

An Empirical Study on Automated Test Generation Tools for Java:
Effectiveness and Challenges

Xiang-Jun Liu (刘相君), Ping Yu* (余　萍), Member, CCF
and Xiao-Xing Ma (马晓星), Senior Member, CCF, Member, ACM, IEEE

State Key Laboratory for Novel Software Technology, Nanjing University, Nanjing 210023, China

Department of Computer Science and Technology, Nanjing University, Nanjing 210023, China

E-mail: liuxiangjun@smail.nju.edu.cn; yuping@nju.edu.cn; xxm@nju.edu.cn

Received September 24, 2021; accepted November 21, 2023.

Abstract Automated test generation tools enable test automation and further alleviate the low efficiency caused by

writing hand-crafted test cases. However, existing automated tools are not mature enough to be widely used by software

testing groups. This paper conducts an empirical study on the state-of-the-art automated tools for Java, i.e., EvoSuite,

Randoop, JDoop, JTeXpert, T3, and Tardis. We design a test workflow to facilitate the process, which can automatically

run tools for test generation, collect data, and evaluate various metrics. Furthermore, we conduct empirical analysis on

these six tools and their related techniques from different aspects, i.e., code coverage, mutation score, test suite size, read-

ability, and real fault detection ability. We discuss about the benefits and drawbacks of hybrid techniques based on experi-

mental results. Besides, we introduce our experience in setting up and executing these tools, and summarize their usability

and user-friendliness. Finally, we give some insights into automated tools in terms of test suite readability improvement,

meaningful assertion generation, test suite reduction for random testing tools, and symbolic execution integration.

Keywords automated test generation, search-based software testing, random testing, symbolic execution

1 Introduction

Unit testing is an essential task in the software

development life cycle[1]. However, writing high-quali-

ty unit test suites manually is time-consuming and la-

borious. Automated tools produce test suites in order

to cover code and find behaviors that generate excep-

tions or runtime errors. Their automatically-generat-

ed test cases with embedded assertions (i.e., a typical

type of test oracles[2]) can be used to check correct-

ness and detect faults in the systems under test. Con-

sidering the time spent on software testing, test case

generation proves to be an effective way of reducing

the workload of developers. Most programming lan-

guages have their own unit testing frameworks such

as JUnit① for Java, Check② for C, and unittest③ for

Python. These frameworks can help to popularise unit

testing. Meanwhile, many corresponding unit test

generation approaches have emerged, such as search-

based algorithm, random testing and symbolic execu-

tion. And a large number of automated test case gen-

eration tools for C and Java language with different

approaches have begun to emerge. In recent years, au-

tomated test generation tools oriented to Java lan-

guage have aroused public concern and become re-

search hot-spot. Additionally, they are the focus of

the workshop on Search-Based Software Testing (SB-

ST④). Therefore, we decide to conduct an empirical

study on automated tools for Java.

Most of the existing empirical studies lack discus-

Regular Paper

This work was supported by the National Natural Science Foundation of China under Grant Nos. 62072225 and 62025202.
*Corresponding Author

Liu XJ, Yu P, Ma XX. An empirical study on automated test generation tools for Java: Effectiveness and challenges.

JOURNAL OF COMPUTER SCIENCE AND TECHNOLOGY 39(3): 715−736 May 2024. DOI: 10.1007/s11390-023-1935-5

①https://junit.org/junit4/, May 2024.

②https://libcheck.github.io/check/, May 2024.

③https://docs.python.org/3/library/unittest.html, May 2024.

④https://sbst22.github.io, May 2024.
©Institute of Computing Technology, Chinese Academy of Sciences 2024

https://doi.org/10.1007/s11390-023-1935-5
https://doi.org/10.1007/s11390-023-1935-5
https://doi.org/10.1007/s11390-023-1935-5
https://doi.org/10.1007/s11390-023-1935-5
https://doi.org/10.1007/s11390-023-1935-5
https://doi.org/10.1007/s11390-023-1935-5
https://doi.org/10.1007/s11390-023-1935-5
https://junit.org/junit4/
https://libcheck.github.io/check/
https://docs.python.org/3/library/unittest.html
https://sbst22.github.io

sions on automated tools that combine symbolic exe-

cution techniques. Symbolic execution makes contri-

butions to handling dynamic data structures, which

assists in generating more accurate and comprehen-

sive test inputs. In this scenario, if state-of-the-art au-

tomated test generation tools could combine with

symbolic execution in a better way, test cases are ex-

pected to contain more structural information, and

thereby improve test quality.

When it comes to the metrics for evaluation, met-

rics are usually not comprehensive enough, for exam-

ple, only including code coverage, or only including

real fault detection, etc. To fill the gap and address

the above limitations, our paper comprehensively

evaluates and compares six automated test genera-

tion tools using different test generation approaches,

which are EvoSuite[3], Randoop[4], JDoop[5],

JTeXpert[6], T3[7] and Tardis[8]. Among these tools,

EvoSuite and JTeXpert are search-based testing tools,

Randoop and T3 are random testing tools, and JDoop

and Tardis are tools that integrate symbolic execu-

tion with test case generators. Moreover, apart from

code coverage, mutation score and real fault detec-

tion, we also consider the test suite size and readabili-

ty as metrics in our experiments. We attempt to ana-

lyze the characteristics of the faults that can be de-

tected by all tools, one of these tools or none of these

tools. We evaluate automated test generation tools

from various aspects and metrics, point out their

strengths and weaknesses, and give some suggestions

on these tools in order to make much more compre-

hensive comparisons. In summary, this paper makes

the following main contributions.

• We propose a test framework to apply six auto-

mated test generation tools and evaluate the quality

of unit tests produced by them.

• We discuss about the differences between JDoop

and Randoop, and Tardis and EvoSuite. And we give

our opinions on the effectiveness of combining test

generation approaches with symbolic execution.

• We apply three automated test generation tools

on the Defects4J dataset⑤, and analyze their effec-

tiveness of detecting real faults in the projects.

• We share our experience in applying the six au-

tomated tools and give suggested improvements from

various aspects on automatic unit test generation.

The rest of this paper is organized as follows. Sec-

tion 2 introduces the taxonomy of testing techniques.

Section 3 illustrates tool selection principles and gives

the brief introduction of selected tools. Section 4

presents our experiment methodology. Section 5 ana-

lyzes experimental results of each tool. Section 6 pro-

poses some suggestions for future work. Section 7 dis-

cusses the potential threats to validity. Section 8 con-

cludes this paper.

2 Taxonomy of Testing Techniques

Automated unit test case generation approaches

can reduce costs and improve software development

efficiency. We classify different testing techniques and

their associated tools into five types, i.e., search-based

testing, random testing, symbolic execution for test-

ing, model-based testing, and hybrid techniques.

Search-Based Testing. Search-based software test-

ing (SBST)[9] uses search algorithms to automatically

generate test data by optimizing the fitness function

and maximizing the achievement of test goals. The

fitness function can determine the best solution from

the search space of test inputs, which plays an impor-

tant role in test minimization and optimization.

Search-based test generation tools can define their

own test goals and fitness functions. Taking

EvoSuite[3] as an example, it chooses branch coverage

of the whole test suite as the default test goal for cov-

erage. Therefore, its fitness function is designed to

calculate the branch distance between class under test

(CUT) and test suite in order to find the optimal test

suite. Search-based testing tools include JTeXpert[6],

EvoSuite[3], TestFul[10], and so on.

Random Testing. As a fundamental approach for

testing, random testing[1] is scalable and easy to im-

plement. It randomly selects inputs from a program's

input space and checks whether the program's behav-

iors on each input are correct. Random testing assists

in creating error-revealing test inputs. Random test-

ing is simple in concept and quick to find bug candi-

dates. However, it usually produces a very large num-

ber of tests, while it ignores part of the program be-

haviors, and can only find basic bugs compared with

other techniques. Random testing tools include Ran-

doop[11], T3[7], JCrasher[12], etc.

Symbolic Execution for Software Testing. Symbol-

ic execution[13] takes symbolic values instead of con-

crete values as inputs, and its output is a mathemati-

cal expression of these symbols. The main goal of

716 J. Comput. Sci. & Technol., May 2024, Vol.39, No.3

⑤https://github.com/rjust/defects4j, Mar. 2024.

https://github.com/rjust/defects4j

symbolic execution in software testing is to explore

much more different program paths. It differs from

other automated test generation approaches in the

use of program analysis and constraint solvers. Sym-

bolic execution tools for Java include Symbolic

PathFinder[14], JDart[15], etc.

Model-Based Testing. Model-based testing[16] de-

pends on explicit behaviour models which encode the

intended behaviour of the system under test (SUT) or

its environment, and generates test cases automatical-

ly. As test suites are derived from models and not

from source code, model-based testing is usually re-

garded as one form of black-box testing. There are

several different approaches of model-based testing,

such as axiomatic approaches, finite state machine

(FSM) approaches, and so on. Model-based testing

tools include JSXM[17], MBTsuite⑥, etc.

Hybrid Techniques. Hybrid approaches aim at

making use of benefits of different test generation ap-

proaches, i.e., the advantages of one can overcome the

limitations of another. Lakhotia et al.[18] incorporated

dynamic symbolic execution (DSE) into search-based

testing so as to generate better test cases by handling

dynamic data structures in an effective way. Sen[19]

attempted the concolic testing by combining random

testing and symbolic execution with the aim of gener-

ating concrete test inputs with better coverage. Hy-

brid tools include SUSHI[8], Tardis[8], JDoop[5], etc.

3 Automated Unit Test Generation Tools

Selection

In this section, we illustrate selection principles

and describe the selected tools in our experiment. We

exclude pure symbolic execution tools (e.g., JDart[15],

and Symbolic PathFinder[14]) because they almost on-

ly produce test inputs. Table 1 shows an overview of

unit test generation tools that we include or exclude

in our experiment, where N/A means there is no spec-

ified version of the tool, and “Executable Jar” means

Table 1. Overview of Automated Test Generation Tools

Tool Technique Artifact Updated Input Format Output Format Selected Version

EvoSuite[3] Search-based
testing

Open source 2021 Java binary code JUnit4 test cases Yes 1.2.0

Randoop[11] Random testing Open source 2022 Java binary code JUnit4 test cases Yes 4.3.0

JDoop[5] Random testing
+ concolic
execution

Open source 2018 Java source and
binary Code

JUnit4 test cases Yes 2.0

JTeXpert[6] Search-based
testing

Executable Jar 2016 Java source and
binary code

JUnit4 test cases Yes 1.4

T3[7] Random testing Open source 2019 Java binary code Binary test suites
trace files (.tr)

Yes N/A

Tardis[20] Search-based
testing +
symbolic
execution

Open source 2021 Java binary code JUnit4 test cases Yes 0.1.0

JCrasher[12] Random testing Executable Jar 2007 Java binary code JUnit3 test cases No 2.1.3

Tpalus[21] Random testing
+ symbolic
execution

Executable Jar 2010 Java binary code JUnit3 test cases No 0.2

GRT[22] Random testing Not open
source

2015 Java binary code JUnit4 test cases No N/A

TestFul[10] Search-based
testing

Open source 2010 Java binary code JUnit3 test cases No 1.0.4

SUSHI[8] Search-based
testing +
symbolic
execution

Open source 2021 Java binary code JUnit4 test cases No 0.2.0

GraphWalker[23] Model-based
testing

Open source 2021 Finite state
machines

Test paths No 4.3.1

JSXM[17] Model-based
testing

Open source 2016 EFSM (stream X-
machines)

JUnit test cases No N/A

Xiang-Jun Liu et al.: Empirical Study on Automated Test Generation Tools for Java 717

⑥https://www.mbtsuite.com, May 2024.

https://www.mbtsuite.com

the tool only provides an executable package, with-

out open source code. In the table, we mark the se-

lected and unselected tools, and record the tool ver-

sion used in our experiment.

