame and the target frame, the color transfer
process, and the color refinement process utilizing in-
formation from adjacent frames.

In previous exemplar-based colorization methods,
using a single reference image often fails to cover all
objects in the video clip, leading to color transfer er-
rors from the reference image to the frames to be col-
orized. Therefore, Yang et all'8] proposed a bi-direc-
tional semantic feature fusion scheme, introducing
two example frames at the beginning and end of each
frame sequence. In this method, a semantic sub-net-
work is initially employed to obtain a pair of seman-
tic correspondences between the input grayscale frame
and the two exemplars. Then the bi-directional se-
mantic correspondences are combined to warp the col-
ors from exemplars based on the temporal clues. Fi-
nally, edge detection and semantic segmentation in-
formation as guidance information is inputted togeth-
er with wrapped colors into the colorization sub-net-
work to generate more accurate colors.

In these methods mentioned above, the selection
of reference images largely impacts the quality of col-
orization. As a result, searching suitable reference im-
ages for real-world grayscale videos from the Internet
is challenging to users, even with the assistance of au-
tomatic search systems.
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5.4  Fully Automatic Methods

Due to the guidance of reference images, exem-
plar-based colorization methods can achieve relative-
ly good colorization results. However, acquiring suit-
able reference images is challenging which limits its
applicability. Therefore, to reduce the complicated
work of obtaining suitable references, fully automatic
video colorization methods are becoming increasingly
popular. Fully automatic video colorization methods
ailm at automatically transforming grayscale videos
into color videos without relying on any colorized ex-
ample image or scribble hint during the inference pro-
cess.

However, it is noted that fully automatic coloriza-
tion typically involves a frame-by-frame prediction
process, which may lead to temporal inconsistencies.
This is because there is a lack of explicit color refer-
ences for each frame in the video, resulting in color
changes of the same object in different frames. In the
following discussion, we explore the implementation of
various methods and analyze the potential advan-
tages and drawbacks of these methods.

To address the issue of automatic video coloriza-
tion without annotated data and user guidance, Lei
and Chenl?¥ proposed to employ k-nearest neighbors
(KNN) to search for pixel-pair similarity in the fea-
ture space. It introduces a time loss function to con-
strain temporal consistency. Although video coloriza-
tion is a multi-modality problem, the method propos-
es the diversity perceptual loss to generate multiple
colorized videos to differentiate multiple colorization
modes. In [24], a two-stage network structure is em-
ployed, where both networks F' and G are based on
the U-Net architecture. The network F' is used to
convert grayscale video frames into coarse coloriza-
tion results, which are then passed to the network G
to obtain finer colorization results. Additionally, it
employs VGG-19B6 and PWC-Netl57 for feature ex-
traction from input images and optical flow computa-
tion, respectively.

In previous fully automatic video colorization
methods, there are severe flickering artifacts and sub-
optimal colorization effects. Therefore, Liu et al[23]
proposed a method that utilizes inter-frame informa-
tion leveraged by optical flow and then propagates
the colors from two anchor frames to intermediate
frames by bi-directional propagation. The optical flow
between adjacent frames is estimated by the
FlowNet2 networkl®8! and then utilized to align inter-
frame features. By leveraging optical flow techniques,
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color information from the first frame x; and the last
frame xy is propagated to the intermediate frames
{25
ground-truth color video, the method also introduces
a self-regularized learning scheme to minimize differ-
ences of predictions at different time steps to learn
temporal consistency, thereby free from the influence
of training or testing data. Similar to image-based col-
orization models, this network also consists of a fea-

Without employing any loss with the

ture extraction module and a color mapping module.
The feature extraction module is initially used to ex-
tract features from the anchor frames. Subsequently,
information is propagated frame by frame in both for-
ward and backward directions, and the relevant deep
features are then fed into the color mapping module
to predict the chromatic channels of grayscale frames.
Additionally, to integrate the features propagated in
both directions, this method employs a feature fusion
module.

