

Advances of Pipeline Model Parallelism for Deep Learning Training:
An Overview

Lei Guan1 (关　磊), Member, CCF, IEEE, Dong-Sheng Li2, * (李东升), Distinguished Member, CCF
Ji-Ye Liang3 (梁吉业), Fellow, CCF, Wen-Jian Wang3 (王文剑), Distinguished Member, CCF
Ke-Shi Ge2 (葛可适), Member, CCF, and Xi-Cheng Lu2 (卢锡城), Fellow, CCF

1 College of Science, National University of Defense Technology, Changsha 410073, China
2 College of Computer, National University of Defense Technology, Changsha 410073, China
3 School of Computer and Information Technology, Shanxi University, Taiyuan 030006, China

E-mail: guanlei@alumni.nudt.edu.cn; dsli@nudt.edu.cn; ljy@sxu.edu.cn; wjwang@sxu.edu.cn; gekeshi@nudt.edu.cn
xclu@nudt.edu.cn

Received October 19, 2023; accepted April 25, 2024.

Abstract Deep learning has become the cornerstone of artificial intelligence, playing an increasingly important role in

human production and lifestyle. However, as the complexity of problem-solving increases, deep learning models become in-

creasingly intricate, resulting in a proliferation of large language models with an astonishing number of parameters.

Pipeline model parallelism (PMP) has emerged as one of the mainstream approaches to addressing the significant chal-

lenge of training “big models”. This paper presents a comprehensive review of PMP. It covers the basic concepts and main

challenges of PMP. It also comprehensively compares synchronous and asynchronous pipeline schedules for PMP ap-

proaches, and discusses the main techniques to achieve load balance for both intra-node and inter-node training. Further-

more, the main techniques to optimize computation, storage, and communication are presented, with potential research di-

rections being discussed.

Keywords deep learning, pipeline schedule, load balance, multi-GPU system, pipeline model parallelism (PMP)

1 Introduction

In the past decade, artificial intelligence technolo-

gies, represented by deep neural networks (DNNs),

have experienced rapid development and widespread

application across various fields, including image and

video classification[1, 2], speech recognition[3, 4], lan-

guage translation[5, 6], and autonomous driving[7, 8].

With the increasing complexity of problem-solving,

the scale of DNN model parameters has also grown

dramatically to enhance effectiveness. This trend has

given rise to deep learning models with tens to hun-

dreds of layers, totaling millions and even billions of

parameters, exemplified by models like AmoebaNet[9],

Google Neural Machine Translation (GNMT)[5], and

Bidirectional Encoder Representations from Trans-

formers (BERT)[10]. Notably, in the field of natural

language processing (NLP), there has been a rapid de-

velopment of large-scale pre-trained language models

with a massive number of parameters[11–16], many of

which are based on the Transformer[17] architecture.

The end of 2022 witnessed the release of DeepMind's

conversation model, ChatGPT, further fueling the re-

search interest in large-scale language models.

Numerous studies have shown that the predictive

performance of the models improves as deep learning

models become more complex and the training

dataset grows larger. However, the rapid growth of

model sizes and the increasing complexity of neural

architectures have raised significant computational

Survey

This work is supported in part by the National Natural Science Foundation of China under Grant Nos. 62025208, U21A20473,
U21A20513, 62076154, and 62302512, and the State Administration of Science, Technology, and Industry for National Defense of
China under Grant No. WDZC20235250118.

*Corresponding Author

Guan L, Li DS, Liang JY et al. Advances of pipeline model parallelism for deep learning training: An overview. JOUR-

NAL OF COMPUTER SCIENCE AND TECHNOLOGY 39(3): 567−584 May 2024. DOI: 10.1007/s11390-024-3872-3

©Institute of Computing Technology, Chinese Academy of Sciences 2024

https://doi.org/10.1007/s11390-024-3872-3
https://doi.org/10.1007/s11390-024-3872-3
https://doi.org/10.1007/s11390-024-3872-3
https://doi.org/10.1007/s11390-024-3872-3
https://doi.org/10.1007/s11390-024-3872-3
https://doi.org/10.1007/s11390-024-3872-3
https://doi.org/10.1007/s11390-024-3872-3

challenges. Training large-scale deep learning models

with billions of parameters demands not only substan-

tial computational resources but also efficient paral-

lelization techniques. Notably, modern deep learning

training still faces the following three significant chal-

lenges.

