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Abstract
date in order to maintain rapid tracking speed. This inevitably influences the adaptability to changes in object appearance.

CNN (convolutional neural network) based real time trackers usually do not carry out online network up-

Correlation filter based trackers can update the model parameters online in real time. In this paper, we present an end-to-
end lightweight network architecture, namely Discriminant Correlation Filter Network (DCFNet). A differentiable DCF
(discriminant correlation filter) layer is incorporated into a Siamese network architecture in order to learn the convolution-
al features and the correlation filter simultaneously. The correlation filter can be efficiently updated online. In previous
work, we introduced a joint scale-position space to the DCFNet, forming a scale DCFNet which carries out the predic-
tions of object scale and position simultaneously. We combine the scale DCFNet with the convolutional-deconvolutional
network, learning both the high-level embedding space representations and the low-level fine-grained representations for
images. The adaptability of the fine-grained correlation analysis and the generalization capability of the semantic embed-
ding are complementary for visual tracking. The back-propagation is derived in the Fourier frequency domain throughout
the entire work, preserving the efficiency of the DCF. Extensive evaluations on the OTB (Object Tracking Benchmark)
and VOT (Visual Object Tracking Challenge) datasets demonstrate that the proposed trackers have fast speeds, while
maintaining tracking accuracy.

Keywords  correlation filter, convolutional neural network (CNN), visual tracking

because any non-real-time trackers cannot be put
into actual use. However, real time speed is usually

1 Introduction

Object tracking is a fundamental problem in com-
puter vision with wide applications, such as human
computer interaction and assistant driving systems.
Its aim is to estimate the trajectory of an object in
consecutive framesl 6. Without knowing the object
class a priori, tracking arbitrary objects requires the
online learning of their discriminant information. It is
a challenging problem!™ 2] because of changes in ob-
ject appearance, object deformation, variations in
scale, variations in pose, severe occlusions, back-
ground clutter, etc.

Maintaining real-time processing for visual track-
ing in complex scenarios is vital in real applications,

unobtainable for state-of-the-art trackers with on-
line trained classifiers. Correlation filter based track-
ers(% 13, 14 have received a great deal of attention be-
cause of their remarkable tracking performance and
speed. These trackers model the correlations between
the target patch and the full set of approximate sur-
rounding patches in the position space by solving a
ridge regression problem efficiently in the Fourier fre-
quency domain. Primitive correlation filter based
trackers were equipped with feature extractors and
correlation filters separately. It is proved that good
features greatly enhance the tracking performancells.
Later work concentrated on the integration of multi-
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layer deep features for correlation filter based track-
ingl16-21]. The object representation has evolved from
hand-crafted features (e.g., raw grey level featurest3],
HOG: 22| and color names?) to pre-trained multi-
layer deep features16-18, 21l producing convolutional
neural networks (CNNs) and correlation filter com-
bined trackers. In the following, we review CNN-
based trackers and correlation filter based trackers.

1.1 Related Work

1.1.1 CNN-Based Trackers

The good performance of deep convolutional net-
works on several challenging vision tasks(24 28 encour-
ages recent work to either utilize existing CNN fea-
turesl!6: 21, 29 or design deep architectures/l0; 30-33]
for discriminative visual tracking. CNN-based track-
ersi32-34 show great powers for robust tracking. Some
work[10: 30, 31 follows the offline training and online
fine-tuning paradigm. Although CNN features are
highly discriminative, it is computationally expensive
to extract the features from each video frame and
train or update the tracker using CNN features which
are high-dimensional. Online fine-tuning CNNs to ac-
count for changes in object appearance severely ham-
pers the speed of trackers[l® 30 31, Siamese networks
are exploited in [32-39] to formulate visual tracking
as a verification problem to build template matching
based trackers without online updating. This achieves
high tracking speed. In the offline network pre-train-
ing, an embedding space for classification32 49 or re-
gression3¥ is learnt on external video datasets/4! us-
ing a CNN backbone architecture, such as AlexNet[42
and VGGNet43l. The representations projected in the
learnt embedding space have high-level information.
They are useful for distinguishing objects with differ-
ent classes. Such representations have generalization
capabilities across different datasets. This makes
tracking more robust. During online tracking, these
trackers estimate the object position just through a
feed forward network pass and do not carry out fine
tuning of the network parameters. These CNN-based
representations have the advantage of discriminative
learning of the classes in the training samples. They
are less sensitive to the details for comparing two ob-
jects with the same attributes or semantics. These
CNN-based trackers have the following limitations.

e The resolution of the representation in the em-
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bedding space is often low. Object-specific details use-
ful for fine-grained localization may be lost and the
domain shift problem/!% more easily occurs.

e Online network update is usually not carried

out in order to maintain rapid tracking speed. This
inevitably influences the adaptability to the changes
in object appearance.
To make the learnt semantic embedding more robust
to avoid domain shifts, it is necessary for a Siamese
network based tracker to online update the model and
learn the fine-grained image features.

1.1.2 Correlation Filter Based Trackers

Many developments of correlation filter based
tracking*4 have taken place over an extended period.
Bolme et al.l3] introduced correlation filters to visual
tracking. The tracker runs at high speed simply using
the single channel grey level features. Henriques et
all® 22 used circulant matrices to interpret correla-
tion filters and generalize to multi-channel feature
cases. Danelljan et al[2] incorporated color names’
features to boost the performance of correlation filter
based tracking. Recently more and more workll6; 17]
concentrates on the integration of pre-trained multi-
layer deep features into correlation filter based track-
ing. Ma et al.l'6l learned correlation filters on each hi-
erarchical convolutional layer for tracking. Danelljan
et al.l7 built the correlation filter only on the first
layer of single-resolution deep feature maps. Val-
madre et all* learned tracking-specific deep learning
features end to end, and improved tracking accuracy
without losing high speed. However, deep learning
features with low resolution and wide feature chan-
nels were used. Some tracking methods maintain a
tracker ensembleBl: 45 6] Fajlures in a single tracker
are able to be compensated from other trackers. Hong
et allf and Ma et all8 added redetection mecha-
nisms to achieve long-term correlation filter based
tracking. Fan and Lingl*® equipped short term track-
ing based on correlation filtering with long term con-
servative verifications or redetections. Bertinetto et
al.’9 incorporated a color statistics based model to
achieve complementary traits for correlation filter
based tracking. Recent advances of correlation filter
based tracking have achieved great success by using
multi-feature channels!!6: 23], scale estimation[tl: 14, 50],
and boundary effect alleviation[?%: 51531, Danelljan et
al.'4 added one more scale regression to achieve accu-
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rate scale estimation. Danelljan et al29 added a spa-
tial regularization term to penalize filter coefficients
near template boundaries. Danelljan et al.14 separate-
ly exploited the position filter and one-dimensional
scale filter, where the simultaneous variations in ob-
ject scale and position are not well handled. The cor-
relation filter based trackers have the following limita-
tions.

® The gap between the feature extractors and the
correlation filters is usually not effectively and effi-
ciently bridged. The object scale factor is usually not
well considered in the appearance modeling process,
so as not to take advantage of the correlations be-
tween object positions and scales.

e For Siamese network based correlation filter

trackers32 33 there is usually no online learning pro-
cess. Video-specific cues are not exploited and track-
ing adaptability is lost. The global context constraint
in which image patches around the object are used as
negative samples is not incorporated in the correla-
tion filter learning process.
It is interesting to construct an online adaptive CNN-
combined correlation filter complemented by the high-
level generic semantic embedding which contains the
geometric and structural information about images.

1.2 Our Work

To address the above issues in CNN-based track-
ers and correlation filter based trackers, we propose
three end-to-end network architectures to automati-
cally learn the features suitable for correlation filter
based object tracking in real time.