To address the two main challenges commonly
found in previous video colorization methods: tempo-
ral consistency and the integration of the colorization
network with the refinement network, some strate-
gies have been proposed by researchers. Zhao et al.[27]
proposed an end-to-end hybrid-recurrent network
based on a generative adversarial network (GAN), in-
troducing a dense long-term loss to minimize tempo-
ral differences between frames over an extended peri-
od. GAN-based methods can suffer from challenges in
dealing with the ill-posed colorization problem due to
the limited representation space of GANs. In this
method, the generator mainly consists of three com-
ponents: a global feature extractor, a placeholder fea-
ture extractor, and an encoder-decoder. The global
feature extractor is responsible for encoding the glob-
al semantics of grayscale frames, and the placeholder
feature extractor encodes the semantics of previous
color frames. The encoder-decoder utilizes the U-Net
architecture to colorize grayscale frames. Both the
global feature extractor and the placeholder feature
extractor employ a fully convolutional ResNet-50-IN
networkB7l, while the discriminator adopts a Patch-
GAN architecturel9.

Automatic colorization methods are effective to
some extent, but they also have some drawbacks.
There are relatively definite colors for objects such as
flags, clothes, and buildings in practical colorization
tasks with specific era backgrounds or artistic styles.
The automatic colorization methods often struggle to
meet these requirements.
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6 Categorization from Novel Perspective

How to maintain spatial-temporal consistency is
vital for video colorization. To better understand the
development of existing methods in terms of spatial-
temporal consistency, we review video colorization
methods from a novel perspective.

6.1 Spatial Consistency

During the process of video colorization, there are
numerous factors that influence spatial consistency in
videos. Below are listed several strategies aiming at
preserving the spatial consistency of videos.

6.1.1 Feature Extraction Models

In the task of video colorization, feature extrac-
tion models are capable of learning spatial features
(such as object shapes and textures) and temporal
features (such as motion information and dynamic
changes) present within the video. These features
serve as valuable assistance to the colorization model,
aiding it in better understanding the content of the
video and its color distribution. Moreover, feature ex-
traction models also help reduce the complexity and
redundancy of original data, thereby enhancing the ef-
ficiency of the video colorization model.

VGG-Based. These methodsli2 16, 18, 19, 24, 26, 30]
utilize the feature representation capabilities of the
VGG networks30 for visual data. Zhang et al.lZl em-
ployed a pre-trained VGG-19B06 to extract features
from both the input video frames and the reference
frames to compute the similarity between them. Lei
and Chen?4 augmented the input to the network by
adding hyper-column features extracted from the
VGG-19 network[30],

ResNet-Based. These methods employ residual
networks (ResNetsB7) which use deeper layers and
skip connections, giving the network the ability to
capture and represent complex featuresl!: 27 33, Zhang
et al133 opted for the more efficient ResNet-5087 to
gain better features in their study. Zhao et al.2”) have
used pre-trained ResNet-50-INB7 as a feature extrac-
tor to provide semantics for the network to identify
colors for objects with similar edges.

Other Networks. In addition to the above meth-
ods, the utilization of features derived from large-scale
pre-trained visual models[%) is gaining increasing pop-
ularity. These models can effectively model non-local
and semantic information and are robust in handling
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complex scenarios. These attributes underscore their
potential significantly to revolutionize the landscape
of video colorization techniques.

6.1.2 Spatial Color Consistency

In addition to choosing different feature extrac-
tion networks, spatial relationships between neighbor-
ing pixels are often considered to ensure spatial color
consistency. For example, Lei and Chen24 employed a
self-regularization loss, which performs the ENN on
both the predicted frame and the ground-truth frame
during training to make sure that the pixels in the
predicted frame at the same spatial locations as the
ENN pixels in the ground truth frame have similar
colors.

6.1.3 Prior Knowledge

Methods based on prior knowledge can help main-
tain the spatial consistency of videos. For instance, in
[12, 15, 18] semantic information and color distribu-
tion features from reference frames are utilized to pro-
vide prior knowledge.

6.1.4 Edge Information

The edge information between objects is crucial
for maintaining spatial consistency during the color-
ing process. Neglecting edge information may lead to
color bleeding. For example, [18] effectively alleviates
color bleeding by utilizing edge loss.