The first challenge stems from the urgent need for

computational resources because training “big mod-

els” requires a substantial amount of computational

resources. The second challenge involves memory limi-

tations, as “big models” typically own a large num-

ber of parameters, making storing these parameters in

memory during training quite challenging. In stark

contrast to the massive number of model parameters

in “big models", the storage capacity of GPUs is quite

limited. For instance, an NVIDIA GeForce RTX 3090

with 24 GB memory is unable to train GPT-3, which

owns 175 billion parameters and requires 700 GB

memory consumption with 32-bit storage. Obviously,

using a single GPU is usually insufficient to handle

such large-scale models, let alone train them effective-

ly. The third challenge is the training time. Training

“big models” can be time-consuming because of the

huge number of parameters, large-scale datasets (e.g.

ImageNet-1K[18] and YouTube-8M[19]), and the com-

plexity of the training process. The training period

can span from days to weeks or longer, depending on

the model size and available computational resources.

For example, training GPT-3 with an NVIDIA V100

GPU would take 288 years[20], an impractical and un-

acceptable duration.

Data parallelism[21–23] has emerged as the most

popular method for accelerating DNN model training,

overcoming the computational limitations of a single

GPU. Yet, it necessitates replicating the entire

model's parameters on each GPU, making it inca-

pable of addressing the storage limitations of a single

GPU and rendering it ineffective for training “big mo-

dels". Unlike data parallelism, model parallelism[24–27]

divides the model into several submodels, which are

then distributed across different GPUs. Multiple

GPUs collaborate to concurrently train each submod-

el, facilitating parallel training of the model. There-

fore, model parallelism can effectively overcome the

storage limitations of a single GPU, paving the way

for efficient training of large models. When partition-

ing the DNN model in a layer-wise manner, model

parallelism can be further classified into pipeline mod-

el parallelism (PMP, also known as pipeline paral-

lelism)[28, 29]. Thanks to its low communication over-

head and high efficiency, PMP has been considered as

one of the most popular approaches for distributed

deep learning training, successfully achieving the goal

of efficient training of “big models”.
Several previous surveys have concentrated on al-

gorithms and techniques for distributed deep learning

training[30–35], with none of them specifically focusing

on the PMP approaches. This survey provides a sys-

tematic review of PMP, a typical class of model paral-

lelism and one of the most popular approaches for

training “big models”. In Section 2, we outline the

three most frequently used parallel training models

and further introduce the basic concepts as well as

the challenges of PMP. Then, in Section 3, the typi-

cal synchronous and asynchronous pipeline schedule

approaches are discussed in detail, and a systematic

analysis and comparison of these approaches are con-

ducted. Next, in Section 4, the key techniques of

achieving load balance for both intra-node and inter-

node training are further summarized. We then dis-

cuss the main techniques to optimize the computa-

tion, storage, and communication of pipeline paral-

lelism approaches in Section 5. Following that, we dis-

cuss the promising future research directions for PMP

in Section 6. Finally, Section 7 concludes the paper.

2 Preliminary

2.1 Parallel Training Modes

● Data Parallelism. Data parallelism (DP)[21–23, 36]

stands out as the most widely used parallel training

mode in the deep learning field. Popular deep learn-

ing frameworks such as TensorFlow[37], PyTorch[38],

and Horovod[39] offer user-friendly APIs to facilitate

the training of DNN models using data parallelism. In

data parallelism, each GPU is tasked with storing

complete and identical model parameters. Different

mini-batches of training data are then assigned to

specific GPUs. During each iteration of the model pa-

rameter update, all GPUs perform synchronized com-

munication, where the gradients generated on each

GPU are summed with gradient synchronization

strategies like Parameter Server (PS)[40, 41] or global

collective communications such as AllReduce[42]. Sub-

sequently, the model parameters are synchronized and

updated. Data parallelism involves splitting the train-

ing data and leveraging multiple GPUs to train the

DNN model in parallel, effectively overcoming the

computational limitations of a single GPU, and facili-

tating deep learning training. However, data paral-

568 J. Comput. Sci. & Technol., May 2024, Vol.39, No.3

lelism encounters two significant challenges. First,

during each time of weight synchronization, the data

transferred among GPUs is proportional to the size of

the model. Due to frequent weight synchronization

among GPUs, data parallelism suffers from excessive

inter-GPU communication overhead, hindering its

scalability as communication overheads increase with

the growth of the model size[43, 44]. Second, data paral-

lelism faces challenges in overcoming the storage limi-

tations of GPUs because it does not alleviate per-

GPU memory consumption. It is important to note

that, in addition to model parameters, training DNN

models also demands a significant amount of GPU

memory to store weights, activation values, and other

temporary tensor data generated during training[45, 46].

