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Abstract    Video colorization aims to add color to grayscale  or monochrome videos.  Although existing methods have

achieved substantial and noteworthy results in the field of image colorization, video colorization presents more formidable

obstacles due to the additional necessity for temporal consistency. Moreover, there is rarely a systematic review of video

colorization  methods.  In  this  paper,  we  aim to  review existing  state-of-the-art  video  colorization  methods.  In  addition,

maintaining spatial-temporal  consistency is  pivotal  to the process of  video colorization. To gain deeper insight into the

evolution of existing methods in terms of spatial-temporal consistency, we further review video colorization methods from

a novel perspective. Video colorization methods can be categorized into four main categories: optical-flow based methods,

scribble-based methods, exemplar-based methods, and fully automatic methods. However, optical-flow based methods rely

heavily on accurate optical-flow estimation, scribble-based methods require extensive user interaction and modifications,

exemplar-based methods face challenges in obtaining suitable reference images, and fully automatic methods often strug-

gle to meet specific colorization requirements. We also discuss the existing challenges and highlight several future research

opportunities worth exploring.
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1    Introduction

Video  colorization  aims  at  adding  color  to  black

and  white  (monochrome)  videos,  making  them  more

vivid  and  visually  appealing.  Due  to  technological

constraints,  a  large  amount  of  existing  videos,  which

possess  high  historical  value  and  carry  profound  hu-

man emotions, remain in black and white. Moreover,

the replication of these videos is infeasible due to the

considerable lapse of time. Therefore, the necessity for

colorizing  these  videos  is  increasingly  significant.

However,  video  colorization  is  highly  ill-posed  and

usually  struggles  with  spatial-temporal  inconsisten-

cies, i.e., variations in the quality of individual frames

and  noticeable  fluctuations  between  consecutive

frames.  Although  great  progress  has  been  made,

restoring high-quality colorized videos remains a chal-

lenging problem.

Video colorization methods can generally be cate-

gorized  into  four  main  categories:  optical-flow  based

methods,  scribble-based  methods,  exemplar-based

methods,  and  fully  automatic  methods.  Compared

with image colorization methods, the simplest way for

video  colorization  is  initially  applying  an  image  col-

orization  technique,  followed  by  post-processing  en-

hancement  to  promote  temporal  consistency  in

videos[1–3]. These methods utilize optical flow to prop-

agate  information  between  frames,  thereby  yielding

smooth  results.  However,  optical-flow  based  methods

rely  on  the  performance  of  employed  image  coloriza-

tion  methods  and  the  accuracy  of  estimated  optical

flow,  consequently  constraining  the  performance  of
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these  methods.  To  achieve  better  each-frame  perfor-

mance,  several  methods  incorporate  the  propagation

of  color  information  from  a  color  reference  frame  or

sparse user scribbles throughout the entire video[4–21].

However, it is not easy to obtain a qualified reference

image  which  requires  extensive  user  interaction  and

revisions.

To avoid non-trivial human effort involved in ex-

emplar-based  or  scribble-based  methods,  fully  auto-

matic  video  colorization  methods[22–34] have  increas-

ingly gained popularity. These methods predominant-

ly  rely  on  the  potent  expressive  power  and  learning

capacity of deep convolutional neural networks. They

enrich  color  representation  and  offer  an  end-to-end

optimization approach. These methods can be trained

on  large-scale  datasets  to  learn  complex  color  map-

ping  relationships  and  can  automate  and  refine  the

colorization  process  without  user  interference.  Fur-

thermore, the flexibility and applicability furnished by

deep  learning  based  frameworks  contribute  to  their

capability to handle a vast array of video content and

circumstances,  thereby  substantially  enhancing  the

quality of colorization.

Deep learning based methods greatly improve the

performance of  video colorization,  owing significantly

to  their  powerful  representational  capacity.  In  these

methods,  how  to  enhance  spatial-temporal  consisten-

cy is of great significance. In terms of spatial informa-

tion, existing methods[1, 12, 16, 18, 19, 24, 26, 30, 33, 35] usual-

ly  extract  features  by  pre-trained  models,  such  as

VGG[36] or  ResNets[37].  Video  colorization  methods

that consider  temporal  consistency generally  fall  into

four categories: optical-flow based methods, recurrent

neural networks (RNNs) based methods, 3D convolu-

tion  based  methods,  and  bi-directional  based  meth-

ods.  Optical-flow based methods aim to estimate the

similarities between consecutive or far-away frames by

utilizing  calculated  optical  flow  thus  enforcing  color

consistency for frames within a video. These methods

typically  pay  more  attention  to  how  to  improve  the

accuracy  of  estimated  optical  flow  and  alleviate  the

influence  of  inaccurate  flow,  e.g.,  utilize  a  confidence

mask to  lower  the  weights  of  uncertain  flow[1–3].  Dif-

ferent  from  optical-flow  based  methods  that  concen-

trate  on  detecting  motion  through  pixel  variations,

RNN-based  methods  are  designed  for  general  se-

quence  learning,  which  can  include  various  types  of

temporal  pattern  recognition  beyond  motion.  They

can  handle  variable-length  sequence  input  by  main-

taining a hidden state that effectively captures infor-

mation  from  previously  seen  elements  in  the

sequence[12, 18, 19, 23, 24]. Optical flow can be part of the

input  features  for  an  RNN,  enabling  the  network  to

leverage  detailed  motion information for  its  task.  3D

convolution based methods apply 3D convolutions to

a stack of consecutive video frames to capture tempo-

ral  consistency[15, 38].  Bi-directional  based  methods

add reference images at the beginning and end of the

video,  followed  by  propagating  the  color  information

from  these  reference  images  to  the  intermediate

frames.  These  methods  strive  to  amplify  the  spatial-

temporal  consistency  in  generated  videos.  However,

they  struggle  to  achieve  an  optimal  balance  between

model complexity and performance. Future work still

considers strengthening the performance of video col-

orization  methods  from  a  spatial-temporal  perspec-

tive.

In this paper, we focus on recently published video

colorization methods. The aims of this paper are:

• to  review  the  preliminaries  for  video  coloriza-

tion,  including  problem  definitions,  choice  of  color

spaces,  benchmark  datasets  for  performance  evalua-

tion, and video quality assessment;

• to  discuss  developments  of  video  colorization

methods and provide a taxonomy for categorizing the

existing methods;

• to review video colorization methods from a new

perspective in terms of spatial-temporal consistency;

• to  analyze  the  challenges  of  video  colorization

and discuss research opportunities.

The rest of this paper is organized as follows. Sec-

tion 2 introduces problem setting and terminology for

video colorization. Section 3 summarizes various met-

rics  for  evaluating  the  quality  of  video  colorization.

Section 4 lists  commonly used datasets  for  video col-

orization.  In Section 5,  we  introduce  state-of-the-art

video colorization methods, which are further grouped

into  four  subcategories.  In Section 6,  we  summarize

several  strategies  for  maintaining  spatial  consistency

in videos. In Section 7, we evaluate the performances

of  various  video  colorization  methods. Section 8 dis-

cusses  the  loss  functions  used  in  video  colorization

methods. Section 9 and Section 10 outline  the  main

challenges  of  video  colorization  and  suggest  possible

next  steps  in  the  field.  In Section 11,  we  provide  a

summary of this video colorization review. 

2    Problem Setting and Terminology
 

2.1    Problem Definitions

Video  colorization  is  a  computer  vision  task  that

aims to generate fully colorized videos from their gray-
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scale  (monochrome)  versions. Fig.1 shows  a  timeline

of representative methods for video colorization. Giv-

en the input grayscale video , we first split it to 

grayscale frames as , where ,

 denotes the spatial resolution,  is the num-

ber  of  frames  of  the  input  video.  Our  target  is  to

restore  the  colorized  video ,  where 

.  To better  restore the color  videos based on

the input grayscale frames, the selection of color space

is critical in colorization tasks. It impacts color repre-

sentation,  deep  learning  model  performance,  align-

ment  with  human  color  perception,  and  handling  of

visual  artifacts.  The  RGB,  YUV,  and  CIELab  color

spaces are the most commonly used standards in col-

orization. Fig.2(a) shows that there is a predominant

utilization of both the RGB and CIELab color spaces

in  comparison  with  the  adoption  of  the  YUV  color

space. 

2.1.1    RGB Color Space

R G

The  RGB  color  space  is  an  additive  color  model

leveraging the primary colors: red ( ), green ( ), and

B

Y1

blue ( ), to which human vision is particularly sensi-

tive.  It  is  a crucial  model  in computer vision,  graph-

ics, and digital media. A way to model the luminance

 (absolute amount of light emitted by an object per

unit area), which is close to human perception is: 

Y1 = 0.298 9R + 0.587 0G+ 0.114 0B.

R

G B

Several video colorization methods[2, 3, 6, 24, 26, 30–32]

use RGB color space. They predict three channels ,

,  and  in  the  RGB  color  space.  While  the  RGB

color  space  highlights  the  intensity  of  primary colors

to which human eyes are sensitive, exploring the dis-

tinct  information  contained  within  each  individual

channel  remains  challenging.  Additionally,  the  inter-

pretability of information in each channel of the RGB

color space is limited, thereby impeding the design of

more effective neural network models. 