6.2 Temporal Consistency

Temporal consistency is of vital importance in
video colorization tasks for several reasons: provides
visual coherence in the perceived flow of frames, en-
sures contextual relevance of added color information
across frames, enhances realism by mimicking the
consistent color behavior of real-world videos, and
contributes to narrative continuity that may be influ-
enced by color. Fig.2(c) shows that recurrent-based
methods dominate most methods.

3D Convolutional Networks. These types of net-
worksll3, 15, 17, 25, 29, 31] djrectly handle time series data
and capture temporal continuity in videos. lizuka and
Simo-Serrall® employed 3D convolutions to manage
multiple input frames and reference images concur-
rently, thereby enhancing spatial-temporal consisten-

499

cy. Shi et alBU proposed a temporal refinement net-
work to learn spatial-temporal features through 3D
convolutions to ensure the temporal color consistency
of the results. 3D convolutions can process temporal
sequences, inherently capturing spatial-temporal de-
pendencies. This allows for coherent color transitions
across video frames. In addition, by analyzing the
time dimension, these networks can decode context
better, leading to more accurate colorization choices,
especially in dynamic scenes. Besides, 3D convolution-
al networks can automatically learn discriminative
features for colorization without manual intervention,
simplifying the pre-processing stage. However, there
are several drawbacks of 3D convolutional networks.
The complexity of 3D convolution operations leads to
increased computational requirements and processing
time. Moreover, 3D convolutional networks typically
require more memory due to their consideration of an
additional dimension.

Optical Flow Estimation. Optical-flow based algo-
rithms( 3] calculate motion between pixels or features,
used to maintain color consistency between continu-
ous video frames. Optical flow estimation is good at
understanding and interpreting object motion be-
tween sequential video frames. This can significantly
aid in predicting the colorization attributes of mov-
ing objects, leading to more accurate and visually
consistent results. In addition, optical flow estima-
tion can promote spatial coherence in the video re-
sulting in a smoother transition of colors between the
frames. Despite the numerous advantages, optical
flow estimation algorithms expose a sensitivity to dis-
turbance and abrupt changes in illumination, which
may precipitate imprecise flow estimations conse-
quently causing colorization inaccuracies. And large
displacements between frames can be challenging for
optical flow estimation techniques to handle, which
can influence the color consistency across frames.

Recurrent Neural Networks. Recurrent neural net-
works (RNNS)[L 12, 16, 19, 20, 24, 26, 27, 30, 33] gnd its vari-
ants (like LSTMYU or GRUI?) can handle sequence
data, establishing temporal dependencies between
video frames for consistency. Zhang et al.ll2l took the
result of the previous frame as input to preserve tem-
poral consistency when colorization the current frame.
Zhao et all2”l employed a placeholder feature extrac-
tor that serves as a feedback connection to encode the
semantics of the previous colorized frame in order to
maintain spatial-temporal consistency. Lei and
Chenl?4 took the i-th colorized candidate images from
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frame ¢ and frame t+ 1 as well as two confidence
maps as input, and then employed the refinement net-
work to output a colorized video frame for frame ¢.
As RNNs are designed to process sequential data,
they can sustain color consistency in consecutive
frames, producing a smoother, more visually appeal-
ing result. Moreover, RNNs can handle sequences of
varying lengths, making them versatile for videos of
different durations. However, despite their theoretical
capacity to model long-term dependencies, in practice,
vanilla RNNs often falter in learning from long se-
quences due to what is termed as the “vanishing gra-
dient” problem. Short-term dependencies tend to be
captured more effectively than longer ones.
Bi-Directional Propagation Networks. Unlike unidi-
rectional approaches, bi-directional propagationl!8, 22, 23]
incorporates both forward and backward temporal da-
ta, resulting in more robust color transformation plan-
ning. Yang et all'¥l employed a bi-directional propa-
gation model to aggregate information efficiently from
both exemplars. By propagating and cross-verifying
color information in both temporal directions, bi-di-
rectional methods can generate more accurate and
natural colorization. Moreover, bi-directional propaga-
tion can enhance temporal consistency by optimizing
the coherence between forward and backward propa-
gation, achieving more fluid color transitions in
videos. However, the complexity of bi-directional
propagation algorithms is generally higher than that
of their unidirectional counterparts, resulting in in-
creased computational demand and processing time.
In addition, due to the requirement of learning color
propagation rules in both directions, bi-directional
methods may necessitate a larger training dataset.