Different from the correlation filter methods which
employ existing features, we develop a discriminative
correlation filter network (DCFNet) to automatically
learn the features for effectively fitting correlation fil-
ter based tracking in an end-to-end way[4. This is
achieved by incorporating a differentiable correlation
filter layer into a Siamese network. The network is
trained through error back-propagation. The architec-
ture of the proposed network contains a few convolu-
tional layers which encode the prior tracking knowl-
edge in the offline training process and constitute a
feature extractor. Behind these convolutional layers is
the correlation filter layer which efficiently completes
the online learning and tracking by defining the net-
work output as the probability heatmap of object lo-
cation. To reduce the computational cost, we make
the convolutional layers lightweight. In contrast with

[40], which introduces a differentiable correlation fil-
ter layer into a Siamese architecture, our work car-
ries out the derivation of the correlation filter layer in
the Fourier frequency domain, making tracking more
efficient. Our Gaussian expected response based re-
gression loss is more suitable for tracking than the el-
ement-wise one-hot logistic loss in [40].

We extend the DCFNet to a scale DCFNet54 (re-
ferred as to “SPCNet” in our conference paperl4)
which learns the convolutional feature representa-
tions and carries out adaptive correlation tracking, si-
multaneously, in the joint scale-position space. The
correlation filter layer works on convolutional fea-
tures extracted from the target template and the
search area in the joint scale-position space. A joint
correlation analysis is carried out to estimate the ob-
ject position and size simultaneously. The weights of
the correlation filter layer are learnt and updated on-
line in the same joint space to make the tracker adap-
tive to continuous changes in object appearance. In
contrast with [40], our work considers a correlation
filter layer which explicitly operates in the scale space
in addition to the position space. The differentiable
correlation filter layer propagates the gradient from
both the position and scale estimation errors.

We add multi-resolution representations to the
scale DCFNet, benefitting from both the high-level se-
mantics and fine-grained details, and develop a convo-
lutional-deconvolutional DCFNet for fast, robust, and
adaptive visual tracking. The high-level representa-
tions of the image from semantic embedding space en-
sure that the correlation filter has generalization ca-
pabilities for visual tracking, because the reconstruc-
tion constraint from the deconvolutional network ad-
ditionally regularizes the semantic embedding. This
reconstruction constraint effectively relieves the track-
ing shifts, and ensures that the learnt semantic em-
bedding keeps the structural and geometric informa-
tion in the images. The low-level representations with
high resolution in the correlation filter make fine-
grained localization of the object feasible. A global
context constraint from negative samples is incorpo-
rated for appearance modeling to boost the discrimi-
native power of the tracker. The filter, which serves
as a differentiable correlation filter layer, is efficiently
updated online for adaptive tracking. A multiple task
learning method is used to carry out the image recon-
struction and correlation analysis simultaneously.
This causes tracking robustness and model adapt-
ability.
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In contrast with our conference paper®¥, we add
solid mathematical derivations for the DCFNet, the
convolutional-deconvolutional DCFNet, more tech-
nical details, and many more experimental results.
Extensive experimental evaluations on four bench-
marks, OTB-2013[l], OTB-20152, VOT20158B], and
VOT20175%, demonstrate the state-of-the-art perfor-
mance of the proposed trackers. In particular, it is
shown that our trackers run at very high speed, while
still achieving competitive tracking accuracy with sev-
eral state-of-the-art slow trackers.

The rest of the paper is organized as follows. Sec-
tion 2 introduces the preliminaries of discriminant
correlation filters. Section 3 presents our DCFnet for
visual tracking. Section 4 describes our scale
DCFNet[5 for visual tracking. Section 5 proposes our
DCFNet for

tracking. Section 6 reports the experimental results.

convolutional-deconvolutional visual

Section 7 concludes the paper.

2 Discriminant Correlation Filters

In the standard discriminant correlation filter
(DCF), a discriminative regression is trained on the
features of the target patch and the ideal response
which is a unimodal 2D Gaussian function. Let ¢'(x)
be the feature vector of a target image patch z on
channel . Let D be the number of the channels. The
full set of features for z is represented by {p'(x)}2,.
Learning a correlation filter using samples extracted
densely around the object is carried out by modeling
the circular shifts of the vectorized target image patch
z. This modeling is achieved by circular right shifts of
elements of feature vector ('(x), forming a set of fea-
ture vectors which are merged into a feature matrix
®'(x). Each row in the matrix &®'(x) contains the
channel ['s features extracted from certain circulant
shifts of z. The ideal response ¥ is defined for pixel (u,
v) as (1):

yu"v — (u—|1/2]) :;(v*LF/ZJ) 7 (1)
where I' is the edge size of y, (|I'/2],|I"/2]) is the
center of the response map, and o denotes the re-
sponse bandwidth. Let w' represent the channel [ of
filter W. The learnt correlation filter W is obtained
by minimizing the output ridge regression loss:

J. Comput. Sci. & Technol., May 2024, Vol.39, No.3

D

> wlon -y

HllIl

—i-/\ZHw

D
+AZ ']

2 =1
(2)

where CirCorre( , ) is the circular correlation opera-
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tion and 4>0 is a regularization coefficient. The circu-
lant structure of the matrix &'(x) ensures that
®'(x)w' is equal to the result of the circular correla-
tion operation on vectors ¢'(z) and w'. In the Fouri-
er domain the circular correlation operation is con-
verted to the Hadamard product, which can be com-
puted very quickly. The ridge regression problem thus
has a very efficient solution in the Fourier domain.
Let the hat “"” denote the discrete Fourier transform
which converts a vector of real numbers to a vector of
complex numbers. Let “*” denote the complex conju-
gate of a complex number. Let “®” denote the
Hadamard product. The solution of (2) is obtained by
[14]:

Wl = Plz) 0y 7 (3)

Y ¢M@) o (@) + re

where e is a vector whose components are all “1”, and
the division of two vectors yields a vector whose com-
ponents are the quotients of the corresponding com-
ponents in these two vectors. It is clear that the DCF
is very efficient.

Given the feature vectors {¢'(z)}2, of an image

patch 2z in a new frame, its correlation response map
g(z) for wis computed by [14]:

i (etede). o
where F ! is the discrete Fourier inverse transform.
The tracking in a new frame is carried out to search
for the image patch with the maximum correlation re-
sponsel4.

3 Discriminant Correlation Filter Network
for Tracking

We propose a new discriminant correlation filter
network (DCFNet) which consists of two convolution-
al layers for feature learning and a correlation filter
layer for visual tracking, as shown in Fig.1. Namely,
the network is realized by cascading a feature extrac-
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tor with a DCF module to obtain the response of the
object location. The regression loss of the correlation
response is back-propagated through the network to
adjust the parameters for both feature extraction and
object appearance modeling. Different from tradition-
al DCF-based trackers which only tune the hyper pa-
rameters heuristically, our DCFNet tunes the DCF
hyper parameters and the feature extraction parame-
ters simultaneously. In the offline training stage, the
DCFNet is trained from scratch and end-to-end using
a video object detection dataset[4ll. This enhances the
representation power of the feature extraction mod-
ule. In the online tracking stage, while the convolu-
tional layers are frozen in order to save the process-
ing time, avoid overfitting and reduce tracking drift,
the correlation filter layer is updated continuously to
tackle the variations in object appearance. The ob-
ject size and position are simultaneously estimated ac-
cording to the maximum of the correlation response.
The key components of our DCFNet-based model are
the derivation of the back propagation and the online
model update.

3.1 DCFNet Derivation: Back-Propagation

The DCFNet consists of two branches: the filter
learning branch and the tracking branch. The filter
learning branch exploits target exemplars to learn the
parameters in the correlation filter layer. The track-
ing branch works on the candidate search samples
and calculates their correlation responses in the corre-
lation filter layer. The network is trained by minimiz-
ing the differences between the real response and the
expected 2D Gaussian-shaped response. In the train-
ing stage, each input to the DCFNet is a pair of im-
ages: z <> . Let @ be the current parameters of the
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Correlation Filter Layer Regression Loss
AT T I T PO P EY L) = lla(=x) -yl A0l
! Expected
! Correlation =
Parameter Learning ! Response
and Update I
i Estimated
p(z)* Correlation | Correlation _|
Evaluation Response
___________________________ ’ 9(2)
Fig.1. Overall DCFNet architecture.
CNN. We extract the features {¢}(x)}2, of the tar-

get image patch z from the CNN with parameters 6.
Substitution of {p}(x)}2, into (3) yields the filter
{w'}2,. The features {@}(2)}2, of the search patch z
are extracted from the CNN with #. The correlation
response map gy(z) of z is computed by substituting
¢L(z) into (4). The objective for optimizing 6 is for-
mulated as:

min L(6) = min ([las(=) — wll3 +1161) . (5)

An explicit regularization ||0||Z to the network param-
eters is incorporated for better convergence. We use
the weight decay method® in the conventional pa-
rameter optimization to carry out this regularization.
To restrict the magnitude of feature map values and
increase the stability in the training process, we add a
local response normalization (LRN)“? at the end of
the convolutional layers.