Consequently, when the storage space occupied by

model parameters approaches the storage capacity of

the GPU, loading the model onto a single GPU for

training becomes unfeasible. Even if the model can fit

in a GPU, the limited available GPU memory re-

stricts training to small batch sizes, resulting in train-

ing inefficiency or under-utilizing computing re-

sources.

● Model Parallelism. Model parallelism (MP) in-

volves partitioning the model across GPUs, assigning

each GPU the responsibility for weight updates on

specific submodels. Compared with data parallelism,

model parallelism offers two key advantages. First, it

can overcome the storage limitations of a single GPU

through model partitioning. Second, unlike data par-

allelism, model parallelism does not require transfer-

ring the entire model parameters between GPUs dur-

ing each iteration of parameter update, resulting in

significantly lower communication overhead.

Generally, model parallelism can be categorized

into two types: intra-layer MP and inter-layer MP.

Intra-layer MP, also known as tensor model paral-

lelism (TMP), involves horizontally partitioning the

DNN model by splitting the dataflow graph of differ-

ent operators, such as fully connected layers and con-

volutional layers. These partitions are then assigned

with multiple GPUs, applying each operator to the

same batch of training data. Although TMP can over-

come the storage limitations of a single GPU and

achieve the goal of training “big models” with multi-

ple GPUs, it always hits two roadblocks. First, there

is a significant communication overhead, although less

than data parallelism, among all GPUs during each

iteration of parameter update due to extensive AllRe-

duce operations, leading to high communication costs.

Second, especially when training models using a mul-

ti-machine multi-GPU system, the InfiniBand net-

work bandwidth between GPU nodes is generally

much smaller than the NVLink bandwidth within

each GPU node, resulting in inefficient AllReduce op-

erations for each tensor.

Inter-layer MP is widely recognized as pipeline

model parallelism (PMP)[28, 29, 31, 47, 48]. The prerequi-

site for PMP is model partitioning[28, 49], which splits

the neural network into consecutive stages each con-

sisting of several consecutive layers. Subsequently, all

stages are loaded onto different GPUs, and the DNN

model is trained in a pipelined manner across all

GPUs. In each complete forward-backward propaga-

tion, the frontmost GPU is responsible for reading the

training data, performing the forward pass, and send-

ing the output activations to the adjacent GPU. This

GPU utilizes the received activations as inputs to

conduct the forward pass and continues to send the

output to the next adjacent GPU, and so on until the

last GPU completes the forward pass. Similarly, in

backward propagation, it starts from the last GPU,

and each GPU sends the gradients to the previous ad-

jacent GPU until the first GPU completes the back-

ward propagation. In PMP, only the activations and

gradients need to be transmitted between adjacent

submodels, resulting in much lower communication

overhead compared with data parallelism. Currently,

PMP has become one of the most effective parallel

training approaches for supporting the training of

“big models”. Various factors such as GPU utiliza-

tion, convergence, computation, storage, and commu-

nication should be considered to maximize the train-

ing efficiency when using the PMP mode on multi-

GPU systems.

● Hybrid Parallelism. Hybrid parallelism[31], as the

name suggests, combines two or more parallelism

modes to harness their advantages to facilitate DNN

training. By doing so, it seeks to integrate the advan-

tages of two or more parallel training modes and

strike a balance among computation, storage, and

communication, enabling the efficient training of large

deep learning models. Compared with using a single

parallelism mode, hybrid parallelism always enables

the following two compelling advantages. First, by

combining multiple parallelization modes, hybrid par-

allelism enables the efficient scaling of model training

to large clusters of GPUs, demonstrating better scala-

bility and adaptability than using a single parallelism

mode. This is crucial for handling massive datasets

and training models with billions of parameters. Sec-

Lei Guan et al.: Advances of Pipeline Model Parallelism for Deep Learning Training: An Overview 569

ond, hybrid parallelism allows for better utilization of

available resources with multi-level parallelism, mak-

ing it better leverage the computational power of

modern GPU clusters.