7 Performance Evaluation

In this section, we evaluate the performance of

Table 2.
orization Datasets
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representative video colorization methods based on
deep learning techniques.

Table 2 summarizes the performance comparison
of various representative deep learning methods on
three commonly used video colorization datasets (the
DAVIS datasetl8], Videvo datasetll, and NVCC 2023
dataset(63]). It is worth noting that all algorithms
adopt the same training strategy. The methods devel-
oped by Zhang et al.l64, Kang et all65], and Ji et al.[60]
are based on image colorization techniques. The re-
sults indicate that directly applying image coloriza-
tion methods to video colorization is not satisfactory.
This is because image-based colorization methods on-
ly consider the colorization performance of the indi-
vidual video frame, ignoring the temporal consistency
across frames in the video sequence. Liu et al.[?3 em-
ployed fully automatic approaches to design video col-
orization networks, achieving better temporal consis-
tency compared with image colorization networks.
This is because these methods utilize optical flow or
3D convolutions to align video frames. However, the
fully automated methods have relatively high FID
value, that is, relatively poor colorization perfor-
mance on all three datasets, as Table 2 shows. Com-
pared with the strategies mentioned above, exemplar-
based methods are widely used to generate more vi-
brant colors of video frames. lizuka and Simo-
Serral®l, Zhang et all'?l] and Yang et all'8] trans-
ferred color from reference to video frames, and these
methods achieve good performance in terms of the
FID metric on the DAVIS dataset[8], Videvo
dataset(l], and NVCC 2023 dataset[63]. Current exem-
plar-based methods also introduce optical flow or 3D
convolutions into the networks for better temporal
consistency and these methods can achieve better col-
orization performance due to the guidance of refer-
ence frames compared with previous fully automated
approaches.

Performance Evaluation of Representative Video Colorization Methods Conducted on Three Commonly Used Video Col-

Method Category DAVISHS

Videvolll NVCC 2023063

PSNR SSIM FID

CDC PSNR SSIM FID CDC

PSNR SSIM FID CDC

Zhang et al.l64
Kang et al.[6%

Ji et al.1o%]

Lei and Chenl?4

Liu et al.?]

Image-based 30.90 0.959 114.56 0.004903 31.18 0.959 79.49 0.002526 30.64 0.939 71.64 0.003 436
Image-based 30.54 0.934 85.41 0.004168 30.75 0.934 54.91 0.002189 30.38 0.957 64.08 0.002 622
Image-based 31.12 0.948 92.40 0.004212 31.36 0.953 67.71 0.001872 30.78 0.933 62.49 0.002 544
Fully-automatic 30.53 0.951 110.88 0.006 880 30.01 0.949 82.07 0.010254 28.65 0.927 81.42 0.008 882
Fully-automatic 31.10 0.955 116.64 0.003 743 31.30 0.957 80.71 0.001694 30.46 0.936 72.73 0.002 443

lizuka and Simo-Serral'®) Exemplar-based 30.56 0.949 90.73 0.004619 30.61 0.957 58.81 0.003258 29.69 0.927 50.55 0.005 238

Zhang et al.' Exemplar-based 33.24 0.951

70.21 0.003853 33.11 0.957 55.01 0.001925 32.03 0.930 35.43 0.002 694

Yang et al.l'®) Exemplar-based 33.72 0.936 45.18 0.004 168 34.07 0.967 32.32 0.001861 33.43 0.949 26.63 0.002 864
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Figs.3-5 show the comparison among one image-
based colorization method, one fully automatic video
colorization method, and two exemplar based video
colorization methods. Image-based colorization meth-
odsl5] may not effectively colorize video frames, lead-
ing to noticeable color bleeding in the generated re-
sults. TCVCR3, as a fully-automated colorization
method can result in desaturated colors in the scenes
such as grass, airplanes, and pools. Across all three
datasets, BiSTNet[!8l achieves the optimal coloriza-
tion results, indicating that exemplar-based video col-
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orization methods can generate higher-quality col-
orization results. Meanwhile, even with similar archi-
tectures, different methods may produce different re-
sults, such as BiSTNet!!8] and DeepExemplar[!2l, both
of which are exemplar-based video colorization meth-
ods. The main reason for the performance variation is
that BiSTNet!!8] utilizes two reference frames at the

beginning and end of the video sequence, along with a
bidirectional temporal feature fusion module, while
DeepExemplar!2l only uses the first frame of the
video sequence as the reference frame.

