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Abstract    Deep learning has become the cornerstone of artificial intelligence, playing an increasingly important role in

human production and lifestyle. However, as the complexity of problem-solving increases, deep learning models become in-

creasingly  intricate,  resulting  in  a  proliferation  of  large  language  models  with  an  astonishing  number  of  parameters.

Pipeline model parallelism (PMP) has emerged as one of the mainstream approaches to addressing the significant chal-

lenge of training “big models”. This paper presents a comprehensive review of PMP. It covers the basic concepts and main

challenges  of  PMP.  It  also  comprehensively  compares  synchronous  and  asynchronous  pipeline  schedules  for  PMP  ap-

proaches, and discusses the main techniques to achieve load balance for both intra-node and inter-node training. Further-

more, the main techniques to optimize computation, storage, and communication are presented, with potential research di-

rections being discussed.
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1    Introduction

In the past decade, artificial intelligence technolo-

gies,  represented  by  deep  neural  networks  (DNNs),

have  experienced  rapid  development  and  widespread

application across various fields, including image and

video  classification[1, 2],  speech  recognition[3, 4],  lan-

guage  translation[5, 6],  and  autonomous  driving[7, 8].

With  the  increasing  complexity  of  problem-solving,

the  scale  of  DNN  model  parameters  has  also  grown

dramatically to enhance effectiveness.  This trend has

given rise  to  deep learning models  with tens  to  hun-

dreds  of  layers,  totaling  millions  and even billions  of

parameters, exemplified by models like AmoebaNet[9],

Google  Neural  Machine  Translation  (GNMT)[5],  and

Bidirectional  Encoder  Representations  from  Trans-

formers  (BERT)[10].  Notably,  in  the  field  of  natural

language processing (NLP), there has been a rapid de-

velopment  of  large-scale  pre-trained  language  models

with  a  massive  number  of  parameters[11–16],  many  of

which  are  based  on  the  Transformer[17] architecture.

The end of 2022 witnessed the release of DeepMind's

conversation model, ChatGPT, further fueling the re-

search interest in large-scale language models.

Numerous studies have shown that the predictive

performance of the models improves as deep learning

models  become  more  complex  and  the  training

dataset  grows  larger.  However,  the  rapid  growth  of

model  sizes  and  the  increasing  complexity  of  neural

architectures  have  raised  significant  computational
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challenges.  Training  large-scale  deep  learning  models

with billions of parameters demands not only substan-

tial  computational  resources  but  also  efficient  paral-

lelization  techniques.  Notably,  modern  deep  learning

training still faces the following three significant chal-

lenges.

The first challenge stems from the urgent need for

computational  resources  because  training “big  mod-

els” requires  a  substantial  amount  of  computational

resources. The second challenge involves memory limi-

tations,  as “big  models” typically  own  a  large  num-

ber of parameters, making storing these parameters in

memory  during  training  quite  challenging.  In  stark

contrast to the massive number of  model parameters

in “big models", the storage capacity of GPUs is quite

limited. For instance, an NVIDIA GeForce RTX 3090

with 24 GB memory is unable to train GPT-3, which

owns  175  billion  parameters  and  requires  700  GB

memory consumption with 32-bit  storage.  Obviously,

using  a  single  GPU  is  usually  insufficient  to  handle

such large-scale models, let alone train them effective-

ly. The third challenge is the training time. Training

“big  models” can  be  time-consuming  because  of  the

huge number of parameters,  large-scale datasets (e.g.

ImageNet-1K[18] and  YouTube-8M[19]),  and  the  com-

plexity  of  the  training  process.  The  training  period

can span from days to weeks or longer, depending on

the model size and available computational resources.

For example, training GPT-3 with an NVIDIA V100

GPU would take 288 years[20], an impractical and un-

acceptable duration.

Data  parallelism[21–23] has  emerged  as  the  most

popular method for accelerating DNN model training,

overcoming  the  computational  limitations  of  a  single

GPU.  Yet,  it  necessitates  replicating  the  entire

model's  parameters  on  each  GPU,  making  it  inca-

pable of addressing the storage limitations of a single

GPU and rendering it ineffective for training “big mo-

dels".  Unlike data parallelism, model parallelism[24–27]

divides  the  model  into  several  submodels,  which  are

then  distributed  across  different  GPUs.  Multiple

GPUs collaborate to concurrently train each submod-

el,  facilitating  parallel  training  of  the  model.  There-

fore,  model  parallelism  can  effectively  overcome  the

storage  limitations  of  a  single  GPU,  paving  the  way

for efficient training of large models. When partition-

ing  the  DNN  model  in  a  layer-wise  manner,  model

parallelism can be further classified into pipeline mod-

el  parallelism  (PMP,  also  known  as  pipeline  paral-

lelism)[28, 29].  Thanks  to  its  low  communication  over-

head and high efficiency, PMP has been considered as

one  of  the  most  popular  approaches  for  distributed

deep learning training, successfully achieving the goal

of efficient training of “big models”.
Several previous surveys have concentrated on al-

gorithms and techniques for distributed deep learning

training[30–35],  with  none  of  them specifically  focusing

on the PMP approaches. This survey provides a sys-

tematic review of PMP, a typical class of model paral-

lelism  and  one  of  the  most  popular  approaches  for

training “big  models”.  In Section 2,  we  outline  the

three  most  frequently  used  parallel  training  models

and  further  introduce  the  basic  concepts  as  well  as

the  challenges  of  PMP. Then,  in Section 3,  the  typi-

cal  synchronous  and  asynchronous  pipeline  schedule

approaches  are  discussed  in  detail,  and  a  systematic

analysis and comparison of these approaches are con-

ducted.  Next,  in Section 4,  the  key  techniques  of

achieving load balance for both intra-node and inter-

node  training  are  further  summarized.  We  then  dis-

cuss  the  main  techniques  to  optimize  the  computa-

tion,  storage,  and  communication  of  pipeline  paral-

lelism approaches in Section 5. Following that, we dis-

cuss the promising future research directions for PMP

in Section 6. Finally, Section 7 concludes the paper. 

2    Preliminary
 

2.1    Parallel Training Modes

● Data Parallelism. Data parallelism (DP)[21–23, 36]

stands  out  as  the  most  widely  used  parallel  training

mode  in  the  deep  learning  field.  Popular  deep  learn-

ing  frameworks  such  as  TensorFlow[37],  PyTorch[38],

and  Horovod[39] offer  user-friendly  APIs  to  facilitate

the training of DNN models using data parallelism. In

data  parallelism,  each  GPU  is  tasked  with  storing

complete  and  identical  model  parameters.  Different

mini-batches  of  training  data  are  then  assigned  to

specific GPUs. During each iteration of the model pa-

rameter update, all GPUs perform synchronized com-

munication,  where  the  gradients  generated  on  each

GPU  are  summed  with  gradient  synchronization

strategies  like  Parameter  Server  (PS)[40, 41] or  global

collective communications such as AllReduce[42].  Sub-

sequently, the model parameters are synchronized and

updated. Data parallelism involves splitting the train-

ing  data  and  leveraging  multiple  GPUs  to  train  the

DNN  model  in  parallel,  effectively  overcoming  the

computational limitations of a single GPU, and facili-

tating  deep  learning  training.  However,  data  paral-

568 J. Comput. Sci. & Technol., May 2024, Vol.39, No.3



lelism  encounters  two  significant  challenges.  First,

during each time of weight synchronization, the data

transferred among GPUs is proportional to the size of

the  model.  Due  to  frequent  weight  synchronization

among GPUs,  data  parallelism suffers  from excessive

inter-GPU  communication  overhead,  hindering  its

scalability as communication overheads increase with

the growth of the model size[43, 44]. Second, data paral-

lelism faces challenges in overcoming the storage limi-

tations  of  GPUs  because  it  does  not  alleviate  per-

GPU  memory  consumption.  It  is  important  to  note

that, in addition to model parameters, training DNN

models  also  demands  a  significant  amount  of  GPU

memory to store weights, activation values, and other

temporary tensor data generated during training[45, 46].