2.1.2    YUV Color Space

Besides  the  RGB  color  space,  the  YUV  color

space  is  also  widely  used  for  video  colorization.  The

YUV  color  space  is  used  primarily  in  video  systems
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Fig.1.  Timeline of video colorization methods. Different colors represent methods of different categories, as shown in the lower right.
The initial emergence is the scribble-based methods, which are subsequently followed by the popularity of optical-flow based meth-
ods and exemplar-based methods. After that, fully automatic methods began to appear.
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and broadcasting. It is known for its separation of lu-

minance  from chrominance (color information, rep-

resented by  and ). The term YUV signifies these

three  components.  Note  that  in  YUV  represents

luminance  exclusively  based  on  human  perception,

whereas  the  luminance  in  RGB  is  a  composite

function of the three color channels and is not specifi-

cally  tailored  to  human  perception.  Unlike  RGB,

which  directly  denotes  the  intensities  of  Red,  Green,

and  Blue,  YUV discloses  color  information  in  a  way

that  is  more perceptually  relevant and closer  to  how

humans perceive color.  component aligns with the

overall  brightness  seen  by  human  eyes,  while  and

 summarize  the  color  difference  from  gray  at  the

same luminance level.

Compared with RGB, YUV is resilient to changes

in lighting conditions and beneficial for data compres-

sion.  Deep  learning  based  video  colorization

methods[4, 11] use the YUV color space and achieve fa-

vorable  performance.  However,  when  employing  this

color  space  for  video  colorization  tasks,  artifacts  re-

main unpredictable. 

2.1.3    CIELab Color Space

L a∗

b∗

The  CIELab  color  space  is  widely  used  in  [1, 5,

7–10, 12–19, 21–23, 25, 27–29, 31]. It is a color-oppo-

nent  space  with  dimensions  for  lightness  and 

and  for the green-red and blue-yellow color compo-

nents respectively. The CIELab color space was devel-

oped  by  the  International  Commission  on  Illumina-

tion① (CIE) to create a space that is more perceptual-

ly uniform than its counterparts, meaning that a giv-

en  numerical  change  corresponds  approximately  to

the same perceived change in color.

Unlike  the  RGB  color  space,  which  provides  an

additive  color  model  based  on  how much red,  green,

and blue light is emitted, the CIELab color space de-

scribes how a color appears to the human eye. It does

not rely on a specific device (like a monitor or print-

er) for interpretation and is, therefore, considered de-

vice-independent. This is a marked contrast from the

RGB  model  which  can  have  substantial  variation

across different devices due to their distinct color-en-

hancing methodologies.

Similarly, while the YUV color space separates lu-

minance (brightness) and chrominance (color informa-

tion)  which  is  particularly  useful  for  color  television

broadcasting, it is not designed to align with the hu-

man perception  of  color.  Hence  CIELab,  with  its  in-

tention to mimic the human perceptual experience of

color,  offers  a  better  understanding of  color,  particu-

larly  beneficial  for  precise  color  manipulations  and

color difference calculations. 

3    Video Quality Assessment Metrics

For  the  purpose  of  assessing  the  quality  of  video

colorization in regard to subjective assessment, objec-

tive assessment, temporal consistency evaluation, col-

or diversity evaluation, color diversity evaluation, and

semantic  interpretability  evaluation,  existing  video

colorization  methods  employ  a  variety  of  evaluation

metrics. Here are several key measures. 
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Fig.2.  Statistical analysis of video methods, including (a) color space, (b) category, and (c) temporal enhancement.

490 J. Comput. Sci. & Technol., May 2024, Vol.39, No.3

 

①http://cie.co.at, May 2024.

http://cie.co.at//


3.1    Subjective Assessment

This typically involves human observers rating the

quality  of  colorized  videos.  It  is  considered  the  most

accurate way to measure colorization quality since hu-

man perception is the ultimate arbiter. However, it is

time-consuming. 

3.2    Objective Assessment

This  uses  mathematical  models  and  neural  net-

work models to evaluate colorization quality against a

reference colorized version of the grayscale video.

Image  Quality  Evaluations.  The  commonly  used

metrics  include:  peak  signal-to-noise  ratio  (PSNR),

mean  squared  error  (MSE),  root  mean  squared  error

(RMSE),  structural  similarity  index  measurement

(SSIM)[39],  Fréchet  inception  distance  (FID)[40],

learned perceptual image patch similarity (LPIPS)[41],

raw accuracy (RA)[25], and color consistency (CC)[25].

Ewarp

Temporal Consistency Evaluations. Temporal con-

sistency in the context of  video colorization refers  to

the stability of colorization results across consecutive

frames.  In  a  colorized  video,  the  colors  of  the  same

object  or  scene  must  remain  consistent  throughout

the video sequence to avoid flickering or sudden color

changes  that  can  disrupt  the  experience  of  viewers.

For temporal consistency, the warp error ( ) pro-

posed in [1] is widely used in video colorization. 

Ewarp(Vt, Vt+1) =
1

n∑
i=1

M (i)
t

n∑
i=1

M (i)
t ||V (i)

t − V̂ (i)
t+1||2,

Ewarp =
1

T − 1

T−1∑
t=1

Ewarp(Vt, Vt+1),

V̂t+1 Vt+1 Mt

n

where  represents  the  warped  frame  of ; 

denotes  the  non-occluded  mask  for  the  non-occluded

regions,  with  values  of  0  or  1; t represents  the  time

step, and  represents the total number of pixels in a

frame.

EwarpHowever,  does  not  correlate  with  video  col-

or  and  can  be  significantly  influenced  by  the  perfor-

mance of  the flow estimation models employed in its

measurement.  Consequently,  Liu et  al.[23] proposed

the  color  distribution  consistency  (CDC)  to  measure

temporal  consistency,  which  is  specially  devised  for

Ewarpvideo  colorization  tasks.  As  is  unrelated  to  the

colors of videos and is susceptible to the performance

of the flow estimation module, CDC which is specifi-

cally  designed  for  video  colorization  tasks  is  em-

ployed  to  measure  the  temporal  consistency  of  color

distributions.  Specifically,  CDC  is  a  metric  that  can

estimate the Jensen-Shannon (JS) divergence of color

distributions between consecutive frames: 

CDC =
1

3× (N − 1)

∑
c∈{R,G,B}

N−t∑
i=1

JS(Pc(I
i),Pc(I

i+t)),

N

t Pc(I
i)

i

c

where  represents the length of the video sequence,

 represents  the time step,  and  represents  the

normalized  probability  distribution  of  color  image 

on  channel ,  which  can  be  computed  using  the  im-

age histogram.

Color Diversity Evaluation. To evaluate the vivid-

ness  of  generated  videos,  the  colorfulness  score

(CF)[42] is  employed  in  existing  video  colorization

methods to  measure  the color  diversity.  The CF can

be written as: 

CF = σrgyb(zt) + 0.3× µrgyb(zt),

σrgyb(·) µrgyb(·)

zt

t

where  and  represent the standard devi-

ation  and  the  mean  value  of  the  pixel  cloud  in  the

color plane,  respectively,  as explained in [42],  and 

is the output frame at time .

Semantic  Interpretability  Evaluation.  To  deter-

mine  semantic  interpretability,  the  measure  of  top-1

and top-5 accuracy is employed in existing video col-

orization methods based on a pre-trained VGG-16[36]. 

4    Datasets for Video Colorization

For video colorization, colorization models need to

be trained and tested on high-quality datasets. These

datasets  should  contain  a  large  number  of  video  se-

quences  with  high  resolution,  good  brightness  and

contrast, consistent colors, and a wide range of scenes.

Multiple datasets are available for video colorization,

and  each  comes  with  its  unique  characteristics.  The

datasets  listed  below fully  meet  the  requirements  for

video  colorization  and  have  been  adopted  by  many

state-of-the-art methods[12, 13, 15, 18–20, 22–24].

Kinetics 600②.  It  is  a  large-scale,  high-quality

dataset  for  human  action  recognition  introduced  by

Google DeepMind③. Despite the primary use case, its
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diverse  and  extensive  collection  of  YouTube  video

URLs can be used for video colorization tasks, provid-

ed  the  videos  are  converted  to  grayscale  before  col-

orization.  It  comprises  a  total  of 480 000 video  clips,

divided  into  600  categories.  Each  category  in  the

training  dataset,  the  validation dataset,  and the  test

dataset  includes  about 390 000, 50 000,  and 60 000

video clips, respectively.

Vimeo-90K④.  This  dataset  has  a  large  variety  of

videos  that  makes  it  suitable  for  the  colorization

task[43]. It contains 90 000 video clips from 39 000 dif-

ferent videos from Vimeo⑤, a website where users can

upload,  share,  and view videos.  The Vimeo-90K uses

64 612 clips for training and 7 824 clips for testing.

ImageNet  VID⑥.  ImageNet  VID  is  a  large-scale

public dataset for video object detection and contains

more  than  1  million  frames  for  training  and  more

than 100 thousand frames for validation[44].

UCF101⑦. It is a dataset of realistic action videos

collected  from  YouTube,  and  it  is  highly  versatile

because  it  comprises  101  action  categories[45].  It  con-

sists of 13 320 video clips, totaling 27 hours. Follow-

ing  the  most  popular  setting  used  in  the  UCF101

dataset, [46, 47] adopt three training/testing splits for

evaluation.

DAVIS⑧.  The DAVIS (Densely  Annotated Video

Segmentation)  dataset  consists  of  high-quality  video

sequences and provides pixel-level annotations, main-

ly for video object segmentation tasks[48–50].  Nonethe-

less, its varied contents and detailed segmentation can

further  facilitate  video  colorization  research.  During

training and testing, it employs 60 and 30 video clips,

respectively.