G R B o U G
(f) () (h) ) ©)

Fig.3. Evaluation results of various state-of-the-art video colorization methods on the DAVIS datasets. The red, purple, and green
boxes display the magnified effects of different areas of the selected image, respectively. (a) Gray. ﬂb) CIC4. (c) DDColorl®.
(d) ColorFormerl®. () FAVCE4Y. (f) TCVCR. (g) DeepRemaster(!?. (h) DeeepExemplar!?. (i) BiSTNet!®l. (j) GT.

Fig.4. Evaluation results of various state-of-the-art video colorization methods on the Videvo datasets. The red, purple, and green
boxes display the magnified effects of different areas of the selected image, respectively. (a) Gray. ﬂb) CICP4. (c) DDColorl®,
(d) ColorFormerl®. (e) FAVCEY. (f) TCVCR3. (g) DeepRemaster(’?. (h) DeeepExemplar!?. (i) BiSTNet!®l. (j) GT.
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(2)

Fig.5. Evaluation results of various state-of-the-art video colorization methods on the NVCC2023 datasets. The red, purple, and
green boxes display the magnified effects of different areas of the selected image, respectively. (a) Gray. (b) CICI®4. (c) DDColor!6.
(d) ColorFormerl%l. (e) FAVCP4. (f) TCVCP3L. (g) DeepRemaster!'?. (h) DeeepExemplar('?. (i) BiSTNet['8. (j) GT.

8 Loss Functions

The categorization of commonly used loss func-
tions in video colorization methods is described in this
section. It is worth noting that all loss functions in-
troduced below are simplified formulations and they
have variations when applied in specific applications.

8.1 Reconstruction-Based Loss Functions

L, Loss. This loss function is used to represent
the absolute differences between the target and the
prediction. It provides pixel-level supervision and en-
courages the output from the generator to closely re-
semble the ground truth as much as possible. The
standard L, loss can be written as:

L, = Z |zt - ﬁz|;

where 2, is the ground truth at time ¢.

L, Loss. This function calculates the square of the
differences between the target and the predicted val-
ues, making it more sensitive to outliers than L,. The
L, loss can be written as:

L, = Z(Zt —2,)%

8.2 Perceptually-Based Loss Functions

Perceptual Loss. This is a more advanced loss
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)

function typically used in vision tasks. It is designed
to measure perceptual and semantic differences, often
computed in the feature space using high-level fea-
tures extracted from pre-trained networks (e.g.,
VGGE9)). Tt enhances the quality and realism of the
colorized images, making them closer to the real col-
or images perceived by the human visual system. Here
is a simplified form:

Lewe = Z |‘¢(zt) - (b(ﬁz)Hg:

where ¢ denotes a function extracting features.

Contextual Loss. Contextual loss!!2] is proposed to
inspire the resemblance of colors in the output to
those in the reference. It measures the local feature
similarity in the context of the whole image. This
concept proves to be apt for transferring colors from
semantically related regions.

Style Loss. Style lossBl assesses the difference in
style characteristics between the output and the tar-
get. Its role is to capture the style information of the
original images, ensuring the preservation of their
stylistic features during the generation process. The
style loss can be written as:

Ly = Z 1G(6(2:(2))) — G(o(20)] 1

where G(-) represents the Gram matrix computed for
input features.
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8.3 Spatially-Based Loss Functions

Loss.  This
smoother and more continuous outputs by minimiz-

Smoothness function encourages
ing the difference between neighboring pixels. The

smoothness loss can be written as:
_ E : (i, j+1) G, 5) (i+1, 4) (i> 3)
Lsmooth - |Zt — Z | + |Zt -2z |a

where 4,7 denote the spatial location, Ly, calcu-
lates the difference between adjacent pixels along the
horizontal and vertical directions.