We derive the backward formulas for optimizing
the CNN parameters 6 in the frequency domain(57 in
Appendix A®. Since g is a real-valued vector
(g = g*), the discrete Fourier transform and inverse
discrete Fourier transform of the derivatives with re-
spect to g have the following relations as (6):

g =F(g),

oL oL

Z=F (=),

o (0g> (6)
oL  _ ., (0L

Erind (ag*)'

Since the operations in the forward pass process only
contain the element-based Hadamard product and di-
vision, we calculate the derivative in (6) per pixel (u,
v) in the frequency domain as (7):

G)https://github,Com/JCST-supplementary/Paper-Supplementary/blob/main/Supplementary-3788-Minor.pdf, May 2024.
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For the back-propagation of the tracking branch,
the partial differential OL/0(¢!
compute. According to (4), we get (8),

ag;w(z) Y |

(2)) for zis required to

= F=w,,. 8
Bt (2) ®)
Then,
0L _ 0L 05 _ 0L,
a(@uv(z)) 89“/(} a(@uv(z)) 89';’(}
It holds that
oL oL
— =F! <A*> . 10
57 (2) ) 10

For the back-propagation of the branch of learn-
ing the correlation filter, the partial differential
OL/O(¢'(x)) for z is required to compute. We com-
pute OL/0¢! (x) and OL/O(¢, (x))* independently
as (11) and (12) respectively:

0L _ OL gi(@(2) - (Ah(@)) (Au2) i,
02, (@)  di, |

Zsom, (@5,(@)" + A

oL 0L —¢,,(®)(¢,,(2) W,
0(PL,()  04i &N .
> ek (@)@, (@) + A
k=1
Then, 0L/0¢!, (x) and OL/0(¢!,, (x))* are combined
to compute dL/9(¢'(x)) as (13):

s == (o <8ffw>>) - )

Once the error is propagated backwards to the re-
al-value feature maps, the rest of the back-propaga-
tion is conducted as the traditional CNN optimiza-
tion. Since all the operations of the back-propagation
in the correlation filter layer are the Hadamard opera-
tions in the Fourier frequency domain, the efficiency
property of the correlation filter is retained. The of-

fline training can be applied on large-scale datasets.
After the offline training has been completed, a fea-
ture extractor is obtained for online DCF tracking.

3.2 Online Model Update

In contrast with the fixed similarity metric in con-
ventional Siamese networks, we update the filter W
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over time during the online tracking. As in [23], at
frame T the optimization problem in (2) is formulat-
ed in an incremental mode:

5:Zﬂt

D

> v

=1

2

D
Z CirCorre(w', ¢'(z,)) — y|| +

=1

2
2

A , (14)

2

where ¢ indexes a frame and parameter [3,>0 corre-
sponds to the impact of sample x,. The closed-form
solution in (3) is extended to time series:

> BY © ¢ (@)
wh = = . (1)

Zﬁt (Z P)) + Ae)

The filter can be updated in the following incremen-
tal way:

_ (ng* O @@+ B o @lm)) /

t=1

z_:ﬁi (Z () © (P () + Ae))

(16)

This incremental update ensures that it is not neces-
sary to maintain a large sample set. Only a small
amount of memory is needed. The DCFNet in the on-
line tracking process can be regarded as a recurrent
neural network (RNN) as shown in Fig.2.

4 Scale DCFNet for Tracking

We introduce joint scales and positions into the
DCFNet, forming a scale DCFNet shown in Fig.3.
The scale DCFNet is lightweight with only two con-
volutional layers and one correlation filter layer. It is
end-to-end trainable in the joint scale-position space
of the object state, which permits task-driven feature
extraction and adaptive appearance modeling in the
correlation filter based tracking framework. The main
components of the scale DCFNet based tracker in-
clude object size and position estimation according to
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Fig.2. Online tracking process of DCFNet. The numerator (output of the horizontal pipeline at the bottom) and the denominator
(output of the horizontal pipeline at the top) in (16) are recurrently forward-propagated and updated.
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Fig.3. Architecture of the scale DCFNet.

the maximum of the joint scale-position correlation
response, learning of the tracking task-driven features
based on the regression loss of the joint scale-position
correlation response, and the update of the correla-
tion filter layer.

4.1 Joint Scale-Position Estimation

In order to enhance the discriminative power of
the scale position correlation network for visual track-
ing, our correlation filter layer models the object and
contextual appearance correlations in the joint scale-
position space instead of the pure position space.
Thus, the simultaneous variations in object size and
position are learnt by the scale DCFNet and accurate-
ly estimated in the tracking process.

The set of the parameters of the correlation filter
layer contains one correlation filter w' per feature
channel: W = {w'}2,. Let S be the number of scales.
Let x, be the target sample in the sth scale space.
Let y, be the desired correlation output in the s-th

scale space. The set {y,}5, is constructed as S 2D
Gaussian functions with their peaks at the object’s
center position (see the expected correlation response
in Fig.3). We extend the single scale ridge regression
loss to the multi-scale ridge regression loss by linear
extension, which has a closed solution in the Fourier

frequency domain:

2

S D
w = arg min Z Z CirCorre (w', ¢'(x,)) — y,|| +
R S:12 =1 2
A [l
=1
S
> gied (x| 6)
~l — s=1
S D )
DD ¢[00 (¢ (2 16) +re
s=1 k=1 (17)

where g, denotes the discrete Fourier transform for

¥s U, = F(y,), and g is the complex conjugate of
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ys'
Centered at the object position in the previous

frame, we extract the candidate samples by cropping
the object regions with different scales from the cur-
rent frame. The samples are then resized to a fixed
size with Mx N pixels. Let z, be the candidate sam-
ple in the sth scale space. The set of the candidate
samples is denoted as {z,}5 . The convolutional lay-
ers for feature extraction work on z, and a set of D
feature {p'(z)}2, are
Then, the correlation response for sample z,, output
from the correlation filter layer, is obtained by (18):

representations obtained.

D
g9(z) = _ CirCorre(w',¢'(2,))
=1

=F! (Z W © @l(zs)> : (18)

The object size and position are estimated based on
the maximum of the joint scale-position correlation
response.

The parameter set W for the correlation filter is
learnt and updated online in the joint scale-position
space to adapt to variations in object appearance.
The correlation filter layer is learnt by using a set of
the training samples in the joint scale-position space.
The training samples are extracted from the tracking
results in the previous frames and are resized to the
same spatial size MxN. Let x, , be the training sam-
ple of the s-th scale from the #th frame. The correla-
tion responses of the training samples from the #th
frame estimated by the correlation filter layer are as
(19):

{g(ms, () = Z CirCorre(w', ' (z,, ,))} . (19)

By extending the learning of the correlation filter in
the joint scale-position space to a temporal incremen-
tal form, the parameter set W of the correlation fil-
ter at frame T is optimized by minimizing the follow-
ing ridge regression loss:

35 (z oo )~ w423 leuz) 0

where (,>0 is the impact of the training samples
from the t-th frame and the constant A>0 controls the
relative weight of the regularization term.

We transform the ridge regression problem in (20)
to the Fourier domain using Parseval’s formula. As
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the objective function is real-valued, positive, and
convex, the global optimum is obtained by setting the
partial derivative equal to zero. The solution is:

(21)

Since this correlation filter layer is learnt in the

Fourier frequency domain using several discrete
Fourier transforms and element-wise multiplications,
the computation in this layer is quite efficient. In par-
ticular, the provided closed-form solution avoids an

expensive iterative optimization process.