Consequently,  when  the  storage  space  occupied  by

model parameters approaches the storage capacity of

the  GPU,  loading  the  model  onto  a  single  GPU  for

training becomes unfeasible. Even if the model can fit

in  a  GPU,  the  limited  available  GPU  memory  re-

stricts training to small batch sizes, resulting in train-

ing  inefficiency  or  under-utilizing  computing  re-

sources.

● Model  Parallelism.  Model  parallelism  (MP)  in-

volves partitioning the model across GPUs, assigning

each  GPU  the  responsibility  for  weight  updates  on

specific  submodels.  Compared  with  data  parallelism,

model parallelism offers two key advantages. First, it

can overcome the storage limitations of a single GPU

through model  partitioning.  Second,  unlike  data par-

allelism,  model  parallelism  does  not  require  transfer-

ring the entire model parameters between GPUs dur-

ing  each  iteration  of  parameter  update,  resulting  in

significantly lower communication overhead.

Generally,  model  parallelism  can  be  categorized

into  two  types:  intra-layer  MP  and  inter-layer  MP.

Intra-layer  MP,  also  known  as  tensor  model  paral-

lelism  (TMP),  involves  horizontally  partitioning  the

DNN model by splitting the dataflow graph of differ-

ent operators, such as fully connected layers and con-

volutional  layers.  These  partitions  are  then  assigned

with  multiple  GPUs,  applying  each  operator  to  the

same batch of training data. Although TMP can over-

come  the  storage  limitations  of  a  single  GPU  and

achieve the goal of training “big models” with multi-

ple GPUs, it always hits two roadblocks. First, there

is a significant communication overhead, although less

than  data  parallelism,  among  all  GPUs  during  each

iteration of parameter update due to extensive AllRe-

duce operations, leading to high communication costs.

Second, especially when training models using a mul-

ti-machine  multi-GPU  system,  the  InfiniBand  net-

work  bandwidth  between  GPU  nodes  is  generally

much  smaller  than  the  NVLink  bandwidth  within

each GPU node, resulting in inefficient AllReduce op-

erations for each tensor.

Inter-layer  MP  is  widely  recognized  as  pipeline

model parallelism (PMP)[28, 29, 31, 47, 48].  The prerequi-

site for PMP is model partitioning[28, 49],  which splits

the neural  network into consecutive  stages  each con-

sisting of several consecutive layers. Subsequently, all

stages are loaded onto different GPUs, and the DNN

model  is  trained  in  a  pipelined  manner  across  all

GPUs.  In  each  complete  forward-backward  propaga-

tion, the frontmost GPU is responsible for reading the

training data, performing the forward pass, and send-

ing the output activations to the adjacent GPU. This

GPU  utilizes  the  received  activations  as  inputs  to

conduct  the  forward  pass  and  continues  to  send  the

output to the next adjacent GPU, and so on until the

last  GPU  completes  the  forward  pass.  Similarly,  in

backward  propagation,  it  starts  from  the  last  GPU,

and each GPU sends the gradients to the previous ad-

jacent  GPU until  the first  GPU completes  the back-

ward propagation.  In PMP, only the activations and

gradients  need  to  be  transmitted  between  adjacent

submodels,  resulting  in  much  lower  communication

overhead  compared  with  data  parallelism.  Currently,

PMP  has  become  one  of  the  most  effective  parallel

training  approaches  for  supporting  the  training  of

“big  models”.  Various  factors  such  as  GPU  utiliza-

tion, convergence, computation, storage, and commu-

nication should be considered to maximize the train-

ing  efficiency  when  using  the  PMP  mode  on  multi-

GPU systems.

● Hybrid Parallelism. Hybrid parallelism[31], as the

name  suggests,  combines  two  or  more  parallelism

modes  to  harness  their  advantages  to  facilitate  DNN

training. By doing so, it seeks to integrate the advan-

tages  of  two  or  more  parallel  training  modes  and

strike  a  balance  among  computation,  storage,  and

communication, enabling the efficient training of large

deep  learning  models.  Compared  with  using  a  single

parallelism  mode,  hybrid  parallelism  always  enables

the  following  two  compelling  advantages.  First,  by

combining multiple parallelization modes, hybrid par-

allelism enables the efficient scaling of model training

to large clusters of GPUs, demonstrating better scala-

bility and adaptability than using a single parallelism

mode.  This  is  crucial  for  handling  massive  datasets

and training models with billions of parameters.  Sec-
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ond, hybrid parallelism allows for better utilization of

available  resources  with  multi-level  parallelism,  mak-

ing  it  better  leverage  the  computational  power  of

modern GPU clusters.

Hybrid  parallelism  generally  encompasses  three

cases.  The  first  case  involves  combining  DP  and

TMP.  A notable  example  is  that  Alex  Krizhevsky[50]

makes  use  of  hybrid  parallelism  to  parallelize  the

training  of  convolutional  neural  networks.  In  this

case,  data  parallelism is  applied  to  the  convolutional

layer,  while  TMP  is  applied  to  the  fully  connected

layers.  The  second  case  combines  DP  and  PMP.  In

this scenario, DNN models are partitioned in a layer-

wise  manner  across  GPUs,  supporting  two  or  more

replicas of DNN models for simultaneous training. Ex-

amples  of  this  case  include  PipeDream[28] and

Chimera[47].  The  third  case  of  hybrid  parallelism  in-

volves combining DP, TMP, and PMP (known as 3D

parallelism). A representative example is DistBelief[24],

which not only distributes neurons in the same layer

across  machines  but  also  partitions  different  layers

across  machines,  integrating  the  features  of  both

TMP and PMP. Additionally, DistBelief supports DP

by applying multiple replicas of a model to optimize a

single  DNN  model.  Furthermore,  the  popular  deep

learning  frameworks,  such as  Megatron-LM[20],  Deep-

Speed,  Colossal-AI[51],  and  Merak[52],  all  support  3D

parallelism. 

2.2    Basic Concepts of PMP

L

i 1 ⩽ i ⩽ L

θi fi bi
i

F = fL ◦ . . . f2 ◦ f1

We assume  a  DNN model  consists  of  consecu-

tive layers where layer  ( ) specifies its mod-

el  parameters .  Letting  functions  and  denote

the forward pass and backward propagation of the -

th layer,  respectively, the forward pass can be repre-

sented as , and the backward prop-

B = b1 ◦ . . . bL−1 ◦ bL

D {stage1, stage2, . . . ,
stageD} stagei ∩ stagej = ϕ

i ̸= j

agation  would  be .  In  the  formal

sense, the pipeline parallelism mode splits a DNN mo-

del into  consecutive layer blocks 

,  satisfying  the  condition ,

if . Each stage is then placed on a specific GPU,

and  each  GPU is  responsible  for  the  weight  updates

of the assigned stage. Two types of intermediate data

are  required  to  be  transferred  between  adjacent

GPUs: layer outputs for  the forward pass and gradi-

ents for the backward propagation.

x

Fig.1(a)  depicts  the  model  partition,  where  a

DNN model is divided into three stages, and Fig.1(b)

illustrates  the  pipeline  training  of  mini-batch  data

with an index of . In each feedforward-backpropaga-

tion round, after a GPU completes its forward step, it

needs  to  wait  until  all  its  subsequent  GPUs  finish

their  forward and backward steps  before  it  starts  its

own backward  step.  This  nested  arrangement  results

in  the  GPU  holding  an  early  stage  having  to  wait

longer. Whenever a GPU is busy computing, all oth-

er GPUs are idle. Therefore, in the naive implementa-

tion of PMP (as shown in Fig.1(b)), all the GPUs are

active sequentially, one at a time, causing serious un-

der-utilization of the GPUs.

stage1 → . . .