3.1 Selection Principles

First, a tool should provide command-line inter-

face for our experiment. All tools mentioned in Table

1 are command-line tools, and thus other automatic

tools that cannot generate test cases in a command-

line way are directly excluded. Second, the selected

tools are supposed to provide open source code or exe-

cutable jars. Third, we discard tools that have not

been maintained since 2016. Fourth, test suites gener-

ated by these tools should be in JUnit4 format, or can

be loaded in JUnit4 format (e.g., T3). As shown in

Table 1, JCrasher[12], Tpalus[21] and TestFul[10] have

been out of maintenance for many years, which are all

excluded. GRT[22] is also excluded because it does not

provide source code or executable package. Addition-

ally, when two tools use the same approach, we

choose the one that has the better performance of test

generation. For example, Tardis[20] is based on SUSHI

and aims at overcoming some limitation of SUSHI,

and thus we only choose Tardis in this experiment.

Model-based testing tools rely on an extra prede-

fined model for system under test, and require users

to create MBT models from requirement or system

specifications. We exclude model-based testing tools

in our experiment because few programs are devel-

oped with models or formal specification. Further-

more, tests generated by model-based tools are usual-

ly not in JUnit format. For example, GraphWalker

only generates useful test paths for a specified model,

and test cases generated by JSXM are in XML for-

mat and have to be transformed into JUnit test cases

by using Java Test Transformer.

3.2 Overview of Selected Tools

Based on selection principles, we finally choose six

state-of-the-art automated unit test generation tools.

EvoSuite[3] and Randoop[11] are the most commonly

used automated test generation tools in academia.

The other tools are also representative in the field of

test generation, and valuable for the empirical study

and future research.

EvoSuite. EvoSuite[3] is a search-based test genera-

tion tool. It leverages a genetic algorithm to search

the program state space, and evolve and generate

tests. The genetic algorithm applied in its test genera-

tion module treats the test suite as a chromosome, us-

ing search operators (e.g., crossover, mutation) to

evolve individuals for each population. During the

evolutionary process, the fitness function makes con-

tributions to minimizing the test suite and choosing

the best.

Randoop. Randoop[11] is one of the most used au-

tomated tools based on feedback-directed random

testing. Randoop selects method sequences at ran-

dom and creates test sequences incrementally. Futher-

more, the newly generated sequences with no con-

tract violations are outputted as regression tests. The

error-revealing test reveals the code that violates the

contract and indicates an error. Currently, Randoop

mainly checks for a default set of contracts, e.g., re-
flexivity of equality, contracts over Object.clone().

JDoop. JDoop⑦ combines the Java PathFinder's

concolic execution engine JDart and the random

testing generator Randoop. It can create test cases

automatically in a hybrid way. First, JDoop collects

test cases generated by Randoop, and then randomly

selects some test cases for the next step. Second,

JDart executes concolic testing and generates new

concrete values. Finally, concrete inputs are written

into test files, and have an impact on the next round

execution of Randoop.

JTeXpert. JTeXpert[6] can automatically con-

struct the whole test suites in the JUnit format for

each CUT by using a search heuristic. This tool takes

source code and dependencies of Java projects as in-

put. JTeXpert utilizes a source code analyzer to col-

lect program information, a testcase candidates

builder to explore useful sequences, and a random

search approach to randomly generating candidate

test cases for each uncovered branch. Thus, JTeX-

pert can reach many branches that may be covered

accidentally, thereby improving code coverage.

T3. T3[7] randomly generates a great number of

test sequences for Java classes. T3 consists of two

tools: the generator tool and the replay tool. It can

generate clean test sequences without throwing any

exception and inject oracles in these clean sequences.

Additionally, T3 imposes pair-wise testing[7] in order

to find bugs that are caused by faulty interactions be-

tween methods in the CUT.

718 J. Comput. Sci. & Technol., May 2024, Vol.39, No.3

⑦https://github.com/psycopaths/jdoop/, May 2024.

https://github.com/psycopaths/jdoop/

Tardis. Tardis[20] consists of a Java bytecode sym-

bolic executor (JBSE)[24] and a customized version of

the search-based test generator based on EvoSuite.

Tardis integrates the two main modules through a

novel approach, and can produce tests in an automat-

ed way. The path condition information generated by

the path explorer would be fed to the test generation

module. Like JDoop, Tardis also needs to allocate

time for symbolic execution and test generation.

4 Experiment Methodology

In this section, we present our experiment

methodology. With the goal of comparing the state-

of-the-art automated test generation tools from differ-

ent perspectives, we define the evaluation metrics and

summarize the following four research questions.

• RQ1 (Quality of Test Cases). What code cover-

age, mutation score, test suite size, and readability

are achieved by each automated tool given different

time budgets?

• RQ2 (Effects of Combination with Symbolic Exe-
cution). Does combining test generation approaches

with symbolic execution improve the quality of auto-

matically-generated test cases?

• RQ3 (Real Fault Detection). How many exist-

ing faults can be detected by these automated tools

on different projects? Which category of faults is easi-

er to be found?

• RQ4 (Ease of Use). How much effort does it

take for developers to set up these automated tools?

We conduct our experiment on Ubuntu 18.04 with

Intel Xeon® Gold 5117 CPU @ 2.00 GHz with 125 GB

of RAM, and use OpenJDK's Java VM (JVM) ver-

sion 1.8.0_292.

4.1 RQ1: Quality of Test Cases

4.1.1 Selected CUTs for RQ1 Experiment

Table 2 shows the detailed information of six well-

known open-source projects which we select in our ex-

periment. These projects are Apache BCEL⑧, jsoup⑨,

ZXing Core⑩, Apache Commons Lang⑪, JFreeCh-

art⑫, and Apache Commons Collections⑬. We choose

these projects as benchmarks because they are ma-

ture and canonical. All of the projects are hosted on

GitHub and used by hundreds or even thousands of

artifacts. Additionally, these projects are developed

by different organizations and have different function-

alities. Moreover, selecting multiple projects can in-

crease the scientificity and diversity of our experi-

ment.

75

We apply EvoSuite, Randoop, JDoop, JTeXpert,

T3, and Tardis to generate test cases for the classes

in different projects. Since abstract classes and inter-

face classes do not have much practical value for this

experiment, we exclude them and choose classes with

more branches and statements. Finally, we select

CUTs from the six open source projects as mentioned

above. Table 3 shows the characteristics of these se-

lected CUTs.

4.1.2 Overview of Test Workflow

× ×
×

We write scripts to automatically run tools, gener-

ate unit tests and compute evaluation metrics. We

perform 3 (repetitions) 6 (automated tools) 75

(CUTs) 5 (timebudgets) = 6 750 runs in total.

Therefore, this setting requires about 19 days of gen-

eration time.

Table 2. Overview of Benchmarks Under Study

Benchmark Version #LOC #Cls. #Bran. #Stat. Description

Apache BCEL 6.0 60 547 376 6 020 15 680 A library to analyze and manipulate Java class files

jsoup 1.11.3 18 076 67 3 712 7 319 A library to fetch URLs and manipulate data

ZXing Core 3.3.2 38 145 231 7 890 13 311 A core barcode encoding/decoding library

Apache Commons Lang 3.13 88 285 216 10 052 15 976 A package of utility classes for Java platform

JFreeChart 1.5.2 218 039 641 21 852 52 378 A comprehensive free chart library

Apache Commons Collections 4.5 74 020 351 5 975 13 499 A package of many powerful data structures

Note: #LOC means the total lines of code; #Cls. means the total number of classes; #Bran. means the number of branches in the
bytecode (measured by JaCoCo); #Stat. means the number of statements.

Xiang-Jun Liu et al.: Empirical Study on Automated Test Generation Tools for Java 719

⑧https://commons.apache.org/proper/commons-bcel/, May 2024.

⑨https://jsoup.org/, May 2024.

⑩https://zxing.github.io/zxing/, May 2023.

⑪https://commons.apache.org/proper/commons-lang/, May 2024.

⑫https://www.jfree.org/jfreechart/, May 2024.

⑬https://commons.apache.org/proper/commons-collections/, May 2024.

https://commons.apache.org/proper/commons-bcel/
https://commons.apache.org/proper/commons-bcel/
https://commons.apache.org/proper/commons-bcel/
https://jsoup.org/
https://zxing.github.io/zxing/
https://commons.apache.org/proper/commons-lang/
https://commons.apache.org/proper/commons-lang/
https://commons.apache.org/proper/commons-lang/
https://www.jfree.org/jfreechart/
https://commons.apache.org/proper/commons-collections/
https://commons.apache.org/proper/commons-collections/
https://commons.apache.org/proper/commons-collections/

The workflow of this experiment is shown in

Fig.1. The overall experiment procedure is as follows.

• First, we use the command line tools to pro-

duce test suites. The inputs of the test generation

module are the CUT's name and the time budget. We

run each tool three times with five different time bud-

gets: 10 s/class, 60 s/class, 180 s/class, 360 s/class, and

600 s/class. The outputs of test generation module are

test files, which include Java files and binary trace

files (outputted by T3).

• Second, we remove test cases that cannot be succ-

essfully compiled or wrong. Illegal test cases are sup-

posed to be modified in order to make the whole test

suite compilable and executable.

• Third, we write scripts to automatically evalu-

ate each automated tool. The inputs of the scripts are

the tool name, time budget, CUT name, test files, and

dependencies. The outputs of the scripts are files con-

taining the results of the code coverage, mutation

score, and test suite size. JaCoCo⑭ is used for code

coverage analysis. PITEST⑮ is used to perform muta-

tion testing and evaluate tools. In terms of the test

suite size, we collect the number of test cases in the

test file with the help of JavaParser.

• Finally, we collect and analyze all of the out-

puts. In this step, we compute the average of experi-

mental results and rank them for evaluation.

4.1.3 Metrics

As for the metrics to evaluate the quality of test

cases, we draw on and extend the findings of Grano

et al.[25].

1) Code Coverage[26]. Code coverage describes the

proportion of source code tested in the program, and

helps measure the software quality. In our experi-

ment, code coverage includes branch coverage, line

coverage, cyclomatic complexity coverage, method

coverage, and instruction coverage.

2) Mutation Score[27]. In mutation testing, some

modifications would be injected into the program.

Each mutated version is called a mutant. If a test de-

tects and rejects mutants, we consider that it kills the

mutants. Mutation score calculates the proportion of

Table 3. Characteristics of Selected CUTs

Benchmark #CUTs #Stat. #Bran. #Met. #Cyc. Comp.

Apache BCEL 15 1 650 1 078 280 832

jsoup 15 1 765 1 156 322 905

ZXing Core 10 1 240 892 89 538

Apache
Commons Lang

10 2 113 1 609 353 1 171

JFreeChart 15 961 516 161 419

Apache
Commons
Collections

10 411 260 91 222

Note: #CUTs means the number of selected CUTs; #Stat.
means the number of statements; #Bran. means the number of
branches; #Met. means the number of methods; #Cyc. Comp.
means the number of cyclomatic complexity.

EvoSuite

Scripts

Generate Test Suites

Command

Line Tool

CUT Name Time Budget
Test Cases

Remove

Uncompilable

Tests

Compile Tests

Non-Compilable

Scripts

Compute

Metrics

CompilableJaCoCo

Code Coverage

PITEST
Mutation Score

JavaParser
of Test Cases

Analyze

Results

Randoop JDoop JTeXpert T3 Tardis

Command Command Command Command Command

Line Tool Line Tool Line Tool Line Tool Line Tool

(.java/.tr Files)

Fig.1. Experimental flowchart of six automated test generation tools. #: number.

720 J. Comput. Sci. & Technol., May 2024, Vol.39, No.3

⑭https://github.com/jacoco/jacoco/, May 2024.

⑮https://pitest.org/, May 2024.

https://github.com/jacoco/jacoco/
https://pitest.org/

the number of killed mutants to the total number of

mutants.

3) Test Suite Size. Test suite size refers to the to-

tal number of test cases included in a suite. General-

ly, a smaller test suite is easier to understand. The

larger the test suite, the higher the test budget and

time cost.

4) Readability[28]. Readability reflects the compre-

hensibility of test cases. We use Readability Checker⑯

to compute readability of tests. It implements three

software readability metrics, including B&W, com-

ments ratio (CR), and software readability ease score

(SRES).

• B&W[29]. The model proposed by Buse and

Weimer[29] outputs a readability score in the range [0,

1]. The higher the B&W score, the better the read-

ability.