Videvo⑨.  Videvo is an online platform that offers

free  stock  videos  and  motion  graphics.  Lai et  al.[1]

have  gathered  100  high-quality  videos  from

Videvo.net⑩ to constitute the Videvo dataset. Its vast

and  diverse  content  can  be  utilized  for  training  and

testing  on  video  processing  tasks,  such  as  video  col-

orization. The Videvo dataset comprises 80 videos for

training and 20 videos for testing.

% % %

YouTube-8M⑩.  This  is  a  massive  multi-genre

dataset containing links to YouTube videos[51]. It pri-

marily  focuses  on  the  task  of  video  understanding.

However,  its  large scale  and variety make it  suitable

for  adapting  to  video  colorization  tasks.  The

YouTube-8M dataset consists of 8 264 650 video clips,

which  are  divided  into  the  training,  validation,  and

test set in a ratio of 70  : 20  : 10 .

ACT⑪. ACT (Actor-Action) is a large-scale video

dataset meticulously annotated for different facets, in-

cluding human actions, actors, and interactions. Made

up of 383 hours of soap opera videos, it contains over

75 000 unique clips of 430 actors performing over 15 000

categories  of  actions.  For  video  colorization,  the  di-

verse and rich content in ACT provides a challenging

environment that tests the robustness and adaptabili-

ty  of  colorization  algorithms  to  different  scenes  and

actor  motions.  It  comprises  a  total  of 3 782 video

clips,  with 3 036 videos  used  for  training  and  746

videos used for testing.

MS-COCO⑫. MS-COCO (Microsoft Common Ob-

jects  in  Context)  is  a  widely  used  dataset  for  object

detection,  segmentation,  and  captioning  studies.  Al-

though it consists of static images, it can still be ben-

eficial  for  video  colorization.  MS-COCO  contains  a

vast selection of images with complex scenes, provid-

ing a rich variety of color textures that learning algo-

rithms can leverage while  training to  colorize  videos.

In the 2014 version, it contains 164 062 images, divid-

ed  into  the  training  set  (82 783),  the  validation  set

(40 504),  and  the  test  set  (40 775).  In  the  2015  ver-

sion, there are 165 482 images used for training, 81 208

images used for validation and 81 434 images used for

testing.  In  the  2017  version,  the  training,  validation,

and test sets consist of 118 287, 5 000, and 40 670 im-

ages, respectively.

Hollywood2⑬.  The Hollywood2 dataset  is  a  popu-

lar  dataset  used  in  video  classification  research  but

can also contribute to video colorization tasks. In the

context  of  video  colorization,  its  diversity  provides  a

challenging training environment due to the high de-
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⑧https://davischallenge.org, May 2024.
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gree of scene variety, actor appearance variation, and

dynamic lighting changes. The Hollywood2 dataset is

collected from 69 films, 33 of which are used for train-

ing and 36 for testing. 

5    Classification of Video Colorization

Methods

We  classify  video  colorization  methods  into  four

categories: optical-flow based methods, scribble-based

methods, exemplar-based methods, and fully automat-

ic  methods.  In  the  following  subsections,  we  discuss

representative methods of each category (see Table 1).

Fig.2(b) shows that exemplar-based methods account

for the majority. 

5.1    Optical-Flow Based Methods

A  critical  challenge  in  video  colorization  is  the

spatial-temporal consistency of video frames. The spa-

tial-temporal consistency effectively assesses the quali-

ty of a video colorization algorithm. Current methods

based on optical flow enhance spatial-temporal consis-

tency  by  accurately  aligning  features  across  consecu-

tive frames after effectively calculating location corre-

spondences between neighboring frames.

The simplest video colorization methods are to di-

rectly  apply  image  colorization  techniques  on  each

frame. However, these techniques often lead to flicker-

ing  issues.  To  address  this  issue,  Lei et  al.[3] intro-

duced  a  novel  algorithm  named  Deep  Video  Prior

(DVP) to effectively propagate color information over

the video frames without relying on the computation

of  similarity  between  adjacent  pixels.  The  algorithm

is based on the fact that similar inputs will yield simi-

lar output results from convolutional neural networks

(CNNs) and the same object in different video frames

has  similar  appearances.  In  DVP,  fully  convolutional

networks are employed to simulate the original image

processing  algorithm  and  maintain  temporal  consis-

tency  in  the  video.  The  fully  convolutional  network

can be adjusted accordingly to adopt U-Net or other

suitable  CNN  architectures  (e.g.,  FCN[52]),  based  on

different  tasks.  Additionally,  the  method  utilizes  an

iterative weighted training strategy to address the is-

sue of multimodal inconsistency.

Similarly, Bonneel et al.[2] proposed a post-process-

ing method aiming to enhance the flickering colorized

frames  obtained  by  applying  the  image  colorization

method  to  each  frame  independently  and  generating

temporally consistent video sequences. The core of the

method is exploring the temporal regularity from the

original  grayscale  video,  and  using  it  as  a  temporal

consistency  guidance  to  stabilize  the  processed  se-

quence.  Notably,  the  method  uses  the  frequency  do-

main  to  propagate  color.  And  the  predicted  frames

are  compared  with  the  original  unprocessed  video

frames by minimizing the least-squares energy. Exper-

iments  show  that  this  method  improves  temporal

smoothing and is able to produce high-quality results

on  a  wide  variety  of  applications  independently  of

their inner workings.

Due to the robust performance of the optical-flow

techniques,  some methods  whose  primary goal  is  not

colorization  can  still  generate  satisfactory  colors.  To

reduce  the  significant  human  labor  costs  of  anima-

tion video production, the work by Siyao et al.[53] pri-

marily focuses on interpolating animation frames and

predicting  the  colors  of  the  animated  frames.  This

method combines segmentation techniques, the recur-

rent flow refinement (RFR) network, and feature ex-

traction  using  the  pre-trained  VGG-19  network[36].

The  RFR  network  in  this  method  draws  inspiration

from  the  architecture  of  the  Transformer  model  to

achieve recurrent refinement of optical flow. Addition-

ally,  Laplacian  filters  are  employed  to  extract  the

edge contours of video frames, and the trapdball algo-

rithm[54] is utilized to fill these contours and generate

color patches.  By using this combined technique, the

researchers can obtain intermediate animation frames

that  have  vivid  color  and  clear  details,  providing  an

enhanced visual sense.

Applying optical flow can achieve satisfactory col-

orization performance in some simple scenes.  Howev-

er,  when  faced  with  scenarios  involving  large-scale

motion of objects, the issue of color bleeding remains. 

5.2    Scribble-Based Methods

Due to the performance limitations of optical-flow

based  video  colorization  methods,  which  are  depen-

dent on the performance of image colorization and the

accuracy  of  flow  estimation,  researchers  have  adopt-

ed  an  approach  combined  with  scribbles.  Scribble-

based video colorization methods first introduce color

points into video frames and then propagate the col-

ors  of  these  points  to  the  corresponding  target  ob-

jects.

Scribble-based video colorization methods are  the

earliest  techniques  employed  in  the  field  of  coloriza-
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Table  1.    Summarization of Representative Video Colorization Methods