→ stageD−1 → stageD
stageD → . . . → stage2 →

stage1

● Computation. For each mini-batch training, the

forward  pass  executes  in  the  order  of 

,  followed  by  the  backward

propagation, which executes 

.

● Storage.  Each  computing  device  (e.g.,  a  GPU)

should hold the model parameters corresponding to a

specific  stage.  Furthermore,  each  GPU  must  main-

tain all the intermediate variables such as activations

and gradients.

● Communication.  Inter-GPU  communication  is

iteratively  performed  during  the  pipeline  training.

Each  GPU  should  transmit  the  activations  to  the
 

Stage 1 Stage 2 Stage 3

(a)

GPU 1

GPU 2

GPU 3

Flush





 





Bubble

Forward Pass

Backward Propagation

(b)

Fig.1.  Illustration of 3-stage PMP approach. (a) Model partition. (b) Pipeline training on 3-GPU computing platform. We assume
that the time taken for backward propagation is twice that of forward pass.
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next GPU in the forward direction unless it owns the

last  layer  and  transmits  gradients  to  the  previous

GPU  in  the  backward  direction  unless  it  keeps  the

first layer. 

2.3    Challenges in PMP

There  are  three  main  challenges  in  PMP  ap-

proaches.

● The first and most important challenge is devis-

ing an effective pipeline schedule strategy that deter-

mines  the  concurrency  and  learning  efficiency  (i.e.,

the convergence rate and model accuracy) of pipeline

training.

● The  second challenge  is  achieving  load balance

between intra-node and inter-node training, which sig-

nificantly  affects  the  per-iteration training speed and

scalability of pipeline parallelism.

● The  last  challenge  is,  to  the  maximum extent,

reducing the costs of computation, storage, and com-

munication, contributing to further boosting the per-

formance of pipeline training. 

2.3.1    Effective Pipeline Schedule

i ti

ttotal

Generally,  pipeline  schedules  can  be  classified  in-

to  synchronous  pipeline  schedules  and  asynchronous

pipeline  schedules.  The  adopted  pipeline  schedule

strategy influences both the pipeline structure and the

weight  update  manner,  jointly  determining  the  total

training  time  of  the  DNN model.  Let  us  assume  the

number of  epochs required to train a DNN model  to

the target accuracy is represented by #epoch, and the

training duration for the -th epoch is denoted as .

The whole training time of a DNN model can be rep-

resented as . Then, we have 

ttotal =

#epoch∑
i=1

ti ≈ #epoch× t̄, (1)

t̄

t̄ =
∑#epoch

i=1
ti/#epoch

t̄

where  denotes  the  averaged  training  time,  i.e.,

.  (1)  reveals  that  the  whole

training time of a DNN model is determined by both

the  convergence  (or  learning  efficiency),  represented

by  parameter  #epoch  indicating  the  speed  at  which

the  model  converges,  and  the  iteration  speed,  repre-

sented by parameter  indicating the speed at  which

iterations are performed.

Synchronous  pipeline  schedule  enables  the  same

synchronous  semantics  as  that  in  data  parallelism,

hence  the  focus  is  solely  on  improving  the  iteration

speed  to  decrease  the  total  pipelined  training  time.

For  asynchronous  pipeline  parallelism,  it  is  not  only

crucial to enhance training speed but also imperative

to  ensure  the  learning  efficiency  of  pipeline  training.

Poor learning efficiency may necessitate a larger num-

ber  of  epochs  to  achieve  the  desired accuracy,  there-

by prolonging the overall training time of the model.

Consequently, for an effective pipeline schedule, strik-

ing  a  balance  between concurrency and learning  effi-

ciency  is  essential  to  achieve  efficient  and  effective

training,  especially  for  asynchronous  pipeline  sched-

ules. 

2.3.2    Load Balance for Intra-Node and

Inter-Node Training

The  popular  PMP  approaches  are  generally  de-

signed for multi-GPU machines[53], which involve two

levels  of  parallelism:  intra-node  (within  a  single  ma-

chine) parallelism and inter-node (between machines)

parallelism.  Correspondingly,  attaining  efficient

pipeline  training  should  simultaneously  consider  load

balance for both intra-node and inter-node training.

For  pipeline  training  with  multi-GPU  machines,

achieving intra-node load balance requires each GPU

to work simultaneously in any given pipeline unit and

to  spend roughly  equal  time performing  forward and

backward  propagation  calculations.  This  often  re-

quires good model partitioning methods and an effec-

tive pipeline schedule.  Achieving inter-node load bal-

ance  requires  coordinated  efforts  from  all  machines,

often  necessitating  the  use  of  hybrid  parallelism.

Achieving load balance for  intra-node and inter-node

training  helps  give  rise  to  high  throughput,  enhance

the  scalability  of  DNN  training,  and  maximize  the

utilization of multi-GPU machines. 

2.3.3    Optimization of Computation, Storage, and

Communication

In the context of pipeline model parallelism, com-

putation, storage, and communication are three of the

most important factors affecting the performance and

efficiency of DNN training.

During  the  pipeline  training,  each  GPU proceeds

through  iterations  of  forward  pass  and  backward

propagation.  Optimizing  these  computations  speeds

up  the  iteration  procedure.  Furthermore,  the  opti-

mization of  computation also includes  reducing addi-

tional  computational  overhead  beyond  forward  pass

and  backward  propagation.  Throughout  the  pipeline
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training period, the GPUs need to store model states

which include optimizer states, gradients, and param-

eters,  as  well  as  residual  states  such as activation[45].

The rapid growth in model size and unbalanced work-

load  may  lead  to  the  prevalence  of  out-of-memory

(OOM) errors in pipeline training. For PMP, the op-

timization of storage mainly includes avoiding unnec-

essary memory consumption of weights and gradients

and decreasing the activation storage cost. Data com-

munication  is  another  critical  challenge  in  pipeline

training systems, which is primarily limited by the ca-

pacity  of  high-speed  memory,  such  as  high  band-

width memory (HBM) in NVIDIA GPUs. Communi-

cation overhead, including inter-GPU communication

among  pipeline  stages  and  inter-node  gradient  com-

munication  for  data  parallelism,  can  be  a  significant

bottleneck in pipeline parallelism. The optimization of

communication  mainly  focuses  on  avoiding  unneces-

sary  communication  and  hiding  the  communication

with the overlapping of computation.

Notably,  simultaneously  reducing  the  computa-

tion,  storage,  and communication costs  is  quite  chal-

lenging  and  often  not  realistic.  It  often  requires  the

researchers to find the best tradeoff among computa-

tion,  storage,  and  communication  to  maximize  the

training efficiency of PMP. 

3    Pipeline Schedule for PMP

The schedule manner of a PMP approach actual-

ly determines how the model parameters are updated

throughout  the  entire  training  process.  Based  on  the

timing  of  gradient  update,  PMP  approaches  can  be

roughly classified into two types: synchronous pipeline

schedule and asynchronous pipeline schedule. 