• Comments Ratio (CR)[30]. CR is a metric from

the aspect of comments. The lower the metric CR,

the better the readability. The proposed formula is as

follows, where LOC represents the number of total

lines of code, and LOM represents the number of lines

with comments:

CR = LOC/LOM.

•

ASL

 Software Readability Ease Score (SRES)[31].

SRES is less sensitive to comments and whitespace,

but correlates well with human readability experience.

The lower the metric SRES, the better the readabili-

ty. The proposed formula is as follows, where

AWLrefers to the average sentence length and refers

to the average word length:

SRES = ASL− 0.1× AWL.

4.2 RQ2: Effects of Combination with

Symbolic Execution

The main purpose of combining symbolic execu-

tion and a test generator is to achieve the desired ef-

fect that can not only capture relevant structural in-

formation but also generate test cases, thereby mak-

ing up for their own shortcomings.

Fig.2 shows the workflow of JDoop. JDoop adopts

a hybrid approach that combines concolic testing with

random testing. It relies on JDart and Randoop. The

procedure can be divided into three parts. First,

JDoop collects the generated test cases during the ex-

ecution of Randoop. Second, JDoop randomly selects

a small part of test cases to perform concolic execu-

tion in JDart. JDart records symbolic constraints on

executed program paths, replaces concrete values with

symbolic variables, and then uses constraint solvers to

generate new concrete test inputs with the goal of ex-

ploring feasible distinct execution paths and obtain-

ing better coverage than random testing. Third, new

generated concrete test input values are written into

test files, and also applied for the next execution.

Fig.3 shows the workflow of Tardis. The symbolic

executor JBSE integrated in Tardis identifies execu-

tion conditions of system under test, and interacts

JDoop

Randoop

JDART

JUnit

Test

Suites

Java .class Files

Random Values

Generator

Standard Input

Pool

Feedback-Directed

Random Testing

Selecting a Small Subset of Unit Tests Randomly

Symbolic

Execution

Concrete

Input Pool Driving Input Values

Fig.2. Workflow overview of JDoop with symbolic execution.

Xiang-Jun Liu et al.: Empirical Study on Automated Test Generation Tools for Java 721

⑯https://github.com/cdtpinto/readabilitychecker/, May 2024.

https://github.com/cdtpinto/readabilitychecker/

with the test case generator EvoSuite for optimising

legal method sequences incrementally. Tardis is differ-

ent from those approaches that use symbolic execu-

tion techniques to explore alternative values of the

initial test inputs. Tardis makes full use of symbolic

execution to generate path conditions that charac-

terise the dependencies between program paths and

complex input structures (e.g., Object), converts path

conditions into the objective function of optimisation

problems[8], and then exploits EvoSuite to generate

concrete method sequences.

We compare JDoop with Randoop, and Tardis

with EvoSuite by the experimental results of RQ1. As

random testing tools, JDoop and Randoop can direct-

ly generate test suites for hundreds of CUTs in an en-

tire project at a time under the specified time budget,

and thus we add an additional experiment for further

evaluation. The benchmarks used in the additional

experiment are mentioned in Table 2. We focus on

branch coverage and line coverage in this experiment

(RQ2), because JDoop attempts to improve branch

coverage by leveraging concrete test input values, and

line coverage is a basic metric that can check every

executable statement. Besides, we want to analyze

whether applying concolic testing has an impact on

the branch coverage and line coverage, and discover

whether the quality of automatically-generated tests

is related to different benchmarks.

4.3 RQ3: Real Fault Detection

Revealing real bugs in the project is the key point

of software testing. However, test suites with a high

code coverage or high mutation score are not certain

to do well in detecting real bugs in the project.

17 835

187

Thus, we evaluate the real fault detection ability

of automatic tools. We use the Defects4J dataset⑰ to

compute the real fault detection rate of an automati-

cally-generated test suite. The Defects4J dataset con-

sists of open-source projects with bugs, and

distinguishes between active and deprecated bugs. We

choose four projects with real bugs from the De-

fects4J dataset for our experiment. These four

projects have their identifiers named as jsoup, Lang,

Chart and Collections, which are also included in the

previous experiment for RQ1. Table 4 shows the num-

ber of bugs of each project under test. Defects4J has

two versions of the program: the buggy version and

the fixed version. Each buggy program version con-

tains exactly one real fault.

Table 4. Overview of Projects from Defects4J Dataset

Identifier Project Name #Bugs

jsoup jsoup 93

Lang Apache Commons Lang 64

Chart JFreeChart 26

Collections Apache Commons Collections 4

Note: #Bugs means the number of bugs in the dataset.

We leverage the Defects4J test framework and

make some changes to the test scripts so that JTeX-

pert can be successfully applied. We first generate

test suites for a program, and then run it on the bug-

gy version to check whether the specific bug can be

detected. Note that Defects4J removes all flaky tests,

uncompilable tests and failed tests before running the

test suite. If a test produces different results when we

retry to run it for many times, then the test can be

regarded as a flaky test. The result of bug detection is

“Pass”, “Fail”, or “Broken”. “Pass” means the bug is

detected by tests, and ``Fail" means the bug is not

found by tests. ``Broken" means the tests have their

own problems and cannot work properly when run-

ning on the buggy program so that they fail to deter-

mine whether the bug is detected.

Considering that almost all the tests generated by

JDoop are ``Broken" when performing fault detection,

the results have little research value, and thus we dis-

card JDoop from our experiment. T3 produces binary

trace files as the test suite, which is not suitable for

the Defects4J framework. Tardis disables to success-

fully generate tests for the buggy projects due to its

Tardis

SUSHI

Search Problem

Converter

Java .class

Files

Path Explorer

JBSE

Junit Test Suites

Test Generator

EvoSuite

Path Conditions

Objective Functions

Fig.3. Workflow overview of Tardis with symbolic execution.

722 J. Comput. Sci. & Technol., May 2024, Vol.39, No.3

⑰https://github.com/rjust/defects4j, Mar. 2024.

https://github.com/rjust/defects4j

own flaws. Finally, we only select EvoSuite, Randoop

and JTeXpert as our target tools to evaluate real

fault detection ability, and attempt to find what cate-

gory of bugs is easier to find.

22

In brief, we conduct our experiments on different
time budgets, which are set to 120 s and 360 s, re-
spectively. As for Randoop, the time budget is the
global time budget for the whole project. Since Evo-
Suite and JTeXpert are search-based test generation
tools, the time budget is set for one CUT at a time.
In order to alleviate randomness and contingency, we
run each tool 10 times and aggregate the number of
real bugs detected by all of the generated test suites.
In total, it takes approximately days to produce
test suites for the selected buggy version projects.

4.4 RQ4: Ease of Use

The purpose of this empirical study aims to make
readers easy to select and apply these tools, and give
researchers in the field a basic summary. First, we de-
scribe the challenges we face during the tools setup
process, and show our efforts to run automated test
generation tools successfully. Second, we sum up the
barriers and problems encountered in our experi-
ments. Third, we analyze the usability and friendli-
ness of these tools, and their combinability with mod-
ern IDE.

5 Experimental Results

In this section, we outline and analyze the experi-
mental results of each automated test generation tool
on different time budgets to answer the RQs men-
tioned in Section 4.

5.1 Answering RQ1: Quality of Test Cases

We take the average of three rounds of experimen-
tal results in order to avoid the randomness to some
extent. We compare and analyze results on the given
time budget from four aspects: code coverage, muta-
tion score, test suite size, and readability, respective-
ly.

5.1.1 Results of Code Coverage

Different test generation approaches influence the

quality of automatically-generated tests. In this exper-

iment, each tool generates unit tests for one CUT at a

T B

M

j i

N

R

time. Given an automated tool , a time budget ,

and a coverage metric , we provide the following

formula to evaluate the average code coverage result

(ACCR) for each CUT on each execution , where

the total number of CUTs (named as) is 75 and

the total number of executions (named as) is 3:

ACCR<T, B, M> =

R∑
i=1

N∑
j=1

cov<T, B, M, i, j>

N ×R
.

Table 5 presents the ACCR of branch coverage, line

coverage, complexity coverage, method coverage and

instruction coverage of each automated test genera-

tion tool on five different time budgets. EvoSuite per-

forms the best with the highest coverage in all as-

pects. JTeXpert ranks only second to EvoSuite in

code coverage. The results of EvoSuite and JTeXpert

far exceed the other tools. They are search-based tools

and can explore the state space of the program the

more fully when the time budget increases. T3, Ran-

doop and JDoop have little difference in code cover-

age. Among these three tools, T3 outperforms Ran-

doop and JDoop. But T3 is lack of producing nega-

tive tests[7], which explains the lower code coverage of

T3 compared with search-based test generators. Ran-

doop generates more but redundant test cases as time

budget grows higher, which only has little benefit to

code coverage. JDoop integrates Randoop as the test

generator. Since JDoop injects symbolic execution in

order to maximize branch coverage, the code cover-

age of unit tests generated by JDoop for one CUT at

a time is higher than that of Randoop. Tardis at-

tempts to make use of path information generated by

the path explorer in order to produce tests for a spe-

cific path with the goal of increasing code coverage.

However, the results are unsatisfying, and are the

worst among the results of all the six tools. In Subsec-

tion 5.1.2, we analyze the reasons and give our own

opinions.

5.1.2 Results of Mutation Score

Fig.4 shows mutation coverage and mutation

score of each automated test generation tool on five

different time budgets. The results of test suite exe-

cuted by PITEST include NO_COVERAGE, SUR-
VIVED and KILLED. NO_COVERAGE is the same

as SURVIVED except that there are no tests that ex-

ecute the line of code where the mutation is created⑱.

Xiang-Jun Liu et al.: Empirical Study on Automated Test Generation Tools for Java 723

⑱https://pitest.org/quickstart/, May 2024.

https://pitest.org/quickstart/

Mutation coverage is the proportion of SURVIVED
and KILLED to all results as NO_COVERAGE im-

plies no tests covered the mutation. Mutation score

reflects the ability of killing seeded mutants (i.e., the

ratio of KILLED to all results).

EvoSuite beats the other tools in terms of muta-

tion coverage and mutation score. The main reason is

that EvoSuite applies mutation testing itself and re-

moves the assertion that cannot detect any of the re-

maining seeded mutants. In terms of average muta-

Table 5. Average Code Coverage for Six Automated Test Generation Tools on Different Time Budgets

Time
Budget (s)

Tool Average Branch
Coverage (%)

Average Line
Coverage (%)

Average Complexity
Coverage (%)

Average Method
Coverage (%)

Average Instruction
Coverage (%)

10 EvoSuite 63.78 76.86 73.30 89.64 76.28

Randoop 27.12 39.06 35.07 56.77 37.21

JDoop 27.86 42.05 37.07 61.35 40.14

JTeXpert 35.90 53.58 45.93 70.24 52.09

T3 29.73 43.21 37.51 60.43 41.03

Tardis 18.46 37.57 29.94 60.88 35.45

60 EvoSuite 71.84 82.90 81.86 93.02 82.59

Randoop 30.08 43.34 39.44 61.67 41.43

JDoop 30.76 43.96 39.70 61.71 42.17

JTeXpert 54.62 70.35 63.98 85.19 68.82

T3 32.97 48.52 43.24 66.37 46.54

Tardis 21.98 42.26 32.93 67.77 40.45

180 EvoSuite 74.23 84.76 84.42 94.27 84.76

Randoop 30.61 43.57 39.96 61.70 41.72

JDoop 31.30 44.06 40.17 61.59 42.28

JTeXpert 55.51 71.19 65.04 84.95 69.75

T3 32.40 47.77 42.00 66.81 45.81

Tardis 22.24 42.76 33.98 69.02 40.90

360 EvoSuite 76.72 86.96 86.71 95.94 86.88

Randoop 30.87 43.70 40.23 61.70 41.85

JDoop 31.63 44.31 40.78 61.81 42.57

JTeXpert 56.52 72.37 65.92 86.44 70.87

T3 34.28 49.01 43.11 65.99 46.85

Tardis 22.99 43.21 33.57 68.16 41.50

600 EvoSuite 77.27 87.51 87.25 95.99 87.41

Randoop 31.00 43.75 40.33 61.70 41.90

JDoop 31.97 44.47 41.91 61.84 42.77

JTeXpert 57.73 73.09 66.82 86.16 71.71

T3 32.61 47.84 41.86 65.66 45.80

Tardis 22.99 44.93 34.80 70.09 42.79

1.0

0.8

0.6

0.4

0.2

0.0

1.0

0.8

0.6

0.4

0.2

0.0

10 60 180

Time Budget (s)

360 600

(a)

10 60 180

Time Budget (s)

360 600

(b)

M
u
ta

ti
o
n
 C

o
v
e
ra

g
e

M
u
ta

ti
o
n
 S

c
o
re

EvoSuite
Randoop
JDoop
JTeXpert
T3
Tardis

Fig.4. Average (a) mutation coverage and (b) mutation score for six automated test generation tools on different time budgets.