Year Method Category Space Backbone Feature
Propagation

Loss
Function

Experimental
Dataset

Evaluation
Metric

Venue

2009 Heu et al.[11] S YUV – – – ``Funny Face''
movie

Visual
comparison

ICIP

2009 Jacob and
Gupta[8]

S RGB – – – ``City Lights''
movie

Visual
comparison

ICIP

2013 Sheng et al.[5] S YUV – – – Several videos Visual
comparison

TCSVT

2015 Bonneel et al.[2] O RGB – – – Several videos Visual
comparison

TOG

2015 Doğan et al.[6] S RGB – – – Several videos Visual
comparison

WICED

2015 Ben-Zrihem and
Zelnik-Manor[9]

E RGB – – – Several videos Visual
comparison

CVPR

2016 Xia et al.[10] F RGB – – – Several videos PSNR ICIP

2017 Paul et al.[7] S YUV – – – Several videos PSNR TCSVT

2017 Jampani et al.[21] E YUV – Bilateral
network

L2 DAVIS PSNR CVPR

2018 Lai et al.[1] O RGB – Recurrent CP, ST, LT DAVIS, Videvo Ewarp, Dperceptual ECCV

2018 Vondrick et al.[13] E CIELab ResNet-18[37] 3D
convolutions

CE Kinetics Visual
comparison

ECCV

2018 Liu et al.[22] E CIELab CNN Bi-directional
propagation

L2 ACT,
MS-COCO

PSNR, RMSE ECCV

2018 Meyer et al.[14] E YUV CNN Local and
global
propagation

L1, Ewarp DAVIS PSNR BMVC

2019 Iizuka and
Simo-Serra[15]

E CIELab CNN 3D
convolutions

L1 YouTube-8M PSNR ACM TOG

2019 Zhang et al.[12] E CIELab VGG-19[36] Recurrent L1, PL, CT,
SL, Adv, TC

DAVIS,
Videvo,
Hollywood2

PSNR, Top-1,
Top-5, FID, CF

CVPR

2019 Lei and Chen[24] F RGB VGG-19[36] Recurrent SR, DL, TC DAVIS, Videvo PSNR, LPIPS CVPR

2019 Kouzouglidis
et al.[25]

F CIELab CNN 3D
convolutions

L1, Adv Real films PSNR, RA, CC ISVC

2019 Thasarathan
et al.[26]

F RGB VGG-19[36] Recurrent TC, CL, Adv Anime,
Dragonball

PSNR, SSIM,
FID

CRV

2020 Lei et al.[3] O CIELab CNN Deep video
prior

L1 DAVIS Ewarp, Fdata NIPS

2020 Mahajan et al.[30] F CIELab VGG-19[36] Recurrent L1, PL DAVIS PSNR, MSE MIDAS

2021 Liu et al.[23] F CIELab CNN Bi-directional
propagation

TC DAVIS, Videvo PSNR, CDC,
CF, Ewarp

arXiv

2021 Liu et al.[16] E CIELab VGG-16[36] Recurrent PL, Adv, TC DAVIS, Videvo PSNR, LPIPS,
FID, Ewarp

ICIP

2021 Zhang et al.[33] F RGB ResNet[37] Recurrent L1, PL Cartoon, films PSNR, SSIM WACV

2022 Zhao et al.[27] F RGB ResNet[37] Recurrent L1, PL, Adv,
ST, LT

DAVIS, Videvo PSNR, SSIM,
Ewarp

ACM TMM

2022 Yang et al.[17] E YUV CNN 3D
convolutions

L1 DAVIS, Videvo PSNR, SSIM ICIGP

2022 Yang et al.[18] E CIELab VGG-19[36] Bi-directional
propagation

L1, PL, CT,
SL, Adv, TC,
HL, EL

DAVIS, Videvo PSNR, SSIM,
LPIPS, CDC,
FID, CF

arXiv

2022 Wan et al.[19] E CIELab VGG-19[36] Recurrent L1, PL, Adv DAVIS, Videvo PSNR, SSIM,
LPIPS, Ewarp

CVPR

2023 Jampour et al.[29] F RGB GAN 3D
convolutions

Adv Several, Videos PSNR, SSIM,
RMSE, MAE,
FID

JAIHC

(to be continued)
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tion.  Early  methods  based  on  scribbles  utilize  tradi-

tional  methods  to  achieve  color  propagation  without

deep  learning  techniques  such  as  the  work  by  Levin

et  al.[55] and  the  work  by  Yatziv  and  Sapiro[4]. The

former relies  on an assumption that neighboring pix-

els  in space-time that have similar intensity may ex-

hibit  similar  colors.  And it  employs  a  quadratic  cost

function to formulate an optimization problem which

can  be  solved  by  standard  approaches.  The  latter  is

based  on  the  techniques  of  luminance-weighted

chrominance blending and fast intrinsic distance com-

putations.  With  fewer  chrominance  scribbles,  the

method can rapidly achieve high-quality colorization,

significantly  reducing  both  complexity  and  computa-

tional costs compared with previous techniques.
Given  that  the  aforementioned  methods  rely  on

traditional techniques rather than deep learning, their
spatial-temporal coherence in video colorization is not
satisfactory.  Therefore,  Heu et  al.[11] proposed  a
method to propagate the colors through the scribbles
from the initial frame in the video or an example im-
age  in  deep  learning  techniques.  They  employed  a
block-matching  technique  to  estimate  the  differences
between  the  last  colorized  frame  and  the  current
frame,  effectively  preserving  the  spatial-temporal  co-
herence  of  the  video.  However,  this  algorithm  ex-
hibits  several  shortcomings.  For  instance,  it  requires
that  the  video  frames  and  the  scribble  image  have
similar  brightness,  potentially  limiting its  applicabili-
ty.  Moreover,  when dealing with long videos,  occlud-
ed  objects  may  cause  noticeable  color  bleeding,  thus
affecting the overall quality of video colorization. The
algorithm follows the following execution flow. Initial-
ly, users are required to paint corresponding colors on
the first frame of the grayscale video sequences. Sub-
sequently,  it  utilizes  motion  compensation  prediction
to  colorize  the  current  frame  using  colors  from  the
previous frame. Then, it interpolates colors according
to  adjacent  pixels.  This  process  iterates  continuously
until all video frames are colorized.

To overcome the color bleeding issue in the afore-

mentioned method during the  color  propagation pro-

cess,  Sheng et  al.[5] proposed  a  method  to  maintain

temporal coherence by using optimization in the rota-

tion-aware Gabor feature space. The method clusters

video  frames  and  applies  the  Gabor  filter  to  optical

flow computation to achieve real-time color propaga-

tion within and between frames.  Temporal coherence

is  further  enhanced  through  scribbles  provided  by

users  in  video  frames.  The  main  procedure  of  this

method is  as follows:  1) establish rotation-aware Ga-

bor  filters  to  identify  texture  features  of  the  images,

2) divide the feature space generated by Gabor filters

into K-D tree subgraphs adaptively,  3)  represent the

correspondence  between  different  subgraphs  through

the constructed Gabor flow, and 4) propagate the cor-

responding colors  to  the  pixels  of  these  subgraphs  in

parallel.

Most  previous  scribble-based  video  colorization

methods are highly labor-intensive and suffer from in-

accurate  scribble  propagation.  Doğan et  al.[6] applied

semi-automatic  permeability-guided  filtering  tech-

niques  to  expand  the  colors  from  the  scribbles  over

entire  input  frames.  They  consider  the  local  features

of  object  boundaries  to  avoid  color  bleeding  and  the

utilization  of  global  entropy  helps  maintain  overall

image spatial consistency. In this approach, users are

initially  required  to  manually  provide  scribbles  for

some keyframes of  the input video.  Subsequently,  an

automatic  propagation  method  is  applied  to  process

the  scribbles  and  the  input  video,  generating  spa-

tiotemporally propagated scribble colors.

In  the  process  of  video  colorization,  the  issue  of

object  occlusion often leads  to  color  bleeding.  There-

fore, Paul et al.[7] proposed a technique based on spa-

tiotemporal  color  propagation  in  the  3D  volume  to

address this problem. The approach proposed by Paul

et  al.[7] differs  from  other  methods  by  employing  a

steerable  pyramid decomposition technique  to  propa-

Table 1.    Summarization of Representative Video Colorization Methods (Continued)
 

Year Method Category Space Backbone Feature
Propagation

Loss
Function

Experimental
Dataset

Evaluation
Metric

Venue

2023 Shi et al. E RGB VGG-19[36] 3D
convolutions

L1, PL, Sty,
Adv

Animation PSNR, SSIM,
MSE, FID

TVCG

2023 Zhao et al.[20] S CIELab VGG-16[36] Recurrent L1 DAVIS, Videvo PSNR, SSIM TIP

Ewarp Fdata

Note: CP, content perceptual loss[1]. ST, short-term temporal loss[1]. LT, long-term temporal loss[1]. CE, cross entropy loss. Dperceptual,

perceptual  distance.  CT,  contextual  loss[12].  SL,  smoothness  loss[12].  Adv,  adversarial  loss.  TC,  temporal  consistency  loss[12].  PL,

perceptual loss[12]. SR, self-regularization loss[24]. DL, diversity loss[24]. HL, hard example mining loss[18]. EL, edge-enhancing loss[18].

Sty, style loss[31]. , temporal warping error[2]. , data fidelity[3]. S, scribble-based method. O, optical-flow based method. E,

exemplar-based method. F, fully automated method. Top-1 and Top-5 denote the best top-1 and top-5 class accuracy, respectively.

``–'' means this item is not available or not indicated in its paper.
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gate color without the need for bi-directional propaga-

tion.  By  employing  spatial-temporal  color  propaga-

tion  in  the  3D  space  instead  of  using  motion  vector

computation, this approach helps to avoid the propa-

gation of  inaccurate  color  caused by object  occlusion

in intermediate frames, resulting in more accurate and

continuous  color  generation.  In  this  algorithm[7],  the

process  of  color  propagation  is  as  follows.  Scribbles

are  first  added  to  the  selected  keyframes.  Then,  the

spatial-temporal features of the video are extracted by

a pyramid composed of filters. Finally, by incorporat-

ing  spatial-temporal  information  from  surrounding

pixels,  this  method  can  generate  colorized  videos

while preserving both temporal and spatial consisten-

cy.

In  recent  times,  scribble-based  video  colorization

methods  have  become  less  attractive  due  to  the  re-

quirement of a significant amount of manual interven-

tion and human effort. Moreover, most scribbles pro-

vided cannot  meet  the  need for  accurate  colorization

of details and edges of objects. 

5.3    Exemplar-Based Methods

Although  scribble-based  video  colorization  meth-

ods provide users with personalized colorization opti-

ons, they are time-consuming due to the extensive man-

ual operations. To address this issue, researchers have

proposed  exemplar-based  video  colorization  methods.

Exemplar-based  colorization  methods[9, 12–19, 21, 22, 31]

have been highly praised in the field of video coloriza-

tion  recently,  in  light  of  their  distinct  advantages  in

colorization  efficiency,  color  coherence,  and  color  ac-

curacy compared with scribble-based methods. Its ba-

sic  principle  is  to  extract  corresponding  colors  from

reference frames and transfer these colors to grayscale

video frames.

Considering the high cost  of  collecting large-scale

annotated datasets, Vondrick et al.[13] employed a self-

supervised  approach  to  train  their  network,  reducing

the need for human efforts.  They proposed an exem-

plar-based  colorization  method,  utilizing  a  visual

tracker  network  to  transfer  colors  from  reference

frames  to  the  grayscale  frames.  Specifically,  feature

representations  of  the  example  frames  and  grayscale

frames extracted by convolutional neural networks are

mapped  in  a  shared  feature  space.  Subsequently,  a

similarity matrix is generated by calculating the simi-

larities  between  these  features.  In  the  similarity  ma-

trix,  each  element  represents  the  correspondence  of

each feature element between the reference frame and

the  grayscale  frame.  This  algorithm[13] primarily  em-

phasizes  pixel-level  similarities  while  paying  less  at-

tention  to  temporal  consistency.  Consequently,  flick-

ering artifacts usually occur in the results.

