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Abstract    Automated test generation tools enable test automation and further alleviate the low efficiency caused by

writing hand-crafted test cases. However, existing automated tools are not mature enough to be widely used by software

testing groups. This paper conducts an empirical study on the state-of-the-art automated tools for Java, i.e.,  EvoSuite,

Randoop, JDoop, JTeXpert, T3, and Tardis. We design a test workflow to facilitate the process, which can automatically

run tools for test generation, collect data, and evaluate various metrics. Furthermore, we conduct empirical analysis on

these six tools and their related techniques from different aspects, i.e., code coverage, mutation score, test suite size, read-

ability, and real fault detection ability. We discuss about the benefits and drawbacks of hybrid techniques based on experi-

mental results. Besides, we introduce our experience in setting up and executing these tools, and summarize their usability

and user-friendliness. Finally, we give some insights into automated tools in terms of test suite readability improvement,

meaningful assertion generation, test suite reduction for random testing tools, and symbolic execution integration.
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1    Introduction

Unit  testing  is  an  essential  task  in  the  software

development life cycle[1]. However, writing high-quali-

ty unit test suites manually is time-consuming and la-

borious. Automated tools produce test suites in order

to cover code and find behaviors that generate excep-

tions  or  runtime  errors.  Their  automatically-generat-

ed test cases with embedded assertions (i.e., a typical

type  of  test  oracles[2])  can  be  used  to  check  correct-

ness and detect faults in the systems under test. Con-

sidering the time spent on software testing, test case

generation  proves  to  be  an  effective  way  of  reducing

the  workload  of  developers.  Most  programming  lan-

guages  have  their  own  unit  testing  frameworks  such

as JUnit① for Java, Check② for C, and unittest③ for

Python. These frameworks can help to popularise unit

testing.  Meanwhile,  many  corresponding  unit  test

generation approaches have emerged,  such as search-

based algorithm, random testing and symbolic execu-

tion. And a large number of automated test case gen-

eration  tools  for  C  and  Java  language  with  different

approaches have begun to emerge. In recent years, au-

tomated  test  generation  tools  oriented  to  Java  lan-

guage  have  aroused  public  concern  and  become  re-

search  hot-spot.  Additionally,  they  are  the  focus  of

the workshop on Search-Based Software Testing (SB-

ST④).  Therefore,  we  decide  to  conduct  an  empirical

study on automated tools for Java.

Most of the existing empirical studies lack discus-
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sions on automated tools that combine symbolic exe-

cution  techniques.  Symbolic  execution  makes  contri-

butions  to  handling  dynamic  data  structures,  which

assists  in  generating  more  accurate  and  comprehen-

sive test inputs. In this scenario, if state-of-the-art au-

tomated  test  generation  tools  could  combine  with

symbolic execution in a better way, test cases are ex-

pected  to  contain  more  structural  information,  and

thereby improve test quality.

When it comes to the metrics for evaluation, met-

rics are usually not comprehensive enough, for exam-

ple,  only  including  code  coverage,  or  only  including

real  fault  detection,  etc.  To  fill  the  gap  and  address

the  above  limitations,  our  paper  comprehensively

evaluates  and  compares  six  automated  test  genera-

tion  tools  using  different  test  generation  approaches,

which  are  EvoSuite[3],  Randoop[4],  JDoop[5],

JTeXpert[6],  T3[7] and  Tardis[8].  Among  these  tools,

EvoSuite and JTeXpert are search-based testing tools,

Randoop and T3 are random testing tools, and JDoop

and  Tardis  are  tools  that  integrate  symbolic  execu-

tion  with  test  case  generators.  Moreover,  apart  from

code  coverage,  mutation  score  and  real  fault  detec-

tion, we also consider the test suite size and readabili-

ty as metrics in our experiments. We attempt to ana-

lyze  the  characteristics  of  the  faults  that  can  be  de-

tected by all tools, one of these tools or none of these

tools.  We  evaluate  automated  test  generation  tools

from  various  aspects  and  metrics,  point  out  their

strengths  and weaknesses,  and give  some suggestions

on  these  tools  in  order  to  make  much  more  compre-

hensive  comparisons.  In  summary,  this  paper  makes

the following main contributions.

• We propose a test framework to apply six auto-

mated  test  generation  tools  and  evaluate  the  quality

of unit tests produced by them.

• We discuss about the differences between JDoop

and Randoop, and Tardis and EvoSuite. And we give

our  opinions  on  the  effectiveness  of  combining  test

generation approaches with symbolic execution.

• We apply three automated test generation tools

on  the  Defects4J  dataset⑤,  and  analyze  their  effec-

tiveness of detecting real faults in the projects.

• We share our experience in applying the six au-

tomated tools and give suggested improvements from

various aspects on automatic unit test generation.

The rest of this paper is organized as follows. Sec-

tion 2 introduces the taxonomy of testing techniques.

Section 3 illustrates tool selection principles and gives

the  brief  introduction  of  selected  tools. Section 4

presents  our  experiment  methodology. Section 5 ana-

lyzes experimental results of each tool. Section 6 pro-

poses some suggestions for future work. Section 7 dis-

cusses the potential threats to validity. Section 8 con-

cludes this paper. 

2    Taxonomy of Testing Techniques

Automated  unit  test  case  generation  approaches

can  reduce  costs  and  improve  software  development

efficiency. We classify different testing techniques and

their associated tools into five types, i.e., search-based

testing,  random  testing,  symbolic  execution  for  test-

ing, model-based testing, and hybrid techniques.

Search-Based Testing. Search-based software test-

ing (SBST)[9] uses search algorithms to automatically

generate  test  data  by  optimizing  the  fitness  function

and  maximizing  the  achievement  of  test  goals.  The

fitness function can determine the best solution from

the search space of test inputs, which plays an impor-

tant  role  in  test  minimization  and  optimization.

Search-based  test  generation  tools  can  define  their

own  test  goals  and  fitness  functions.  Taking

EvoSuite[3] as an example, it chooses branch coverage

of the whole test suite as the default test goal for cov-

erage.  Therefore,  its  fitness  function  is  designed  to

calculate the branch distance between class under test

(CUT) and test suite in order to find the optimal test

suite.  Search-based  testing  tools  include  JTeXpert[6],

EvoSuite[3], TestFul[10], and so on.

Random Testing.  As  a  fundamental  approach  for

testing,  random testing[1] is  scalable  and  easy  to  im-

plement. It randomly selects inputs from a program's

input space and checks whether the program's behav-

iors on each input are correct. Random testing assists

in  creating  error-revealing  test  inputs.  Random  test-

ing is simple in concept and quick to find bug candi-

dates. However, it usually produces a very large num-

ber of tests,  while it  ignores part of the program be-

haviors, and can only find basic bugs compared with

other  techniques.  Random testing  tools  include  Ran-

doop[11], T3[7], JCrasher[12], etc.

Symbolic Execution for Software Testing. Symbol-

ic  execution[13] takes  symbolic  values  instead  of  con-

crete values as inputs, and its output is a mathemati-

cal  expression  of  these  symbols.  The  main  goal  of
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symbolic  execution  in  software  testing  is  to  explore

much  more  different  program  paths.  It  differs  from

other  automated  test  generation  approaches  in  the

use of  program analysis  and constraint  solvers.  Sym-

bolic  execution  tools  for  Java  include  Symbolic

PathFinder[14], JDart[15], etc.

Model-Based  Testing.  Model-based  testing[16] de-

pends on explicit behaviour models which encode the

intended behaviour of the system under test (SUT) or

its environment, and generates test cases automatical-

ly.  As  test  suites  are  derived  from  models  and  not

from  source  code,  model-based  testing  is  usually  re-

garded  as  one  form  of  black-box  testing.  There  are

several  different  approaches  of  model-based  testing,

such  as  axiomatic  approaches,  finite  state  machine

(FSM)  approaches,  and  so  on.  Model-based  testing

tools include JSXM[17], MBTsuite⑥, etc.

Hybrid  Techniques.  Hybrid  approaches  aim  at

making use of benefits of different test generation ap-

proaches, i.e., the advantages of one can overcome the

limitations of another. Lakhotia et al.[18] incorporated

dynamic symbolic  execution (DSE) into search-based

testing so as to generate better test cases by handling

dynamic  data  structures  in  an  effective  way.  Sen[19]

attempted the concolic  testing by combining random

testing and symbolic execution with the aim of gener-

ating  concrete  test  inputs  with  better  coverage.  Hy-

brid tools include SUSHI[8], Tardis[8], JDoop[5], etc.
 