724 J. Comput. Sci. & Technol., May 2024, Vol.39, No.3

tion score, JTeXpert performs better than the remain-

ing four automated tools under all time budgets. An

oracle builder implemented in JTeXpert is supposed

to generate meaningful assert statements. It uses the

value returned from a method call as an oracle and

leads to much stronger ability of killing mutants.

Tardis still performs the worst among these six auto-

mated tools. Its mutation score is much lower than

those of the other tools.

As for random testing tools, when the time bud-

get grows, they show a trivial improvement in muta-

tion coverage and mutation score. Random testing

tools, like Randoop, create assertions with intelligent

guessing. Randoop generates assertions guided by us-

er-defined contracts and the pertaining logic. The re-

sults indicate that random testing tools cannot gener-

ate more effective unit tests under a larger time bud-

get. Many of the generated method sequences prove

to be useless and redundant, which are of no help to

the improvement of test quality. In general, Randoop

is more suitable for testing small-scale programs with

short test generation time on the basis of good code

coverage and mutation score.

5.1.3 Results of Test Suite Size

T

B

j

i

N

R

Test suite size means the number of test cases in a

test suite. Given an automated tool and a time

budget , we use the following formula to compute

average test suite size (ATSS) for each CUT on

each execution , where the total number of CUTs

(named as) is 75 and the total number of execu-

tions (named as) is 3:

ATSS<T, B> =

R∑
i=1

N∑
j=1

size<T, B, i, j>

N ×R
.

Table 6 shows the ATSS results of each automat-

ed test generation tool on five different time budgets.

Except for T3, other tools' test suite size always in-

creases as the time budget increases. The size of test

suites generated by random testing tools is the

largest, and proportional to the growth of the time

budget. Randoop and JDoop generate much more test

cases for a given CUT than the other tools. As the

time budget is larger and larger, more time should be

allocated to concolic testing, which may limit the

number of unit tests generated by JDoop. In general,

the number of test cases generated by T3 is less relat-

ed to the time budget, but the code coverage and mu-

tation score increase as the test suite size increases.

60

As for the search-based test generation tools, the

results of the test suite size are all lower than .

EvoSuite uses a generic algorithm to produce and

minimizes the test suite. The number of test cases

generated by JTeXpert is even less than that of Evo-

Suite, but the length of a test case (i.e., the number

of lines of code contained in a test case) is much

longer than that of EvoSuite. Tardis gets the lowest

test suite size, and meanwhile, its code coverage and

mutation score are also the worst. However, the low

size of test suite does not guarantee the quality of

tests.

In general, too large test suites decrease test effi-

ciency, increase test cost, and may affect readability.

Excessive test suite is one of the bottlenecks of ran-

dom testing tools.

5.1.4 Results of Readability

The readability of automatically-generated test

cases does not relate to the time budget; hence, we

set time budget to 10 s and compute the readability

of the tests produced by six tools. T3's test suite is a

binary file, which is not readable. In this experiment,

we take out T3 and only compare the remaining five

automated test generation tools.

Fig.5 represents the average score of B&W, CR

and SRES. As for the B&W score, search-based test

generation tools perform better than the other tools.

JTeXpert ranks first. As the numbers of characters,

identifiers and keywords are all regarded as metrics to

train models, the long but clear sequences generated

by JTeXpert get a pretty good score. EvoSuite ap-

plies various optimisation strategies (e.g., test mini-

mization) to improve the readability.

Table 6. Average Test Suite Size for Six Automated Test Generation Tools on Different Time Budgets

Time Budget (s) EvoSuite Randoop JDoop JTeXpert T3 Tardis

10 38.3 255.3 286.8 11.4 288.5 5.6

60 46.9 1 649.7 1 666.6 18.5 309.5 9.1

180 51.4 4 898.3 3 790.8 19.8 305.6 9.7

360 56.4 9 685.4 6 445.2 20.6 444.3 10.0

600 57.6 16 057.6 10 747.1 21.7 409.0 10.2

Xiang-Jun Liu et al.: Empirical Study on Automated Test Generation Tools for Java 725

As for the CR score, we remove the results whose

number of comments is zero because the denominator

cannot be zero. JTeXpert is still the distinguished

tool. JTeXpert produces comments before each test

method to explain its main content and covered

paths.

As for the SRES score, three tools that imple-

ment search-based test generators are outstanding.

JDoop and Randoop often generate very long sen-

tences for a test case, which affect the overall read-

ability.

5.2 Answering RQ2: Effects of Combination

with Symbolic Execution

We compare JDoop with Randoop, and Tardis

with EvoSuite to check the effects of the combination

of symbolic execution.

5.2.1 JDoop vs Randoop

The experimental results of RQ1 show that JDoop

is better than Randoop in code coverage when gener-

ating tests for one CUT at a time. Through our verifi-

cation, JDoop can generate new test inputs which do

not exist in the test suites generated by Randoop for

given CUTs. The correct test inputs for test methods

may explain that JDoop has better quality of tests

constructed for one CUT.

In our additional experiment, JDoop performs

poorly when it comes to generating tests for an entire

project. Fig.6 shows the comparison results between

JDoop and Randoop under the time budget of 10 s,

360 s and 600 s, respectively. Randoop outperforms

JDoop in most cases, and JDoop produces more un-

compilable unit tests than Randoop during the test

generation process. Randoop outperforms JDoop in

most cases. We can see that the code coverages of test

suites are related to different benchmarks and test

suite sizes; however, we cannot find a clear relation-

ship between the benchmark and coverage ratio. But

in general, larger test suite size always leads to high-

er code coverage.

We find that JDoop's performance on one CUT

and an entire project has certain differences. Concolic

testing is a hybrid technique that interleaves con-

crete execution with symbolic execution. Under a giv-

en time budget, there exist lots of paths in complex

programs that concolic testing tools (e.g., JDoop)

cannot cover, because no constraint solver can sup-

port these tools to cover all reachable branches[32].

Apart from that, JDoop selects test cases at random,

and calls JDart to execute symbolized unit tests.

First, JDart can only generate a small number of

test inputs in primitive types (e.g., Int, Char,

Boolean), but cannot symbolize complex types such

as Array and Object, which influences its effect and

B
&
W

E
vo
Su
it
e

R
an
do
op

JT
eX
pe
rt

JD
oo
p

T
ar
di
s

1.0

0.8

0.6

0.4

0.2

0.0

90

80

70

60

50

40

30

10

20

0

C
R

E
vo
Su
it
e

R
an
do
op

JT
eX
pe
rt

JD
oo
p

T
ar
di
s

14

12

10

8

0

6

4

2

E
vo
Su
it
e

R
an
do
op

JT
eX
pe
rt

JD
oo
p

T
ar
di
s

S
R
E
S

(b)

(a)

(c)

Tool

Tool

Tool

Fig.5. Average (a) B&W, (b) CR, and (c) SRES of different
automated test generation tools.

726 J. Comput. Sci. & Technol., May 2024, Vol.39, No.3

applications. Second, JDoop shuffles test cases and

gets scrambled indexes. Then it applies the test cases

to concolic execution by order until JDart runs out

of time limit. However, this process often chooses test

cases that do not need more comprehensive test in-

puts, e.g., the method under test contains no reach-

able branch. Third, JDoop uses a customized version

Randoop as the test generator. To sum up, the effec-

tiveness of the constraint solver and the limitations of

JDoop can explain why JDoop's optimization perfor-

mance is not so significant after incorporating symbol-

ic execution.

Moreover, concolic testing works well when the

programs can be tested as a single unit[33]. The experi-

ments of RQ1 focus on one CUT at a time, which can

be regarded as a unit because a class in one CUT is

small and all methods in the class just implement a

single functionality cohesively[32]. However, in our ad-

ditional experiment, an entire project is large and

usually composed of multiple independent functionali-

ties, leading to a very complex situation. Due to time

budget, concolic testing consumes much time to gen-

erate some concrete but limited test inputs, and the

final improvement is trivial. Furthermore, if we want

to test a large industrial project with JDoop, we

should consider a tradeoff between costs of partition-

ing and setting up the units for testing[33].

5.2.2 Tardis vs EvoSuite

According to the results of RQ1, Tardis attempts

to improve test generation by incorporating the path

condition information created by JBSE and applies

the search-based testing tool EvoSuite to instantiate

complex data structures satisfying the path condi-

tions, but it performs worse than EvoSuite on all met-

rics. We summarize the following four main problems

of Tardis. First, from the logs during the test genera-

tion process, we find that Tardis often fails to apply

EvoSuite to produce test cases for the given path con-

ditions and prints out the exception message “Failed

to generate the test case for path condition”. Second,

the time limit of test generation used for other auto-

mated tools is between 0 and 2T (where T is the time

budget). However, it takes more than 2T for Tardis

to complete test generation. Third, we have to change

the default setting of -Dassertions from false to true

in order to generate assertions. But most of the types

of assert statements are ``fail". Fourth, Tardis is frag-

ile and its documentation is not detailed enough for

us to solve problems.

Furthermore, we discuss about the reasons of the

experimental results. On the one hand, Tardis is a

variant of SUSHI, which aims at generating concrete

test inputs for programs with complex heap inputs.

The authors of SUSHI evaluated its performance on

Java classes with paths that involve complex inter-

procedural dependencies and complex data

structures[8]. However, the CUTs used in our experi-

ment are not specially selected like this and not very

suitable to explore in-depth of the programs for com-

plex heap inputs by means of JBSE. Moreover, it

takes half of the time budget for symbolic execution,

which may affect the overall test generation. It im-

BCEL ZXing Lang jsoup Chart Collec-
tions

BCEL ZXing Lang jsoup Chart Collec-
tions

BCEL ZXing Lang jsoup Chart Collec-
tions

Benchmark

0

10

20

30

40

50

60

70

B
ra

n
ch

 C
o
v
e
ra

g
e
 (

%
)

Randoop 600 s

Randoop 360 s

Randoop 10 s

JDoop 600 s

JDoop 360 s

JDoop 10 s

(a)

Benchmark

(b)

Benchmark

(c)

0

10

20

30

40

50

60

70

L
in

e
 C

o
v
e
ra

g
e
 (

%
)

100

101

102

103

104

105

T
e
st

 S
u
it
e
 S

iz
e

Fig.6. Average (a) branch coverage, (b) line coverage and (c)
test suite size on the whole projects from JDoop and Randoop.

Xiang-Jun Liu et al.: Empirical Study on Automated Test Generation Tools for Java 727

plies that Tardis and SUSHI would encounter such

problems when generating tests for various kinds of

industrial programs, which discourages their populari-

ty. On the other hand, Tardis cannot instantiate the

path conditions that are spurious due to unsound

computation of JUnit test cases. For example, the

CUTs have many infeasible branches or loop itera-

tions. And this may explain why the logs show a lot

of failure-related messages. Therefore, the symbolic

execution process of JBSE needs to be improved with

the goal of enhancing the effectiveness of the ex-

plored program paths, and avoiding problems such as

path explosion.

Note that EvoSuite itself involves a dynamic sym-

bolic execution (DSE) module, called EvoSuiteDSE.