4.2 Task-Driven Feature Learning

The learnable parameters in the correlation filter
and the CNN are co-adapted and cooperated for pro-
viding an expected correlation response. The regres-
sion loss of the correlation response in the joint scale-
position space is back-propagated through the whole
network to automatically learn the tracking task-driv-
en features.

The scale position correlation network consists of
the filter learning branch and the tracking branch in
the joint scale-position space. The network is trained
by minimizing the differences between the real re-
sponse and the S expected 2D Gaussian-shaped re-
sponses {y,)}_,. Let each training pair be represent-
ed by ({z.}7_, < {x.}2_,). The offline training prob-
lem is formulated as:

S

LO)=) lg(z) -yl +7l6l5.  (22)

s=1

The derivation for the back-propagation for the
scale DCFNet is similar to that for the DCFNet. The
main difference is that the partial differentials
09:,/0¢ (x,) and 9g:, /(P (x,))* are derived from
(17) instead of (3). For the back-propagation of the
tracking branch, dL/9(¢'(z,)) is computed by replac-
ing zin (9) and (10) with z,. For the back-propaga-
tion of the filter learning branch, the partial differen-
tial OL/0(¢'(x,)) for x, is computed instead of
OL/0(¢'(x)). The partial differentials dg*, /0, (x,)
and 9g:,/9(¢,,(x,))* are computed according to (23)
and (24), respectively:
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945, (@fw( D) Y — G (D ()
a Afuv :BS * 7
Pule ZZ@ )(@h,(x.)" + Ne
s=1 k=1 (23)
a((pag(uv )) _ - — _gztv@fw(xs) (24)
YD k(@)@ (@) + de

4.3 Online Model Update

Similar to the DCFNet tracker, the scale DCFNet
carries out the online update of the correlation filter
layer to make the tracker quite adaptive to continu-
ous changes in object appearance. The solution (21)
of the optimization problem (20) is posed as the fol-
lowing incremental update process of (25):

<5T<Z D¢ @ 1) (¢ (@ x) + Ae) .

s=1 k=1

S (S w0 e ) )
" (25)

We update the correlation filter layer similarly to
the RNN as shown in Fig.2, while keeping it a much
simpler architecture. At frame ¢, the latest updated
correlation filter W, _; is used to test the samples
{p(z., ,)}5., and obtain the output
{9(z,..)}3_,. The object size and position are simulta-
neously estimated by searching the joint scale-posi-
tion space for where the maximum value of the re-
sponse output exists. Based on the tracking result,
. 1)}5, are extracted and

response

the training samples {p(x
used to incrementally update W, ; to a new filter
W,, such that the new filter approximately outputs S
expected Gaussian responses when it is correlated
with the training samples {p(x, ,)}5,.

5 Convolutional-Deconvolutional DCFNet
for Tracking

We incorporate a convolutional-deconvolutional
architecture into the scale DCFNet, and propose a
convolutional-deconvolutional correlation filter frame-

work, named convolutional-deconvolutional DCFNet.
The convolutional-deconvolutional architecture in the
convolutional-deconvolutional DCFNet is used to ef-
fectively perceive the structural information about the
object and then improve the generalization perfor-
mance of feature representation. The global context
constraints about the negative samples are intro-
duced into the scale DCFNet in order to suppress the
influence from distractors. The convolutional-decon-
volutional DCFNet is able to combine the low-level
and high-level features for tracking. Its architecture is
shown in Fig.4, which consists of a convolutional net-
work and a deconvolutional network. The convolu-
tional features are extracted by comparing the search
patch z with the target patch z. The shallow features
from the first and second convolutional layers are
used by the context-aware correlation filtering
(CACF) (corresponding to the DCFNet) as a fine-
grained representation for the image. Fine-grained ob-
ject localization is carried out using the correlation fil-
ter working on the low-level fine-grained representa-
tions. This correlation filter, implemented as a differ-
entiable layer, is regularized by a global negative sam-
ple context constraint. The deep features from the
fifth convolutional layer form a high-level representa-
tion for the patch. These features are used for spatial
correlation analysis in a learnt generic semantic em-
bedding space without online update to avoid track-
ing drift. The embedding is constrained by a domain-
independent reconstruction imposed by the deconvo-
lution network, benefitting to preserve the geometric
or structural information about images. The convolu-
tional-deconvolutional DCFNet exploits multi-resolu-
tion representations for tracking. A multiple task
learning method is used to train the entire network
end to end. Then, the discriminative correlation filter
and discriminative spatial semantic embedding im-
posed by the generative reconstruction are enhanced.

5.1 Semantic Embedding Space

In recent deep learning based trackersB2 331, the
semantic embedding space is only used for discrimina-
tive learning. In contrast, the proposed convolutional-
deconvolutional DCFNet fully utilizes the convolu-
tional-deconvolutional Siamese network structure
with multi-resolution feature representations to real-
ize perception of the structural information about the
object. A generative image reconstruction constraint

is added into the traditional discriminative learning
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Fig.4. Architecture of our convolutional-deconvolutional DCFNet. The “125x125x1” is the size of a correlation response map from
CACF. The “17x17x1” is the size of a correlation response map from the high-level semantic correlation analysis. Convi: the #-th

convolutional layer, Deconvj: the jth devolutional layer.

and a more generic semantic embedding space with
more generic high-level feature representations is
learnt. Less sensitiveness of the unsupervised image
reconstruction to the training samples brings greater
generalization capability to the learnt semantic em-
bedding space. This makes tracking more robust. By
using the reconstruction constraint, the geometric and
structural information in the original image is pre-
served in the learnt semantic embedding space. This
makes tracking more accurate.

A convolutional-deconvolutional architecture is
utilized to learn the generic semantic embedding
space. The convolutional mapping ¢: RM*V*3
RP*@*P(P < M, @Q < N) has five convolution layers,
where P x () is the size of feature maps in the embed-
ding space. Either the first or second convolutional
layer is accompanied with a max-pooling layer. This
mapping produces a representation from the embed-
ding space described in the fifth convolutional layer.
The deconvolutional network W: RI*@xP — RMxNx3
transforms the high-level representation which has a
low resolution into the image space which has a high
resolution, This transformation is carried out using
seven stacked deconvolutional layers. We define the
reconstruction loss L,...s and the spatial embedding
loss L, to optimize the semantic embedding space.
Let 6. and 6, be the sets of the parameters for the

convolutional network and the deconvolutional net-
work, respectively. The reconstruction 10ss L. for
the target patch « and the search patch z is defined
as:

S
Lrecons = Z ||w(¢(ws|0c)|0d) - ws“j +
[4(6(2,16.)10.) — 23, (26)

where S is the number of scales.

The spatial embedding loss is defined as follows.
Let m x n represent the spatial size for the correla-
tion analysis in the semantic embedding space. Let
f»q represent the similarity of the target image and
one search image which has a center away from the
center of the target image by p x ¢ pixels. The simi-
larity between the target and search images is mea-
sured by using the spatial correlation operation (the
inner product) on the semantic embedding space:

S m—1n-1

fp, = Z Z Z <¢p+i, q+j(ms,06)7 ¢z j(zswc»a (27)

s=1 i=0 j=0

where ¢, ;(z,|0.) represents a D-dimensional channel
feature vector for the position (i,7) in the representa-
tion for the search patch z, in the sth scale space
and (, ) is the inner product of vectors. Each search
patch associates with a label y(p, q) € {+1, -1} where
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“+1” indicates that it is a positive sample and “-1”
indicates it is a negative sample. Then, the global
high level logistic loss is defined as:

Lhigh = Z IOg(l + exp(fy(p, Q)fp, q))7 (28)

1
|R| (p, 9)ER
where R represents a search grid, and |R| is the
number of the search patches. The combination loss is

Lrecons + Lhigh'
5.2 Context Aware Correlation Filter

The features with high-resolutions at the low lay-
ers, i.e., the fine-grained representations of the image,
are utilized for correlation filtering analysis to accu-
rately localize the object. A global contextual con-
straint from negative samples is added into the spa-
tial correlation analysis as a regularization in order to
reduce the influences from distractors. This is carried
out by adding a differentiable correlation filtering lay-
er, which is trained from end to end and further
adaptively updated online during tracking.