3    Automated  Unit  Test  Generation  Tools

Selection

In  this  section,  we  illustrate  selection  principles

and describe the selected tools in our experiment. We

exclude pure symbolic execution tools (e.g., JDart[15],

and Symbolic PathFinder[14]) because they almost on-

ly produce test inputs. Table 1 shows an overview of

unit  test  generation tools  that  we include  or  exclude

in our experiment, where N/A means there is no spec-

ified version of the tool, and “Executable Jar” means

 

Table  1.    Overview of Automated Test Generation Tools

Tool Technique Artifact Updated Input Format Output Format Selected Version

EvoSuite[3] Search-based
testing

Open source 2021 Java binary code JUnit4 test cases Yes 1.2.0

Randoop[11] Random testing Open source 2022 Java binary code JUnit4 test cases Yes 4.3.0

JDoop[5] Random testing
+ concolic
execution

Open source 2018 Java source and
binary Code

JUnit4 test cases Yes 2.0

JTeXpert[6] Search-based
testing

Executable Jar 2016 Java source and
binary code

JUnit4 test cases Yes 1.4

T3[7] Random testing Open source 2019 Java binary code Binary test suites
trace files (.tr)

Yes N/A

Tardis[20] Search-based
testing +
symbolic
execution

Open source 2021 Java binary code JUnit4 test cases Yes 0.1.0

JCrasher[12] Random testing Executable Jar 2007 Java binary code JUnit3 test cases No 2.1.3

Tpalus[21] Random testing
+ symbolic
execution

Executable Jar 2010 Java binary code JUnit3 test cases No 0.2

GRT[22] Random testing Not open
source

2015 Java binary code JUnit4 test cases No N/A

TestFul[10] Search-based
testing

Open source 2010 Java binary code JUnit3 test cases No 1.0.4

SUSHI[8] Search-based
testing +
symbolic
execution

Open source 2021 Java binary code JUnit4 test cases No 0.2.0

GraphWalker[23] Model-based
testing

Open source 2021 Finite state
machines

Test paths No 4.3.1

JSXM[17] Model-based
testing

Open source 2016 EFSM (stream X-
machines)

JUnit test cases No N/A
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the  tool  only  provides  an  executable  package,  with-

out  open  source  code.  In  the  table,  we  mark  the  se-

lected  and  unselected  tools,  and  record  the  tool  ver-

sion used in our experiment. 

3.1    Selection Principles

First,  a  tool  should  provide  command-line  inter-

face for our experiment. All tools mentioned in Table

1 are  command-line  tools,  and  thus  other  automatic

tools  that  cannot  generate  test  cases  in  a  command-

line  way  are  directly  excluded.  Second,  the  selected

tools are supposed to provide open source code or exe-

cutable  jars.  Third,  we  discard  tools  that  have  not

been maintained since 2016. Fourth, test suites gener-

ated by these tools should be in JUnit4 format, or can

be  loaded  in  JUnit4  format  (e.g.,  T3).  As  shown  in

Table 1,  JCrasher[12],  Tpalus[21] and  TestFul[10] have

been out of maintenance for many years, which are all

excluded. GRT[22] is also excluded because it does not

provide source code or executable package. Addition-

ally,  when  two  tools  use  the  same  approach,  we

choose the one that has the better performance of test

generation. For example, Tardis[20] is based on SUSHI

and  aims  at  overcoming  some  limitation  of  SUSHI,

and thus we only choose Tardis in this experiment.

Model-based testing tools rely on an extra prede-

fined  model  for  system under  test,  and  require  users

to  create  MBT  models  from  requirement  or  system

specifications.  We  exclude  model-based  testing  tools

in  our  experiment  because  few  programs  are  devel-

oped  with  models  or  formal  specification.  Further-

more, tests generated by model-based tools are usual-

ly  not  in  JUnit  format.  For  example,  GraphWalker

only generates useful test paths for a specified model,

and  test  cases  generated  by  JSXM are  in  XML  for-

mat and have to be transformed into JUnit test cases

by using Java Test Transformer. 

3.2    Overview of Selected Tools

Based on selection principles, we finally choose six

state-of-the-art  automated  unit  test  generation  tools.

EvoSuite[3] and  Randoop[11] are  the  most  commonly

used  automated  test  generation  tools  in  academia.

The other tools are also representative in the field of

test  generation,  and valuable  for  the  empirical  study

and future research.

EvoSuite. EvoSuite[3] is a search-based test genera-

tion  tool.  It  leverages  a  genetic  algorithm  to  search

the  program  state  space,  and  evolve  and  generate

tests. The genetic algorithm applied in its test genera-

tion module treats the test suite as a chromosome, us-

ing  search  operators  (e.g.,  crossover,  mutation)  to

evolve  individuals  for  each  population.  During  the

evolutionary  process,  the  fitness  function  makes  con-

tributions  to  minimizing  the  test  suite  and  choosing

the best.

Randoop. Randoop[11] is one of the most used au-

tomated  tools  based  on  feedback-directed  random

testing.  Randoop  selects  method  sequences  at  ran-

dom and creates test sequences incrementally. Futher-

more,  the  newly  generated  sequences  with  no  con-

tract violations are outputted as regression tests. The

error-revealing test reveals the code that violates the

contract  and  indicates  an  error.  Currently,  Randoop

mainly checks  for  a  default  set  of  contracts,  e.g., re-
flexivity of equality, contracts over Object.clone().

JDoop.  JDoop⑦ combines  the  Java  PathFinder's

concolic  execution  engine  JDart and  the  random

testing  generator  Randoop.  It  can  create  test  cases

automatically  in  a  hybrid  way.  First,  JDoop  collects

test cases generated by Randoop, and then randomly

selects  some  test  cases  for  the  next  step.  Second,

JDart executes  concolic  testing  and  generates  new

concrete  values.  Finally,  concrete  inputs  are  written

into test files, and have an impact on the next round

execution of Randoop.

JTeXpert.  JTeXpert[6] can  automatically  con-

struct  the  whole  test  suites  in  the  JUnit  format  for

each CUT by using a search heuristic. This tool takes

source  code and dependencies  of  Java projects  as  in-

put.  JTeXpert  utilizes  a  source code analyzer  to  col-

lect  program  information,  a  testcase  candidates

builder  to  explore  useful  sequences,  and  a  random

search  approach  to  randomly  generating  candidate

test  cases  for  each  uncovered  branch.  Thus,  JTeX-

pert  can  reach  many  branches  that  may  be  covered

accidentally, thereby improving code coverage.

T3.  T3[7] randomly  generates  a  great  number  of

test  sequences  for  Java  classes.  T3  consists  of  two

tools:  the  generator  tool  and  the  replay  tool.  It  can

generate  clean  test  sequences  without  throwing  any

exception and inject oracles in these clean sequences.

Additionally,  T3  imposes  pair-wise  testing[7] in  order

to find bugs that are caused by faulty interactions be-

tween methods in the CUT.
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Tardis. Tardis[20] consists of a Java bytecode sym-

bolic executor (JBSE)[24] and a customized version of

the  search-based  test  generator  based  on  EvoSuite.

Tardis  integrates  the  two  main  modules  through  a

novel approach, and can produce tests in an automat-

ed way. The path condition information generated by

the path explorer would be fed to the test generation

module.  Like  JDoop,  Tardis  also  needs  to  allocate

time for symbolic execution and test generation. 

4    Experiment Methodology

In  this  section,  we  present  our  experiment

methodology.  With  the  goal  of  comparing  the  state-

of-the-art automated test generation tools from differ-

ent perspectives, we define the evaluation metrics and

summarize the following four research questions.

• RQ1 (Quality of Test Cases). What code cover-

age,  mutation  score,  test  suite  size,  and  readability

are  achieved  by  each  automated  tool  given  different

time budgets?

• RQ2 (Effects of Combination with Symbolic Exe-
cution).  Does  combining  test  generation  approaches

with symbolic execution improve the quality of auto-

matically-generated test cases?

• RQ3  (Real  Fault  Detection).  How  many  exist-

ing  faults  can  be  detected  by  these  automated  tools

on different projects? Which category of faults is easi-

er to be found?

• RQ4  (Ease  of  Use).  How  much  effort  does  it

take for developers to set up these automated tools?

We conduct our experiment on Ubuntu 18.04 with

Intel Xeon® Gold 5117 CPU @ 2.00 GHz with 125 GB

of  RAM,  and  use  OpenJDK's  Java  VM  (JVM)  ver-

sion 1.8.0_292. 