Self-Regularization Loss. Self-regularization loss/24
explicitly poses a penalty to the temporal consistency
between adjacent frames. The color consistency be-
tween neighboring pixels can be enhanced in the bi-
lateral space by the self-regularization loss. The for-
mula for the self-regularization loss can be expressed
as:

L, = Z Z IlMt+d—>t © (Zt -W (Zt+d» Ft, t+d))||2 )

where F; ,,, is the estimated optical flow between the
current frame z, and the previous frame z,.,, W(-)
denotes the operation of transforming images through
the utilization of optical flow, M, ., = exp(—«a||z,—
W (Zi4a; F, +a)]],) 18 the visibility mask, © denotes
the element-wise multiplication operation.
Edge-enhancing Loss. Edge-enhancing loss(!8 en-
forces the model to generate better-defined edges in
the output. By utilizing edge-enhancement loss to
constrain network training, color-bleeding issues oc-
curring in neighboring objects in the image can be al-
leviated. The edge-enhancing loss is defined as:

Lcdgc = Hs(wt) - S(Zi)HQ?

where x, is a grayscale image, and S(-) represents the
Sobel filter used in [67].

8.4 Temporally-Based Loss Functions

Short-Term Temporal Loss. Short-term temporal
losslll is set to ensure conmsistency between consecu-
tive frames in the generated video sequence. This loss
is designed to reduce the inconsistency between the
consecutive generated outputs, thereby achieving
smoother transitions from one frame to the next in
the final result. The formula for the short-term tem-
poral loss can be expressed as:
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1 N
L = ﬁ; Hzt+1 - W(Zt)llb

where z; is the generated output at time ¢, z,,, is the
next output frame in the sequence, W(-) denotes the
operation of transforming images through the utiliza-
tion of the optical flow, N is the total number of
frames and |[.||; denotes the L, norm (sum of the ab-
solute differences).

Long-Term Temporal Loss. Long-term temporal
lossl!l assists in maintaining long-time temporal con-
sistency, by comparing the prediction of the present
frame with the future frame:

1 N
th = N ; HZH—T - W(Zt)Hl’

where T' represents a constant time interval.

Temporal Consistency Loss. Temporal consisten-
cy lossl'2l enforces the output to have a stable transi-
tion over time. It explicitly penalizes the color change
along the flow trajectory. The formula for the tempo-
ral consistency loss can be expressed as:

Lie = |IW (zi1, Fy o21) — zt”i ;

where F; ,_, is the estimated optical flow between the
current frame z, and the previous frame z, ;, W(-)
denotes the operation of transforming images through
the utilization of optical flow. The optical flow ex-
hibits the motion of the pixels in the video frames.

8.5 Diversity-Based Loss Functions

Adversarial Loss. In tasks like GANs, adversarial
loss helps create more realistic outputs. It typically
involves a game between two elements, a generator
and a discriminator. Formally, the minimax game can
be represented as:

Lua(G, D) = E;[log D(r)] + E,[log(1 — D(G(n)))],

where G and D are the generator and discriminator,
r is the real data, and n is the noise sample.

Diversity Loss. Diversity lossi24 is designed to gen-
erate multiple colorized videos which distinguish vari-
ous solution modes. This loss not only enhances the
availability of unique solutions but also significantly
contributes to temporal coherence. It achieves this by
mitigating the ambiguity inherent in colorization
tasks through the generation of multiple operational
modes. The diversity loss can be written as:
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WE

Ldiversity =

min{|[¢(z(2)) — ¢(2:(0))[[1}+

t

u

™=

Bllo(z:(2)) = (201,

t=1 1

where z,(i) represents the i-th colorized image out-
put by the network, § is a decreasing sequence and d
is set to 4 in [24].

Hard Fxample Mining Loss. Hard example min-
ing lossl% focuses more on hard examples during
training for the robustness of the model. This loss
function can automatically pay more attention to dif-
ficult regions, thereby encouraging the model to pro-
duce clearer boundaries. The hard example mining
loss is defined as:

Mo (f = Pl

L A e (= Pl
i

+ A X ,
[|MM]y

where M" represents the binary mask of hard regions,
f denotes the computed optical flow, and f repre-
sents the ground-truth flow.