Hybrid parallelism generally encompasses three

cases. The first case involves combining DP and

TMP. A notable example is that Alex Krizhevsky[50]

makes use of hybrid parallelism to parallelize the

training of convolutional neural networks. In this

case, data parallelism is applied to the convolutional

layer, while TMP is applied to the fully connected

layers. The second case combines DP and PMP. In

this scenario, DNN models are partitioned in a layer-

wise manner across GPUs, supporting two or more

replicas of DNN models for simultaneous training. Ex-

amples of this case include PipeDream[28] and

Chimera[47]. The third case of hybrid parallelism in-

volves combining DP, TMP, and PMP (known as 3D

parallelism). A representative example is DistBelief[24],

which not only distributes neurons in the same layer

across machines but also partitions different layers

across machines, integrating the features of both

TMP and PMP. Additionally, DistBelief supports DP

by applying multiple replicas of a model to optimize a

single DNN model. Furthermore, the popular deep

learning frameworks, such as Megatron-LM[20], Deep-

Speed, Colossal-AI[51], and Merak[52], all support 3D

parallelism.

2.2 Basic Concepts of PMP

L

i 1 ⩽ i ⩽ L

θi fi bi
i

F = fL ◦ . . . f2 ◦ f1

We assume a DNN model consists of consecu-

tive layers where layer () specifies its mod-

el parameters . Letting functions and denote

the forward pass and backward propagation of the -

th layer, respectively, the forward pass can be repre-

sented as , and the backward prop-

B = b1 ◦ . . . bL−1 ◦ bL

D {stage1, stage2, . . . ,
stageD} stagei ∩ stagej = ϕ

i ̸= j

agation would be . In the formal

sense, the pipeline parallelism mode splits a DNN mo-

del into consecutive layer blocks

, satisfying the condition ,

if . Each stage is then placed on a specific GPU,

and each GPU is responsible for the weight updates

of the assigned stage. Two types of intermediate data

are required to be transferred between adjacent

GPUs: layer outputs for the forward pass and gradi-

ents for the backward propagation.

x

Fig.1(a) depicts the model partition, where a

DNN model is divided into three stages, and Fig.1(b)

illustrates the pipeline training of mini-batch data

with an index of . In each feedforward-backpropaga-

tion round, after a GPU completes its forward step, it

needs to wait until all its subsequent GPUs finish

their forward and backward steps before it starts its

own backward step. This nested arrangement results

in the GPU holding an early stage having to wait

longer. Whenever a GPU is busy computing, all oth-

er GPUs are idle. Therefore, in the naive implementa-

tion of PMP (as shown in Fig.1(b)), all the GPUs are

active sequentially, one at a time, causing serious un-

der-utilization of the GPUs.

stage1 → . . .

→ stageD−1 → stageD
stageD → . . . → stage2 →

stage1

● Computation. For each mini-batch training, the

forward pass executes in the order of

, followed by the backward

propagation, which executes

.

● Storage. Each computing device (e.g., a GPU)

should hold the model parameters corresponding to a

specific stage. Furthermore, each GPU must main-

tain all the intermediate variables such as activations

and gradients.

● Communication. Inter-GPU communication is

iteratively performed during the pipeline training.

Each GPU should transmit the activations to the

Stage 1 Stage 2 Stage 3

(a)

GPU 1

GPU 2

GPU 3

Flush





 





Bubble

Forward Pass

Backward Propagation

(b)

Fig.1. Illustration of 3-stage PMP approach. (a) Model partition. (b) Pipeline training on 3-GPU computing platform. We assume
that the time taken for backward propagation is twice that of forward pass.

570 J. Comput. Sci. & Technol., May 2024, Vol.39, No.3

next GPU in the forward direction unless it owns the

last layer and transmits gradients to the previous

GPU in the backward direction unless it keeps the

first layer.

2.3 Challenges in PMP

There are three main challenges in PMP ap-

proaches.

● The first and most important challenge is devis-

ing an effective pipeline schedule strategy that deter-

mines the concurrency and learning efficiency (i.e.,

the convergence rate and model accuracy) of pipeline

training.

● The second challenge is achieving load balance

between intra-node and inter-node training, which sig-

nificantly affects the per-iteration training speed and

scalability of pipeline parallelism.

● The last challenge is, to the maximum extent,

reducing the costs of computation, storage, and com-

munication, contributing to further boosting the per-

formance of pipeline training.

2.3.1 Effective Pipeline Schedule

i ti

ttotal

Generally, pipeline schedules can be classified in-

to synchronous pipeline schedules and asynchronous

pipeline schedules. The adopted pipeline schedule

strategy influences both the pipeline structure and the

weight update manner, jointly determining the total

training time of the DNN model. Let us assume the

number of epochs required to train a DNN model to

the target accuracy is represented by #epoch, and the

training duration for the -th epoch is denoted as .