3.1    Synchronous Pipeline Schedule

GPipe[29],  proposed by Google, is currently one of

the  most  well-known  and  representative  approaches

for synchronous pipeline schedules. As shown in Fig.2,

a notable characteristic of GPipe is the use of micro-

batching  to  reduce  the  number  of  bubbles  in  its

pipeline  structure  and  improve  GPU  utilization.

GPipe  employs  synchronous  stochastic  gradient  de-

scent, with periodic pipeline flushes performed at the

end  of  each  mini-batch  training.  During  each  itera-

tion, error gradients produced by backpropagation are

accumulated  across  multiple  micro-batches,  and  the

model  parameters  are  synchronously  updated  using

the accumulated gradients at each stage. Remarkably,

GPipe  only  stores  one  version  of  weights  but  con-

sumes additional memory for maintaining activations

incurred by the microbatching.

Since  the  introduction  of  GPipe,  pipeline  paral-

lelism  has  gained  significant  attention  and  research.

Numerous  synchronous  pipeline  structures  based  on

micro-batching  have  been  proposed  subsequently,  all

sharing  the  common  goal  of  reducing  pipeline  bub-

bles  and  improving  concurrency  by  adjusting  the

schedule of micro-batches within the pipeline. For ex-

ample,  DAPPLE[48] employs  an  early  backpropaga-

tion  strategy,  in  which  the  last  GPU in  the  pipeline

immediately  initiates  the  backpropagation  process

when  it  finishes  the  forward  pass  of  a  micro-batch.

Another notable feature of DAPPLE is that after the

completion of backpropagation, the storage space con-

sumed by storing activation values is released as ear-

ly  as  possible.  Some  pipeline  parallelism  approaches,

such  as  GEMS[54] and  Chimera[47],  utilize  a  dual-

pipeline  structure  in  which  two  versions  of  weights

are  trained  with  the  same  computational  resources.

By allowing the two pipelines to be executed in an in-

terleaved manner, these approaches aim to reduce the

number  of  bubbles  by  filling  them  with  forward  or

backward computations. However, although the dual-

pipeline structure can lessen the number of bubbles in

the  pipeline  structure,  it  cannot  eliminate  the  inher-

ent  bubble  overhead  in  the  synchronous  pipeline

schedules.  Moreover,  in  each  iteration,  the  dual-

pipeline mode requires performing AllReduce commu-
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Fig.2.  Illustration of GPipe on 4-GPU computing system. Each mini-batch consists of four micro-batches.
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nication among the GPUs where the symmetric stages

of  the  pipelines  are  located,  followed  by  synchroniz-

ing and updating the model parameters on each stage,

resulting  in  additional  communication  overhead.

Megatron-LM[55] employs  the  interleaved “1F1B”
(One  Forward,  One  Backward)  pipeline  schedule,

where each device in the pipeline is assigned multiple

pipeline  stages  (or  model  chunks)  and,  at  the  same

time, each stage requires less computation. The inter-

leaved “1F1B” schedule  leads  to  a  smaller  size  of

pipeline  bubble.  However,  the  same  as  GEMS  and

Chimera, Megatron-LM actually trades a higher com-

munication volume to decrease the pipeline bubbles.

Very  recently,  zero  bubble  pipeline  parallelism[56]

was  proposed  to  achieve  zero  pipeline  bubbles  under

synchronous training semantics. The key insight of ze-

ro  bubble  pipeline  parallelism  is  to  split  the  back-

ward  computation  into  the  gradient  computation  for

the  input  and  the  computation  for  the  parameters,

and  then  design  a  handcrafted  schedule  to  fill  the

bubbles with computation. A typical case of zero bub-

ble pipeline parallelism is called ZB-H2[56], which uses

a  sufficient  number  of  micro-batches  to  fill  the

pipeline bubbles and achieves a zero bubble schedule. 

3.2    Asynchronous Pipeline Schedule

PipeDream[28] is  the  most  representative  asyn-

chronous  pipeline  approach which,  for  the  first  time,

proposes to employ the “1F1B” schedule (as shown in

Fig.3)  that  allows  mini-batches/micro-batches  to  be

trained  in  an  alternating  manner  with  one  forward

pass followed by one backward propagation. Further-

more, other asynchronous pipeline approaches such as

AMPNet[57],  PipeDream-2BW[58],  SpecTrain[59],

XPipe[60],  and  AvgPipe[61] all  employ  the “1F1B”
schedule.  The “1F1B” pipeline  execution  minimizes

the  generation  of  bubbles,  resulting  in  pretty  high

GPU utilization and fast training speed. However, the

interleaved execution of  mini-batches  in  the  pipeline,

on  the  one  hand,  leads  to  the  use  of  inconsistent

weights  for  each  mini-batch/micro-batch's  forward

and  backward  passes,  thereby  affecting  the  effective-

ness of parameter updates. On the other hand, asyn-

chronous  updates  of  model  parameters  also  give  rise

to the weight staleness  issue which refers  to the fact

that  before  earlier  mini-batches  update  the  weights,

latter mini-batches adopt stale weights to derive gra-

dients[59].  The  staleness  issue  hurts  the  efficiency  of

DNN training and also could lead to unstable parame-

ter  learning.  Therefore,  a  key  focus  of  research  in

asynchronous pipeline schedules is ensuring the learn-

ing efficiency during asynchronous updates of parame-

ters.

Currently, there are two main techniques used to

ensure learning efficiency when implementing an asyn-

chronous  pipeline  schedule:  weight  stashing  and

weight  prediction.  PipeDream[28] is  the  first  to  intro-

duce  the  weight  stashing  technique,  which  requires

storing  one  version  of  weights  for  each  mini-batch

that is in progress in the pipeline. This ensures that,

at each stage, the forward pass and backward propa-

gation  of  each  mini-batch  use  the  same  weights.

While  this  technique  effectively  resolves  the  weight

inconsistency issue caused by the “1F1B” strategy, it

comes with the drawback of requiring additional stor-

age  for  multiple  versions  of  weights.  Moreover,  the

GPUs  located  at  the  front  of  the  pipeline  are  re-

quired to store a larger number of weight versions, re-

sulting  in  additional  and  unbalanced  GPU  memory

consumption.  To  minimize  the  additional  storage

overhead  incurred  by  the  weight  stashing  technique,

PipeDream-2BW[58] utilizes a technique called double-

buffered weight updates (2BW). With the 2BW tech-

nique,  for  a  micro-batch  that  has  just  entered  the

pipeline, the latest weights are used for forward pass.

Meanwhile, for micro-batches already in the pipeline,

2BW employs the previously cached weights for back-

ward propagation. This technique allows each GPU to

maintain  only  two  versions  of  weights,  reducing  the

storage  requirements  compared  with  traditional

weight  storage  techniques  used  in  PipeDream.  Fur-
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Fig.3.  Illustration of PipeDream on 4-GPU computing system.
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thermore,  WPipe[62] proposes  double-grouped  weight

updates  (2GW)  to  achieve  better  memory  efficiency

and  fresher  weight  updates  than  PipeDream-2BW.

The 2GW technique divides model partitions into two

groups, rearranges the execution order of micro-batch-

es  in  the  first  group,  and  alternatively  executes  the

update  of  each  group.  Compared  with  PipeDream-

2BW,  WPipe  halves  both  the  delayed  gradient  and

memory  redundancy.  However,  although  PipeDream,

PipeDream-2BW,  and  WPipe  effectively  address  the

issue  of  weight  inconsistency,  they  do  not  fully  re-

solve the problem of weight staleness.