In previous video colorization methods, the lack of

sufficient utilization of semantic information from the

scenes often leads to color artifacts during color prop-

agation, thereby affecting colorization quality. To ad-

dress this issue, a method proposed by Meyer et al.[14],

incorporating the global and local propagation of fea-

tures from reference frames to avoid spatial-temporal

degradation  during  the  frame-by-frame  propagation

process,  has  excellent  colorization  performance  and

maintains  color  coherence  effectively.  Furthermore,

this method employs a softmax layer for feature inter-

polation,  thereby  expediting  the  convergence  speed

during the training process and enhancing the robust-

ness of the model. Besides, this method also incorpo-

rates  an object  color  preservation mechanism to bet-

ter  colorize  the  occluded  objects  by  retaining  global

information in video frames.

Exemplar-based  colorization  methods  often  as-

sume the  first  frame is  colorized  and then propagate

its  color  to  subsequent  frames.  However,  this  frame-

by-frame  propagation  may  lead  to  the  accumulation

of  errors,  affecting  the  colorization  quality  of  subse-

quent  frames.  In  the  method  developed  by  Zhang

et  al.[12],  they  did  not  use  traditional  convolutional

neural  networks  but  employed  recurrent  neural  net-

works (RNNs) to transfer colors from reference frames

to grayscale video frames. The main characteristic of

this method is the simultaneous utilization of the col-

ors from both the reference frame image and previous

frames to jointly guide the colorization of the current

frame.  As  a  result,  this  method  is  capable  of  propa-

gating  more  accurate  colors  to  each  frame  relieving

the  the  accumulation of  color  errors  during propaga-

tion.  Although  this  method  achieves  good  coloriza-

tion results in some simple video scenes, there are still

occurrences  of  color  bleeding  when  handling  compli-

cated scenes.

Due to poor storage conditions,  many old movies

have  suffered  severe  damage.  To  restore  the  bril-

liance of  these classic  films,  Iizuka and Simo-Serra[15]

applied  attention  mechanisms  to  video  colorization

and  their  proposed  algorithm  notably  demonstrates

the  capability  to  restore  the  visual  quality  of  old

films. To ensure good spatial-temporal consistency in

videos,  this  algorithm  introduces  spatial-temporal

convolutional  layers  and  utilizes  multiple  reference
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images  to  guide  the  video  colorization  process.  This

algorithm primarily consists of two sub-networks: the

visual enhancement network and the colorization net-

work. The visual enhancement network, based on the

U-Net architecture,  is  mainly employed for  denoising

and deblurring video frames to enhance image visual

quality and recover details.  The colorization network

utilizes  an  attention  mechanism  to  explore  semantic

correspondences  between  multiple  example  frames

and  grayscale  frames  and  then  transfers  the  corre-

sponding colors to the entire grayscale frame based on

semantic  information,  generating  accurate  and  spa-

tial-temporarily consistent colors.

Due to  non-local  semantic  correspondences  in  ex-

isting  methods,  adverse  effects  such  as  color  bleed-

ings  between  objects  and  color  averaging  have  oc-

curred. To improve the colorization performance, Aki-

moto et al.[56] proposed a method focused on reducing

color  bleeding.  This  method  utilizes  a  self-attention

based  network  to  assign  the  reference  frame and the

previous  frame to  the  same group.  Additionally,  this

method  uses  generated  semantic  masks  of  objects  in

each frame to  guide  the  colorization  process  for  con-

sistent color propagation. This method primarily com-

prises  three  components:  the  estimation  process  of

spatial-temporal  correspondence  between  the  refer-

ence  frame  and  the  target  frame,  the  color  transfer

process, and the color refinement process utilizing in-

formation from adjacent frames.

In  previous  exemplar-based  colorization  methods,

using a single  reference image often fails  to  cover  all

objects in the video clip, leading to color transfer er-

rors from the reference image to the frames to be col-

orized.  Therefore,  Yang et  al.[18] proposed  a  bi-direc-

tional  semantic  feature  fusion  scheme,  introducing

two example frames at the beginning and end of each

frame  sequence.  In  this  method,  a  semantic  sub-net-

work is initially employed to obtain a pair of seman-

tic correspondences between the input grayscale frame

and  the  two  exemplars.  Then  the  bi-directional  se-

mantic correspondences are combined to warp the col-

ors  from exemplars  based  on  the  temporal  clues.  Fi-

nally,  edge  detection  and  semantic  segmentation  in-

formation as guidance information is inputted togeth-

er  with wrapped colors  into the colorization sub-net-

work to generate more accurate colors.

In  these  methods  mentioned  above,  the  selection

of reference images largely impacts the quality of col-

orization. As a result, searching suitable reference im-

ages for real-world grayscale videos from the Internet

is challenging to users, even with the assistance of au-

tomatic search systems. 

5.4    Fully Automatic Methods

Due  to  the  guidance  of  reference  images,  exem-

plar-based  colorization  methods  can  achieve  relative-

ly  good  colorization  results.  However,  acquiring  suit-

able  reference  images  is  challenging  which  limits  its

applicability.  Therefore,  to  reduce  the  complicated

work of obtaining suitable references, fully automatic

video  colorization methods  are  becoming increasingly

popular.  Fully  automatic  video  colorization  methods

aim  at  automatically  transforming  grayscale  videos

into color videos without relying on any colorized ex-

ample image or scribble hint during the inference pro-

cess.

However, it is noted that fully automatic coloriza-

tion  typically  involves  a  frame-by-frame  prediction

process,  which  may  lead  to  temporal  inconsistencies.

This is  because there is  a lack of explicit  color refer-

ences  for  each  frame  in  the  video,  resulting  in  color

changes of the same object in different frames. In the

following discussion, we explore the implementation of

various  methods  and  analyze  the  potential  advan-

tages and drawbacks of these methods.

F G

F

G

To address  the  issue  of  automatic  video  coloriza-

tion  without  annotated  data  and  user  guidance,  Lei

and  Chen[24] proposed  to  employ k-nearest  neighbors

(kNN)  to  search  for  pixel-pair  similarity  in  the  fea-

ture space. It introduces a time loss function to con-

strain temporal  consistency.  Although video coloriza-

tion is a multi-modality problem, the method propos-

es  the  diversity  perceptual  loss  to  generate  multiple

colorized  videos  to  differentiate  multiple  colorization

modes.  In  [24],  a  two-stage  network  structure  is  em-

ployed,  where  both networks  and  are  based on

the  U-Net  architecture.  The  network  is  used  to

convert  grayscale  video  frames  into  coarse  coloriza-

tion results, which are then passed to the network 

to  obtain  finer  colorization  results.  Additionally,  it

employs  VGG-19[36] and  PWC-Net[57] for  feature  ex-

traction from input images and optical flow computa-

tion, respectively.

In  previous  fully  automatic  video  colorization

methods, there are severe flickering artifacts and sub-

optimal  colorization  effects.  Therefore,  Liu et  al.[23]

proposed  a  method that  utilizes  inter-frame informa-

tion  leveraged  by  optical  flow  and  then  propagates

the  colors  from  two  anchor  frames  to  intermediate

frames by bi-directional propagation. The optical flow

between  adjacent  frames  is  estimated  by  the

FlowNet2 network[58] and then utilized to align inter-

frame features. By leveraging optical flow techniques,
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color information from the first frame  and the last

frame  is  propagated  to  the  intermediate  frames

.  Without  employing  any  loss  with  the

ground-truth color  video,  the method also introduces

a  self-regularized  learning  scheme  to  minimize  differ-

ences  of  predictions  at  different  time  steps  to  learn

temporal consistency, thereby free from the influence

of training or testing data. Similar to image-based col-

orization  models,  this  network  also  consists  of  a  fea-

ture extraction module and a color mapping module.

The feature extraction module is initially used to ex-

tract  features  from the  anchor  frames.  Subsequently,

information is propagated frame by frame in both for-

ward and backward directions, and the relevant deep

features  are  then  fed  into  the  color  mapping  module

to predict the chromatic channels of grayscale frames.

Additionally,  to  integrate  the  features  propagated  in

both directions, this method employs a feature fusion

module.

To  address  the  two  main  challenges  commonly

found in previous video colorization methods: tempo-

ral consistency and the integration of the colorization

network  with  the  refinement  network,  some  strate-

gies have been proposed by researchers. Zhao et al.[27]

proposed  an  end-to-end  hybrid-recurrent  network

based on a generative adversarial network (GAN), in-

troducing a dense  long-term loss  to  minimize  tempo-

ral differences between frames over an extended peri-

od. GAN-based methods can suffer from challenges in

dealing with the ill-posed colorization problem due to

the  limited  representation  space  of  GANs.  In  this

method,  the  generator  mainly  consists  of  three  com-

ponents: a global feature extractor, a placeholder fea-

ture  extractor,  and  an  encoder-decoder.  The  global

feature extractor is responsible for encoding the glob-

al semantics of grayscale frames, and the placeholder

feature  extractor  encodes  the  semantics  of  previous

color  frames.  The  encoder-decoder  utilizes  the  U-Net

architecture  to  colorize  grayscale  frames.  Both  the

global  feature  extractor  and  the  placeholder  feature

extractor  employ  a  fully  convolutional  ResNet-50-IN

network[37],  while  the  discriminator  adopts  a  Patch-

GAN architecture[59].