The whole training time of a DNN model can be rep-

resented as . Then, we have

ttotal =

#epoch∑
i=1

ti ≈ #epoch× t̄, (1)

t̄

t̄ =
∑#epoch

i=1
ti/#epoch

t̄

where denotes the averaged training time, i.e.,

. (1) reveals that the whole

training time of a DNN model is determined by both

the convergence (or learning efficiency), represented

by parameter #epoch indicating the speed at which

the model converges, and the iteration speed, repre-

sented by parameter indicating the speed at which

iterations are performed.

Synchronous pipeline schedule enables the same

synchronous semantics as that in data parallelism,

hence the focus is solely on improving the iteration

speed to decrease the total pipelined training time.

For asynchronous pipeline parallelism, it is not only

crucial to enhance training speed but also imperative

to ensure the learning efficiency of pipeline training.

Poor learning efficiency may necessitate a larger num-

ber of epochs to achieve the desired accuracy, there-

by prolonging the overall training time of the model.

Consequently, for an effective pipeline schedule, strik-

ing a balance between concurrency and learning effi-

ciency is essential to achieve efficient and effective

training, especially for asynchronous pipeline sched-

ules.

2.3.2 Load Balance for Intra-Node and

Inter-Node Training

The popular PMP approaches are generally de-

signed for multi-GPU machines[53], which involve two

levels of parallelism: intra-node (within a single ma-

chine) parallelism and inter-node (between machines)

parallelism. Correspondingly, attaining efficient

pipeline training should simultaneously consider load

balance for both intra-node and inter-node training.

For pipeline training with multi-GPU machines,

achieving intra-node load balance requires each GPU

to work simultaneously in any given pipeline unit and

to spend roughly equal time performing forward and

backward propagation calculations. This often re-

quires good model partitioning methods and an effec-

tive pipeline schedule. Achieving inter-node load bal-

ance requires coordinated efforts from all machines,

often necessitating the use of hybrid parallelism.

Achieving load balance for intra-node and inter-node

training helps give rise to high throughput, enhance

the scalability of DNN training, and maximize the

utilization of multi-GPU machines.

2.3.3 Optimization of Computation, Storage, and

Communication

In the context of pipeline model parallelism, com-

putation, storage, and communication are three of the

most important factors affecting the performance and

efficiency of DNN training.

During the pipeline training, each GPU proceeds

through iterations of forward pass and backward

propagation. Optimizing these computations speeds

up the iteration procedure. Furthermore, the opti-

mization of computation also includes reducing addi-

tional computational overhead beyond forward pass

and backward propagation. Throughout the pipeline

Lei Guan et al.: Advances of Pipeline Model Parallelism for Deep Learning Training: An Overview 571

training period, the GPUs need to store model states

which include optimizer states, gradients, and param-

eters, as well as residual states such as activation[45].

The rapid growth in model size and unbalanced work-

load may lead to the prevalence of out-of-memory

(OOM) errors in pipeline training. For PMP, the op-

timization of storage mainly includes avoiding unnec-

essary memory consumption of weights and gradients

and decreasing the activation storage cost. Data com-

munication is another critical challenge in pipeline

training systems, which is primarily limited by the ca-

pacity of high-speed memory, such as high band-

width memory (HBM) in NVIDIA GPUs. Communi-

cation overhead, including inter-GPU communication

among pipeline stages and inter-node gradient com-

munication for data parallelism, can be a significant

bottleneck in pipeline parallelism. The optimization of

communication mainly focuses on avoiding unneces-

sary communication and hiding the communication

with the overlapping of computation.

Notably, simultaneously reducing the computa-

tion, storage, and communication costs is quite chal-

lenging and often not realistic. It often requires the

researchers to find the best tradeoff among computa-

tion, storage, and communication to maximize the

training efficiency of PMP.

3 Pipeline Schedule for PMP

The schedule manner of a PMP approach actual-

ly determines how the model parameters are updated

throughout the entire training process. Based on the

timing of gradient update, PMP approaches can be

roughly classified into two types: synchronous pipeline

schedule and asynchronous pipeline schedule.

3.1 Synchronous Pipeline Schedule

GPipe[29], proposed by Google, is currently one of

the most well-known and representative approaches

for synchronous pipeline schedules. As shown in Fig.2,

a notable characteristic of GPipe is the use of micro-

batching to reduce the number of bubbles in its

pipeline structure and improve GPU utilization.