Inspired by the context-aware correlation filter(5,
the correlation filter is regularized by using the glob-
al negative sample context. In each frame, k context
image patches {x'}* | are sampled around the target
image x°. Let ¢'(-) be a feature mapping based on
the parameters 6, of the low-level convolutional lay-
ers (the first and the second layers) in the convolu-
tional network, ie., ¢'(.)=¢'(.|0.). Let ®'(x) be
the circulant feature matrices of the low-level fine-
grained CNN features of channel [ for patch x° at
scale s, corresponding to the features '(x?). Differ-
ent from using S scales to represent the target, only
one scale is used for negative samples. Let ®'(z) be
the circulant feature matrices of the low-level fine-
grained CNN features of channel [ for context patch
x'. The context patches are used as negative samples
that include various distractors and backgrounds. A
correlation filter is learnt in order that the target
patch has a high response and the context patches
have responses close to zero:

R

S
min Y [|®' (2w ~y,
w
s=1

A @' (z')w!||, (29)

where )\, and ), are regularization coefficients. The

closed form solution for the context-aware correlation
filter in the Fourier domain is:

Metdo Y (@) © ¢'(@). (30)

The correlation filter {w'}2, is learnt based on the
representations {¢'(x?)}5_, for the target image and
the representations {¢'(x?)}:, for the global con-
texts.

The context-aware correlation filter in [51] uti-
lizes hand-crafted features for correlation analysis. In
contrast, we learn actively a low-level fine-grained
representation for fitting to a correlation filter. This is
achieved by transforming the correlation filter to a
differentiable correlation filter layer and adding it af-
ter a low-level convolutional layer for convolutional
mapping. In this way, the entire convolutional-decon-
volutional network can be trained end-to-end. Fur-
thermore, the representations from a low-level convo-
lutional layer for convolutional mapping are fine-
grained. The lower feature maps are more effective for

accurately localizing the object. These representa-
s

s=1

tions are denoted as {y'(z,) = ¢'(z,|0.) for a
search image z. The correlation response maps for z

are obtained by:

9(z) = Y ®(z)w = F (Z P(z) 0 w> ,
=1 =1 (31)

where ®'(z,) is the circulant matrix of the feature
representation ¢'(z,). The feature representations of
the low-level convolutional layers are learnt by using
the low-level correlation filtering loss defined by:

s 2

S
Llow = Z ||g(zé) - ya”; = Z
s=1

s=1

D

Z ¢l<zs)wl —Ys

=1

The low-level convolutional parameters 8 of the CNN
are optimized by minimizing (32). We derive the
backward formulas in the frequency domain in Ap-
pendix BZ. Let Re(-) be the real part of a complex-
valued matrix. Let p be the denominator of w in
(30):

@https://github,com/JCST-supplementary/Paper-Supplementary/blob/main/Supplementary-3788-Minor.pdf, May 2024.
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k

p= 0 (@'(@) 0 ' @)HAtr Y (@) © ¢'(@).

i=1

The derivatives of L, in (32) are obtained by:

8[/lovv ~ A

~ =2 Zs) —Ys),

G ey = 2=~ )

a[/low _ —1 ( al/lovv ,UA)I*>
0! (z,) 09 (z,) ’

S

aLlow _ aLlow Al *
ot ; 95 (2) © (¢'(24))

OLiw _ zov (OLow 97 — 2Re((¢'(x)))" © ')
Ol (x9) ! Il ’
OLiw .y (OLyy —2Re((¢'(x)))" © ')
Pt (xt) ow' I '

5.3 Multiple
Tracking

Task Learning and Online

The two differentiable components, the semantic
embedding learning described in Subsection 5.1 and
the context-aware correlation filter described in Sub-
section 5.2, complement each other for localization
and tracking using multi-resolution representations.
By using multiple task learning, the low-level de-
tailed representation and the high-level semantic de-
scription are simultaneously learnt with complemen-
tary enhancement. The network is trained end-to-end.
The multiple task loss is defined as:

Lall = Lhigh + Llow + cheons + Y HOHE )

where L,econs, Lign, and Ly, are defined in (26), (28),
and (32), respectively. The ¢,-norm of the network
weights is incorporated into the loss function in order
that the network is regularized for increasing the gen-
eralization of the network.

During tracking inference, at frame 7, large
search patches with multiple scales are cropped, cen-
tered at the previous estimated object position, denot-
ed as {z,}7_,. The search patches are input into the
convolutional network to yield the fine-grained repre-
sentations and the semantic embedding representa-
tions. The fine-grained representations are input to
the context-aware correlation filter shown in (31).
The semantic embedding representations are estimat-
ed using the spatial correlation analysis shown in
(27). Then, the object state is evaluated via search-
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ing for the maximum of the combined correlation re-
sponse:

arg max) T a(25) + 95, o(24),

(p, a, s

where g, ,(z,) is, in the response map, the correla-
tion response of the position which is of p x ¢ pixels
away from the center of z,. The bilinear interpola-
tion method is used to up-sample the high level spa-
tial correlation response map f(-) to ensure that its
up-sampled resolution is the same as that of the low
level map ¢(-). During online tracking, only the corre-
lation analysis in the frequency domain and the neu-
ral network feed-forward pass are involved. This
makes the tracker very efficient.

We make use of a fusion of updates of long and
short terms. The semantic embedding representations
{p(x,]0.)5_, of the target image in (27) are only cal-
culated for the target image in the initial frame, i.e.,
only similarities of search images to the target image
in the initial frame are used for the spatial correla-
tion estimation. This is useful for generic long term
tracking. Linear interpolation is used to update on-
line the context-aware correlation filter W in (30) in
order to adapt to changes in object appearance. Let
f(z,) be the maximum in the spatial correlation re-
sponse map at the initial frame and f(zr) be the
maximum in the response map at the current frame.
A dynamic learning rate « is defined as:

ar = af(zr)/f(2,), (33)
where « is the basic learning rate. The context aware
correlation filter W is updated by:

Wy = arWzr + (1 — ar)Wr_,.

As the representation for the target image at the ini-
tial frame is fixed, the correlation responses over time
indicate changes in object appearance and back-
ground disturbance. By using this update method, the
long-term update and the short-term update comple-
ment each other in the temporal domain.

6 Experiments

All the experiments were conducted on a worksta-
tion with an Intel® Xeon 2630 at 2.4 GHz and a
NVIDIA® GeForce GTX 1080 GPU. The proposed
DCFNet tracker, scale DCFNet tracker, and convolu-
tional-deconvolutional DCFNet tracker were imple-
mented using MATLAB with MatConvNet[8l. The
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code of DCFNet is available online®. We used the fol-
lowing datasets to carry out ablation studies and
overall performance evaluations for tracking.

e The OTB datasets [ 2, OTB-2013 and OTB-
2015, are standard benchmarks for visual tracking,
containing 50 and 100 fully annotated objects associ-
ated with 11 different attributes, respectively. Two
evaluation metrics, distance precision and overlap
precision, were exploited on the OTB datasets. The
distance precision for a video is the proportion of the
frames where the center location error is less than the
threshold of 20 pixels. The overlap precision is the
proportion of the frames in which the overlap ratio
between the predicted bounding box and the ground
truth bounding box is larger than the threshold of
0.5. Performance is also described by using success
plots in which overlap precisions are plotted in the
range of the thresholds of intersection-over-union be-
tween the predicted bounding box and the ground
truth box. In these plots, the areas under the curves
(AUC) are used to rank trackers, displayed in the leg-
ends.

e The VOT challengel® is one of the most influen-
tial and largest annual events in the tracking field.
On the VOT2015 datasetl and the VOT2017
dataset?5], the measure exploited to quantitatively an-
alyze the tracking performance is the expected aver-
age overlap (EAO) that is an estimator of the aver-
age overlap that a tracker is expected to attain on a
large collection of short-term sequences with the same
visual properties as the given dataset. The measure
addresses the problem of increased variance and bias
of the average overlap measure due to variable se-
quence lengths.

In the following, the implementation settings are
introduced. Ablation studies of the effectiveness and
efficiency analysis of main components in the pro-
posed trackers are described. The overall perfor-
mance of our trackers was evaluated in comparison
with the state-of-the-art trackers.