Automatic  colorization  methods  are  effective  to

some  extent,  but  they  also  have  some  drawbacks.

There are relatively definite colors for objects such as

flags,  clothes,  and  buildings  in  practical  colorization

tasks with specific  era backgrounds or  artistic  styles.

The automatic colorization methods often struggle to

meet these requirements. 

6    Categorization from Novel Perspective

How  to  maintain  spatial-temporal  consistency  is

vital for video colorization. To better understand the

development  of  existing  methods  in  terms of  spatial-

temporal  consistency,  we  review  video  colorization

methods from a novel perspective. 

6.1    Spatial Consistency

During the process of video colorization, there are

numerous factors that influence spatial consistency in

videos.  Below  are  listed  several  strategies  aiming  at

preserving the spatial consistency of videos. 

6.1.1    Feature Extraction Models

In  the  task  of  video  colorization,  feature  extrac-

tion  models  are  capable  of  learning  spatial  features

(such  as  object  shapes  and  textures)  and  temporal

features  (such  as  motion  information  and  dynamic

changes)  present  within  the  video.  These  features

serve as valuable assistance to the colorization model,

aiding  it  in  better  understanding  the  content  of  the

video and its color distribution. Moreover, feature ex-

traction  models  also  help  reduce  the  complexity  and

redundancy of original data, thereby enhancing the ef-

ficiency of the video colorization model.

VGG-Based.  These  methods[12, 16, 18, 19, 24, 26, 30]

utilize  the  feature  representation  capabilities  of  the

VGG networks[36] for visual data. Zhang et al.[12] em-

ployed  a  pre-trained  VGG-19[36] to  extract  features

from  both  the  input  video  frames  and  the  reference

frames  to  compute  the  similarity  between  them.  Lei

and Chen[24] augmented the input to the network by

adding  hyper-column  features  extracted  from  the

VGG-19 network[36].

ResNet-Based.  These  methods  employ  residual

networks  (ResNets[37])  which  use  deeper  layers  and

skip  connections,  giving  the  network  the  ability  to

capture and represent complex features[1, 27, 33]. Zhang

et  al.[33] opted  for  the  more  efficient  ResNet-50[37] to

gain better features in their study. Zhao et al.[27] have

used pre-trained ResNet-50-IN[37] as a feature extrac-

tor  to  provide  semantics  for  the  network  to  identify

colors for objects with similar edges.

Other  Networks.  In  addition  to  the  above  meth-

ods, the utilization of features derived from large-scale

pre-trained visual models[60] is gaining increasing pop-

ularity.  These  models  can effectively  model  non-local

and semantic information and are robust in handling
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complex  scenarios.  These  attributes  underscore  their

potential  significantly  to  revolutionize  the  landscape

of video colorization techniques. 

6.1.2    Spatial Color Consistency

In  addition  to  choosing  different  feature  extrac-

tion networks, spatial relationships between neighbor-

ing pixels are often considered to ensure spatial color

consistency. For example, Lei and Chen[24] employed a

self-regularization  loss,  which  performs  the kNN  on

both the predicted frame and the ground-truth frame

during  training  to  make  sure  that  the  pixels  in  the

predicted  frame  at  the  same  spatial  locations  as  the

kNN  pixels  in  the  ground  truth  frame  have  similar

colors. 

6.1.3    Prior Knowledge

Methods based on prior knowledge can help main-

tain the spatial consistency of videos. For instance, in

[12, 15, 18]  semantic  information  and  color  distribu-

tion features from reference frames are utilized to pro-

vide prior knowledge. 

6.1.4    Edge Information

The  edge  information  between  objects  is  crucial

for  maintaining  spatial  consistency  during  the  color-

ing process. Neglecting edge information may lead to

color bleeding. For example, [18] effectively alleviates

color bleeding by utilizing edge loss. 

6.2    Temporal Consistency

Temporal  consistency  is  of  vital  importance  in

video  colorization  tasks  for  several  reasons:  provides

visual  coherence  in  the  perceived  flow  of  frames,  en-

sures contextual relevance of added color information

across  frames,  enhances  realism  by  mimicking  the

consistent  color  behavior  of  real-world  videos,  and

contributes to narrative continuity that may be influ-

enced  by  color. Fig.2(c)  shows  that  recurrent-based

methods dominate most methods.

3D  Convolutional  Networks.  These  types  of  net-

works[13, 15, 17, 25, 29, 31] directly handle time series data

and capture temporal continuity in videos. Iizuka and

Simo-Serra[15] employed  3D  convolutions  to  manage

multiple  input  frames  and  reference  images  concur-

rently,  thereby  enhancing  spatial-temporal  consisten-

cy.  Shi et  al.[31] proposed  a  temporal  refinement  net-

work  to  learn  spatial-temporal  features  through  3D

convolutions to ensure the temporal color consistency

of  the  results.  3D  convolutions  can  process  temporal

sequences,  inherently  capturing  spatial-temporal  de-

pendencies.  This  allows for  coherent color  transitions

across  video  frames.  In  addition,  by  analyzing  the

time  dimension,  these  networks  can  decode  context

better,  leading  to  more  accurate  colorization  choices,

especially in dynamic scenes. Besides, 3D convolution-

al  networks  can  automatically  learn  discriminative

features for colorization without manual intervention,

simplifying  the  pre-processing  stage.  However,  there

are  several  drawbacks  of  3D  convolutional  networks.

The complexity of 3D convolution operations leads to

increased  computational  requirements  and  processing

time.  Moreover,  3D  convolutional  networks  typically

require more memory due to their consideration of an

additional dimension.

Optical Flow Estimation. Optical-flow based algo-

rithms[1, 3] calculate motion between pixels or features,

used  to  maintain  color  consistency  between  continu-

ous  video  frames.  Optical  flow  estimation  is  good  at

understanding  and  interpreting  object  motion  be-

tween  sequential  video  frames.  This  can  significantly

aid  in  predicting  the  colorization  attributes  of  mov-

ing  objects,  leading  to  more  accurate  and  visually

consistent  results.  In  addition,  optical  flow  estima-

tion  can  promote  spatial  coherence  in  the  video  re-

sulting in a smoother transition of colors between the

frames.  Despite  the  numerous  advantages,  optical

flow estimation algorithms expose a sensitivity to dis-

turbance  and  abrupt  changes  in  illumination,  which

may  precipitate  imprecise  flow  estimations  conse-

quently  causing  colorization  inaccuracies.  And  large

displacements  between  frames  can  be  challenging  for

optical  flow  estimation  techniques  to  handle,  which

can influence the color consistency across frames.

i

Recurrent Neural Networks. Recurrent neural net-

works (RNNs)[1, 12, 16, 19, 20, 24, 26, 27, 30, 33] and its vari-

ants  (like  LSTM[61] or  GRU[62])  can  handle  sequence

data,  establishing  temporal  dependencies  between

video frames for consistency. Zhang et al.[12] took the

result of the previous frame as input to preserve tem-

poral consistency when colorization the current frame.

Zhao et  al.[27] employed a placeholder  feature  extrac-

tor that serves as a feedback connection to encode the

semantics of  the previous colorized frame in order to

maintain  spatial-temporal  consistency.  Lei  and

Chen[24] took the -th colorized candidate images from
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frame  and  frame  as  well  as  two  confidence

maps as input, and then employed the refinement net-

work  to  output  a  colorized  video  frame  for  frame .

As  RNNs  are  designed  to  process  sequential  data,

they  can  sustain  color  consistency  in  consecutive

frames,  producing  a  smoother,  more  visually  appeal-

ing  result.  Moreover,  RNNs  can  handle  sequences  of

varying  lengths,  making  them  versatile  for  videos  of

different durations. However, despite their theoretical

capacity to model long-term dependencies, in practice,

vanilla  RNNs  often  falter  in  learning  from  long  se-

quences due to what is termed as the “vanishing gra-

dient” problem.  Short-term  dependencies  tend  to  be

captured more effectively than longer ones.

Bi-Directional Propagation Networks. Unlike unidi-

rectional approaches, bi-directional propagation[18, 22, 23]

incorporates both forward and backward temporal da-

ta, resulting in more robust color transformation plan-

ning.  Yang et  al.[18] employed  a  bi-directional  propa-

gation model to aggregate information efficiently from

both  exemplars.  By  propagating  and  cross-verifying

color  information  in  both  temporal  directions,  bi-di-

rectional  methods  can  generate  more  accurate  and

natural colorization. Moreover, bi-directional propaga-

tion can enhance temporal  consistency by optimizing

the coherence  between forward and backward propa-

gation,  achieving  more  fluid  color  transitions  in

videos.  However,  the  complexity  of  bi-directional

propagation  algorithms  is  generally  higher  than  that

of  their  unidirectional  counterparts,  resulting  in  in-

creased  computational  demand  and  processing  time.

In addition,  due to the requirement of  learning color

propagation  rules  in  both  directions,  bi-directional

methods may necessitate a larger training dataset. 

7    Performance Evaluation

In  this  section,  we  evaluate  the  performance  of

representative  video  colorization  methods  based  on

deep learning techniques.

Table 2 summarizes  the  performance  comparison

of  various  representative  deep  learning  methods  on

three commonly used video colorization datasets (the

DAVIS dataset[48], Videvo dataset[1], and NVCC 2023

dataset[63]).  It  is  worth  noting  that  all  algorithms

adopt the same training strategy. The methods devel-

oped by Zhang et al.[64], Kang et al.[65], and Ji et al.[66]

are  based  on  image  colorization  techniques.  The  re-

sults  indicate  that  directly  applying  image  coloriza-

tion methods to video colorization is not satisfactory.