Weight  prediction  is  another  technique  that  con-

tributes  to  ensuring  effective  learning  of  model  pa-

rameters,  and  can  simultaneously  alleviate  both  the

weight  inconsistency  and  weight  staleness  issues

caused  by  asynchronous  pipeline  schedules.  The

weight  prediction  technique  is  initially  proposed  and

applied  to  the  asynchronous  PMP  approach  Spec-

Train[59].  Considering  that  the  smoothed  gradient

used  by  the  momentum SGD[63, 64] optimizer  reflects

the update direction of model parameters, SpecTrain,

ahead  of  either  forward  pass  or  backward  propaga-

tion,  utilizes  the  product  of  the  smoothed  gradient

and the weight version differences to predict the mod-

el  weights  that  will  be  used  in  future  pipeline  time

steps. Unlike PipeDream and PipeDream-2BW, Spec-

Train does not require each GPU to store weights for

each active  mini-batch in  the  pipeline.  Instead,  it  si-

multaneously  alleviates  the  issues  of  weight  inconsis-

tency  and  weight  staleness  in  asynchronous  updates

by  predicting  future  weights  ahead  of  both  forward

pass and backward propagation.  However,  SpecTrain

has significant limitations as it only works well when

using momentum SGD to optimize the DNN weights.

Another  typical  asynchronous  pipeline  schedule  ap-

proach  with  the  weight  prediction  technique  is

XPipe[60],  which  constructs  the  weight  prediction

mechanism  based  on  the  Adam[65] optimizer  and

achieves better learning efficiency compared with mo-

mentum SGD used in SpecTrain.

In  addition,  Yang et  al.[66] introduced  another

asynchronous  pipeline-parallel  training  approach

PipeMare  which  uses  learning  rate  rescheduling  and

discrepancy  correction  to  improve  the  statistical  effi-

ciency of asynchronous pipeline parallelism. PipeMare

can  maximize  hardware  efficiency  by  avoiding  both

pipeline  bubbles  and  substantial  memory  increases.

Very  recently,  the  elastic  averaging[67] technique  has

been introduced into the asynchronous pipeline train-

ing.  This  technique  has  been  successfully  used  by

AvgPipe[61] which employs an elastic  averaging-based

framework to mitigate the bubble issue in GPipe and

maintain the statistical efficiency where multiple par-

allel pipelines are executed and each pipeline handles

a  batch  of  data  per  iteration.  To  fully  overlap  com-

munication with computation, AvgPipe uses the tech-

nique of advancing forward pass which schedules par-

tial forward pass in advance. 

3.3    Comparison

In this subsection, we summarize and compare the

typical  synchronous  and  asynchronous  PMP  ap-

proaches. Table 1 lists all the symbols and the corre-

sponding explanations used in this subsection. Table 2

summarizes  the  framework,  basic  data  unit,  and

schedule manner of each pipeline approach. It is obvi-

ous that all the typical pipeline approaches are imple-

mented on top of either TensorFlow or PyTorch while

PyTorch  is  a  more  popular  choice.  Furthermore,  the

popular  pipeline  approaches  tend  to  use  micro-batch

as the basic training data unit.
 

Table  1.    Descriptions of Notations Used in Subsection 3.3

Symbol Description

D Number of pipeline stages (pipeline depth)

P Number of replicated pipelines

B Micro-batch size

T Number of micro-batches in each mini-batch

N N = T ×BMini-batch size ( )

Mθ Memory consumption for weights of a stage

Ma Memory consumption for activations of a stage

 

Table  2.    Summary of Framework, Data Unit, and Schedule
Manner of Typical Pipeline Parallelism Approaches

Approach Framework Data Unit Schedule

GPipe[29] TensorFlow Micro-batch Synchronous

GEMS[54] TensorFlow Micro-batch Synchronous

DAPPLE[48] TensorFlow Micro-batch Synchronous

Chimera[47] PyTorch Micro-batch Synchronous

Megatron-LM[55] PyTorch Micro-batch Synchronous

ZB-H2[56] PyTorch Micro-batch Synchronous

AMPNet[57] TensorFlow Mini-batch Asynchronous

PipeDream[28] PyTorch Mini-batch Asynchronous

XPipe[60] PyTorch Micro-batch Asynchronous

SpecTrain[59] PyTorch Mini-batch Asynchronous

PipeDream-
2BW[58] PyTorch Micro-batch Asynchronous

PipeMare[66] PyTorch Micro-batch Asynchronous

AvgPipe[61] PyTorch Micro-batch Asynchronous

WPipe[62] PyTorch Micro-batch Asynchronous
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Table 3 shows the bubble ratio, convergence trait,

weights  memory,  activations  memory  as  well  as

whether extra memory, computation, and communica-

tion overhead are needed. For each pipeline approach,

we assume that each GPU is assigned a specific stage

and  takes  charge  of  updating  the  parameters  of  the

corresponding stage. Here we note that we regard the

execution of the naive PMP approach shown in Fig.1

as  the  baseline.  The  extra  communication  overhead

refers  to  the  extra  communication  costs  other  than

transmitting activation values and gradient values be-

tween  adjacent  GPUs.  The  extra  computation  over-

head refers to the extra computations other than per-

forming forward pass, backward propagation, and re-

computation[29].  The  extra  storage  overhead refers  to

the  extra  memory  consumption  other  than  storing  a

version of weights, activations, gradients, and a copy

of optimizer states.

D

T

v

Bubble Ratio. Table 3 reveals that the overwhelm-

ing  majority  of  synchronous  pipeline  approaches,  ex-

cept for the ZB-H2 approach, suffer from bubble over-

head.  The  percentage  of  bubbles  is  usually  deter-

mined  by  the  pipeline  depth  (i.e., )  and  the  num-

ber of micro-batches in a mini-batch (i.e., ). The ex-

ceptional case is Megatron-LM, whose bubble ratio al-

so  depends  on  the  number  of  chunks  on  each  GPU

(i.e., ).  In  contrast,  asynchronous  pipelined  parallel

approaches  always  have  a  close-to-zero  percentage  of

bubbles, resulting in a GPU utilization close to 100%.

Convergence.  As  shown  in Table 3,  all  syn-

chronous  schedule  approaches  maintain  the  same  se-

mantics  as  in  model  parallelism  and  enjoy  excellent

convergence  traits  superior  to  that  of  the  asyn-

chronous  pipeline  approaches.  For  pipeline  paral-

lelism  approaches  with  asynchronous  schedules,  the

convergence trait is dependent on effective parameter

learning, especially how the weight inconsistency and

staleness  issues  are  addressed.  AMPNet[57] executes

the “1F1B” without adopting effective measures to al-

leviate  the  weight  inconsistency  and  staleness  issues,

resulting  in  poor  convergence.  PipeDream[28],

PipeDream-2BW[58], and WPipe[62] address the weight

inconsistency issue by additionally  storing weights  of

in-flight  mini-batches  or  micro-batches  but  leaving

the  weight  staleness  issue  unsolved.  XPipe[60] and

SpecTrain[59] simultaneously  alleviate  the  weight  in-

consistency  and  staleness  issues  through  weight  pre-

diction.  Notably,  the  performance  of  SpecTrain  is

quite  limited  to  the  momentum  SGD  optimizer,  not

well  applied  to  the  cases  when  using  other  gradient-

based  optimizers  such  as  RMSprop,  Adam,  and

AdamW. Although XPipe outperforms SpecTrain, its

performance is stills limited by the choice of optimiz-

er  and  does  not  cover  all  optimizers.  Furthermore,

PipeMare[66] and  AvgPipe[61] try  to  achieve  effective

parameter  learning  with  well-designed  techniques,

while  both  of  them are  unable  to  ensure  exactly  the

same semantics as that in data parallelism.