6.1 Implementation Settings
The main implementation settings include the as-

pects of network architecture, training data, and pa-
rameter setting.
6.1.1 Network Architecture

The feature extraction of our DCFNet and scale

DCFNet consists of two convolutional layersi43 with
the kernel size 3x3 and a Relu operation appended at
the end of each convolutional layer. A local response
normalization was added to output the final feature
representation. The final output feature representa-
tion was forced to 32 channels.

In our convolutional-deconvolutional DCFNet, the
convolutional network has the same structure as the
baseline SiamFCB2, where the AlexNet was used and
the fully-connected layers were removed. The input
size is 255x255x3. The output supplied from the
Convb layer has a size of 22x22x256. The output was
input for spatial correlation analysis. It was also in-
put into the deconvolutional network for image recon-
struction. The deconvolutional network with seven
deconvolutional layers was removed during the track-
ing inference process. The fine-grained representa-
tions with size 125x125x8 from the Conv2 layer in
the convolutional network are input into layer of the
context-aware correlation filter for accurately localiz-
ing the object.

6.1.2 Training Dataset

The dataset of image sequences for ILSVRC (Ima-
geNet Large Scale Visual Recognition Challen-
ge)ll: 59611 was used to train our DCFNet, scale
DCFNet, and convolutional-deconvolutional DCFNet
from end to end. This training set consists of 7911
objects and has little correlation with the OTB and
VOT datasets. The dataset has more than 4000
videos and almost 2000000 annotated image patches
of objects. For training the DCFNet and the scale
DCFNet, in each video snippet of an object we col-
lected each pair of frames within 10 nearest frames,
and fed the cropped pair of target patches of twice of
the padding size to the network. The resulted 5507 660
pairs in total were used to train the DCFNet and
scale DCFNet. The cropped inputs were resized to a
spatial resolution which is consistent between the of-
fline training and online tracking phases. A case study
of the tradeoff between the tracking accuracy and
speed suggests a resolution of 125x125. For training
the convolutional-deconvolutional DCFNet, pairs of
frames which contain the same object were picked
randomly. The target and
cropped by the padding size of 2. Since positive and
negative samples are included in each patch, the
patch was resized to the input size of 255x255.

search patches were

©https://github.com/foolwood/DCFNet, May 2024.
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6.1.3 Parameter Setting

For the correlation filter layer, the regularization
coefficient 4 in (2) and (20) was set to 1.0 x 107*. The
online learning rate 3, in (14) and (20) was fixed to
0.008. The Gaussian spatial bandwidth was set to 0.1
for both online tracking and offline training. Similar
to [50], we used a patch pyramid with the scale fac-
tors:

{ﬂa:m,
el )

2
The stochastic gradient descent solver with the

5-3
2

momentum of 0.9 was used to train the networks
from the scratch. The weight decay « in (5) and (22)
was set to 0.000 5. The learning rate decays exponen-
tially from 1.0 x 1072 to 1.0 x 107°. The model was
trained for 50 epochs where a mini-batch size is 32.

For the convolutional-deconvolutional DCFNet,
when the model was trained, only the dynamic learn-
ing rate ayp in (33) affects the online tracking. We set
a in (33) to 0.017. The regularization parameters in
(29) were set as A\; = 1.0 x 107* and A, = 0.1.

6.2  Ablation Study

An ablation analysis was carried out in terms of
network architectures of DCFNet, the number of scale
levels on the scale DCFNet, and the effect of generic
semantic embedding and fine-grained object localiza-
tion for the convolutional-deconvolutional DCFNet.

For the network architectures, the number of the
training parameters and the size of the receptive field
gradually increase when the convolutional layers go
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Table 1. Ablation Study of the DCFNet with Different Ar-
chitectures and Different Numbers of Scale Levels During
Tracking on OTB2013! Using Mean Overlap Precision at the
Threshold of 0.5, the Mean Distance Precision at 20 Pixels, and
the Mean Speed (Frames per Second, FPS)

Tracker Overlap  Distance FPS
Precision Precision
DCFNet-convl 61.0 70.4 211
DCFNet-conv2-dilation 66.3 77.3 120
DCFNet-conv2-1s 67.7 79.1 187
DCFNet-conv2-3s 78.5 86.7 109
DCFNet-conv2-5s 76.3 83.8 69
DCFNet-conv2-Ts 774 88.0 53
DCFNet-conv3 64.3 75.3 61

DCFNet with only conv2 achieves better perfor-
mance in contrast with deeper conv3. To give a bet-
ter insight into this observation, we modified our
DCFNet with conv2 using dilation convolution to ap-
proximate the receptive field of deeper conv3. This
new variant with a small quantity of parameters also
performs better than deeper conv3. The variants,
DCFNet-3s, DCFNet-5s, and DCFNet-7s, enhance
DCFNet with scale estimation at 3, 5, 7 adjacent
scale levels only in the tracking process, respectively,
i.e., there is one scale in the learning process. It is
found that the design of three scales has a good bal-
ance between performance and tracking speed.

We compared our DCFNet tracker and scale
DCFNet tracker with some baselines including
DCF+VGG and DCF+SiamFC and some variants in-
cluding DCF (linear correlation filter version of [9]),
SAMF[1, and DSST!4. The results are shown in Ta-
ble 2, where DCFNet does not consider scale factors
in both the training and tracking processes, and
DCFNet-3s enhances DCFNet with scale estimation
at three adjacent scale levels only in the tracking pro-
cess. The following points are noted.

o Compared with the traditional correlation filter

deeper. Table 1 shows that on OTB-2013 our based tracker DCF using hand-crafted features, the
Table 2. Ablation Study of Our DCFNet and Scale DCFNet Components on the OTB Datasets Using the Mean Overlap Preci-
sion at the Threshold of 0.5, the Mean Distance Precision of 20 Pixels, and the Mean Speed (FPS)®4
Tracker OTB-2013 OTB-2015 FPS
Overlap Precision Mean Distance Precision Overlap Precision Mean Distance Precision
Our trackers DCFNet 67.7 79.1 63.7 76.8 187
DCFNet-3s 78.5 86.7 72.8 79.4 109
Scale DCFNet 84.3 88.1 77.6 82.9 67
Variants DCF+VGG 62.1 66.1 61.7 66.9 88
DCF+SiamFC 66.8 74.2 64.0 68.0 7
Baselines DCFPI 61.6 72.8 54.8 68.9 202
SAMFI!] 67.7 78.5 64.0 74.3 12
DSST! 67.1 74.7 60.9 68.9 46
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DCFNet using the self-learnt features and linear cor-
relation filters obtains a distance precision gain of
6.3%-7.9% and of
6.1%-9.9%, while retaining a real-time tracking speed.
The variants, DCF+VGG and DCF+SiamFC, use
feature extraction in VGG
SiamFCB2, rather than the feature extraction in
DCFNet. Compared with them, our specifically learnt
feature representation in the DCFNet leads to better
tracking performance by a notable margin. Therefore,
the feature representation learnt from the end-to-end
network pre-training is effective for tracking.

an overlap precision gain

the original and

e By extending the search space from a single po-
sition space to the joint scale-position space, the scale
DCFNet significantly boosts the tracking perfor-
mance and outperforms the traditional multi-scale
trackers SAMF[! and DSSTIM by a large margin.

e Enhancing DCFNet with multiple scales in both
the learning and tracking processes yields more accu-
rate results than that with multiple scales in the
tracking process alone.

e Our scale DCFNet carries out appearance mod-
eling in the joint scale-position space in both the
training and tracking processes and ranks first in Ta-
ble 2 for all the precision metrics.