4.1    RQ1: Quality of Test Cases
 

4.1.1    Selected CUTs for RQ1 Experiment

Table 2 shows the detailed information of six well-

known open-source projects which we select in our ex-

periment. These projects are Apache BCEL⑧, jsoup⑨,

ZXing  Core⑩,  Apache  Commons  Lang⑪,  JFreeCh-

art⑫, and Apache Commons Collections⑬. We choose

these  projects  as  benchmarks  because  they  are  ma-

ture and canonical.  All  of  the projects  are hosted on

GitHub  and  used  by  hundreds  or  even  thousands  of

artifacts.  Additionally,  these  projects  are  developed

by different organizations and have different function-

alities.  Moreover,  selecting  multiple  projects  can  in-

crease  the  scientificity  and  diversity  of  our  experi-

ment.

75

We apply  EvoSuite,  Randoop,  JDoop,  JTeXpert,

T3,  and  Tardis  to  generate  test  cases  for  the  classes

in different projects. Since abstract classes and inter-

face classes do not have much practical value for this

experiment, we exclude them and choose classes with

more  branches  and  statements.  Finally,  we  select 

CUTs from the six open source projects as mentioned

above. Table 3 shows  the  characteristics  of  these  se-

lected CUTs. 

4.1.2    Overview of Test Workflow

× ×
×

We write scripts to automatically run tools, gener-

ate  unit  tests  and  compute  evaluation  metrics.  We

perform  3  (repetitions)  6  (automated  tools)  75

(CUTs)  5  (timebudgets)  = 6 750 runs  in  total.

Therefore, this setting requires about 19 days of gen-

eration time.
 

Table  2.    Overview of Benchmarks Under Study

Benchmark Version #LOC #Cls. #Bran. #Stat. Description

Apache BCEL 6.0 60 547 376 6 020 15 680 A library to analyze and manipulate Java class files

jsoup 1.11.3 18 076 67 3 712 7 319 A library to fetch URLs and manipulate data

ZXing Core 3.3.2 38 145 231 7 890 13 311 A core barcode encoding/decoding library

Apache Commons Lang 3.13 88 285 216 10 052 15 976 A package of utility classes for Java platform

JFreeChart 1.5.2 218 039 641 21 852 52 378 A comprehensive free chart library

Apache Commons Collections 4.5 74 020 351 5 975 13 499 A package of many powerful data structures

Note: #LOC means the total lines of code; #Cls. means the total number of classes; #Bran. means the number of branches in the
bytecode (measured by JaCoCo); #Stat. means the number of statements.
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The  workflow  of  this  experiment  is  shown  in

Fig.1. The overall experiment procedure is as follows.

• First,  we  use  the  command  line  tools  to  pro-

duce  test  suites.  The  inputs  of  the  test  generation

module are the CUT's name and the time budget. We

run each tool three times with five different time bud-

gets: 10 s/class, 60 s/class, 180 s/class, 360 s/class, and

600 s/class. The outputs of test generation module are

test  files,  which  include  Java  files  and  binary  trace

files (outputted by T3).

• Second, we remove test cases that cannot be succ-

essfully compiled or wrong. Illegal test cases are sup-

posed to be modified in order to make the whole test

suite compilable and executable.

• Third,  we write  scripts  to  automatically  evalu-

ate each automated tool. The inputs of the scripts are

the tool name, time budget, CUT name, test files, and

dependencies. The outputs of the scripts are files con-

taining  the  results  of  the  code  coverage,  mutation

score,  and  test  suite  size.  JaCoCo⑭ is  used  for  code

coverage analysis. PITEST⑮ is used to perform muta-

tion  testing  and  evaluate  tools.  In  terms  of  the  test

suite  size,  we collect  the  number of  test  cases  in  the

test file with the help of JavaParser.

• Finally,  we  collect  and  analyze  all  of  the  out-

puts. In this step, we compute the average of experi-

mental results and rank them for evaluation. 

4.1.3    Metrics

As for the metrics  to evaluate the quality of  test

cases,  we  draw on  and  extend  the  findings  of  Grano

et al.[25].

1) Code Coverage[26].  Code coverage describes the

proportion of source code tested in the program, and

helps  measure  the  software  quality.  In  our  experi-

ment,  code  coverage  includes  branch  coverage,  line

coverage,  cyclomatic  complexity  coverage,  method

coverage, and instruction coverage.

2) Mutation  Score[27].  In  mutation  testing,  some

modifications  would  be  injected  into  the  program.

Each mutated version is called a mutant. If a test de-

tects and rejects mutants, we consider that it kills the

mutants.  Mutation score  calculates  the proportion of

 

Table  3.    Characteristics of Selected CUTs

Benchmark #CUTs #Stat. #Bran. #Met. #Cyc. Comp.

Apache BCEL 15 1 650 1 078 280 832

jsoup 15 1 765 1 156 322 905

ZXing Core 10 1 240 892 89 538

Apache
Commons Lang

10 2 113 1 609 353 1 171

JFreeChart 15 961 516 161 419

Apache
Commons
Collections

10 411 260 91 222

Note:  #CUTs  means  the  number  of  selected  CUTs;  #Stat.
means the number of statements; #Bran. means the number of
branches; #Met. means the number of methods; #Cyc. Comp.
means the number of cyclomatic complexity.
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the number of killed mutants to the total number of

mutants.

3) Test Suite Size. Test suite size refers to the to-

tal number of test cases included in a suite. General-

ly,  a  smaller  test  suite  is  easier  to  understand.  The

larger  the  test  suite,  the  higher  the  test  budget  and

time cost.

4) Readability[28].  Readability reflects the compre-

hensibility of test cases. We use Readability Checker⑯

to  compute  readability  of  tests.  It  implements  three

software  readability  metrics,  including  B&W,  com-

ments ratio (CR), and software readability ease score

(SRES).

• B&W[29].  The  model  proposed  by  Buse  and

Weimer[29] outputs a readability score in the range [0,

1].  The  higher  the  B&W score,  the  better  the  read-

ability.

• Comments  Ratio (CR)[30]. CR is  a  metric  from

the  aspect  of  comments.  The  lower  the  metric CR,

the better the readability. The proposed formula is as

follows,  where LOC represents  the  number  of  total

lines of code, and LOM represents the number of lines

with comments: 

CR = LOC/LOM.

•

ASL

 Software  Readability  Ease  Score (SRES)[31].

SRES is  less  sensitive  to  comments  and  whitespace,

but correlates well with human readability experience.

The lower the metric SRES, the better the readabili-

ty.  The  proposed  formula  is  as  follows,  where 

AWLrefers to the average sentence length and  refers

to the average word length: 

SRES = ASL− 0.1× AWL.
 

4.2    RQ2: Effects of Combination with

Symbolic Execution

The  main  purpose  of  combining  symbolic  execu-

tion and a test generator is to achieve the desired ef-

fect that can not only capture relevant structural in-

formation  but  also  generate  test  cases,  thereby  mak-

ing up for their own shortcomings.

Fig.2 shows the workflow of JDoop. JDoop adopts

a hybrid approach that combines concolic testing with

random testing. It relies on JDart and Randoop. The

procedure  can  be  divided  into  three  parts.  First,

JDoop collects the generated test cases during the ex-

ecution of  Randoop. Second, JDoop randomly selects

a  small  part  of  test  cases  to  perform concolic  execu-

tion in JDart. JDart records symbolic constraints on

executed program paths, replaces concrete values with

symbolic variables, and then uses constraint solvers to

generate new concrete test inputs with the goal of ex-

ploring  feasible  distinct  execution  paths  and  obtain-

ing better  coverage than random testing.  Third,  new

generated concrete  test  input  values  are  written into

test files, and also applied for the next execution.

Fig.3 shows the workflow of Tardis. The symbolic

executor  JBSE  integrated  in  Tardis  identifies  execu-

tion  conditions  of  system  under  test,  and  interacts
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Fig.2.  Workflow overview of JDoop with symbolic execution.
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with  the  test  case  generator  EvoSuite  for  optimising

legal method sequences incrementally. Tardis is differ-

ent  from  those  approaches  that  use  symbolic  execu-

tion  techniques  to  explore  alternative  values  of  the

initial  test  inputs.  Tardis  makes  full  use  of  symbolic

execution  to  generate  path  conditions  that  charac-

terise  the  dependencies  between  program  paths  and

complex input structures (e.g., Object), converts path

conditions into the objective function of optimisation

problems[8],  and  then  exploits  EvoSuite  to  generate

concrete method sequences.

We  compare  JDoop  with  Randoop,  and  Tardis

with EvoSuite by the experimental results of RQ1. As

random testing tools, JDoop and Randoop can direct-

ly generate test suites for hundreds of CUTs in an en-

tire project at a time under the specified time budget,

and thus we add an additional experiment for further

evaluation.  The  benchmarks  used  in  the  additional

experiment  are  mentioned  in Table 2.  We  focus  on

branch coverage and line coverage in this experiment

(RQ2),  because  JDoop  attempts  to  improve  branch

coverage by leveraging concrete test input values, and

line  coverage  is  a  basic  metric  that  can  check  every

executable  statement.  Besides,  we  want  to  analyze

whether  applying  concolic  testing  has  an  impact  on

the  branch  coverage  and  line  coverage,  and  discover

whether  the  quality  of  automatically-generated  tests

is related to different benchmarks. 