8.6 Information Theoretic Loss Functions

Cross Entropy Loss. Cross entropy loss is the pre-
ferred loss function for binary classification tasks. It
measures the dissimilarity between the ground truth
and the estimated probabilities. For video coloriza-
tion tasks, we can discretize pixel values into multi-
ple individual numerical entities to function as classi-
fication labels, thereby facilitating the calculation of
cross-entropy loss.

9 Future Research Prospects

Advancements in video colorization have been
noteworthy in the past decade, with profound impli-
cations for numerous applications in media, entertain-
ment, and digital artistry. However, despite progress,
various research avenues remain open for exploration.

Temporal Consistency. One of the key challenges
in video colorization is maintaining temporal consis-
tency across frames. While individual frames might be
colorized accurately, subtle differences between adja-
cent frames can result in jittering or flickering effects.
Future research might focus on developing more so-
phisticated algorithms to ensure smooth transitions
and temporal coherence in colorized videos.

Improved Training Data. Deep learning based
methods for video colorization require large, diverse
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datasets for training. Currently, the utility of these
models is limited by the availability and diversity of
such datasets. More accurate and diverse training da-
ta, potentially gathered from a wider array of sources,
could improve the reliability and generalizability of
these models.

Interactive and User-Guided Approaches. The ca-
pacity to incorporate user inputs into video coloriza-
tion models can improve accuracy and user satisfac-
tion. Future research could work towards making
these models more interactive, allowing users to have
more control over the colorization process.

Integration with Other Video Enhancement Tech-
niques. There is great potential in the intersection of
video colorization with other video enhancement pro-
cesses like super-resolution,
frame interpolation. Further development of integrat-
ed models could lead to comprehensive video restora-
tion and enhancement solutions.

Real-Time Processing Capabilities. Efforts could
be directed toward improving the computational effi-
ciency of video colorization methods to accommodate

noise reduction, and

real-time colorization of live video streams.

10 Emerging Trends

Self-Superviesed Learning for Video Colorization.
In tasks of video colorization, self-supervised learning
can be employed to train colorization models when
datasets are relatively small. The core of self-super-
vised learning lies in spatiotemporal consistency in
videos. Since consecutive frames in video sequences
exhibit significant color similarity, this can serve as a
regularization constraint to guide learning and ensure
temporal consistency. Additionally, in terms of spa-
tial consistency, powerful pre-trained networks can be
leveraged to extract features from video frames, en-
abling the network to understand the content and
structure of the images and infer the color informa-
tion of video frames.

Unpaired Learning for Video Colorization. To ad-
dress the issue of having only grayscale video frame
datasets in video colorization tasks, unpaired learn-
ing methods can be employed. In unpaired learning,
typically two datasets are required: one comprising
grayscale video frames and the other containing col-
ored video frames. Subsequently, using the generator
and discriminator components of a GAN, the conver-
sion of grayscale frames to colored frames and the
evaluation of the colored frames are carried out sepa-
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rately. Additionally, content consistency and tempo-
ral consistency of the generated colored frames can be
ensured by employing cycle consistency loss and tem-
poral consistency loss respectively.

Large Models for Video Colorization. In the era of
large models, these models are capable of generating
many high-quality images and videos, indicating that
they encapsulate rich knowledge. Therefore, we can
extract this knowledge from these large models as pri-
or knowledge for the colorization network, and then
utilize this prior knowledge to guide the video col-
orization process.

11 Conclusions

In this survey, an extensive overview of various
techniques involved in video colorization was provid-
ed. On the basis of user interaction, video coloriza-
tion techniques can be broadly divided into four cate-
gories: fully automatic colorization, scribble-based col-
orization, optical-flow based colorization, and exem-
plar-based colorization. We discussed the strengths
and weaknesses of different methods and provided an
overview of the loss functions adopted by various col-
orization methods. Additionally, we compared and an-
alyzed the performance of various video colorization
methods on benchmark datasets. Through compar-
isons, exemplar-based video colorization methods
guided by examples demonstrate better colorization
performance compared with the other methods. While
deep learning based video colorization techniques
have made significant advancements, current meth-
ods still face numerous challenges. Therefore, we out-
lined the trends of self-supervised learning, unpaired
learning, and the large models in the field of video
colorization, aiming to provide insights for re-
searchers.
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