To highlight the tradeoff between the tracking ac-
curacy and speed for our scale DCFNet, we com-
pared two kinds of different settings of the proposed
scale DCFNet model: one kind was pretrained by us-
ing four different input spatial resolutions 169x169,
125125, 63x63, and 33x33, and the other was pre-
trained using five different numbers of the final out-
put feature channels 64, 32, 16, 8, and 4. Fig.5 shows
the tracking AUC accuracy and speed analyses of
these scale DCFNet models and some other real time
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trackers. It is seen that decreasing input spatial reso-
lution causes a large reduction in the AUC accuracy,
although it provides a significant speedup. The AUC
performance of a small number of output feature
channels only falls by 4% while the run time cost is
reduced by a factor of 3. Compared with the fast
trackers in [9, 19, 32, 34, 40, 62-64], the proposed
scale DCFNet achieves better performance both in ac-
curacy and speed. According to the different compu-
tational resources available, a member in the scale
DCFNet model with tracking speeds ranging from 60
FPS to 190 FPS is feasible for real applications.

To show the effect of the generic semantic embed-
ding space as well as the fine-grained object localiza-
tion in the context-aware spatial correlation filter, we
made comparison between the variants of our convo-
lutional-deconvolutional DCFNet (CD-DCFNet) trac-
ker and the baseline trackers. Table 3 shows the re-
sults. The following points are revealed.

e (Generic Semantic Embedding. The variant, CD-
Siam, adds a convolutional-deconvolutional network
architecture-based image reconstruction constraint in-
to the SiamFC trackerB2. On the OTB-2015 dataset,
CDSiam obtains large distance precision gains of 3.7%
compared with SiamFC. Such a domain-independent
reconstruction constraint improves generalization ca-
pability for the learnt semantic embedding space as
well as ensures the robustness of tracking.

o (Context-Aware Spatial Correlation Filter. The
CACFNet, cascades the CACFPBU with
CNNs. It learns fine-grained representations of the
Conv2 layer, fitted to a context-aware correlation fil-
ter for tracking. On the OTB datasets, it obtains larg-
er overlap precision by more than 8%, compared with
the CACFDBY tracker which uses the previously wide-

variant,

Success Rate (OPE) vs Speed on OTB-2013

0.70
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Fig.5. Tracking speed and AUC performance on OTB-201304, The tracking speed ranges from 60 FPS to 190 FPS with different in-
put spatial resolutions and different numbers of the output feature channels. “CX-Y” stands for a member in the scale DCFNet fami-
ly consisting of X output feature channels and YX Y input resolution. For example, “C32-169” means that our scale DCFNet has 32

channels and 169x169 resolution.
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Table 3. Ablation Study of Effectiveness of Tracking Components of the Convolutional-Deconvolutional DCFnet (CD-DCFNet)
Tracker OTB-2013 OTB-2015 VOT2015 Mean Speed
Overlap Precision Distance Precision Overlap Precision Distance Precision EAO (FPS)
Our tracker CD-DCFNet 84.2 88.5 78.5 83.6 0.315 65
Variants of our CDSiam 79.0 83.9 75.4 80.7 0.293 86
tracker CACFNet 83.8 87.6 T 82.7 0.271 109
CACFNet+ 83.9 88.3 78.0 83.1 0.277 109
Baselines SiamFCF2 77.8 80.9 73.0 77.0 0.289 86
CFNet 71.7 76.1 70.3 76.0 0.217 75
CACFB1 75.4 80.3 68.9 79.1 0.199 13

Note: On the OTB datasets, we used the mean overlap precision with the threshold of 0.5 and the mean distance precision with the
threshold of 20 pixels; on the VOT2015 dataset, we used the EAO (expected average overlap) as well as the mean speed (FPS).

ly used HoG features. This indicates that the learnt
representations of features are more discriminative
than the HOG features. In contrast with the CFNet
tracker in [40] that learns Conv2 representations for a
general correlation filter, our convolutional-deconvolu-
tional DCFNet-based tracker obtains significant over-
lap precision gains of more than 10%. This indicates
that exploiting fine-grained Conv2 representations
with lower channels and incorporating a global con-
straint of contexts into the correlation filter lead to
stable modeling of object appearance.

o  Multiple Task Learning. The variant,
CACFNet+, improves CACFNet by adding spatial
correlation analysis to semantic embedding space, as
well as adding a reconstruction constraint for train-
ing. During tracking inference, CACFNet+ estimates
the object state using the spatial context-aware corre-
lation filter which supplies the fine-grained correla-
tion responses. The performance improvement of
CACFNet+ in contrast with CACFNet indicates that
a high-level constraint can reinforce the fine-grained
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correlation-based appearance modeling for discrimina-
tive tracking. The convolutional-deconvolutional
DCFNet outperforms CACFNet+. This indicates ef-
fectiveness of the combination of fine-grained repre-
sentation with the semantic spatial correlation re-
sponses during the tracking inference.

e FEfficiency. The convolutional-deconvolutional
DCFNet-based tracker carries out tracking in real
time while obtaining significant improvement of per-
formances on the datasets.

6.3 State-of-the-Art Comparison

Fig.6 shows the results of comparison between the
DCFNet, the scale DCFNet, the correlation filter-
based trackers including, KCFI®, DSSTI4, HCFIMI],
HDT08, SRDCFR20, CFNetl4?], and MCPFI%3], and the
state-of-the-art trackers including Staplel!9, SINT[B3],
and SiamFCB2, on the OTB-2013 and OTB-2015
datasets. From Fig.6(a) and Fig.6(b), it is seen that
our simple feature training in a single scale position
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Fig.6. Success plots® on (a) OTB-2013[" and (b) OTB-2015" of the DCFNet and the scale DCFNet compared with correlation fil-

ter based trackers and the-state-of-the-art trackers.
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space leads to 10% and 6.2% gains in success plots on
OTB-2015 compared with KCF and DSST using
HOG features respectively. Our automatic feature
learning and appearance correlation modeling in the
joint scale-position space lead to AUC gains of more
than 11% in the success plots of one pass evaluation
(OPE) on OTB-2013 and OTB-2015 compared with
KCF and DSST that exploit HOG features and do
not consider the scale factor in the training process.
Although our feature learning network only contains
two convolutional layers and is much shallower than
the ones of [16, 18, 29|, superior performance with
much faster speed was achieved. Our scale DCFNet is
orders of magnitude faster (100x) than the recent top
ranked correlation filter based tracker MCPFI65], while
achieving a comparable performance. Because of a
more adaptive online update strategy, DCFNet and
scale DCFNet work better than the recent SINTI33]
and SiamFCB2l. Compared with CFNetl4% which is
end-to-end pre-trained in the position space, the scale
DCFNet achieves an AUC gain of more than 6% be-
cause it was learnt end-to-end in the joint scale-posi-
tion space and a more appropriate regression loss was
used.

The proposed convolutional-deconvolutional
DCFNet (CD-DCFNet) tracker was compared with
the state-of-the-art tracking algorithms SAMF 4[5,
CFNet[0, SiamFCB2, SINTB3l, LCTUHS, MEEMMS],
CF206, KCFO, and DSSTEY on the OTB-2013
dataset and the OTB-2015 dataset. The success plots
are shown in Fig.7. (For simplicity, FPS is omitted in
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the following figures.) Compared with the competing
trackers using deep learning features, the convolution-
al-deconvolutional DCFNet yields the best results. Its
AUC scores on these two datasets are 63.5% and
66.5%, respectively. In contrast with the Siamese net-
work tracking algorithms(32 33, 40 our convolutional-
deconvolutional DCFNet tracker increases the AUC
score by more than 4.3% especially on OTB-2015.
Among the correlation filter trackers which use pre-
trained features, the CF2 tracker obtains the AUC
with 57.7% running at 15 frames per second on the
OTB-2015 dataset. Our convolutional-deconvolution-
al DCFNet tracker increases AUC by 10.4% and its
tracking speed is faster than that of CF2 by more
than three times. Among the tracking algorithms run-
ning in real time, the LCT, KCFM, EEM, and DSST
less robustly and less accurately track the object, or
lose the track under background clutters. The results
indicate that accurate and robust object localization
is achieved by the combination of the generic seman-
tic embedding learning and the context-aware spatial
correlation analysis.