4.3    RQ3: Real Fault Detection

Revealing real bugs in the project is the key point

of  software  testing.  However,  test  suites  with  a  high

code coverage or high mutation score are not certain

to do well in detecting real bugs in the project.

17 835

187

Thus,  we evaluate  the real  fault  detection ability

of automatic tools. We use the Defects4J dataset⑰ to

compute the real fault detection rate of an automati-

cally-generated test suite. The Defects4J dataset con-

sists  of  open-source  projects  with  bugs,  and

distinguishes between active and deprecated bugs. We

choose four projects with  real bugs from the De-

fects4J  dataset  for  our  experiment.  These  four

projects  have  their  identifiers  named as  jsoup,  Lang,

Chart and Collections, which are also included in the

previous experiment for RQ1. Table 4 shows the num-

ber of bugs of each project under test. Defects4J has

two  versions  of  the  program:  the  buggy  version  and

the  fixed  version.  Each  buggy  program  version  con-

tains exactly one real fault.
  

Table  4.    Overview of Projects from Defects4J Dataset

Identifier Project Name #Bugs

jsoup jsoup 93

Lang Apache Commons Lang 64

Chart JFreeChart 26

Collections Apache Commons Collections 4

Note: #Bugs means the number of bugs in the dataset.
 

We  leverage  the  Defects4J  test  framework  and

make some changes to the test scripts so that JTeX-

pert  can  be  successfully  applied.  We  first  generate

test suites for a program, and then run it on the bug-

gy  version  to  check  whether  the  specific  bug  can  be

detected. Note that Defects4J removes all flaky tests,

uncompilable tests and failed tests before running the

test suite. If a test produces different results when we

retry  to  run it  for  many times,  then the  test  can be

regarded as a flaky test. The result of bug detection is

“Pass”, “Fail”, or “Broken”. “Pass” means the bug is

detected  by  tests,  and  ``Fail"  means  the  bug  is  not

found by tests.  ``Broken" means  the  tests  have  their

own  problems  and  cannot  work  properly  when  run-

ning on the buggy program so that they fail to deter-

mine whether the bug is detected.

Considering that almost all the tests generated by

JDoop are ``Broken" when performing fault detection,

the results have little research value, and thus we dis-

card JDoop from our experiment. T3 produces binary

trace  files  as  the  test  suite,  which is  not  suitable  for

the  Defects4J  framework.  Tardis  disables  to  success-

fully  generate  tests  for  the  buggy projects  due  to  its
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Fig.3.  Workflow overview of Tardis with symbolic execution.
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own flaws. Finally, we only select EvoSuite, Randoop

and  JTeXpert  as  our  target  tools  to  evaluate  real

fault detection ability, and attempt to find what cate-

gory of bugs is easier to find.

22

In brief,  we conduct our experiments on different
time  budgets,  which  are  set  to  120  s  and  360  s,  re-
spectively.  As  for  Randoop,  the  time  budget  is  the
global  time budget  for  the  whole  project.  Since  Evo-
Suite  and  JTeXpert  are  search-based  test  generation
tools,  the time budget is  set for one CUT at a time.
In order to alleviate randomness and contingency, we
run each tool  10  times  and aggregate  the  number  of
real bugs detected by all of the generated test suites.
In  total,  it  takes  approximately  days  to  produce
test suites for the selected buggy version projects. 

4.4    RQ4: Ease of Use

The purpose of this empirical study aims to make
readers easy to select and apply these tools, and give
researchers in the field a basic summary. First, we de-
scribe  the  challenges  we  face  during  the  tools  setup
process,  and  show  our  efforts  to  run  automated  test
generation  tools  successfully.  Second,  we  sum up the
barriers  and  problems  encountered  in  our  experi-
ments.  Third,  we  analyze  the  usability  and  friendli-
ness of these tools, and their combinability with mod-
ern IDE. 

5    Experimental Results

In this section, we outline and analyze the experi-
mental results of each automated test generation tool
on  different  time  budgets  to  answer  the  RQs  men-
tioned in Section 4. 

5.1    Answering RQ1: Quality of Test Cases

We take the average of three rounds of experimen-
tal results in order to avoid the randomness to some
extent. We compare and analyze results on the given
time budget  from four  aspects:  code  coverage,  muta-
tion score, test suite size, and readability, respective-
ly. 

5.1.1    Results of Code Coverage

Different test generation approaches influence the

quality of automatically-generated tests. In this exper-

iment, each tool generates unit tests for one CUT at a

T B

M

j i

N

R

time.  Given an automated tool ,  a  time budget ,

and  a  coverage  metric ,  we  provide  the  following

formula to  evaluate  the  average code coverage result

(ACCR) for each CUT  on each execution , where

the  total  number  of  CUTs  (named  as )  is  75  and

the total number of executions (named as ) is 3: 

ACCR<T, B, M> =

R∑
i=1

N∑
j=1

cov<T, B, M, i, j>

N ×R
.

Table 5 presents  the  ACCR of  branch  coverage,  line

coverage,  complexity  coverage,  method  coverage  and

instruction  coverage  of  each  automated  test  genera-

tion tool on five different time budgets. EvoSuite per-

forms  the  best  with  the  highest  coverage  in  all  as-

pects.  JTeXpert  ranks  only  second  to  EvoSuite  in

code coverage. The results of EvoSuite and JTeXpert

far exceed the other tools. They are search-based tools

and  can  explore  the  state  space  of  the  program  the

more fully when the time budget increases. T3, Ran-

doop and JDoop have  little  difference  in  code  cover-

age.  Among  these  three  tools,  T3  outperforms  Ran-

doop  and  JDoop.  But  T3  is  lack  of  producing  nega-

tive tests[7], which explains the lower code coverage of

T3 compared with search-based test generators. Ran-

doop generates more but redundant test cases as time

budget  grows higher,  which only has  little  benefit  to

code coverage. JDoop integrates Randoop as the test

generator.  Since  JDoop  injects  symbolic  execution  in

order  to  maximize  branch  coverage,  the  code  cover-

age of unit tests generated by JDoop for one CUT at

a  time  is  higher  than  that  of  Randoop.  Tardis  at-

tempts to make use of path information generated by

the path explorer in order to produce tests for a spe-

cific  path  with  the  goal  of  increasing  code  coverage.

However,  the  results  are  unsatisfying,  and  are  the

worst among the results of all the six tools. In Subsec-

tion 5.1.2,  we  analyze  the  reasons  and  give  our  own

opinions. 

5.1.2    Results of Mutation Score

Fig.4 shows  mutation  coverage  and  mutation

score  of  each  automated  test  generation  tool  on  five

different  time  budgets.  The  results  of  test  suite  exe-

cuted  by  PITEST  include NO_COVERAGE, SUR-
VIVED and KILLED. NO_COVERAGE is  the  same

as SURVIVED except that there are no tests that ex-

ecute the line of code where the mutation is created⑱.
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Mutation  coverage  is  the  proportion  of SURVIVED
and KILLED to  all  results  as NO_COVERAGE im-

plies  no  tests  covered  the  mutation.  Mutation  score

reflects the ability of killing seeded mutants (i.e., the

ratio of KILLED to all results).