GPipe employs synchronous stochastic gradient de-

scent, with periodic pipeline flushes performed at the

end of each mini-batch training. During each itera-

tion, error gradients produced by backpropagation are

accumulated across multiple micro-batches, and the

model parameters are synchronously updated using

the accumulated gradients at each stage. Remarkably,

GPipe only stores one version of weights but con-

sumes additional memory for maintaining activations

incurred by the microbatching.

Since the introduction of GPipe, pipeline paral-

lelism has gained significant attention and research.

Numerous synchronous pipeline structures based on

micro-batching have been proposed subsequently, all

sharing the common goal of reducing pipeline bub-

bles and improving concurrency by adjusting the

schedule of micro-batches within the pipeline. For ex-

ample, DAPPLE[48] employs an early backpropaga-

tion strategy, in which the last GPU in the pipeline

immediately initiates the backpropagation process

when it finishes the forward pass of a micro-batch.

Another notable feature of DAPPLE is that after the

completion of backpropagation, the storage space con-

sumed by storing activation values is released as ear-

ly as possible. Some pipeline parallelism approaches,

such as GEMS[54] and Chimera[47], utilize a dual-

pipeline structure in which two versions of weights

are trained with the same computational resources.

By allowing the two pipelines to be executed in an in-

terleaved manner, these approaches aim to reduce the

number of bubbles by filling them with forward or

backward computations. However, although the dual-

pipeline structure can lessen the number of bubbles in

the pipeline structure, it cannot eliminate the inher-

ent bubble overhead in the synchronous pipeline

schedules. Moreover, in each iteration, the dual-

pipeline mode requires performing AllReduce commu-

Flush

1

21 3 4

21 3 4

21 3 4

21 3 4 2 3 4

1 2 3 4

1 2 3 4

1 2 3 4

Bubble Forward Pass

GPU 1

GPU 4

GPU 3

GPU 2

Backward Propagation

...

Fig.2. Illustration of GPipe on 4-GPU computing system. Each mini-batch consists of four micro-batches.

572 J. Comput. Sci. & Technol., May 2024, Vol.39, No.3

nication among the GPUs where the symmetric stages

of the pipelines are located, followed by synchroniz-

ing and updating the model parameters on each stage,

resulting in additional communication overhead.

Megatron-LM[55] employs the interleaved “1F1B”
(One Forward, One Backward) pipeline schedule,

where each device in the pipeline is assigned multiple

pipeline stages (or model chunks) and, at the same

time, each stage requires less computation. The inter-

leaved “1F1B” schedule leads to a smaller size of

pipeline bubble. However, the same as GEMS and

Chimera, Megatron-LM actually trades a higher com-

munication volume to decrease the pipeline bubbles.

Very recently, zero bubble pipeline parallelism[56]

was proposed to achieve zero pipeline bubbles under

synchronous training semantics. The key insight of ze-

ro bubble pipeline parallelism is to split the back-

ward computation into the gradient computation for

the input and the computation for the parameters,

and then design a handcrafted schedule to fill the

bubbles with computation. A typical case of zero bub-

ble pipeline parallelism is called ZB-H2[56], which uses

a sufficient number of micro-batches to fill the

pipeline bubbles and achieves a zero bubble schedule.

3.2 Asynchronous Pipeline Schedule

PipeDream[28] is the most representative asyn-

chronous pipeline approach which, for the first time,

proposes to employ the “1F1B” schedule (as shown in

Fig.3) that allows mini-batches/micro-batches to be

trained in an alternating manner with one forward

pass followed by one backward propagation. Further-

more, other asynchronous pipeline approaches such as

AMPNet[57], PipeDream-2BW[58], SpecTrain[59],

XPipe[60], and AvgPipe[61] all employ the “1F1B”
schedule. The “1F1B” pipeline execution minimizes

the generation of bubbles, resulting in pretty high

GPU utilization and fast training speed. However, the

interleaved execution of mini-batches in the pipeline,

on the one hand, leads to the use of inconsistent

weights for each mini-batch/micro-batch's forward

and backward passes, thereby affecting the effective-

ness of parameter updates. On the other hand, asyn-

chronous updates of model parameters also give rise

to the weight staleness issue which refers to the fact

that before earlier mini-batches update the weights,

latter mini-batches adopt stale weights to derive gra-

dients[59]. The staleness issue hurts the efficiency of

DNN training and also could lead to unstable parame-

ter learning. Therefore, a key focus of research in

asynchronous pipeline schedules is ensuring the learn-

ing efficiency during asynchronous updates of parame-

ters.