On the VOT2015 challenge dataset, the DCFNet
and the scale DCFNet were compared with the 62
participating trackers based on the expected average
overlap (EAO) measure. They were ranked by EAO.
The results are shown in Fig.8, in which the horizon-
tal coordinate indicates the ranks of the trackers,
while the vertical coordinate indicates the EAO val-
ues of the trackers. The horizontal gray line in the
figure is the VOT2015 state-of-the-art bound. Our
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Fig.7. Success plots for the convolutional-deconvolutional DCFNet tracker (CD-DCFNet) compared with state-of-the-art trackers on

(a) OTB-2013 and (b) OTB-2015.
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Fig.8. EAO plot for the DCFNet tracker, the scale DCFNet tracker, and the participating trackers on the VOT2015 challenge: The
top-11 trackers are listed in the legend and their tracking speeds are shown in EFO values.

scale DCFNet is ranked within the top-10 trackers in
the overall performance evaluation. Compared with
the rest of the top-10 trackers, the scale DCFNet has
the fastest tracking speed on the speed evaluation
unit called equivalent filter operations (EFO). In con-
trast with correlation filter based trackers, such as
DeepSRDCF17, MUSTerl4"l, and KCFUl, our DCFNet
and scale DCFNet achieve an excellent balance be-
tween accuracy and speed.

Fig.9 compares our convolutional-deconvolutional
DCFNet tracker with the state-of-the-art trackers on
VOT20158 and VOT2017 datasets/® based on the
EAO measure. In the figure, the horizontal coordi-
nate indicates the ranks of the trackers, while the ver-
tical coordinate indicates the EAO values of the

trackers. The horizontal grey lines show the bounds of
the state-of-the-art. The convolutional-deconvolution-
al DCFNet ranks the third and eighth respectively on
the two datasets in the overall performance evalua-
tion. The red polygonal line in Fig.9(b) shows the ac-
curacies of the trackers indicated by the horizontal
coordinate when the trackers run in real time. Our
CD-DCFNet ranks first in the VOT2017 real-time ex-
periment. Among the top-10 competing tracking algo-
rithms on the VOT2015 dataset, only the NSAMF
tracking algorithm runs in real time while its EAO
score is 0.254. The convolutional-deconvolutional
DCFNet runs in real time (65 FPS) while its EAO
score is 0.315. It yields accuracy scores comparable to
MDNet[10] and DeepSRDCF7, while running faster
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Fig.9. EAO plot for the proposed CD-DCFNet tracker and the competing trackers on (a) VOT2015 and (b) VOT2017. Legends are

shown for top performing trackers.
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by orders of magnitude. Compared with the baseline
SiamFCB2  whose EAO score is 0.188 on the
VOT2017 dataset, the convolutional-deconvolutional
DCFNet substantially increases EAO by 7.0%,
demonstrating its superiority in accuracy and robust-
ness of tracking. To test the efficiency of the convolu-
tional-deconvolutional DCFNet, we conducted the re-
al time experiments on VOT2017. CSR-DCFP?2 ob-
tains top performance in real time using an implemen-
tation with optimized C++. The convolutional-decon-
volutional DCFNet yields state-of-the-art real-time
performance while its EAO is 0.241 which is larger,
by 14%, than the EAO obtained by the VOT2017
winner. The SiamDCF for the VOT2017 challenge is
the initial version of the convolutional-deconvolution-
al DCFNet. It also uses multi-resolution representa-
tions to achieve correlation analysis. In contrast with
SiamDCF, by using a domain-independent reconstruc-
tion constraint and a global context constraint, the
convolutional-deconvolutional DCFNet carries out
correlation analysis on a learnt semantic embedding
space and achieves discriminative fine-grained object
appearance modeling.

We compared our trackers with more recent real-
time trackers(2, 66-69], The comparison is shown in Ta-
ble 4. It is seen that our trackers are still comparable
to the more recent real-time trackers, where some of
them were even extensively trained by using trans-
formers(®6: 67, We only used AlexNet as the backbone
network, and thus the size of the network in our
trackers is much less than the sizes of the networks in
the competing trackers.

6.4 Qualitative Analysis

We show examples to validate the generality of
the proposed trackers. In order to verify the improve-
ment of the DCFNet and the scale-DCFNet in visual

— Scale DCFNet ——DCFNet — MCPF — SAMF —DSST

Table 4. Comparison with More Recent Real-time Tackers
on the OTB-2015 Dataset in Terms of AUC Score
Tracker AUC Score
Scale DCFNet[54 63.1
DC-DCFNet 63.5
HCATI6] 68.1
E.T.Trackl®”] 67.8
LightTrack(8 66.2
ECORY 69.1
ATOM® 66.9

object tracking for changes in object shapes and scale
estimation, we compared the DCFNet tracker and the
scale-DCFNet tracker with the correlation filtering-
based trackers, MCPFI65], SAMF[1] DSSTI4, and the
Siamese network based trackers, CFNetl0l, and
SiamFCB2l. The comparison was carried out on the
two challenging videos of human3 and skinning.
Fig.10 shows the results of comparison between
the DCFNet tracker, the scale-DCFNet tracker, and
the competing trackers on the human3 sequence.
Around frame 100, the object is occluded frequently
by electric poles and other pedestrians with appear-
ances similar to the object. Our trackers well handle
these occlusions and background clutters. However,
for SAMF[, tracking drift occurs, because it only us-
es the HOG features which lack sufficient discrimina-
tive ability for pedestrians with similar appearances.
At frame 300, only our trackers and MCPFI65] can
track the object well under the complex situations.
For the DSST[4 which cascades one-dimensional
scale correlation filters for estimating object scales,
the object is erroneously attracted by distractors. The
Siamese network based tracker SiamFCB2, which does
not update the appearance model online, is also un-
able to adapt to the scenes with occlusions. From
frame 300 to frame 600, the focal length of the cam-

CFNet — SiamFC_3s

Fig.10. Results of the DCFNet tracker, the scale DCFNet tracker, and the competing trackers on the human3 sequence.
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era undergoes significant changes, and the image
scales of the objects in the images jump. It is seen
that our scale DCFNet tracker has strong adaptabili-
ty to changes in scales due to the learning in the joint
scale-position space. Although the discriminative cor-
relation learning algorithm MCPF[65 based on parti-
cle filtering uses more scale samples, it does not
enough correctly estimate the scale of the object due
to the lack of the joint learning of multi-scale sam-
ples.

Fig.11 shows the results of our DCFNet tracker,
the scale DCFNet tracker, and the competing track-
ers on the skiing sequence in which there are not on-
ly the significant changes in object scales and large
object deformations, but also, in the camera’s per-
spective, the fast motion of objects with low-resolu-
tions. Because the multiple difficult scenes appear in
the same video, this video poses great challenges for
trackers. It is seen that SAMF[!] does not accurately
track the object at the very beginning of tracking due
to the use of very simple feature representation. Af-
ter frame 30, only the DCFNet tracker and the scale
DCFNet based tracker accurately track the objects.
The scale DCFNet tracker more accurately estimates
significant changes in scales. This validates the ad-
vantage of scale estimation obtained by learning in
the joint position-scale space.
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7 Conclusions

In this paper, we focused on tracking in real time,
which is essential in real applications. We proposed a
DCFNet tracker to unify the feature representation
learning and correlation filter based appearance mod-
eling within an end-to-end learnable framework. The
DCFNet is quite efficient benefiting from the
lightweight feature learning network and the Fourier
frequency domain based fast correlation modeling in
the correlation filter layer. The DCFNet has been ex-
tended to the scale DCFNetl®¥ based on a joint scale-
position space. The scale DCFNet enables feature
learning to obtain accurate predictions of object scale
and position. We extended the scale DCFNet to the
convolutional-deconvolutional DCFNet. A domain-in-
dependent image reconstruction constraint was incor-
porated into the semantic embedding learning to gen-
erate high-level representations which maintain the
structural information about images. A fine-grained
context-aware correlation filter was learnt for accu-
rately localizing the object. It is updated online for
adaptive tracking. Evaluations on several bench-
marks demonstrate that the end-to-end learning im-
proves the performance and our DCFNet, scale
DCFNet, and convolutional-deconvolutional DCFNet
obtain a great balance between accuracy and speed.

Conflict of Interest The authors declare that
they have no conflict of interest.
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Fig.11. Results of the DCFNet tracker, the scale DCFNet tracker, and the competing trackers on the skiing sequence.
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