This is because image-based colorization methods on-

ly  consider  the  colorization  performance  of  the  indi-

vidual video frame, ignoring the temporal consistency

across frames in the video sequence. Liu et al.[23] em-

ployed fully automatic approaches to design video col-

orization  networks,  achieving  better  temporal  consis-

tency  compared  with  image  colorization  networks.

This  is  because  these  methods  utilize  optical  flow or

3D convolutions  to  align  video  frames.  However,  the

fully  automated  methods  have  relatively  high  FID

value,  that  is,  relatively  poor  colorization  perfor-

mance on all  three datasets,  as Table 2 shows. Com-

pared with the strategies mentioned above, exemplar-

based  methods  are  widely  used  to  generate  more  vi-

brant  colors  of  video  frames.  Iizuka  and  Simo-

Serra[15],  Zhang et  al.[12],  and  Yang et  al.[18] trans-

ferred color from reference to video frames, and these

methods  achieve  good  performance  in  terms  of  the

FID  metric  on  the  DAVIS  dataset[48],  Videvo

dataset[1],  and NVCC 2023 dataset[63].  Current exem-

plar-based methods also introduce optical flow or 3D

convolutions  into  the  networks  for  better  temporal

consistency and these methods can achieve better col-

orization  performance  due  to  the  guidance  of  refer-

ence  frames compared with previous  fully  automated

approaches.
 

Table  2.    Performance Evaluation of Representative Video Colorization Methods Conducted on Three Commonly Used Video Col-
orization Datasets

Method Category DAVIS[48] Videvo[1] NVCC 2023[63]

PSNR SSIM FID CDC PSNR SSIM FID CDC PSNR SSIM FID CDC

Zhang et al.[64] Image-based 30.90 0.959 114.56 0.004 903 31.18 0.959 79.49 0.002 526 30.64 0.939 71.64 0.003 436

Kang et al.[65] Image-based 30.54 0.934 85.41 0.004 168 30.75 0.934 54.91 0.002 189 30.38 0.957 64.08 0.002 622

Ji et al.[66] Image-based 31.12 0.948 92.40 0.004 212 31.36 0.953 67.71 0.001 872 30.78 0.933 62.49 0.002 544

Lei and Chen[24] Fully-automatic 30.53 0.951 110.88 0.006 880 30.01 0.949 82.07 0.010 254 28.65 0.927 81.42 0.008 882

Liu et al.[23] Fully-automatic 31.10 0.955 116.64 0.003 743 31.30 0.957 80.71 0.001 694 30.46 0.936 72.73 0.002 443

Iizuka and Simo-Serra[15] Exemplar-based 30.56 0.949 90.73 0.004 619 30.61 0.957 58.81 0.003 258 29.69 0.927 50.55 0.005 238

Zhang et al.[12] Exemplar-based 33.24 0.951 70.21 0.003 853 33.11 0.957 55.01 0.001 925 32.03 0.930 35.43 0.002 694

Yang et al.[18] Exemplar-based 33.72 0.936 45.18 0.004 168 34.07 0.967 32.32 0.001 861 33.43 0.949 26.63 0.002 864
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Figs.3–5 show  the  comparison  among  one  image-
based colorization method,  one fully  automatic  video
colorization  method,  and  two  exemplar  based  video
colorization  methods.  Image-based  colorization  meth-
ods[65] may not effectively colorize video frames, lead-
ing  to  noticeable  color  bleeding  in  the  generated  re-
sults.  TCVC[23],  as  a  fully-automated  colorization
method can result in desaturated colors in the scenes
such  as  grass,  airplanes,  and  pools.  Across  all  three
datasets,  BiSTNet[18] achieves  the  optimal  coloriza-
tion results, indicating that exemplar-based video col-

orization  methods  can  generate  higher-quality  col-
orization results.  Meanwhile,  even with similar archi-
tectures,  different methods may produce different re-
sults, such as BiSTNet[18] and DeepExemplar[12], both
of which are exemplar-based video colorization meth-
ods. The main reason for the performance variation is
that  BiSTNet[18] utilizes  two  reference  frames  at  the
beginning and end of the video sequence, along with a
bidirectional  temporal  feature  fusion  module,  while
DeepExemplar[12] only  uses  the  first  frame  of  the
video sequence as the reference frame. 

 

(b)(a) (c) (d) (e)

(g)(f) (h) (i) (j)

Fig.3.  Evaluation results of various state-of-the-art video colorization methods on the DAVIS datasets. The red, purple, and green
boxes  display  the  magnified  effects  of  different  areas  of  the  selected  image,  respectively.  (a)  Gray.  (b)  CIC[64].  (c)  DDColor[65].
(d) ColorFormer[66]. (e) FAVC[24]. (f) TCVC[23]. (g) DeepRemaster[15]. (h) DeeepExemplar[12]. (i) BiSTNet[18]. (j) GT.
 

(b)(a) (c) (d) (e)

(g)(f) (h) (i) (j)

Fig.4.  Evaluation results of various state-of-the-art video colorization methods on the Videvo datasets. The red, purple, and green
boxes  display  the  magnified  effects  of  different  areas  of  the  selected  image,  respectively.  (a)  Gray.  (b)  CIC[64].  (c)  DDColor[65].
(d) ColorFormer[66]. (e) FAVC[24]. (f) TCVC[23]. (g) DeepRemaster[15]. (h) DeeepExemplar[12]. (i) BiSTNet[18]. (j) GT.
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8    Loss Functions

The  categorization  of  commonly  used  loss  func-

tions in video colorization methods is described in this

section.  It  is  worth  noting  that  all  loss  functions  in-

troduced  below  are  simplified  formulations  and  they

have variations when applied in specific applications. 

8.1    Reconstruction-Based Loss Functions

L1

L1

 Loss. This  loss  function  is  used  to  represent

the  absolute  differences  between  the  target  and  the

prediction. It  provides pixel-level  supervision and en-

courages the output from the generator to closely re-

semble  the  ground  truth  as  much  as  possible.  The

standard  loss can be written as: 

L1 =
∑

|zt − ẑt|,

ẑt twhere  is the ground truth at time .

L2

L1

L2

 Loss. This function calculates the square of the

differences between the target and the predicted val-

ues, making it more sensitive to outliers than . The

 loss can be written as: 

L2 =
∑

(zt − ẑt)
2.

 

8.2    Perceptually-Based Loss Functions

Perceptual  Loss.  This  is  a  more  advanced  loss

function typically  used in vision tasks.  It  is  designed

to measure perceptual and semantic differences, often

computed  in  the  feature  space  using  high-level  fea-

tures  extracted  from  pre-trained  networks  (e.g.,

VGG[36]).  It  enhances  the  quality  and  realism  of  the

colorized images,  making them closer to the real  col-

or images perceived by the human visual system. Here

is a simplified form: 

Lperc =
∑

||ϕ(zt)− ϕ(ẑt)||22,

ϕwhere  denotes a function extracting features.

Contextual Loss. Contextual loss[12] is proposed to

inspire  the  resemblance  of  colors  in  the  output  to

those  in  the  reference.  It  measures  the  local  feature

similarity  in  the  context  of  the  whole  image.  This

concept proves  to be apt for  transferring colors  from

semantically related regions.

Style  Loss.  Style  loss[31] assesses  the  difference  in

style  characteristics  between the output and the tar-

get. Its role is to capture the style information of the

original  images,  ensuring  the  preservation  of  their

stylistic  features  during  the  generation  process.  The

style loss can be written as: 

Lstyle =
5∑

i=1

||G(ϕ(zt(i)))− G(ϕ(ẑt))||1,

G(·)where  represents the Gram matrix computed for

input features. 

 

(b)(a) (c) (d) (e)

(g)(f) (h) (i) (j)

Fig.5.   Evaluation results  of  various  state-of-the-art  video  colorization  methods  on the  NVCC2023 datasets.  The red,  purple,  and
green boxes display the magnified effects of different areas of the selected image, respectively. (a) Gray. (b) CIC[64]. (c) DDColor[65].
(d) ColorFormer[66]. (e) FAVC[24]. (f) TCVC[23]. (g) DeepRemaster[15]. (h) DeeepExemplar[12]. (i) BiSTNet[18]. (j) GT.
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8.3    Spatially-Based Loss Functions

Smoothness  Loss.  This  function  encourages

smoother  and  more  continuous  outputs  by  minimiz-

ing  the  difference  between  neighboring  pixels.  The

smoothness loss can be written as: 

Lsmooth =
∑

|z(i, j+1)
t − z(i, j)

t |+ |z(i+1, j)
t − z(i, j)

t |,

i, j Lsmoothwhere  denote  the  spatial  location,  calcu-

lates the difference between adjacent pixels along the

horizontal and vertical directions.

Self-Regularization Loss. Self-regularization loss[24]

explicitly poses a penalty to the temporal consistency

between  adjacent  frames.  The  color  consistency  be-

tween  neighboring  pixels  can  be  enhanced  in  the  bi-

lateral  space  by  the  self-regularization  loss.  The  for-

mula  for  the  self-regularization loss  can be  expressed

as: 

Lsr =
∑∑

||Mt+d→t ⊙ (zt −W (zt+d, Ft, t+d))||2 ,

Ft, t+d

zt zt+d W(·)

Mt+d→t = exp(−α ||zt−
W (zt+d, Ft, t+d)||2) ⊙

where  is the estimated optical flow between the

current  frame  and  the  previous  frame , 

denotes the operation of transforming images through

the utilization of optical flow, 

 is  the  visibility  mask,  denotes

the element-wise multiplication operation.