Weights  Memory.  Regarding weight  storage  over-

head, PipeDream consumes the highest and the most
 

Table  3.    Comparisons of Typical PMP Approaches

Approach Bubble Ratio Convergence Weights Memory Activations Memory ♯Extra Mem., Comp., and Comm.

GPipe (D − 1)/(T +D − 1)* Excellent Mθ T ×Ma [×, ×, ×]

GEMS ≈ (D − 1)/(D + 1/2)* Excellent Mθ2 Ma [√, ×, √]

DAPPLE (D − 1)/(D + T − 1)* Excellent Mθ Ma D ×Ma[ , ] [×, ×, ×]

Chimera (D − 2)/(2T +D − 2)* Excellent Mθ2 (D/2 + 1)Ma D ×Ma[ , ]* [√, ×, √]

Megatron-LM (D − 1)/(v × T )♢ Excellent Mθ T ×Ma [×, ×, √]

ZB-H2 ≈ 0% Excellent Mθ (2D − 1)×Ma
§ [×, √, ×]

AMPNet ≈ 0% Poor Mθ Ma D ×Ma[ , ] [×, ×, ×]

PipeDream ≈ 0% Good Mθ D ×Mθ[ , ] Ma D ×Ma[ , ] [√, ×, ×]

XPipe ≈ 0% Good† Mθ Ma D ×Ma[ , ] [√, √, ×]

SpecTrain ≈ 0% Good‡ Mθ Ma D ×Ma[ , ] [√, √, ×]

PipeDream-2BW ≈ 0% Good 2Mθ Ma D ×Ma[ , ] [√, ×, ×]

PipeMare ≈ 0% Good Mθ Ma D ×Ma[ , ] [√, √, ×]

AvgPipe ≈ 0% Good P ×Mθ [1, D × T ]× P ×Ma [√, ×, √]

WPipe ≈ 0% Good 2Mθ T ×Ma [√, ×, ×]

v
§ ♯

Note: *:  concluded  by  [47]; ♢:  concluded  by  [55],  where  denotes  the  number  of  chunks  on  each  GPU; † :  does  not  cover  all
optimizers; ‡: only works well when using momentum SGD as the optimizer; : peak activations memory concluded by [56]; : [√, ×, √]
means requiring extra memory consumption and communication but no extra computation, and vice versa.
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D

P

P

unbalanced  memory  size.  The  frontmost  GPU  is  re-

quired  to  store  versions  of  weights,  while  the  last

GPU only needs to store one version of weights. The

memory consumption of AvgPipe is also comparative-

ly large as AvgPipe requires each GPU to maintain 

replicas  of  stage  parameters,  where  denotes  the

number of replicated pipelines. In contrast, GEMS[54],

Chimera[47],  and  PipeDream-2BW  require  each  GPU

to hold two versions of weights. WPipe also reaches a

peak weight  consumption of  two versions  of  weights,

despite the fact that the 2GW technique reduces the

overall weight memory consumption. GPipe[29], DAP-

PLE[48],  ZB[56],  AMPNet[57],  XPipe[60],  SpecTrain[59],

and PipeMare[66] have the lowest weight storage over-

head, with only one copy of weights. Similarly, Mega-

tron-LM[55] requires  each  GPU  to  store v smaller

copies of weight chunks, totaling one copy of weights,

where v is the number of chunks on each GPU.

T

Ma D ×Ma

Activations Memory. In terms of activations mem-

ory, AvgPipe consumes the most unbalanced memory

to store the activation due to the pipeline training of

multiple pipeline replicas and the microbatching strat-

egy.  GPipe,  Megatron-LM,  and  WPipe  rank  second

which  require  each  GPU  to  store  activations  be-

cause of the adopted recomputation technique. GEMS

enjoys  the  lowest  activations  memory  consumption,

only  requiring  each  GPU  to  store  one  input  activa-

tions.  The  special  case  is  Chimera,  which  highly  de-

pends on the pipeline depth. While DAPPLE and the

remaining  asynchronous  approaches  generally  have

activation  storage  overhead  ranging  between  the  in-

terval  of  and .  The point to note is  that

ZB-H2[56] requires a sufficient number of micro-batch-

es to achieve zero bubbles, thus necessitating a larger

activation  memory  footprint  than  other  PMP  ap-

proaches  with  ``1F1B''  schedule  (e.g.,  DAPPLE  and

Megatron-LM).

Extra  Memory,  Computation,  and  Communica-
tion.  For  extra  memory  consumption,  the  weight

stashing techniques used in PipeDream[28], PipeDream-

2BW[58], and WPipe[62] incur extra memory consump-

tion.  The  bi-directional  pipeline  techniques  used  in

GEMS[54] and  Chimera[47] as  well  as  the  multiple

pipeline replicas in AvgPipe[61] also incur extra memo-

ry consumption. The weight prediction technique used

in  XPipe[68] and  SpecTrain[59] requires  extra  memory

to  store  the  predicted  weights.  PipeMare[66] also  re-

quires using a bit of extra memory to hold an approx-

imation of the velocity of the weights.

For  extra  computation  overhead,  the  weight  pre-

diction  mechanisms of  XPipe[68] and SpecTrain[59] in-

troduce  extra  computation  overhead.  Furthermore,

the learning rate rescheduling and discrepancy correc-

tion  techniques  used  in  PipeMare[66] also  require  do-

ing  extra  computation.  ZB-H2[56] requires  executing

extra  computation  when  rollbacking  an  optimizer

step.

In  terms  of  extra  communication  overhead,  the

basic  communication  overhead  includes  transmitting

activation  values  during  forward  pass  and  transmit-

ting  gradients  during  backward  propagation.  Howev-

er,  it  should be noted that Chimera[47] and GEMS[54]

require the corresponding stage to perform an AllRe-

duce  operation  for  gradient  synchronization  in  each

iteration,  which  incurs  additional  communication

overhead.  The  elastic  averaging  technique  in

AvgPipe[61] adds  communication  to  maintain  weight

consistency  among  multiple  pipelines.  The  inter-

leaved “1F1B” schedule  of  Megatron-LM[55] reduces

the  bubble  size  but  also  incurs  extra  communication

due  to  the  introduction  of  chunks.  Other  pipelined

parallel methods do not have this additional commu-

nication overhead. 

4    Load Balance for Pipeline Training
 

4.1    Load Balance for Intra-Node Training

When executing pipeline training on a computing

node, model partition is one of the key techniques to

achieve load balance within a node.  The partitioning

strategy  of  pipeline  parallelism is  to  divide  the  com-

putational graph of a model into multiple consecutive

layer blocks (also known as stages),  enabling parallel

execution of operations within each stage. The objec-

tive of the partitioning strategy is to balance the com-

putation across GPUs, fully utilize computational re-

sources,  and  reduce  the  bubble  overhead.  Since  the

complexity  of  different  DNN  layers  varies,  it  would

benefit load balance a lot when partitioning the DNN

layers  in  a  balanced  way.  Much  prior  research  has

been  focused  on  addressing  this  issue.  The  most  im-

portant technique to achieve optimal partitioning of a

DNN  model  is  dynamic  programming  which  is  suc-

cessfully  used  in  PipeDream[28],  PipeDream-2BW[58],

EffTra[69],  and  DAPPLE[48].  Another  technique  for

model  partition  is  reinforcement  learning[49].  More-

over,  Alpa[70] discovers  that  the  hierarchical  search

method  can  effectively  search  for  model  partitioning

strategies, thereby contributing to load balance for in-

tra-node training.  AutoPipe[71] contains a planner for

automatically  generating  a  balanced  pipeline  parti-
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tion  scheme  with  a  heuristic  partition  search  algo-

rithm. Unity[72] defines a set of rules for computation-

al subgraph substitution based on computational opti-

mization techniques.  Furthermore,  vPipe[73] designs a

live  layer  migration  protocol  that  mitigates  layers

from intense stages to their adjacent stages to achieve

more balanced partitions with higher throughput.