Currently, there are two main techniques used to

ensure learning efficiency when implementing an asyn-

chronous pipeline schedule: weight stashing and

weight prediction. PipeDream[28] is the first to intro-

duce the weight stashing technique, which requires

storing one version of weights for each mini-batch

that is in progress in the pipeline. This ensures that,

at each stage, the forward pass and backward propa-

gation of each mini-batch use the same weights.

While this technique effectively resolves the weight

inconsistency issue caused by the “1F1B” strategy, it

comes with the drawback of requiring additional stor-

age for multiple versions of weights. Moreover, the

GPUs located at the front of the pipeline are re-

quired to store a larger number of weight versions, re-

sulting in additional and unbalanced GPU memory

consumption. To minimize the additional storage

overhead incurred by the weight stashing technique,

PipeDream-2BW[58] utilizes a technique called double-

buffered weight updates (2BW). With the 2BW tech-

nique, for a micro-batch that has just entered the

pipeline, the latest weights are used for forward pass.

Meanwhile, for micro-batches already in the pipeline,

2BW employs the previously cached weights for back-

ward propagation. This technique allows each GPU to

maintain only two versions of weights, reducing the

storage requirements compared with traditional

weight storage techniques used in PipeDream. Fur-

1

21 3 4

21 3 4

21 3 4

21 3 4

1

3 4

1 3 4

1

2

3

3

2

2

2

5

Bubble Forward Pass

GPU 1

GPU 4

GPU 3

GPU 2

Backward Pass and Weight Update

5

5

5

5

6

6

6

6

4

5

6

7 4

7

7
...

Fig.3. Illustration of PipeDream on 4-GPU computing system.

Lei Guan et al.: Advances of Pipeline Model Parallelism for Deep Learning Training: An Overview 573

thermore, WPipe[62] proposes double-grouped weight

updates (2GW) to achieve better memory efficiency

and fresher weight updates than PipeDream-2BW.

The 2GW technique divides model partitions into two

groups, rearranges the execution order of micro-batch-

es in the first group, and alternatively executes the

update of each group. Compared with PipeDream-

2BW, WPipe halves both the delayed gradient and

memory redundancy. However, although PipeDream,

PipeDream-2BW, and WPipe effectively address the

issue of weight inconsistency, they do not fully re-

solve the problem of weight staleness.

Weight prediction is another technique that con-

tributes to ensuring effective learning of model pa-

rameters, and can simultaneously alleviate both the

weight inconsistency and weight staleness issues

caused by asynchronous pipeline schedules. The

weight prediction technique is initially proposed and

applied to the asynchronous PMP approach Spec-

Train[59]. Considering that the smoothed gradient

used by the momentum SGD[63, 64] optimizer reflects

the update direction of model parameters, SpecTrain,

ahead of either forward pass or backward propaga-

tion, utilizes the product of the smoothed gradient

and the weight version differences to predict the mod-

el weights that will be used in future pipeline time

steps. Unlike PipeDream and PipeDream-2BW, Spec-

Train does not require each GPU to store weights for

each active mini-batch in the pipeline. Instead, it si-

multaneously alleviates the issues of weight inconsis-

tency and weight staleness in asynchronous updates

by predicting future weights ahead of both forward

pass and backward propagation. However, SpecTrain

has significant limitations as it only works well when

using momentum SGD to optimize the DNN weights.

Another typical asynchronous pipeline schedule ap-

proach with the weight prediction technique is

XPipe[60], which constructs the weight prediction

mechanism based on the Adam[65] optimizer and

achieves better learning efficiency compared with mo-

mentum SGD used in SpecTrain.

In addition, Yang et al.[66] introduced another

asynchronous pipeline-parallel training approach

PipeMare which uses learning rate rescheduling and

discrepancy correction to improve the statistical effi-

ciency of asynchronous pipeline parallelism. PipeMare

can maximize hardware efficiency by avoiding both

pipeline bubbles and substantial memory increases.

Very recently, the elastic averaging[67] technique has

been introduced into the asynchronous pipeline train-

ing. This technique has been successfully used by

AvgPipe[61] which employs an elastic averaging-based

framework to mitigate the bubble issue in GPipe and

maintain the statistical efficiency where multiple par-

allel pipelines are executed and each pipeline handles

a batch of data per iteration. To fully overlap com-

munication with computation, AvgPipe uses the tech-

nique of advancing forward pass which schedules par-

tial forward pass in advance.