Galeotti et al.[34] incorporated DSE into EvoSuite and

proposed a novel adaptive approach combining the

genetic algorithm with DSE. DSE can be used for

handling dynamic data structures and optimizing

primitive values. In this subsection, we analyze the

differences of these two approaches. First, when it

comes to EvoSuiteDSE, during the process of search-

based exploration, the generic algorithm can deter-

mine whether to apply DSE or not. For example, if a

CUT has many branches that depend on numerical

constraints on test inputs, DSE is suitable in this sit-

uation. EvoSuiteDSE aims at selecting individuals of

the population to perform symbolic execution. Apply-

ing symbolic execution on meaningful cases during the

search process can save the cost. However, Tardis just

allocates a fixed time limit to symbolic execution. Sec-

ond, Tardis converts path conditions into optimiza-

tion problems. It leverages EvoSuite to generate test

cases by using the evaluator programs of these path

conditions as fitness functions[8]. This may affect Evo-

Suite's normal process of generating test cases be-

cause of some existing infeasible path conditions. Nev-

ertheless, the combination approach of DSE module

and EvoSuite is based on the theory that DSE can be

applied as a local search step on primitive values in

the sequences of method invocations[34]. Besides, Evo-

Suite applies global search to explore the whole popu-

lation, and individuals can be improved by means of

DSE during the search process. This way of combina-

tion better integrates the strengths of each one at a

lower cost, and as a result, it would find more uncov-

ered branches. While Tardis works better in terms of

creating complex objects than Galeotti et al.'s
method[34], it is not very suitable for improving Evo-

Suite on code coverage of CUTs used in our experi-

ment. In summary, more effective and executable im-

provements of combining symbolic execution with

search-based test generation need to be studied in the

future.

5.3 Answering RQ3: Real Fault Detection

We compute the bug detection ratio by aggregat-

ing the bugs found by the 10 test suites automatical-

ly generated by each tool in order to avoid the ran-

domness. Table 7 shows the fault detection results in

Defects4J benchmarks.

Table 7. Fault Detection Results in Defects4J

Time Budget (s) Tool jsoup Lang Chart Collections Total

120 EvoSuite 23 22 16 0 61

Randoop 25 13 16 0 54

JTeXpert 24 20 10 1 55

360 EvoSuite 25 22 16 0 63

Randoop 26 15 16 0 57

JTeXpert 20 18 11 1 50

5.3.1 Fault Detection Results

Considering tools individually, EvoSuite, Ran-

doop and JTeXpert can detect 63, 57, and 55 bugs at

best in our experiment, respectively. Among the three

automated test generation tools, EvoSuite is still the

distinguished. And test suites with the highest fault

detection rate for Lang are generated by EvoSuite.

The time budget has little effect on improving the

fault detection rate. However, a more thorough study

on various time budgets would be a meaningful fu-

ture work.

5.3.2 How Faults Found by Different Automated

Tools?

We analyze the faults detected or not detected by

automated tools from the following three perspectives,

and attempt to answer these questions.

1) How Many Times Can Faults Be Found? Un-

der a given time budget, the faults covered by test

suites generated by automated tools on different exe-

cutions are not the same. We count up the number of

faults that can be found at least 90% of times in 10

executions (marked as Always), and the number of

faults that are detected only once in 10 executions

728 J. Comput. Sci. & Technol., May 2024, Vol.39, No.3

(marked as Once), and the number of faults in other

cases (marked as General). Fig.7 shows the percent-

ages of the three types of faults detected by different

automated tools.

Randoop

JTeXpert

EvoSuite

0 20 40 60

Percentage of Faults (%)

80 100

Always OnceGeneral

Fig.7. Percentage of faults that can be Always or Once detect-
ed by different automated tools.

In EvoSuite, the faults that can be found by all

generated test suites accounts for the largest propor-

tion. Randoop has the largest number of faults that

are found by only one test suite. As for JTeXpert, the

faults with the type of Always have the least propor-

tion. This means that JTeXpert produces the lowest

overlap of faults covered by different test suites. In

summary, the 10 test suites generated by the three

automated tools have similar coverage of faults. How-

ever, in terms of fault detection, tests generated by

EvoSuite are the most stable.

2) Analysis of Faults Detected or Not Detected.
The ability of different tools to find bugs is various.

From the results, we classify the faults into the fol-

lowing three cases. Some faults (jsoup-8b, Lang-60b,

etc.) can be detected by all tools during 10 execu-

tions. These faults do not require complex conditions

or concrete input values. For example, Lang-60b is

shown in Fig.8, where the reference of thisBuf.length
would trigger errors.

public boolean contains (char ch) {
 char [] thisBuf = buffer;
 for (int i = 0; i < thisBuf .length ; i ++) {

for (int i = 0; i < thisBuf .size ; i ++) {
 if (thisBuf[i] == ch) {
 return true ;
 }
 }

return false ;
}

-
+

Fig.8. Example of faults that can be detected by all tools dur-
ing 10 executions, Lang-60b.

Some cases (Chart-12b, Lang-65b, Collections-27b,

etc.) can only be found out by one of the tools during

10 executions. With regard to search-based tools,

EvoSuite is possibly better at generating more com-

plex input strings, as it uses a genetic algorithm to

fully explore the program state space, leverage run-

time values, and then produce meaningful input

strings and assert statements. Test cases generated by

JTeXpert perform better in dealing with complex con-

ditions, as its search strategy can help explore more

unexpected branches. Besides, the test cases generat-

ed by JTeXpert usually contain more assertions than

the other tools. For example, Lang-24b can only be

detected by JTeXpert. The following code snippet

shown in Fig.9 is a description of Lang-24b, which re-

quires the generated test suite to meet complex condi-

tions.

if (chars[i] == '1' || chars [i] == 'L') {
 // not allowing L with an exponent
 return foundDigit && !hasExp;
 return foundDigit && !hasExp && !hasDecPoint;
}

-
+
if (chars[i] == '1' || chars[i] == 'L') {
 // not allowing L with an exponent
 return foundDigit && !hasExp ;
 return foundDigit && !hasExp && !hasDecPoint;
}

-
+

Fig.9. Example of faults that can only be found out by one of
the tools during 10 executions, Lang-24b.

However, there are also cases (Chart-3b, Lang-

31b, jsoup-57b, etc.) where none of the tools can de-

tect the fault during 10 executions. Collections-26b is

a fault that cannot be found by the three tools. None

of these three tools generate tests for private classes

or methods, and thus this type of faults is much more

difficult to be found. Collections-26b is shown in

Fig.10.

private Object readResolve (){

protected Object readResolve (){

 calculateHashCode (keys);

 return this ;

}

-

+

Fig.10. Example of faults that cannot be found out by any of
the tools during 10 executions, Collections-26b.

3) Which Category of Faults Is Easier to Be
Found? The number of bugs and the category of bugs

found by different tools are comparable. As Almasi

et al.[35] suggested, we classify the faults into two cat-

egories: assertion-based and exception-based.
•

assertEquals(35, w.getWeek());

 Assertion-Based Faults. These faults are detect-

ed by assertions in the test case. Assertions include

utility methods that support the asserting conditions

in tests, including assertEquals, assertTrue, assert-
Null, fail, etc. Only failing assertions are recorded. For

example, Chart-8b can be found by manual tests

through assertions. Fig.11(a) shows the information of

Chart-8b by using Defects4J. The fault is detected by

a JUnit assertion (i.e.,)

at line 11 in Fig.11(b), which is expected to be 35 but

34 obtained. And it triggers AssertionFailedError to
reveal this error.

• Exception-Based Faults. An unhandled excep-

Xiang-Jun Liu et al.: Empirical Study on Automated Test Generation Tools for Java 729

tion is thrown in the test code, causing the fault to be

detected. We collect several common exceptions, such

as NullPointerException, IOException, IllegalArgu-
mentException, StringIndexOutOfBoundsException
and so on. For example, jsoup-5b can be found by

manual tests through throwing exceptions. Fig.11(c)

illustrates the information of jsoup-5b by using De-

fects4J. The test code shown in Fig.11(d) throws

StringIndexOutOfBoundsException because the index

of a String variable is out of range during the execu-

tion process.

Based on the classification, we calculate the pro-

portion of different categories of faults detected by

automated tools. Generally speaking, JTeXpert is bet-

ter at detecting assertion-based faults than the other

two tools. Especially for Lang, the number of asser-

tion-based faults found by JTeXpert is much greater

than that of exception-based faults. In terms of

Chart, all tools have a little gap between assertion-

based faults and exception-based faults. It can be seen

from Fig.12 that it is easier for all the three automat-

ed tools to find out assertion-based faults than excep-

tion-based faults. In the future, we will attempt to

improve the assertion generation process and

strengthen the ability of detecting exception-based

faults.

(b)(a)

(c) (d)

Fig.11. Information of (a) Chart-8b and (c) jsoup-5b by using Defects4J, and the test code that detects the faults (b) Chart-8b and
(d) jsoup-5b.

Evo. JTeX. Ran.

Chart

P
e
rc

e
n
ta

g
e
 o

f
D

e
fe

c
te

d
 F

a
u
lt
s

(%
)

Evo. JTeX. Ran.

Lang

100

80

60

40

20

0

Exception-Based

Assertion-Based

Evo. JTeX. Ran.

jsoup

Evo. JTeX. Ran.

Collections

Fig.12. Percentage of detected faults with different categories: assertion-based and exception-based. Evo: EvoSuite; JTex.: JTeX-
pert; Ran.: Randoop.

730 J. Comput. Sci. & Technol., May 2024, Vol.39, No.3

5.4 Answering RQ4: Ease of Use

In fact, we face many challenges when setting up

and executing these tools. It takes a certain amount

of time for developers to successfully run all the tools,

especially tools combined with symbolic execution.

Among them, four tools provide executable jars di-

rectly, i.e., EvoSuite, Randoop, JTeXpert, and JDoop.

As for T3, we have to build the jar from source code.

The output of T3 is a binary trace file (.tr), and it

should be loaded by the defined test files. As for

JDoop, we need to prepare for the experiment envi-

ronment (e.g., JPF-core, jConstraints, and Z3) in or-

der to meet prerequisites and execute the tool. As for

Tardis, we should build jars from source code, and in-

stall Z3 and other dependent packages locally.

5.4.1 Encountered Problems

First, we need detailed and updated manuals or

documentations when using automated test genera-

tion tools. Developers may have to put more efforts

into the tool setup process. It prevents the wide us-

age of automated tools in real industrial development.

Second, we encounter some problems in executing

Tardis and JDoop. We modify the source code of

JDoop and add --testclass option, so that it can sup-

port the test generation for one CUT at a time. Apart

from this, Tardis generates test files each containing

one test case. It is not helpful in computing code cov-

erage and mutation score. Hence, we write a script to

merge all test cases together in one test suite class.

Third, different versions of tools often have different

ways of running them, such as Randoop. Therefore,

the differences are required to be clearly written in

the manual so as to avoid unnecessary barriers.

5.4.2 Usability & Friendliness

In terms of usability, EvoSuite and Randoop are

the most practical tools among all the six tools and

relatively more suitable for industrial projects, as they

are easy-to-use, extensible, and stable. On the con-

trary, developers need to make more effort to success-

fully configure and run JTeXpert, T3, and JDoop.

JTeXpert often throws exceptions when generating

tests, but we cannot get its source code to solve this

problem. Tardis is an academic tool, which focuses

more on functionality than on usability, and thus we

have spent the most time on it. Furthermore, Evo-

Suite has plugins for Maven, Eclipse and IntelliJ

IDEA. Though its plugins are not suitable for any

type of experiments, they help to improve its usabili-

ty. Randoop is proven useful in practical contexts,

and is supported by development environments (e.g.,

Eclipse). Besides, Tardis can also work under Eclipse

if we successfully deploy it. Other tools do not have

Maven plugin or IDE plugin.

In terms of user-friendliness, EvoSuite provides

the most clear documentations and its runtime log

feeds back the progress and status of test generation

in real time. T3 produces binary test suites, and it is

not user-friendly. The test generation process of Ran-

doop and JDoop is relatively simple and smooth, but

the automatically-generated test suites are too large,

which increases the time required to compile and run

tests and impairs user-friendliness. Tardis is relative-

ly the worst. The time it takes to create tests is often

uncontrollable and far exceeds the given time budget.

In summary, automated tools still need perfect relat-

ed documentations and functionalities to improve

their usability and user-friendliness, with positive im-

plications in generating unit tests automatically,

thereby reducing the burden on developers and im-

proving test efficiency.