Other  important  techniques  mainly  focus  on  re-

ducing the pipeline bubbles or filling them with com-

putations,  ultimately  promoting  computational  load

balance  among  GPUs.  The  related  technologies  in-

clude the followings.

1)  Microbatching,  which  achieves  the  balance  of

computation  by  hiding  pipeline  bubbles.  With  this

technique,  a  mini-batch  of  training  data  is  split  into

micro-batches  with  smaller  sizes.  The  pipelining  of

these micro-batches in a mini-batch reduces the num-

ber of  bubbles in the pipeline,  contributing to a bet-

ter load balance across GPUs.

2) The “1F1B” schedule,  which is  widely used in

asynchronous  pipeline  approaches  such  as

PipeDream[28],  PipeDream-2BW[58],  WPipe[62],  and

XPipe[68].  By  letting  all  mini-batches/micro-batches

be scheduled in a one-forward-one-backward manner,

the “1F1B” schedule  almost  generates  no  bubble

overhead,  makes  each  GPU busy  training  the  stages

at any pipeline time unit, and contributes a lot to the

load balance across GPUs.

3)  Dual-/multiple-pipeline  training,  which  is  fre-

quently used to achieve load balance on a multi-GPU

computing node. The key insight of this technique is

to combine two or more pipelines to reduce the num-

ber  of  bubbles  and  thus  achieve  more  balanced

pipelined  training.  Typical  cases  include  Chimera[47]

and  AvgPipe[61].  However,  one  should  note  that  this

technique  usually  incurs  extra  storage  overhead  for

storing  weights  and  extra  communication  overhead

for realizing weight synchronization.

4) Bubble filling, which suggests that the pipeline

bubbles can be filled with computations. A typical ex-

ample  is  PipeFisher[74] which  fills  the  pipeline  bub-

bles  with  the  work  of  K-FAC,  a  second-order  opti-

mization  based  on  the  Fisher  information  matrix,  to

gain  auxiliary  convergence  benefits  in  large  language

models (LLMs) training. 

4.2    Load Balance for Inter-Node Training

Distributed  deep  learning  always  requires  dis-

tributing the training process across multiple nodes or

devices  to  speed  up  the  training  process.  In  a  dis-

tributed setting, the intra-node communication band-

width is usually larger than that of the inter-node. It

requires a load balance training strategy to tackle this

imbalance.  Load  balance  for  inter-node  training  is

pivotal  to  scale  pipeline  parallelism  training  among

the  distributed  nodes  and  thus  maximize  efficiency

and speed up the training process.

Hybrid  parallelism  is  the  most  frequently  used

technique  to  achieve  load  balance  for  pipeline  train-

ing.  By  harnessing  the  advantages  offered  by  differ-

ent parallel training modes, hybrid parallelism strives

to achieve enhanced efficiency and scalability in mod-

el training. In particular, the mixture of pipeline par-

allelism  and  data  parallelism  is  widely  used  to  scale

pipeline  parallelism  to  multi-machine-multi-GPU

computing systems. Popular pipeline approaches such

as  GPipe[29],  PipeDream[28],  PipeDream-2BW[58],

DAPPLE[48],  and  GEMS[54] show  improved  perfor-

mance  and  scalability  when  using  this  hybrid  paral-

lelism  strategy.  Another  hybrid  training  way  to

achieve load balance across multiple computing nodes

is combining pipeline parallelism with both data par-

allelism  and  tensor  parallelism.  The  representative

cases  include  DistBelief[24],  Piper[75],  and  Megatron-

LM[20] which  efficiently  train  large-scale  language

models  on  GPU  clusters.  On  the  other  hand,  PMP

has  been  demonstrated  to  perform  well  in  utilizing

cross-server  connections with a large-scale  number of

GPUs[20, 70].  When  employing  PMP  for  inter-node

training  while  using  TMP  for  intra-node  training

(e.g.,  3D  parallelism),  the  layer  partition  techniques

described  in Subsection 4.1 can  be  easily  applied  to

achieve inter-node load balance. In this case, the mod-

el  partition  techniques  for  TMP  come  as  the  main

technique to achieve intra-layer load balance.  We do

not elaborate on the model partition techniques[20] for

TMP as these go beyond the scope of this paper. 

5    Optimization  of  Computation,  Storage,

and Communication

In this section, we focus on computation, storage,

and communication, and discuss the main techniques

to improve the performance of pipeline training. 

5.1    Optimization of Computation

The optimization of computation refers to decreas-

ing  the  computation  cost  and  avoiding  unnecessary

and  intensive  computations.  To  attain  high  perfor-

mance,  Megatron-LM[20] employs  model-specific  opti-

mizations to the computation graph. These optimiza-
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tions  include  changing  the  data  layout  in  the  trans-

former  layer,  generating  fused  kernels  for  a  sequence

of  element-wise  operations,  and  creating  two  custom

kernels  to enable the fusion of  scale,  mask,  and soft-

max (reduction) operations. PipeFB[76] proposes to ex-

ecute  the  computations  of  forward  passes  and  back-

ward propagations  with different  GPUs to  accelerate

pipeline  training.  XPipe[60] achieves  the  optimization

of  computation  by  avoiding  repetitive  weight  predic-

tion.  To  be  concrete,  for  each  mini-batch  training,

XPipe  designates  the  first  micro-batch  as  a  bell-

wether and lets it be in charge of doing weight predic-

tion  ahead  of  both  the  forward  pass  and  backward

propagation.  At  the  same  time,  the  other  micro-

batches  in  the  same mini-batch  directly  make  use  of

the  predicted  weights  by  the  bellwether  to  do  both

forward  pass  and  backward  propagation,  leading  to

much less computational cost compared with making

all  micro-batches  repeatedly  execute  weight  predic-

tions. 

5.2    Optimization of Storage

The recomputation (also known as checkpointing)[77]

technique  is  always  leveraged  to  minimize  activation

memory usage and has been adopted by many popu-

lar PMP approaches such as GPipe, PipeDream, and

DAPPLE.  By  leveraging  this  technique,  each  GPU

only  needs  to  store  output  activations  at  the  parti-

tion boundaries and recompute the forward pass dur-

ing  the  backward  propagation,  avoiding  storing  the

activations of all intermediate layers within the parti-

tion. Furthermore, the optimization of storage also in-

volves  achieving  a  balanced  memory  consumption

across GPUs. A successful example is BPipe[78] which

transfers  intermediate  activations  between  GPUs  to

enable  all  GPUs  to  utilize  comparable  amounts  of

memory.  It  is  worth  noting  that  the  optimization  of

storage does not come for free,  always at the cost of

increasing  the  computation  or  communication  cost.