Edge-enhancing  Loss.  Edge-enhancing  loss[18] en-

forces  the  model  to  generate  better-defined  edges  in

the  output.  By  utilizing  edge-enhancement  loss  to

constrain  network  training,  color-bleeding  issues  oc-

curring in neighboring objects in the image can be al-

leviated. The edge-enhancing loss is defined as: 

Ledge = ||S(xt)− S(zt)||2,

xt S(·)where  is a grayscale image, and  represents the

Sobel filter used in [67]. 

8.4    Temporally-Based Loss Functions

Short-Term  Temporal  Loss.  Short-term  temporal

loss[1] is  set  to  ensure  consistency  between  consecu-

tive frames in the generated video sequence. This loss

is  designed  to  reduce  the  inconsistency  between  the

consecutive  generated  outputs,  thereby  achieving

smoother  transitions  from  one  frame  to  the  next  in

the final  result.  The formula for  the short-term tem-

poral loss can be expressed as: 

Lst =
1

N

N∑
t=1

||zt+1 −W(zt)||1,

zt t zt+1

W(·)

N

||.||1 L1

where  is the generated output at time ,  is the

next output frame in the sequence,  denotes the

operation of transforming images through the utiliza-

tion  of  the  optical  flow,  is  the  total  number  of

frames and  denotes the  norm (sum of the ab-

solute differences).

Long-Term  Temporal  Loss.  Long-term  temporal

loss[1] assists  in  maintaining  long-time  temporal  con-

sistency,  by  comparing  the  prediction  of  the  present

frame with the future frame: 

Llt =
1

N

N∑
t=1

||zt+T −W(zt)||1,

Twhere  represents a constant time interval.

Temporal  Consistency  Loss.  Temporal  consisten-

cy loss[12] enforces the output to have a stable transi-

tion over time. It explicitly penalizes the color change

along the flow trajectory. The formula for the tempo-

ral consistency loss can be expressed as: 

Ltc = ||W (zt−1, Ft, t−1)− zt||
2

2
,

Ft, t−1

zt zt−1 W(·)
where  is the estimated optical flow between the

current  frame  and  the  previous  frame , 

denotes the operation of transforming images through

the  utilization  of  optical  flow.  The  optical  flow  ex-

hibits the motion of the pixels in the video frames. 

8.5    Diversity-Based Loss Functions

Adversarial  Loss.  In tasks like GANs,  adversarial

loss  helps  create  more  realistic  outputs.  It  typically

involves  a  game  between  two  elements,  a  generator

and a discriminator. Formally, the minimax game can

be represented as: 

Ladv(G,D) = Er[logD(r)] + En[log(1−D(G(n)))],

G D

r n

where  and  are the generator and discriminator,

 is the real data, and  is the noise sample.

Diversity Loss. Diversity loss[24] is designed to gen-

erate multiple colorized videos which distinguish vari-

ous  solution  modes.  This  loss  not  only  enhances  the

availability  of  unique  solutions  but  also  significantly

contributes to temporal coherence. It achieves this by

mitigating  the  ambiguity  inherent  in  colorization

tasks  through  the  generation  of  multiple  operational

modes. The diversity loss can be written as: 
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Ldiversity =
N∑
t=1

min
i
{||ϕ(zt(i))− ϕ(ẑt(i))||1}+

N∑
t=1

d∑
i=1

β||ϕ(zt(i))− ϕ(ẑt(i))||1,

zt(i) i

β d

where  represents  the -th  colorized  image  out-

put by the network,  is a decreasing sequence and 

is set to 4 in [24].

Hard  Example  Mining  Loss.  Hard  example  min-

ing  loss[68] focuses  more  on  hard  examples  during

training  for  the  robustness  of  the  model.  This  loss

function can automatically pay more attention to dif-

ficult  regions,  thereby encouraging the model  to pro-

duce  clearer  boundaries.  The  hard  example  mining

loss is defined as: 

Lhard =
||M ⊙ (f − f̂)||1

||M ||1
+ λ× ||M h ⊙ (f − f̂)||1

||M h||1
,

M h

f f̂

where  represents the binary mask of hard regions,

 denotes  the  computed  optical  flow,  and  repre-

sents the ground-truth flow. 

8.6    Information Theoretic Loss Functions

Cross Entropy Loss. Cross entropy loss is the pre-

ferred  loss  function  for  binary  classification  tasks.  It

measures  the  dissimilarity  between  the  ground  truth

and  the  estimated  probabilities.  For  video  coloriza-

tion  tasks,  we  can  discretize  pixel  values  into  multi-

ple individual numerical entities to function as classi-

fication  labels,  thereby  facilitating  the  calculation  of

cross-entropy loss. 

9    Future Research Prospects

Advancements  in  video  colorization  have  been

noteworthy  in  the  past  decade,  with  profound impli-

cations for numerous applications in media, entertain-

ment, and digital artistry. However, despite progress,

various research avenues remain open for exploration.

Temporal  Consistency.  One of  the  key challenges

in  video  colorization  is  maintaining  temporal  consis-

tency across frames. While individual frames might be

colorized  accurately,  subtle  differences  between  adja-

cent frames can result in jittering or flickering effects.

Future  research  might  focus  on  developing  more  so-

phisticated  algorithms  to  ensure  smooth  transitions

and temporal coherence in colorized videos.

Improved  Training  Data.  Deep  learning  based

methods  for  video  colorization  require  large,  diverse

datasets  for  training.  Currently,  the  utility  of  these

models  is  limited by the availability  and diversity  of

such datasets. More accurate and diverse training da-

ta, potentially gathered from a wider array of sources,

could  improve  the  reliability  and  generalizability  of

these models.

Interactive and User-Guided Approaches.  The ca-

pacity  to  incorporate  user  inputs  into video coloriza-

tion  models  can  improve  accuracy  and  user  satisfac-

tion.  Future  research  could  work  towards  making

these models more interactive, allowing users to have

more control over the colorization process.

Integration with Other Video Enhancement Tech-
niques.  There is great potential in the intersection of

video colorization with other video enhancement pro-

cesses  like  super-resolution,  noise  reduction,  and

frame interpolation. Further development of integrat-

ed models could lead to comprehensive video restora-

tion and enhancement solutions.

Real-Time  Processing  Capabilities.  Efforts  could

be directed toward improving the computational effi-

ciency of video colorization methods to accommodate

real-time colorization of live video streams. 

10    Emerging Trends

Self-Superviesed  Learning  for  Video  Colorization.

In tasks of video colorization, self-supervised learning

can  be  employed  to  train  colorization  models  when

datasets  are  relatively  small.  The  core  of  self-super-

vised  learning  lies  in  spatiotemporal  consistency  in

videos.  Since  consecutive  frames  in  video  sequences

exhibit significant color similarity, this can serve as a

regularization constraint to guide learning and ensure

temporal  consistency.  Additionally,  in  terms  of  spa-

tial consistency, powerful pre-trained networks can be

leveraged  to  extract  features  from  video  frames,  en-

abling  the  network  to  understand  the  content  and

structure  of  the  images  and  infer  the  color  informa-

tion of video frames.

Unpaired Learning for Video Colorization. To ad-

dress  the  issue  of  having  only  grayscale  video  frame

datasets  in  video  colorization  tasks,  unpaired  learn-

ing  methods  can  be  employed.  In  unpaired  learning,

typically  two  datasets  are  required:  one  comprising

grayscale  video  frames  and  the  other  containing  col-

ored video frames.  Subsequently,  using the generator

and discriminator components of a GAN, the conver-

sion  of  grayscale  frames  to  colored  frames  and  the

evaluation of the colored frames are carried out sepa-
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rately.  Additionally,  content  consistency  and  tempo-

ral consistency of the generated colored frames can be

ensured by employing cycle consistency loss and tem-

poral consistency loss respectively.

Large Models for Video Colorization. In the era of

large  models,  these  models  are  capable  of  generating

many high-quality images and videos, indicating that

they  encapsulate  rich  knowledge.  Therefore,  we  can

extract this knowledge from these large models as pri-

or  knowledge  for  the  colorization  network,  and  then

utilize  this  prior  knowledge  to  guide  the  video  col-

orization process. 

11    Conclusions

In  this  survey,  an  extensive  overview  of  various

techniques  involved in video colorization was provid-

ed.  On  the  basis  of  user  interaction,  video  coloriza-

tion techniques can be broadly divided into four cate-

gories: fully automatic colorization, scribble-based col-

orization,  optical-flow  based  colorization,  and  exem-

plar-based  colorization.  We  discussed  the  strengths

and weaknesses of different methods and provided an

overview of the loss functions adopted by various col-

orization methods. Additionally, we compared and an-

alyzed  the  performance  of  various  video  colorization

methods  on  benchmark  datasets.  Through  compar-

isons,  exemplar-based  video  colorization  methods

guided  by  examples  demonstrate  better  colorization

performance compared with the other methods. While

deep  learning  based  video  colorization  techniques

have  made  significant  advancements,  current  meth-

ods still face numerous challenges. Therefore, we out-

lined  the  trends  of  self-supervised  learning,  unpaired

learning,  and  the  large  models  in  the  field  of  video

colorization,  aiming  to  provide  insights  for  re-

searchers. 
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