6 Suggestions

According to the results of our experiment and re-

lated work, we propose the following suggestions for

automated unit test generation tools.

6.1 Readability Improvements

From our experimental results, automated tools

often generate complicated and obscure unit tests

that are difficult to comprehend and maintain for hu-

mans. To overcome this problem, for example, Daka

et al.[36] proposed a domain-specific machine learning

model to predict the readability of tests based on hu-

man judgements, and used this model to augment the

test generation process of EvoSuite to improve read-

ability.

According to test cases produced by automated

tools and their results in Fig.5, there are too few com-

ments to provide some hints about scenarios. Improv-

ing the quality of comments in test cases is a feasible

way to generate more readable test cases. Panichella

et al.[37] proposed a template-based approach to auto-

matically generate summaries as comments for each

test case to improve understandability. DeepTC-En-

Xiang-Jun Liu et al.: Empirical Study on Automated Test Generation Tools for Java 731

hancer[38] uses a template-based approach to create

comments by summarizing the scenarios of test cases.

It may be an effective way to use the mentioned ap-

proaches to create more meaningful comments for test

methods, and then incorporate the comment genera-

tion module with automated test case generation pro-

cess.

6.2 Meaningful Assertions

Automated tools can create assertions on return

values, compare objects with each other or call in-

spector methods on objects[3]; however, only a finite

number of things can be asserted. As Zhang and Mes-

bah[39] inferred, the number of assertions and the

types of assertions in a test suite are strongly corre-

lated with test suite effectiveness. To this end, gener-

ating meaningful assertions is one of the key chal-

lenges in test generation.

From the tests generated by automated tools in

our experiments, we observe that assertions are usual-

ly incomplete, and lack contextual information and

necessary complexity to capture a specified fault.

Apart from traditional heuristic approaches, there are

many studies making use of machine learning tech-

nologies. Watson et al.[40] employed an approach

based on neural machine translation (NMT) to auto-

matically generate meaningful assert statements. Tu-

fano et al.[41] proposed a sequence-to-sequence trans-

former model to generate accurate assertions for

methods under test. To sum up, NLP technologies for

assertion generation are expected to further improve

the ability of error detection.

Furthermore, we can attempt to generate asser-

tions based on specifications in test automation.

Cheon and Leavens[42] proposed an approach that au-

tomatically writes the unit test oracles by using a for-

mal specification language's runtime assertion check-

er to decide whether the program's methods are work-

ing correctly. Parameterized unit testing[43] can be

considered as a type of specification[44]. For example,

Pex[43] can instantiate the parameterized unit tests by

determining test inputs with systematic program

analysis.

6.3 Test Suite Reduction

From our experimental results, we can find that

random testing tools (e.g., Randoop) generate many

redundant test cases for the systems under test. Most

of the test cases are not helpful to increase test quali-

ty and efficiency, but cost much time to execute. Test

suite reduction approaches are supposed to decrease

test costs and improve test understandability. Jay-

garl et al.[45] implemented a tool called GENRED that

combines a sequence-based reduction approach and a

coverage-based reduction approach for Randoop to re-

move redundant test cases. Cruciani et al.[46] pro-

posed a novel test suite reduction approach for very

large-scale systems. It is based on evaluating the simi-

larity of test cases and can keep code coverage un-

changed. Chetouane et al.[47] introduced a test suite

reduction method that combines K-means clustering

with binary search. They illustrated that the cluster-

ing algorithm could significantly reduce the number of

test cases.

In general, it is worth studying the subject how to

make use of runtime information (e.g., the branches

reached by newly produced method sequences) dur-

ing the test generation process and incorporate feasi-

ble test suite reduction approaches with random test-

ing tools in a better way in the future.

6.4 Hybrids of Symbolic Execution and

Other Test Generation Approaches

The experimental results of JDoop are slightly

better than those of Randoop for either one CUT or

the whole project. When it comes to suggestions for

JDoop, we highlight the following aspects. First, as

we analyze above, JDart has many limitations but it

also provides some extensibility. Improving JDart
may be an effective method to enhance the overall

test quality of JDoop. For example, Mues and

Howar[48] improved JDart by implementing four

strategies: exploration strategies, bounded analysis,

path-specific constraint solving strategies, and the

SMT-Lib string approach. Second, we can make use

of runtime information and execution trace to select

test cases for concolic execution. Third, the con-

straint solver applied in concolic testing considerably

affects the capability of tools and needs to be im-

proved.

Both search-based software testing and the sym-

bolic execution technique have been shown to be ef-

fective in many papers. Baluda[49] presented an evolu-

tionary algorithm, EvoSE, which searches and tra-

verses for symbolic paths that do not satisfy the mini-

mized branch conditions in the program. Besides this,

fuzz testing is also a dynamic analysis technique. Ol-

732 J. Comput. Sci. & Technol., May 2024, Vol.39, No.3

sthoorn et al.[50] combined grammar-based fuzzing

with search-based testing tool EvoSuite to generate

highly-structured input data and maximize the code

coverage for Java JSON projects. In general, further

clarification and improvements are still needed in the

next step.

7 Threats of Validity

As for a threat to external validity, our experi-

ments only study on six automated test case genera-

tion tools, mainly based on search-based testing, ran-

dom testing, and symbolic execution. It is worth not-

ing that many other techniques, such as combinatori-

al testing, fuzzing testing, specification-based testing

and so on, are not discussed in our paper. However,

these approaches might be more appropriate in other

complex cases, not in our study.

75

We conduct our experiments on Java open source

programs⑲. It may not be generalized for other pro-

gramming languages. Besides, we only select CUTs

from six projects to study on RQ1, and ensure that

the selected CUTs contain more branches and state-

ments. As a reference, the SBST workshop also uses

selected CUTs from open source projects as the

benchmark. Generally speaking, the benchmark of our

study is reasonable. It can also be reused in other em-

pirical studies.

With regard to internal validity, we use JaCoCo,

PITEST and Readability Checker to compute code

coverage, mutation score and readability, respectively.

The instrumentation may bias our results. But all the

results can be reproduced with the same settings. We

use three objective indicators to measure the relative-

ly subjective metric, i.e., readability. Because most

people have little concept of automated tools, their

judgment on the readability of tests may deviate from

the actual situation. Therefore, the indicators of read-

ability are more scientific and reliable in our experi-

ment.

The threat to construction validity is that the ex-

periment of RQ1 depends on the test workflow with

scripts designed by us to automatically generate test

suites and compute evaluation metrics. Besides, due

to the number of projects and the test suites generat-

ed, we could not perform an overall manual inspec-

tion to verify whether the tests are stable, and we use

the Defects4J test framework to remove flaky tests

when comparing the real fault detection ability.

8 Conclusions

This paper presented systematic and comprehen-

sive experiments on automated unit test generation

tools in terms of code coverage, mutation score, test

suite size and readability. According to the results,

search-based tools perform the best. While random

testing tools produce the largest test suite size that

affects test efficiency. Tests generated by EvoSuite

are the most stable in fault detection. We also found

out that assertion-based faults are easier to be found

than exception-based faults. Furthermore, there is

much room for improvement on integrating symbolic

execution with test generation approaches. In the

next step, we will discuss about commercial tools and

their applications in large-scale industrial software.

Conflict of Interest The authors declare that

they have no conflict of interest.

References

 Anand S, Burke E K, Chen T Y, Clark J, Cohen M B,

Grieskamp W, Harman M, Harrold M J, McMinn P. An

orchestrated survey of methodologies for automated soft-

ware test case generation. Journal of Systems and Soft-

ware, 2013, 86(8): 1978–2001. DOI: 10.1016/j.jss.2013.02.

061.

[1]

 Chen J J, Bai Y W, Hao D, Zhang L M, Zhang L, Xie B.

How do assertions impact coverage-based test-suite reduc-

tion? In Proc. the 2017 IEEE International Conference on

Software Testing, Verification and Validation (ICST),

Mar. 2017, pp.418–423. DOI: 10.1109/ICST.2017.45.

[2]

 Fraser G, Arcuri A. EvoSuite: Automatic test suite gener-

ation for object-oriented software. In Proc. the 19th ACM

SIGSOFT Symposium and the 13th European Confer-

ence on Foundations of Software Engineering, Sept. 2011,

pp.416–419. DOI: 10.1145/2025113.2025179.

[3]

 Pacheco C, Lahiri S K, Ernst M D, Ball T. Feedback-di-

rected random test generation. In Proc. the 29th Interna-

tional Conference on Software Engineering (ICSE’07),

May 2007, pp.75–84. DOI: 10.1109/ICSE.2007.37.

[4]

 Dimjašević M, Rakamari ć Z. JPF-Doop: Combining con-

colic and random testing for Java. Collections, 2013,

422(3894): 58470. https://dimjasevic.net/marko/2013/11/

17/presented-jpf-doop-at-java-pathfinder-workshop-2013/

jpf-workshop-2013.pdf, Mar. 2024.

[5]

 Sakti A, Pesant G, Guéhéneuc Y G. Instance generator

and problem representation to improve object oriented

code coverage. IEEE Trans. Software Engineering, 2015,

[6]

Xiang-Jun Liu et al.: Empirical Study on Automated Test Generation Tools for Java 733

⑲https://github.com/rjust/defects4j, Mar. 2024.

https://doi.org/10.1016/j.jss.2013.02.061
https://doi.org/10.1016/j.jss.2013.02.061
https://doi.org/10.1109/ICST.2017.45
https://doi.org/10.1145/2025113.2025179
https://doi.org/10.1109/ICSE.2007.37
https://dimjasevic.net/marko/2013/11/17/presented-jpf-doop-at-java-pathfinder-workshop-2013/jpf-workshop-2013.pdf
https://dimjasevic.net/marko/2013/11/17/presented-jpf-doop-at-java-pathfinder-workshop-2013/jpf-workshop-2013.pdf
https://dimjasevic.net/marko/2013/11/17/presented-jpf-doop-at-java-pathfinder-workshop-2013/jpf-workshop-2013.pdf
https://dimjasevic.net/marko/2013/11/17/presented-jpf-doop-at-java-pathfinder-workshop-2013/jpf-workshop-2013.pdf
https://dimjasevic.net/marko/2013/11/17/presented-jpf-doop-at-java-pathfinder-workshop-2013/jpf-workshop-2013.pdf
https://dimjasevic.net/marko/2013/11/17/presented-jpf-doop-at-java-pathfinder-workshop-2013/jpf-workshop-2013.pdf
https://dimjasevic.net/marko/2013/11/17/presented-jpf-doop-at-java-pathfinder-workshop-2013/jpf-workshop-2013.pdf
https://dimjasevic.net/marko/2013/11/17/presented-jpf-doop-at-java-pathfinder-workshop-2013/jpf-workshop-2013.pdf
https://dimjasevic.net/marko/2013/11/17/presented-jpf-doop-at-java-pathfinder-workshop-2013/jpf-workshop-2013.pdf
https://dimjasevic.net/marko/2013/11/17/presented-jpf-doop-at-java-pathfinder-workshop-2013/jpf-workshop-2013.pdf
https://dimjasevic.net/marko/2013/11/17/presented-jpf-doop-at-java-pathfinder-workshop-2013/jpf-workshop-2013.pdf
https://dimjasevic.net/marko/2013/11/17/presented-jpf-doop-at-java-pathfinder-workshop-2013/jpf-workshop-2013.pdf
https://dimjasevic.net/marko/2013/11/17/presented-jpf-doop-at-java-pathfinder-workshop-2013/jpf-workshop-2013.pdf
https://dimjasevic.net/marko/2013/11/17/presented-jpf-doop-at-java-pathfinder-workshop-2013/jpf-workshop-2013.pdf
https://dimjasevic.net/marko/2013/11/17/presented-jpf-doop-at-java-pathfinder-workshop-2013/jpf-workshop-2013.pdf
https://dimjasevic.net/marko/2013/11/17/presented-jpf-doop-at-java-pathfinder-workshop-2013/jpf-workshop-2013.pdf
https://dimjasevic.net/marko/2013/11/17/presented-jpf-doop-at-java-pathfinder-workshop-2013/jpf-workshop-2013.pdf
https://dimjasevic.net/marko/2013/11/17/presented-jpf-doop-at-java-pathfinder-workshop-2013/jpf-workshop-2013.pdf
https://dimjasevic.net/marko/2013/11/17/presented-jpf-doop-at-java-pathfinder-workshop-2013/jpf-workshop-2013.pdf
https://dimjasevic.net/marko/2013/11/17/presented-jpf-doop-at-java-pathfinder-workshop-2013/jpf-workshop-2013.pdf
https://dimjasevic.net/marko/2013/11/17/presented-jpf-doop-at-java-pathfinder-workshop-2013/jpf-workshop-2013.pdf
https://github.com/rjust/defects4j

41(3): 294–313. DOI: 10.1109/TSE.2014.2363479.