For example, recomputation incurs more forward pass

computation,  and  transferring  intermediate  activa-

tions  leads  to  extra  communication  costs.  Other  ef-

forts are dedicated to making use of the CPU memo-

ry.  For  instance,  vPipe[73] utilizes  a  hybrid  combina-

tion of swap and recomputation of activation tensors

which  asynchronously  transfers  activations  to  CPU

memory and gets them back to GPU memory for re-

computing  the  forward  pass  ahead  of  the  backward

propagation.  SuperNeurons[79] adopts  offloading  and

prefetching techniques to address the challenge of lim-

ited  GPU  resident  memory.  Similar  techniques  on

storage  optimization  include  using  real-time  data

transferring[80, 76],  where  the activations  are  offloaded

to the CPU and other GPUs with free memory to re-

duce the peak memory usage of PipeDream. Addition-

ally, MPress[81] proposes a method that utilizes spare

GPU memory to accelerate training by combining re-

computation and swap methods. Furthermore, the Ze-

ro  Redundancy  Optimizer  (ZeRO)  optimizer[45],  a

technique to optimize memory, can be integrated with

3D parallelism to achieve the goal  of  optimization of

storage when training LLMs with 3D parallelism[82]. 

5.3    Optimization of Communication

The  main  approach  for  communication  optimiza-

tion  is  overlapping[28],  which  generally  refers  to  the

overlapping  of  computation  and  communication.  For

the  PMP  mode,  this  technique  usually  refers  to  the

overlapping  of  communication  with  the  computation

of a subsequent mini-batch/micro-batch. The premise

of  using  overlapping  is  that  the  computation  and

communication are completely independent and oper-

ate  on  different  tensor  data.  The  overlapping  tech-

nique  is  widely  used  in  asynchronous  pipeline  ap-

proaches  such  as  PipeDream[28],  PipeDream-2BW[20],

and  XPipe[68],  in  which,  by  using  the  overlapping  of

computation and the communication of activations or

gradients,  each  GPU  is  allowed  to  proceed  with  the

next  input  mini-batch  before  receiving  the  activa-

tions  or  gradients  from  the  previous  mini-batch.  In

addition,  GEMS[54] and  Chimera[47] also  leverage  the

overlapping  technique  to  hide  the  gradient  synchro-

nization between the bidirectional  pipelines.  Further-

more, other communication optimizations focus on de-

creasing  the  communication  redundancy,  e.g.,  the

Scatter/Gather communication optimization in Mega-

tron-LM[55]. 

6    Discussion

PMP has  been  acting  as  one  of  the  most  impor-

tant  approaches  to  training “big  models” due  to  its

low communication overhead and high efficiency. The

efficient PMP approach not only pursues rapid itera-

tion but also needs to ensure the effectiveness of  pa-

rameter learning. One should strive to achieve a good

tradeoff  among  computation,  storage,  and  communi-

cation to maximize the performance of  the PMP ap-

proach.  At  the  same  time,  consideration  should  also

be  given  to  designing  corresponding  pipeline  parallel
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training  methods  according  to  the  characteristics  of
computer  architecture  to  fully  utilize  its  computing
power. For future research in pipeline parallelism, we
suggest  two  potential  directions  that  hold  significant
importance. 

6.1    Asynchronous  Pipeline  Parallelism  with

Effective Parameter Learning

Asynchronous  pipeline  parallelism  approaches  al-

ways  achieve  high  GPU  utilization  and  demonstrate

pretty good concurrency, but their convergence prop-

erties  are  often  inferior  to  synchronous  approaches.

Designing efficient asynchronous PMP approaches re-

quires  striking  the  optimal  balance  between  concur-

rency  and  learning  efficiency.  As  mentioned  before,

weight  inconsistency  and  weight  staleness  issues  are

the  significant  flaws  in  asynchronous  pipeline  paral-

lelism with the “1F1B” schedule that result in ineffec-

tive  parameter  learning.  The  weight  stashing  tech-

nique[28, 58] can only address the weight inconsistency

problem,  leaving  the  weight  staleness  issue  unsolved.

On  the  other  hand,  the  performance  of  existing

weight  prediction  based  approaches  such  as  Spec-

Train[59] and XPipe[60] heavily rely on the update rule

of  the  used  optimizer,  despite  that  using  the  weight

prediction  technique  can  simultaneously  alleviate  the

weight inconsistency and weight staleness issues. How

to  simultaneously  and  effectively  address  the  weight

inconsistency and staleness issues still remains an un-

solved challenge.
Very  recently,  Guan et  al.[83, 84] restudied  the

weight prediction and successfully applied it to boost
the convergence of DNN training when using popular
optimizers  such  as  momentum  SGD,  RMSprop[85],
Adam[65],  and  AdamW[86].  Especially,  the  proposed
XGrad[84] framework  illustrates  that  weight  predic-
tion  can boost  all  the  commonly-used gradient-based
optimizers,  including  SGD  with  momentum,  RM-
Sprop,  Adam,  AdamW,  AdaBelief[87],  and  AdaM3[88].
Therefore,  in  future  research  on  asynchronous
pipelined  training,  we  forecast  that  dynamically  pre-
dicting  weights  based  on  the  used  optimizer  is  a
promising  way  to  improve  the  robustness  of  weight
prediction and enhance the training efficiency of asyn-
chronous pipeline parallelism approaches. 

6.2    Pipeline Parallelism for Large-Scale

Heterogeneous Computing Platforms

Currently, high-performance computing platforms,

represented  by  supercomputers,  provide  powerful

computational  capabilities  for  deep  learning.  Super-

computers  commonly  employ  heterogeneous  comput-

ing  architectures,  combining  CPUs  with  accelerators

such as GPUs, MICs,  and FPGAs. For example,  the

Tianhe-2  supercomputer[89] adopts  a  CPU+MIC  het-

erogeneous parallel architecture, while the Tianhe-1A

supercomputer[90] utilizes  a  CPU+GPU  heteroge-

neous  parallel  architecture.  Existing  distributed

pipeline  parallel  training  systems,  such  as

PipeDream[28],  PipeDream-2BW[58],  and  DAPPLE[48],

typically employ a hybrid parallel training mode that

combines  pipeline  parallelism  and  data  parallelism.

These pipeline parallelism training systems always as-

sume  homogeneous  computing  platforms  for  pipeline

parallel  training.  Furthermore,  existing  heteroge-

neous  pipeline  parallel  training  methods,  such  as

Pipe-Torch[91] and  HetPipe[92],  are  not  suitable  for

CPU+GPU/MIC heterogeneous computing platforms.

These  approaches  maintain  the  same  limitations,  as

they do not fully exploit the computational power and

storage capacity of CPUs on each node in large-scale

GPU clusters,  thus failing to fully harness the paral-

lel  computing  capability  of  supercomputers  based  on

heterogeneous  computing  architectures.  Therefore,  in

future  research,  investigating  pipeline  parallel  train-

ing systems specifically designed for CPU+GPU/MIC

heterogeneous  computing  platforms  holds  significant

potential  and  value  in  terms  of  research  significance

and practical applications. 

7    Conclusions

As a pretty promising approach, the pipeline mod-

el parallelism (PMP) mode is believed to play a more

important  role  in  addressing  the  challenge  of “big

models”.  This  paper  presented  a  comprehensive  sur-

vey  of  the  state-of-the-art  approaches  for  PMP,  in-

cluding  the  basic  concepts  and  main  challenges,  the

manner  of  pipeline  scheduling,  and  the  main  tech-

niques to achieve intra-node and inter-node load bal-

ance.  Furthermore,  it  covers  the  main  techniques  to

optimize computation, storage, and communication—
essential  factors  influencing  the  performance  of

pipelined training. Additionally, potential research di-

rections are discussed.

Although  research  on  pipeline  parallelism  has

made  significant  progress,  we  believe  there  is  still

room for improvement in pipeline parallel training, es-

pecially  in  overcoming  GPU  memory  bottlenecks  to

further enhance training efficiency. 
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