EvoSuite  beats  the  other  tools  in  terms of  muta-

tion coverage and mutation score. The main reason is

that  EvoSuite  applies  mutation  testing  itself  and  re-

moves the assertion that cannot detect any of the re-

maining  seeded  mutants.  In  terms  of  average  muta-

 

Table  5.    Average Code Coverage for Six Automated Test Generation Tools on Different Time Budgets

Time
Budget (s)

Tool Average Branch
Coverage (%)

Average Line
Coverage (%)

Average Complexity
Coverage (%)

Average Method
Coverage (%)

Average Instruction
Coverage (%)

10 EvoSuite 63.78 76.86 73.30 89.64 76.28

Randoop 27.12 39.06 35.07 56.77 37.21

JDoop 27.86 42.05 37.07 61.35 40.14

JTeXpert 35.90 53.58 45.93 70.24 52.09

T3 29.73 43.21 37.51 60.43 41.03

Tardis 18.46 37.57 29.94 60.88 35.45

60 EvoSuite 71.84 82.90 81.86 93.02 82.59

Randoop 30.08 43.34 39.44 61.67 41.43

JDoop 30.76 43.96 39.70 61.71 42.17

JTeXpert 54.62 70.35 63.98 85.19 68.82

T3 32.97 48.52 43.24 66.37 46.54

Tardis 21.98 42.26 32.93 67.77 40.45

180 EvoSuite 74.23 84.76 84.42 94.27 84.76

Randoop 30.61 43.57 39.96 61.70 41.72

JDoop 31.30 44.06 40.17 61.59 42.28

JTeXpert 55.51 71.19 65.04 84.95 69.75

T3 32.40 47.77 42.00 66.81 45.81

Tardis 22.24 42.76 33.98 69.02 40.90

360 EvoSuite 76.72 86.96 86.71 95.94 86.88

Randoop 30.87 43.70 40.23 61.70 41.85

JDoop 31.63 44.31 40.78 61.81 42.57

JTeXpert 56.52 72.37 65.92 86.44 70.87

T3 34.28 49.01 43.11 65.99 46.85

Tardis 22.99 43.21 33.57 68.16 41.50

600 EvoSuite 77.27 87.51 87.25 95.99 87.41

Randoop 31.00 43.75 40.33 61.70 41.90

JDoop 31.97 44.47 41.91 61.84 42.77

JTeXpert 57.73 73.09 66.82 86.16 71.71

T3 32.61 47.84 41.86 65.66 45.80

Tardis 22.99 44.93 34.80 70.09 42.79
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tion score, JTeXpert performs better than the remain-

ing four  automated tools  under  all  time budgets.  An

oracle  builder  implemented  in  JTeXpert  is  supposed

to generate meaningful  assert statements.  It  uses the

value  returned  from  a  method  call  as  an  oracle  and

leads  to  much  stronger  ability  of  killing  mutants.

Tardis still performs the worst among these six auto-

mated  tools.  Its  mutation  score  is  much  lower  than

those of the other tools.

As  for  random testing  tools,  when  the  time  bud-

get grows, they show a trivial improvement in muta-

tion  coverage  and  mutation  score.  Random  testing

tools,  like Randoop,  create assertions with intelligent

guessing. Randoop generates assertions guided by us-

er-defined contracts and the pertaining logic. The re-

sults indicate that random testing tools cannot gener-

ate more effective unit tests under a larger time bud-

get.  Many  of  the  generated  method  sequences  prove

to be useless and redundant, which are of no help to

the improvement of test quality. In general, Randoop

is more suitable for testing small-scale programs with

short  test  generation  time  on  the  basis  of  good  code

coverage and mutation score. 

5.1.3    Results of Test Suite Size

T

B

j

i

N

R

Test suite size means the number of test cases in a

test  suite.  Given  an  automated  tool  and  a  time

budget ,  we  use  the  following  formula  to  compute

average  test  suite  size  (ATSS)  for  each  CUT  on

each  execution ,  where  the  total  number  of  CUTs

(named  as )  is  75  and  the  total  number  of  execu-

tions (named as ) is 3: 

ATSS<T, B> =

R∑
i=1

N∑
j=1

size<T, B, i, j>

N ×R
.

Table 6 shows the ATSS results of each automat-

ed test generation tool on five different time budgets.

Except  for  T3,  other  tools'  test  suite  size  always  in-

creases as the time budget increases. The size of test

suites  generated  by  random  testing  tools  is  the

largest,  and  proportional  to  the  growth  of  the  time

budget. Randoop and JDoop generate much more test

cases  for  a  given  CUT  than  the  other  tools.  As  the

time budget is larger and larger, more time should be

allocated  to  concolic  testing,  which  may  limit  the

number of unit tests generated by JDoop. In general,

the number of test cases generated by T3 is less relat-

ed to the time budget, but the code coverage and mu-

tation score increase as the test suite size increases.

60

As for  the search-based test  generation tools,  the

results  of  the  test  suite  size  are  all  lower  than .

EvoSuite  uses  a  generic  algorithm  to  produce  and

minimizes  the  test  suite.  The  number  of  test  cases

generated by JTeXpert is even less than that of Evo-

Suite,  but the length of  a test case (i.e.,  the number

of  lines  of  code  contained  in  a  test  case)  is  much

longer  than  that  of  EvoSuite.  Tardis  gets  the  lowest

test suite size,  and meanwhile,  its  code coverage and

mutation  score  are  also  the  worst.  However,  the  low

size  of  test  suite  does  not  guarantee  the  quality  of

tests.

In general,  too large test suites decrease test effi-

ciency, increase test cost, and may affect readability.

Excessive  test  suite  is  one  of  the  bottlenecks  of  ran-

dom testing tools. 

5.1.4    Results of Readability

The  readability  of  automatically-generated  test

cases  does  not  relate  to  the  time  budget;  hence,  we

set  time budget to 10 s  and compute the readability

of the tests produced by six tools. T3's test suite is a

binary file, which is not readable. In this experiment,

we take out T3 and only compare the remaining five

automated test generation tools.

Fig.5 represents  the  average  score  of  B&W,  CR

and SRES.  As  for  the  B&W score,  search-based test

generation  tools  perform better  than  the  other  tools.

JTeXpert  ranks  first.  As  the  numbers  of  characters,

identifiers and keywords are all regarded as metrics to

train  models,  the  long  but  clear  sequences  generated

by  JTeXpert  get  a  pretty  good  score.  EvoSuite  ap-

plies  various  optimisation  strategies  (e.g.,  test  mini-

mization) to improve the readability.
 

Table  6.    Average Test Suite Size for Six Automated Test Generation Tools on Different Time Budgets

Time Budget (s) EvoSuite Randoop JDoop JTeXpert T3 Tardis

10 38.3 255.3 286.8 11.4 288.5 5.6

60 46.9 1 649.7 1 666.6 18.5 309.5 9.1

180 51.4 4 898.3 3 790.8 19.8 305.6 9.7

360 56.4 9 685.4 6 445.2 20.6 444.3 10.0

600 57.6 16 057.6 10 747.1 21.7 409.0 10.2
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As for the CR score, we remove the results whose

number of comments is zero because the denominator

cannot  be  zero.  JTeXpert  is  still  the  distinguished

tool.  JTeXpert  produces  comments  before  each  test

method  to  explain  its  main  content  and  covered

paths.

As  for  the  SRES  score,  three  tools  that  imple-

ment  search-based  test  generators  are  outstanding.

JDoop  and  Randoop  often  generate  very  long  sen-

tences  for  a  test  case,  which  affect  the  overall  read-

ability. 

5.2    Answering  RQ2:  Effects  of  Combination

with Symbolic Execution

We  compare  JDoop  with  Randoop,  and  Tardis

with EvoSuite to check the effects of the combination

of symbolic execution. 

5.2.1    JDoop vs Randoop

The experimental results of RQ1 show that JDoop

is better than Randoop in code coverage when gener-

ating tests for one CUT at a time. Through our verifi-

cation, JDoop can generate new test inputs which do

not exist in the test suites generated by Randoop for

given CUTs. The correct test inputs for test methods

may  explain  that  JDoop  has  better  quality  of  tests

constructed for one CUT.

In  our  additional  experiment,  JDoop  performs

poorly when it comes to generating tests for an entire

project. Fig.6 shows  the  comparison  results  between

JDoop  and  Randoop  under  the  time  budget  of  10  s,

360  s  and  600  s,  respectively.  Randoop  outperforms

JDoop  in  most  cases,  and  JDoop  produces  more  un-

compilable  unit  tests  than  Randoop  during  the  test

generation  process.  Randoop  outperforms  JDoop  in

most cases. We can see that the code coverages of test

suites  are  related  to  different  benchmarks  and  test

suite  sizes;  however,  we  cannot  find  a  clear  relation-

ship between the benchmark and coverage ratio. But

in general, larger test suite size always leads to high-

er code coverage.

We  find  that  JDoop's  performance  on  one  CUT

and an entire project has certain differences. Concolic

testing  is  a  hybrid  technique  that  interleaves  con-

crete execution with symbolic execution. Under a giv-

en  time  budget,  there  exist  lots  of  paths  in  complex

programs  that  concolic  testing  tools  (e.g.,  JDoop)

cannot  cover,  because  no  constraint  solver  can  sup-

port  these  tools  to  cover  all  reachable  branches[32].

Apart from that, JDoop selects test cases at random,

and  calls  JDart to  execute  symbolized  unit  tests.