 Prasetya I S W B. T3, a combinator-based random test-

ing tool for Java: Benchmarking. In Proc. the 1st Interna-

tional Workshop on Future Internet Testing, Nov. 2013,

pp.101–110. DOI: 10.1007/978-3-319-07785-7_7.

[7]

 Braione P, Denaro G, Mattavelli A, Pezzè M. Combining

symbolic execution and search-based testing for programs

with complex heap inputs. In Proc. the 26th ACM SIG-

SOFT International Symposium on Software Testing and

Analysis, Jul. 2017, pp.90–101. DOI: 10.1145/3092703.3092

715.

[8]

 Panichella A, Kifetew F M, Tonella P. A large scale em-

pirical comparison of state-of-the-art search-based test

case generators. Information and Software Technology,

2018, 104: 236–256. DOI: 10.1016/j.infsof.2018.08.009.

[9]

 Baresi L, Lanzi P L, Miraz M. TestFul: An evolutionary

test approach for Java. In Proc. the 3rd International

Conference on Software Testing, Verification and Valida-

tion, Apr. 2010, pp.185–194. DOI: 10.1109/ICST.2010.54.

[10]

 Pacheco C, Ernst M D. Randoop: Feedback-directed ran-

dom testing for Java. In Proc. the Companion to the 22nd

ACM SIGPLAN Conference on Object-Oriented Program-

ming Systems and Applications Companion, Oct. 2007,

pp.815–816. DOI: 10.1145/1297846.1297902.

[11]

 Csallner C, Smaragdakis Y. JCrasher: An automatic ro-

bustness tester for Java. Software: Practice and Experi-

ence, 2004, 34(11): 1025–1050. DOI: 10.1002/spe.602.

[12]

 King J C. Symbolic execution and program testing. Com-

munications of the ACM, 1976, 19(7): 385–394. DOI: 10.

1145/360248.360252.

[13]

 Păsăreanu C S, Rungta N. Symbolic PathFinder: Symbol-

ic execution of Java bytecode. In Proc. the 25th IEEE/

ACM International Conference on Automated Software

Engineering, Sept. 2010, pp.179–180. DOI: 10.1145/1858996.

1859035.

[14]

 Mues M, Howar F. JDart: Dynamic symbolic execution

for Java bytecode (competition contribution). In Proc.

the 26th International Conference on Tools and Algo-

rithms for the Construction and Analysis of Systems, Apr.

2020, pp.398–402. DOI: 10.1007/978-3-030-45237-7_28.

[15]

 Li W B, Le Gall F, Spaseski N. A survey on model-based

testing tools for test case generation. In Proc. the 4th In-

ternational Conference on Tools and Methods for Pro-

gram Analysis, Mar. 2017, pp.77–89. DOI: 10.1007/978-3-

319-71734-0_7.

[16]

 Dranidis D, Bratanis K, Ipate F. JSXM: A tool for auto-

mated test generation. In Proc. the 10th International

Conference on Software Engineering and Formal Methods,

Oct. 2012, pp.352–366. DOI: 10.1007/978-3-642-33826-7_25.

[17]

 Lakhotia K, Harman M, McMinn P. Handling dynamic

data structures in search based testing. In Proc. the 10th

Annual Conference on Genetic and Evolutionary Compu-

tation, Jul. 2008, pp.1759–1766. DOI: 10.1145/1389095.1389

435.

[18]

 Sen K. Concolic testing. In Proc. the 22nd IEEE/ACM

International Conference on Automated Software Engi-

[19]

neering, Nov. 2007, pp.571–572. DOI: 10.1145/1321631.1321

746.

 Braione P, Denaro G. SUSHI and TARDIS at the

SBST2019 tool competition. In Proc. the 12th

IEEE/ACM International Workshop on Search-Based

Software Testing (SBST), May 2019, pp.25–28. DOI: 10.

1109/SBST.2019.00016.

[20]

 Chitirala S C R. Comparing the effectiveness of automat-

ed test generation tools “EVOSUITE” and “Tpalus”

[Master’s Thesis]. University of Minnesota, Minnesota,

2015.

[21]

 Ma L, Artho C, Zhang C, Sato H, Gmeiner J, Ramler R.

GRT: Program-analysis-guided random testing (T). In

Proc. the 30th IEEE/ACM International Conference on

Automated Software Engineering (ASE), Nov. 2015,

pp.212–223. DOI: 10.1109/ASE.2015.49.

[22]

 Zafar M N, Afzal W, Enoiu E, Stratis A, Arrieta A,

Sagardui G. Model-based testing in practice: An industri-

al case study using graphWalker. In Proc. the 14th Inno-

vations in Software Engineering Conference (Formerly

Known as India Software Engineering Conference), Feb.

2021, Article No. 5. DOI: 10.1145/3452383.3452388.

[23]

 Braione P, Denaro G, Pezzè M. JBSE: A symbolic execu-

tor for Java programs with complex heap inputs. In Proc.

the 24th ACM SIGSOFT International Symposium on

Foundations of Software Engineering, Nov. 2016, pp.1018–

1022. DOI: 10.1145/2950290.2983940.

[24]

 Grano G, De Iaco C, Palomba F, Gall H C. Pizza versus

Pinsa: On the perception and measurability of unit test

code quality. In Proc. the 2020 IEEE International Con-

ference on Software Maintenance and Evolution (ICSME),

Sept. 28–Oct. 2, 2020, pp.336–347. DOI: 10.1109/

ICSME46990.2020.00040.

[25]

 Hemmati H. How effective are code coverage criteria? In

Proc. the 2015 IEEE International Conference on Soft-

ware Quality, Reliability and Security, Aug. 2015,

pp.151–156. DOI: 10.1109/QRS.2015.30.

[26]

 Papadakis M, Kintis M, Zhang J, Jia Y, Le Traon Y,

Harman M. Mutation testing advances: An analysis and

survey. Advances in Computers, 2019, 112: 275–378. DOI:

10.1016/bs.adcom.2018.03.015.

[27]

 Winkler D, Urbanke P, Ramler R. What do we know

about readability of test code?—A systematic mapping

study. In Proc. the 2022 IEEE International Conference

on Software Analysis, Evolution and Reengineering (SAN-

ER), Mar. 2022, pp.1167–1174. DOI: 10.1109/SANER53432.

2022.00135.

[28]

 Buse R P L, Weimer W R. Learning a metric for code

readability. IEEE Trans. Software Engineering, 2010,

36(4): 546–558. DOI: 10.1109/TSE.2009.70.

[29]

 Aggarwal K K, Singh Y, Chhabra J K. An integrated

measure of software maintainability. In Proc. the Annual

Reliability and Maintainability Symposium (Cat. No.

02CH37318), Jan. 2002, pp.235–241. DOI: 10.1109/

RAMS.2002.981648.

[30]

 Börstler J, Caspersen M E, Nordström M. Beauty and the[31]

734 J. Comput. Sci. & Technol., May 2024, Vol.39, No.3

https://doi.org/10.1109/TSE.2014.2363479
https://doi.org/10.1007/978-3-319-07785-7_7
https://doi.org/10.1007/978-3-319-07785-7_7
https://doi.org/10.1007/978-3-319-07785-7_7
https://doi.org/10.1007/978-3-319-07785-7_7
https://doi.org/10.1007/978-3-319-07785-7_7
https://doi.org/10.1007/978-3-319-07785-7_7
https://doi.org/10.1007/978-3-319-07785-7_7
https://doi.org/10.1007/978-3-319-07785-7_7
https://doi.org/10.1007/978-3-319-07785-7_7
https://doi.org/10.1007/978-3-319-07785-7_7
https://doi.org/10.1007/978-3-319-07785-7_7
https://doi.org/10.1145/3092703.3092715
https://doi.org/10.1145/3092703.3092715
https://doi.org/10.1016/j.infsof.2018.08.009
https://doi.org/10.1109/ICST.2010.54
https://doi.org/10.1145/1297846.1297902
https://doi.org/10.1002/spe.602
https://doi.org/10.1145/360248.360252
https://doi.org/10.1145/360248.360252
https://doi.org/10.1145/1858996.1859035
https://doi.org/10.1145/1858996.1859035
https://doi.org/10.1007/978-3-030-45237-7_28
https://doi.org/10.1007/978-3-030-45237-7_28
https://doi.org/10.1007/978-3-030-45237-7_28
https://doi.org/10.1007/978-3-030-45237-7_28
https://doi.org/10.1007/978-3-030-45237-7_28
https://doi.org/10.1007/978-3-030-45237-7_28
https://doi.org/10.1007/978-3-030-45237-7_28
https://doi.org/10.1007/978-3-030-45237-7_28
https://doi.org/10.1007/978-3-030-45237-7_28
https://doi.org/10.1007/978-3-030-45237-7_28
https://doi.org/10.1007/978-3-030-45237-7_28
https://doi.org/10.1007/978-3-319-71734-0_7
https://doi.org/10.1007/978-3-319-71734-0_7
https://doi.org/10.1007/978-3-319-71734-0_7
https://doi.org/10.1007/978-3-319-71734-0_7
https://doi.org/10.1007/978-3-319-71734-0_7
https://doi.org/10.1007/978-3-319-71734-0_7
https://doi.org/10.1007/978-3-319-71734-0_7
https://doi.org/10.1007/978-3-319-71734-0_7
https://doi.org/10.1007/978-3-319-71734-0_7
https://doi.org/10.1007/978-3-319-71734-0_7
https://doi.org/10.1007/978-3-319-71734-0_7
https://doi.org/10.1007/978-3-642-33826-7_25
https://doi.org/10.1007/978-3-642-33826-7_25
https://doi.org/10.1007/978-3-642-33826-7_25
https://doi.org/10.1007/978-3-642-33826-7_25
https://doi.org/10.1007/978-3-642-33826-7_25
https://doi.org/10.1007/978-3-642-33826-7_25
https://doi.org/10.1007/978-3-642-33826-7_25
https://doi.org/10.1007/978-3-642-33826-7_25
https://doi.org/10.1007/978-3-642-33826-7_25
https://doi.org/10.1007/978-3-642-33826-7_25
https://doi.org/10.1007/978-3-642-33826-7_25
https://doi.org/10.1145/1389095.1389435
https://doi.org/10.1145/1389095.1389435
https://doi.org/10.1145/1321631.1321746
https://doi.org/10.1145/1321631.1321746
https://doi.org/10.1109/SBST.2019.00016
https://doi.org/10.1109/SBST.2019.00016
https://doi.org/10.1109/ASE.2015.49
https://doi.org/10.1145/3452383.3452388
https://doi.org/10.1145/2950290.2983940
https://doi.org/10.1109/ICSME46990.2020.00040
https://doi.org/10.1109/ICSME46990.2020.00040
https://doi.org/10.1109/QRS.2015.30
https://doi.org/10.1016/bs.adcom.2018.03.015
https://doi.org/10.1109/SANER53432.2022.00135
https://doi.org/10.1109/SANER53432.2022.00135
https://doi.org/10.1109/TSE.2009.70
https://doi.org/10.1109/RAMS.2002.981648
https://doi.org/10.1109/RAMS.2002.981648

beast: On the readability of object-oriented example pro-

grams. Software Quality Journal, 2016, 24(2): 231–246.

DOI: 10.1007/s11219-015-9267-5.

 Kannavara R, Havlicek C J, Chen B, Tuttle M R, Cong

K, Ray S, Xie F. Challenges and opportunities with con-

colic testing. In Proc. the 2015 National Aerospace and

Electronics Conference (NAECON), Jun. 2015, pp.374–

378. DOI: 10.1109/NAECON.2015.7443099.

[32]

 Qu X, Robinson B. A case study of concolic testing tools

and their limitations. In Proc. the 2011 International

Symposium on Empirical Software Engineering and Mea-

surement, Sept. 2011, pp.117–126. DOI: 10.1109/ESEM.

2011.20.

[33]

 Galeotti J P, Fraser G, Arcuri A. Improving search-based

test suite generation with dynamic symbolic execution. In

Proc. the 24th IEEE International Symposium on Soft-

ware Reliability Engineering (ISSRE), Nov. 2013, pp.360–

369. DOI: 10.1109/ISSRE.2013.6698889.

[34]

 Almasi M M, Hemmati H, Fraser G, Arcuri A, Benefelds

J. An industrial evaluation of unit test generation: Find-

ing real faults in a financial application. In Proc. the 39th

IEEE/ACM International Conference on Software Engi-

neering: Software Engineering in Practice Track (ICSE-

SEIP), May 2017, pp.263–272. DOI: 10.1109/ICSE-SEIP.

2017.27.

[35]

 Daka E, Campos J, Fraser G, Dorn J, Weimer W. Model-

ing readability to improve unit tests. In Proc. the 10th

Joint Meeting on Foundations of Software Engineering,

Aug. 2015, pp.107–118. DOI: 10.1145/2786805.2786838.

[36]

 Panichella S, Panichella A, Beller M, Zaidman A, Gall H

C. The impact of test case summaries on bug fixing per-

formance: An empirical investigation. In Proc. the 38th

International Conference on Software Engineering, May

2016, pp.547–558. DOI: 10.1145/2884781.2884847.

[37]

 Roy D, Zhang Z Y, Ma M, Arnaoudova V, Panichella A,

Panichella S, Gonzalez D, Mirakhorli M. DeepTC-En-

hancer: Improving the readability of automatically gener-

ated tests. In Proc. the 35th IEEE/ACM International

Conference on Automated Software Engineering (ASE),

Dec. 2020, pp.287–298. DOI: 10.1145/3324884.3416622.

[38]

 Zhang Y C, Mesbah A. Assertions are strongly correlated

with test suite effectiveness. In Proc. the 10th Joint Meet-

ing on Foundations of Software Engineering, Aug. 2015,

pp.214–224. DOI: 10.1145/2786805.2786858.

[39]

 Watson C, Tufano M, Moran K, Bavota G, Poshyvanyk

D. On learning meaningful assert statements for unit test

cases. In Proc. the 42nd ACM/IEEE International Con-

ference on Software Engineering, Jun. 2020, pp.1398–1409.

DOI: 10.1145/3377811.3380429.

[40]

 Tufano M, Drain D, Svyatkovskiy A, Sundaresan N. Gen-

erating accurate assert statements for unit test cases us-

ing pretrained transformers. In Proc. the 3rd ACM/IEEE

International Conference on Automation of Software Test,

May 2022, pp.54–64. DOI: 10.1145/3524481.3527220.

[41]

 Cheon Y, Leavens G T. A simple and practical approach

to unit testing: The JML and JUnit way. In Proc. the

[42]

16th European Conference on Object-Oriented Program-

ming, Jun. 2002, pp.231–255. DOI: 10.1007/3-540-47993-

7_10.
 Tillmann N, De Halleux J. Pex—White box test genera-

tion for .NET. In Proc. the 2nd International Conference

on Tests and Proofs, Apr. 2008, pp.134–153. DOI: 10.

1007/978-3-540-79124-9_10.

[43]

 Daka E, Fraser G. A survey on unit testing practices and

problems. In Proc. the 25th IEEE International Sympo-

sium on Software Reliability Engineering, Nov. 2014,

pp.201–211. DOI: 10.1109/ISSRE.2014.11.

[44]

 Jaygarl H, Lu K S, Chang C K. GenRed: A tool for gen-

erating and reducing object-oriented test cases. In Proc.

the 34th IEEE Annual Computer Software and Applica-

tions Conference, Jul. 2010, pp.127–136. DOI: 10.1109/

COMPSAC.2010.19.

[45]

 Cruciani E, Miranda B, Verdecchia R, Bertolino A. Scal-

able approaches for test suite reduction. In Proc. the 41st

IEEE/ACM International Conference on Software Engi-

neering (ICSE), May 2019, pp.419–429. DOI: 10.1109/

ICSE.2019.00055.

[46]

 Chetouane N, Wotawa F, Felbinger H, Nica M. On using

k-means clustering for test suite reduction. In Proc. the

2020 IEEE International Conference on Software Testing,

Verification and Validation Workshops (ICSTW), Oct.

2020, pp.380–385. DOI: 10.1109/ICSTW50294.2020.00068.

[47]

 Mues M, Howar F. JDart: Portfolio solving, breadth-first

search and SMT-Lib strings (competition contribution).

In Proc. the 27th International Conference on Tools and

Algorithms for the Construction and Analysis of Systems,

Mar. 27–Apr. 1, 2021, pp.448–452. DOI: 10.1007/978-3-

030-72013-1_30.

[48]

 Baluda M. EvoSE: Evolutionary symbolic execution. In

Proc. the 6th International Workshop on Automating

Test Case Design, Selection and Evaluation, Aug. 2015,

pp.16–19. DOI: 10.1145/2804322.2804325.

[49]

 Olsthoorn M, Van Deursen A, Panichella A. Generating

highly-structured input data by combining search-based

testing and grammar-based fuzzing. In Proc. the 35th

IEEE/ACM International Conference on Automated Soft-

ware Engineering, Dec. 2020, pp.1224–1228. DOI: 10.

1145/3324884.3418930.

[50]

Xiang-Jun Liu is currently pursu-

ing her Master's degree with the State

Key Laboratory for Novel Software

Technology and Department of Com-

puter Science and Technology at Nan-

jing University, Nanjing. Her research

interests include software testing,

cloud computing, and big data technology.

Xiang-Jun Liu et al.: Empirical Study on Automated Test Generation Tools for Java 735

https://doi.org/10.1007/s11219-015-9267-5
https://doi.org/10.1007/s11219-015-9267-5
https://doi.org/10.1007/s11219-015-9267-5
https://doi.org/10.1007/s11219-015-9267-5
https://doi.org/10.1007/s11219-015-9267-5
https://doi.org/10.1007/s11219-015-9267-5
https://doi.org/10.1007/s11219-015-9267-5
https://doi.org/10.1109/NAECON.2015.7443099
https://doi.org/10.1109/ESEM.2011.20
https://doi.org/10.1109/ESEM.2011.20
https://doi.org/10.1109/ISSRE.2013.6698889
https://doi.org/10.1109/ICSE-SEIP.2017.27
https://doi.org/10.1109/ICSE-SEIP.2017.27
https://doi.org/10.1109/ICSE-SEIP.2017.27
https://doi.org/10.1109/ICSE-SEIP.2017.27
https://doi.org/10.1145/2786805.2786838
https://doi.org/10.1145/2884781.2884847
https://doi.org/10.1145/3324884.3416622
https://doi.org/10.1145/2786805.2786858
https://doi.org/10.1145/3377811.3380429
https://doi.org/10.1145/3524481.3527220
https://doi.org/10.1007/3-540-47993-7_10
https://doi.org/10.1007/3-540-47993-7_10
https://doi.org/10.1007/3-540-47993-7_10
https://doi.org/10.1007/3-540-47993-7_10
https://doi.org/10.1007/3-540-47993-7_10
https://doi.org/10.1007/3-540-47993-7_10
https://doi.org/10.1007/3-540-47993-7_10
https://doi.org/10.1007/3-540-47993-7_10
https://doi.org/10.1007/3-540-47993-7_10
https://doi.org/10.1007/978-3-540-79124-9_10
https://doi.org/10.1007/978-3-540-79124-9_10
https://doi.org/10.1007/978-3-540-79124-9_10
https://doi.org/10.1007/978-3-540-79124-9_10
https://doi.org/10.1007/978-3-540-79124-9_10
https://doi.org/10.1007/978-3-540-79124-9_10
https://doi.org/10.1007/978-3-540-79124-9_10
https://doi.org/10.1007/978-3-540-79124-9_10
https://doi.org/10.1007/978-3-540-79124-9_10
https://doi.org/10.1007/978-3-540-79124-9_10
https://doi.org/10.1007/978-3-540-79124-9_10
https://doi.org/10.1007/978-3-540-79124-9_10
https://doi.org/10.1109/ISSRE.2014.11
https://doi.org/10.1109/COMPSAC.2010.19
https://doi.org/10.1109/COMPSAC.2010.19
https://doi.org/10.1109/ICSE.2019.00055
https://doi.org/10.1109/ICSE.2019.00055
https://doi.org/10.1109/ICSTW50294.2020.00068
https://doi.org/10.1007/978-3-030-72013-1_30
https://doi.org/10.1007/978-3-030-72013-1_30
https://doi.org/10.1007/978-3-030-72013-1_30
https://doi.org/10.1007/978-3-030-72013-1_30
https://doi.org/10.1007/978-3-030-72013-1_30
https://doi.org/10.1007/978-3-030-72013-1_30
https://doi.org/10.1007/978-3-030-72013-1_30
https://doi.org/10.1007/978-3-030-72013-1_30
https://doi.org/10.1007/978-3-030-72013-1_30
https://doi.org/10.1007/978-3-030-72013-1_30
https://doi.org/10.1007/978-3-030-72013-1_30
https://doi.org/10.1145/2804322.2804325
https://doi.org/10.1145/3324884.3418930
https://doi.org/10.1145/3324884.3418930

Ping Yu received her Ph.D. degree

in computer science and technology in

2008 from Nanjing University, Nan-

jing. She is an associate professor with

the State Key Laboratory for Novel

Software Technology and Department

of Computer Science and Technology

at Nanjing University, Nanjing. Her research interests

include intelligent software engineering, cloud comput-

ing, and big data technology.

Xiao-Xing Ma is currently a full

professor with the State Key Labora-

tory for Novel Software Technology

and Department of Computer Science

and Technology at Nanjing University,

Nanjing. From the same university, he

received his Ph.D. degree in computer

science in 2003. His research interests include self-adap-

tive software systems, software architectures, and quali-

ty assurance for machine learning models used as soft-

ware components. He co-authored over 100 peer-re-

viewed papers and served in technical program commit-

tees of various international software engineering confer-

ences.

736 J. Comput. Sci. & Technol., May 2024, Vol.39, No.3

	1 Introduction
	2 Taxonomy of Testing Techniques
	3 Automated Unit Test Generation Tools Selection
	3.1 Selection Principles
	3.2 Overview of Selected Tools

	4 Experiment Methodology
	4.1 RQ1: Quality of Test Cases
	4.1.1 Selected CUTs for RQ1 Experiment
	4.1.2 Overview of Test Workflow
	4.1.3 Metrics

	4.2 RQ2: Effects of Combination with Symbolic Execution
	4.3 RQ3: Real Fault Detection
	4.4 RQ4: Ease of Use

	5 Experimental Results
	5.1 Answering RQ1: Quality of Test Cases
	5.1.1 Results of Code Coverage
	5.1.2 Results of Mutation Score
	5.1.3 Results of Test Suite Size
	5.1.4 Results of Readability

	5.2 Answering RQ2: Effects of Combination with Symbolic Execution
	5.2.1 JDoop vs Randoop
	5.2.2 Tardis vs EvoSuite

	5.3 Answering RQ3: Real Fault Detection
	5.3.1 Fault Detection Results
	5.3.2 How Faults Found by Different Automated Tools?

	5.4 Answering RQ4: Ease of Use
	5.4.1 Encountered Problems
	5.4.2 Usability & Friendliness

	6 Suggestions
	6.1 Readability Improvements
	6.2 Meaningful Assertions
	6.3 Test Suite Reduction
	6.4 Hybrids of Symbolic Execution and Other Test Generation Approaches

	7 Threats of Validity
	8 Conclusions
	Conflict of Interest
	References