First,  JDart can  only  generate  a  small  number  of

test  inputs  in  primitive  types  (e.g.,  Int,  Char,

Boolean),  but  cannot  symbolize  complex  types  such

as  Array  and  Object,  which  influences  its  effect  and
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applications.  Second,  JDoop  shuffles  test  cases  and

gets scrambled indexes. Then it applies the test cases

to  concolic  execution  by  order  until  JDart runs  out

of time limit. However, this process often chooses test

cases  that  do  not  need  more  comprehensive  test  in-

puts,  e.g.,  the  method  under  test  contains  no  reach-

able branch. Third, JDoop uses a customized version

Randoop as the test generator. To sum up, the effec-

tiveness of the constraint solver and the limitations of

JDoop can explain why JDoop's  optimization perfor-

mance is not so significant after incorporating symbol-

ic execution.

Moreover,  concolic  testing  works  well  when  the

programs can be tested as a single unit[33]. The experi-

ments of RQ1 focus on one CUT at a time, which can

be regarded as a unit  because a class  in one CUT is

small  and  all  methods  in  the  class  just  implement  a

single functionality cohesively[32]. However, in our ad-

ditional  experiment,  an  entire  project  is  large  and

usually composed of multiple independent functionali-

ties, leading to a very complex situation. Due to time

budget, concolic testing consumes much time to gen-

erate  some  concrete  but  limited  test  inputs,  and  the

final improvement is trivial. Furthermore, if we want

to  test  a  large  industrial  project  with  JDoop,  we

should consider a tradeoff between costs of partition-

ing and setting up the units for testing[33]. 

5.2.2    Tardis vs EvoSuite

According to the results of RQ1, Tardis attempts

to improve test generation by incorporating the path

condition  information  created  by  JBSE  and  applies

the  search-based  testing  tool  EvoSuite  to  instantiate

complex  data  structures  satisfying  the  path  condi-

tions, but it performs worse than EvoSuite on all met-

rics. We summarize the following four main problems

of Tardis. First, from the logs during the test genera-

tion process,  we find that Tardis  often fails  to apply

EvoSuite to produce test cases for the given path con-

ditions and prints out the exception message “Failed

to generate the test case for path condition”. Second,

the time limit of test generation used for other auto-

mated tools is between 0 and 2T (where T is the time

budget).  However,  it  takes  more  than  2T for  Tardis

to complete test generation. Third, we have to change

the  default  setting  of -Dassertions  from false  to  true

in order to generate assertions. But most of the types

of assert statements are ``fail". Fourth, Tardis is frag-

ile  and  its  documentation  is  not  detailed  enough  for

us to solve problems.

Furthermore, we discuss about the reasons of the

experimental  results.  On  the  one  hand,  Tardis  is  a

variant of  SUSHI, which aims at generating concrete

test  inputs  for  programs  with  complex  heap  inputs.

The  authors  of  SUSHI  evaluated  its  performance  on

Java  classes  with  paths  that  involve  complex  inter-

procedural  dependencies  and  complex  data

structures[8].  However,  the  CUTs  used  in  our  experi-

ment are not specially selected like this and not very

suitable to explore in-depth of the programs for com-

plex  heap  inputs  by  means  of  JBSE.  Moreover,  it

takes half of the time budget for symbolic execution,

which  may  affect  the  overall  test  generation.  It  im-
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plies  that  Tardis  and  SUSHI  would  encounter  such

problems  when  generating  tests  for  various  kinds  of

industrial programs, which discourages their populari-

ty. On the other hand, Tardis cannot instantiate the

path  conditions  that  are  spurious  due  to  unsound

computation  of  JUnit  test  cases.  For  example,  the

CUTs  have  many  infeasible  branches  or  loop  itera-

tions. And this may explain why the logs show a lot

of  failure-related  messages.  Therefore,  the  symbolic

execution process of JBSE needs to be improved with

the  goal  of  enhancing  the  effectiveness  of  the  ex-

plored program paths, and avoiding problems such as

path explosion.

Note that EvoSuite itself involves a dynamic sym-

bolic  execution  (DSE)  module,  called  EvoSuiteDSE.

Galeotti et al.[34] incorporated DSE into EvoSuite and

proposed  a  novel  adaptive  approach  combining  the

genetic  algorithm  with  DSE.  DSE  can  be  used  for

handling  dynamic  data  structures  and  optimizing

primitive  values.  In  this  subsection,  we  analyze  the

differences  of  these  two  approaches.  First,  when  it

comes to EvoSuiteDSE, during the process of search-

based  exploration,  the  generic  algorithm  can  deter-

mine whether to apply DSE or not. For example, if a

CUT  has  many  branches  that  depend  on  numerical

constraints on test inputs, DSE is suitable in this sit-

uation.  EvoSuiteDSE aims at  selecting  individuals  of

the population to perform symbolic execution. Apply-

ing symbolic execution on meaningful cases during the

search process can save the cost. However, Tardis just

allocates a fixed time limit to symbolic execution. Sec-

ond,  Tardis  converts  path  conditions  into  optimiza-

tion problems.  It  leverages  EvoSuite  to  generate  test

cases  by  using  the  evaluator  programs  of  these  path

conditions as fitness functions[8]. This may affect Evo-

Suite's  normal  process  of  generating  test  cases  be-

cause of some existing infeasible path conditions. Nev-

ertheless,  the  combination  approach  of  DSE  module

and EvoSuite is based on the theory that DSE can be

applied  as  a  local  search  step  on  primitive  values  in

the sequences of method invocations[34]. Besides, Evo-

Suite applies global search to explore the whole popu-

lation,  and individuals  can be improved by means of

DSE during the search process. This way of combina-

tion  better  integrates  the  strengths  of  each  one  at  a

lower cost, and as a result, it would find more uncov-

ered branches. While Tardis works better in terms of

creating  complex  objects  than  Galeotti et  al.'s
method[34],  it  is  not very suitable for improving Evo-

Suite  on  code  coverage  of  CUTs  used  in  our  experi-

ment. In summary, more effective and executable im-

provements  of  combining  symbolic  execution  with

search-based test generation need to be studied in the

future. 

5.3    Answering RQ3: Real Fault Detection

We compute the bug detection ratio by aggregat-

ing the bugs found by the 10 test suites automatical-

ly  generated  by  each  tool  in  order  to  avoid  the  ran-

domness. Table 7 shows the fault detection results in

Defects4J benchmarks.
  

Table  7.    Fault Detection Results in Defects4J

Time Budget (s) Tool jsoup Lang Chart Collections Total

120 EvoSuite 23 22 16 0 61

Randoop 25 13 16 0 54

JTeXpert 24 20 10 1 55

360 EvoSuite 25 22 16 0 63

Randoop 26 15 16 0 57

JTeXpert 20 18 11 1 50

  

5.3.1    Fault Detection Results

Considering  tools  individually,  EvoSuite,  Ran-

doop and JTeXpert can detect 63, 57, and 55 bugs at

best in our experiment, respectively. Among the three

automated test  generation tools,  EvoSuite is  still  the

distinguished.  And  test  suites  with  the  highest  fault

detection  rate  for  Lang  are  generated  by  EvoSuite.

The  time  budget  has  little  effect  on  improving  the

fault detection rate. However, a more thorough study

on  various  time  budgets  would  be  a  meaningful  fu-

ture work. 

5.3.2    How Faults Found by Different Automated

Tools?

We analyze the faults detected or not detected by

automated tools from the following three perspectives,

and attempt to answer these questions.

1) How Many  Times  Can  Faults  Be  Found? Un-

der  a  given  time  budget,  the  faults  covered  by  test

suites generated by automated tools on different exe-

cutions are not the same. We count up the number of

faults  that  can be found at  least  90% of  times in  10

executions  (marked  as  Always),  and  the  number  of

faults  that  are  detected  only  once  in  10  executions
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(marked as Once), and the number of faults in other

cases  (marked  as  General). Fig.7 shows  the  percent-

ages of the three types of faults detected by different

automated tools.
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Fig.7.  Percentage of faults that can be Always or Once detect-
ed by different automated tools.
 

In  EvoSuite,  the  faults  that  can  be  found  by  all

generated test  suites  accounts for the largest  propor-

tion.  Randoop  has  the  largest  number  of  faults  that

are found by only one test suite. As for JTeXpert, the

faults with the type of Always have the least propor-

tion.  This  means  that  JTeXpert  produces  the  lowest

overlap  of  faults  covered  by  different  test  suites.  In

summary,  the  10  test  suites  generated  by  the  three

automated tools have similar coverage of faults. How-

ever,  in  terms  of  fault  detection,  tests  generated  by

EvoSuite are the most stable.

2) Analysis  of  Faults  Detected  or  Not  Detected.
The ability  of  different  tools  to  find  bugs  is  various.

From  the  results,  we  classify  the  faults  into  the  fol-

lowing  three  cases.  Some  faults  (jsoup-8b,  Lang-60b,

etc.)  can  be  detected  by  all  tools  during  10  execu-

tions. These faults do not require complex conditions

or  concrete  input  values.  For  example,  Lang-60b  is

shown in Fig.8,  where  the  reference  of thisBuf.length
would trigger errors.
 
 

public  boolean  contains  ( char  ch) {  
    char [] thisBuf  = buffer;  
    for  ( int  i = 0; i < thisBuf .length ; i ++ ) {  

for  ( int  i = 0; i < thisBuf .size ; i ++ ) {  
        if  (thisBuf[i] ==  ch) {  
            return  true ; 
        }  
    }  

return  false ; 
}

- 
+

Fig.8.  Example of faults that can be detected by all tools dur-
ing 10 executions, Lang-60b.
 

Some cases (Chart-12b, Lang-65b, Collections-27b,

etc.) can only be found out by one of the tools during

10  executions.  With  regard  to  search-based  tools,

EvoSuite  is  possibly  better  at  generating  more  com-

plex  input  strings,  as  it  uses  a  genetic  algorithm  to

fully  explore  the  program  state  space,  leverage  run-

time  values,  and  then  produce  meaningful  input

strings and assert statements. Test cases generated by

JTeXpert perform better in dealing with complex con-

ditions,  as  its  search  strategy  can  help  explore  more

unexpected branches.  Besides,  the test cases generat-

ed by JTeXpert usually contain more assertions than

the  other  tools.  For  example,  Lang-24b  can  only  be

detected  by  JTeXpert.  The  following  code  snippet

shown in Fig.9 is a description of Lang-24b, which re-

quires the generated test suite to meet complex condi-

tions.
  

if  (chars[i] ==  '1'  ||  chars [i] ==  'L' ) {  
    // not allowing L with an exponent  
    return  foundDigit &&  !hasExp;  
    return  foundDigit &&  !hasExp &&  !hasDecPoint;  
}

- 
+
if  (chars[i]  ==  '1'  ||  chars[i]  ==  'L' ) {  
    // not allowing L with an exponent  
    return  foundDigit  &&  !hasExp ; 
    return  foundDigit  &&  !hasExp  &&  !hasDecPoint;  
}

- 
+

Fig.9.  Example of faults that can only be found out by one of
the tools during 10 executions, Lang-24b.
 

However,  there  are  also  cases  (Chart-3b,  Lang-

31b, jsoup-57b, etc.) where none of the tools can de-

tect the fault during 10 executions. Collections-26b is

a fault that cannot be found by the three tools. None

of  these  three  tools  generate  tests  for  private  classes

or methods, and thus this type of faults is much more

difficult  to  be  found.  Collections-26b  is  shown  in

Fig.10.
  

private  Object  readResolve (){  

protected  Object  readResolve (){  

    calculateHashCode (keys);  

    return  this ; 

}

- 

+

Fig.10.  Example of faults that cannot be found out by any of
the tools during 10 executions, Collections-26b.
 

3) Which  Category  of  Faults  Is  Easier  to  Be
Found? The number of bugs and the category of bugs

found  by  different  tools  are  comparable.  As  Almasi

et al.[35] suggested, we classify the faults into two cat-

egories: assertion-based and exception-based.
•

assertEquals(35, w.getWeek());

 Assertion-Based Faults. These faults are detect-

ed  by  assertions  in  the  test  case.  Assertions  include

utility methods that support the asserting conditions

in  tests,  including assertEquals, assertTrue, assert-
Null, fail, etc. Only failing assertions are recorded. For

example,  Chart-8b  can  be  found  by  manual  tests

through assertions. Fig.11(a) shows the information of

Chart-8b by using Defects4J. The fault is detected by

a JUnit assertion (i.e., )

at line 11 in Fig.11(b), which is expected to be 35 but

34  obtained.  And  it  triggers AssertionFailedError to
reveal this error.

• Exception-Based  Faults.  An  unhandled  excep-
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tion is thrown in the test code, causing the fault to be

detected. We collect several common exceptions, such

as NullPointerException, IOException, IllegalArgu-
mentException, StringIndexOutOfBoundsException
and  so  on.  For  example,  jsoup-5b  can  be  found  by

manual  tests  through  throwing  exceptions. Fig.11(c)

illustrates  the  information  of  jsoup-5b  by  using  De-

fects4J.  The  test  code  shown  in Fig.11(d)  throws

StringIndexOutOfBoundsException because  the  index

of a String variable is out of range during the execu-

tion process.

Based  on  the  classification,  we  calculate  the  pro-

portion  of  different  categories  of  faults  detected  by

automated tools. Generally speaking, JTeXpert is bet-

ter at detecting assertion-based faults than the other

two  tools.  Especially  for  Lang,  the  number  of  asser-

tion-based faults found by JTeXpert is  much greater

than  that  of  exception-based  faults.  In  terms  of

Chart,  all  tools  have  a  little  gap  between  assertion-

based faults and exception-based faults. It can be seen

from Fig.12 that it is easier for all the three automat-

ed tools to find out assertion-based faults than excep-

tion-based  faults.  In  the  future,  we  will  attempt  to

improve  the  assertion  generation  process  and

strengthen  the  ability  of  detecting  exception-based

faults.
 

 

(b)(a)

(c) (d)

Fig.11.  Information of (a) Chart-8b and (c) jsoup-5b by using Defects4J, and the test code that detects the faults (b) Chart-8b and
(d) jsoup-5b.
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5.4    Answering RQ4: Ease of Use

In fact, we face many challenges when setting up

and  executing  these  tools.  It  takes  a  certain  amount

of time for developers to successfully run all the tools,

especially  tools  combined  with  symbolic  execution.

Among  them,  four  tools  provide  executable  jars  di-

rectly, i.e., EvoSuite, Randoop, JTeXpert, and JDoop.

As for T3, we have to build the jar from source code.

The  output  of  T3  is  a  binary  trace  file  (.tr),  and  it

should  be  loaded  by  the  defined  test  files.  As  for

JDoop,  we  need  to  prepare  for  the  experiment  envi-

ronment (e.g., JPF-core, jConstraints, and Z3) in or-

der to meet prerequisites and execute the tool. As for

Tardis, we should build jars from source code, and in-

stall Z3 and other dependent packages locally. 

5.4.1    Encountered Problems

First,  we  need  detailed  and  updated  manuals  or

documentations  when  using  automated  test  genera-

tion  tools.  Developers  may  have  to  put  more  efforts

into  the  tool  setup  process.  It  prevents  the  wide  us-

age of automated tools in real industrial development.

Second,  we  encounter  some  problems  in  executing

Tardis  and  JDoop.  We  modify  the  source  code  of

JDoop and add --testclass option, so that it can sup-

port the test generation for one CUT at a time. Apart

from this,  Tardis  generates  test  files  each  containing

one test case. It is not helpful in computing code cov-

erage and mutation score. Hence, we write a script to

merge  all  test  cases  together  in  one  test  suite  class.

Third,  different  versions  of  tools  often  have  different

ways  of  running  them,  such  as  Randoop.  Therefore,

the  differences  are  required  to  be  clearly  written  in

the manual so as to avoid unnecessary barriers. 

5.4.2    Usability & Friendliness

In  terms  of  usability,  EvoSuite  and  Randoop  are

the  most  practical  tools  among  all  the  six  tools  and

relatively more suitable for industrial projects, as they

are  easy-to-use,  extensible,  and  stable.  On  the  con-

trary, developers need to make more effort to success-

fully  configure  and  run  JTeXpert,  T3,  and  JDoop.

JTeXpert  often  throws  exceptions  when  generating

tests, but we cannot get its source code to solve this

problem.  Tardis  is  an  academic  tool,  which  focuses

more on functionality than on usability, and thus we

have  spent  the  most  time  on  it.  Furthermore,  Evo-

Suite  has  plugins  for  Maven,  Eclipse  and  IntelliJ

IDEA.  Though  its  plugins  are  not  suitable  for  any

type of experiments, they help to improve its usabili-

ty.  Randoop  is  proven  useful  in  practical  contexts,

and is supported by development environments (e.g.,

Eclipse). Besides, Tardis can also work under Eclipse

if  we  successfully  deploy  it.  Other  tools  do  not  have

Maven plugin or IDE plugin.

In  terms  of  user-friendliness,  EvoSuite  provides

the  most  clear  documentations  and  its  runtime  log

feeds back the progress and status of  test  generation

in real time. T3 produces binary test suites, and it is

not user-friendly. The test generation process of Ran-

doop and JDoop is relatively simple and smooth, but

the  automatically-generated  test  suites  are  too  large,

which increases the time required to compile and run

tests  and impairs  user-friendliness.  Tardis  is  relative-

ly the worst. The time it takes to create tests is often

uncontrollable and far exceeds the given time budget.

In summary, automated tools still  need perfect relat-

ed  documentations  and  functionalities  to  improve

their usability and user-friendliness, with positive im-

plications  in  generating  unit  tests  automatically,

thereby  reducing  the  burden  on  developers  and  im-

proving test efficiency. 

6    Suggestions

According to the results of our experiment and re-

lated  work,  we  propose  the  following  suggestions  for

automated unit test generation tools. 

6.1    Readability Improvements

From  our  experimental  results,  automated  tools

often  generate  complicated  and  obscure  unit  tests

that are difficult to comprehend and maintain for hu-

mans.  To  overcome this  problem,  for  example,  Daka

et  al.[36] proposed  a  domain-specific  machine  learning

model to predict the readability of tests based on hu-

man judgements, and used this model to augment the

test  generation  process  of  EvoSuite  to  improve  read-

ability.

According  to  test  cases  produced  by  automated

tools and their results in Fig.5, there are too few com-

ments to provide some hints about scenarios. Improv-

ing the quality of comments in test cases is a feasible

way to  generate  more  readable  test  cases.  Panichella

et al.[37] proposed a template-based approach to auto-

matically  generate  summaries  as  comments  for  each

test  case  to  improve  understandability.  DeepTC-En-
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hancer[38] uses  a  template-based  approach  to  create

comments by summarizing the scenarios of test cases.

It may be an effective way to use the mentioned ap-

proaches to create more meaningful comments for test

methods,  and  then  incorporate  the  comment  genera-

tion module with automated test case generation pro-

cess. 

6.2    Meaningful Assertions

Automated  tools  can  create  assertions  on  return

values,  compare  objects  with  each  other  or  call  in-

spector  methods  on  objects[3];  however,  only  a  finite

number of things can be asserted. As Zhang and Mes-

bah[39] inferred,  the  number  of  assertions  and  the

types  of  assertions  in  a  test  suite  are  strongly  corre-

lated with test suite effectiveness. To this end, gener-

ating  meaningful  assertions  is  one  of  the  key  chal-

lenges in test generation.

From  the  tests  generated  by  automated  tools  in

our experiments, we observe that assertions are usual-

ly  incomplete,  and  lack  contextual  information  and

necessary  complexity  to  capture  a  specified  fault.

Apart from traditional heuristic approaches, there are

many  studies  making  use  of  machine  learning  tech-

nologies.  Watson et  al.[40] employed  an  approach

based on neural machine translation (NMT) to auto-

matically  generate  meaningful  assert  statements.  Tu-

fano et  al.[41] proposed  a  sequence-to-sequence  trans-

former  model  to  generate  accurate  assertions  for

methods under test. To sum up, NLP technologies for

assertion  generation  are  expected  to  further  improve

the ability of error detection.

Furthermore,  we  can  attempt  to  generate  asser-

tions  based  on  specifications  in  test  automation.

Cheon and Leavens[42] proposed an approach that au-

tomatically writes the unit test oracles by using a for-

mal  specification  language's  runtime  assertion  check-

er to decide whether the program's methods are work-

ing  correctly.  Parameterized  unit  testing[43] can  be

considered as a type of  specification[44].  For example,

Pex[43] can instantiate the parameterized unit tests by

determining  test  inputs  with  systematic  program

analysis. 

6.3    Test Suite Reduction

From  our  experimental  results,  we  can  find  that

random  testing  tools  (e.g.,  Randoop)  generate  many

redundant test cases for the systems under test. Most

of the test cases are not helpful to increase test quali-

ty and efficiency, but cost much time to execute. Test

suite  reduction  approaches  are  supposed  to  decrease

test  costs  and  improve  test  understandability.  Jay-

garl et al.[45] implemented a tool called GENRED that

combines a sequence-based reduction approach and a

coverage-based reduction approach for Randoop to re-

move  redundant  test  cases.  Cruciani et  al.[46] pro-

posed  a  novel  test  suite  reduction  approach  for  very

large-scale systems. It is based on evaluating the simi-

larity  of  test  cases  and  can  keep  code  coverage  un-

changed.  Chetouane et  al.[47] introduced  a  test  suite

reduction  method  that  combines K-means  clustering

with binary search. They illustrated that the cluster-

ing algorithm could significantly reduce the number of

test cases.

In general, it is worth studying the subject how to

make  use  of  runtime  information  (e.g.,  the  branches

reached  by  newly  produced  method  sequences)  dur-

ing the test generation process and incorporate feasi-

ble test suite reduction approaches with random test-

ing tools in a better way in the future. 

6.4    Hybrids of Symbolic Execution and

Other Test Generation Approaches

The  experimental  results  of  JDoop  are  slightly

better  than those of  Randoop for either one CUT or

the  whole  project.  When  it  comes  to  suggestions  for

JDoop,  we  highlight  the  following  aspects.  First,  as

we analyze above, JDart has many limitations but it

also  provides  some  extensibility.  Improving  JDart
may  be  an  effective  method  to  enhance  the  overall

test  quality  of  JDoop.  For  example,  Mues  and

Howar[48] improved  JDart by  implementing  four

strategies:  exploration  strategies,  bounded  analysis,

path-specific  constraint  solving  strategies,  and  the

SMT-Lib  string  approach.  Second,  we  can  make  use

of  runtime  information  and  execution  trace  to  select

test  cases  for  concolic  execution.  Third,  the  con-

straint solver applied in concolic  testing considerably

affects  the  capability  of  tools  and  needs  to  be  im-

proved.

Both  search-based  software  testing  and  the  sym-

bolic  execution  technique  have  been  shown  to  be  ef-

fective in many papers. Baluda[49] presented an evolu-

tionary  algorithm,  EvoSE,  which  searches  and  tra-

verses for symbolic paths that do not satisfy the mini-

mized branch conditions in the program. Besides this,

fuzz testing is also a dynamic analysis technique. Ol-
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sthoorn et  al.[50] combined  grammar-based  fuzzing

with  search-based  testing  tool  EvoSuite  to  generate

highly-structured  input  data  and  maximize  the  code

coverage  for  Java  JSON projects.  In  general,  further

clarification and improvements are still needed in the

next step. 

7    Threats of Validity

As  for  a  threat  to  external  validity,  our  experi-

ments only study on six automated test case genera-

tion tools, mainly based on search-based testing, ran-

dom testing, and symbolic execution. It is worth not-

ing that many other techniques, such as combinatori-

al  testing,  fuzzing  testing,  specification-based  testing

and  so  on,  are  not  discussed  in  our  paper.  However,

these approaches might be more appropriate in other

complex cases, not in our study.

75

We conduct our experiments on Java open source

programs⑲.  It  may not  be  generalized  for  other  pro-

gramming languages. Besides, we only select  CUTs

from  six  projects  to  study  on  RQ1,  and  ensure  that

the  selected  CUTs contain  more  branches  and state-

ments.  As  a  reference,  the  SBST workshop also  uses

selected  CUTs  from  open  source  projects  as  the

benchmark. Generally speaking, the benchmark of our

study is reasonable. It can also be reused in other em-

pirical studies.

With regard to internal validity,  we use JaCoCo,

PITEST  and  Readability  Checker  to  compute  code

coverage, mutation score and readability, respectively.

The instrumentation may bias our results. But all the

results can be reproduced with the same settings. We

use three objective indicators to measure the relative-

ly  subjective  metric,  i.e.,  readability.  Because  most

people  have  little  concept  of  automated  tools,  their

judgment on the readability of tests may deviate from

the actual situation. Therefore, the indicators of read-

ability  are  more  scientific  and  reliable  in  our  experi-

ment.

The threat to construction validity is that the ex-

periment  of  RQ1 depends  on  the  test  workflow with

scripts  designed by us  to  automatically  generate  test

suites  and  compute  evaluation  metrics.  Besides,  due

to the number of projects and the test suites generat-

ed,  we  could  not  perform  an  overall  manual  inspec-

tion to verify whether the tests are stable, and we use

the  Defects4J  test  framework  to  remove  flaky  tests

when comparing the real fault detection ability. 

8    Conclusions

This  paper  presented  systematic  and  comprehen-

sive  experiments  on  automated  unit  test  generation

tools  in  terms  of  code  coverage,  mutation  score,  test

suite  size  and  readability.  According  to  the  results,

search-based  tools  perform  the  best.  While  random

testing  tools  produce  the  largest  test  suite  size  that

affects  test  efficiency.  Tests  generated  by  EvoSuite

are the most stable in fault detection. We also found

out that assertion-based faults are easier to be found

than  exception-based  faults.  Furthermore,  there  is

much room for  improvement on integrating symbolic

execution  with  test  generation  approaches.  In  the

next step, we will discuss about commercial tools and

their applications in large-scale industrial software. 
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