3.3 Comparison

In this subsection, we summarize and compare the

typical synchronous and asynchronous PMP ap-

proaches. Table 1 lists all the symbols and the corre-

sponding explanations used in this subsection. Table 2

summarizes the framework, basic data unit, and

schedule manner of each pipeline approach. It is obvi-

ous that all the typical pipeline approaches are imple-

mented on top of either TensorFlow or PyTorch while

PyTorch is a more popular choice. Furthermore, the

popular pipeline approaches tend to use micro-batch

as the basic training data unit.

Table 1. Descriptions of Notations Used in Subsection 3.3

Symbol Description

D Number of pipeline stages (pipeline depth)

P Number of replicated pipelines

B Micro-batch size

T Number of micro-batches in each mini-batch

N N = T ×BMini-batch size ()

Mθ Memory consumption for weights of a stage

Ma Memory consumption for activations of a stage

Table 2. Summary of Framework, Data Unit, and Schedule
Manner of Typical Pipeline Parallelism Approaches

Approach Framework Data Unit Schedule

GPipe[29] TensorFlow Micro-batch Synchronous

GEMS[54] TensorFlow Micro-batch Synchronous

DAPPLE[48] TensorFlow Micro-batch Synchronous

Chimera[47] PyTorch Micro-batch Synchronous

Megatron-LM[55] PyTorch Micro-batch Synchronous

ZB-H2[56] PyTorch Micro-batch Synchronous

AMPNet[57] TensorFlow Mini-batch Asynchronous

PipeDream[28] PyTorch Mini-batch Asynchronous

XPipe[60] PyTorch Micro-batch Asynchronous

SpecTrain[59] PyTorch Mini-batch Asynchronous

PipeDream-
2BW[58] PyTorch Micro-batch Asynchronous

PipeMare[66] PyTorch Micro-batch Asynchronous

AvgPipe[61] PyTorch Micro-batch Asynchronous

WPipe[62] PyTorch Micro-batch Asynchronous

574 J. Comput. Sci. & Technol., May 2024, Vol.39, No.3

Table 3 shows the bubble ratio, convergence trait,

weights memory, activations memory as well as

whether extra memory, computation, and communica-

tion overhead are needed. For each pipeline approach,

we assume that each GPU is assigned a specific stage

and takes charge of updating the parameters of the

corresponding stage. Here we note that we regard the

execution of the naive PMP approach shown in Fig.1

as the baseline. The extra communication overhead

refers to the extra communication costs other than

transmitting activation values and gradient values be-

tween adjacent GPUs. The extra computation over-

head refers to the extra computations other than per-

forming forward pass, backward propagation, and re-

computation[29]. The extra storage overhead refers to

the extra memory consumption other than storing a

version of weights, activations, gradients, and a copy

of optimizer states.

D

T

v

Bubble Ratio. Table 3 reveals that the overwhelm-

ing majority of synchronous pipeline approaches, ex-

cept for the ZB-H2 approach, suffer from bubble over-

head. The percentage of bubbles is usually deter-

mined by the pipeline depth (i.e.,) and the num-

ber of micro-batches in a mini-batch (i.e.,). The ex-

ceptional case is Megatron-LM, whose bubble ratio al-

so depends on the number of chunks on each GPU

(i.e.,). In contrast, asynchronous pipelined parallel

approaches always have a close-to-zero percentage of

bubbles, resulting in a GPU utilization close to 100%.

Convergence. As shown in Table 3, all syn-

chronous schedule approaches maintain the same se-

mantics as in model parallelism and enjoy excellent

convergence traits superior to that of the asyn-

chronous pipeline approaches. For pipeline paral-

lelism approaches with asynchronous schedules, the

convergence trait is dependent on effective parameter

learning, especially how the weight inconsistency and

staleness issues are addressed. AMPNet[57] executes

the “1F1B” without adopting effective measures to al-

leviate the weight inconsistency and staleness issues,

resulting in poor convergence. PipeDream[28],

PipeDream-2BW[58], and WPipe[62] address the weight

inconsistency issue by additionally storing weights of

in-flight mini-batches or micro-batches but leaving

the weight staleness issue unsolved. XPipe[60] and

SpecTrain[59] simultaneously alleviate the weight in-

consistency and staleness issues through weight pre-

diction. Notably, the performance of SpecTrain is

quite limited to the momentum SGD optimizer, not

well applied to the cases when using other gradient-

based optimizers such as RMSprop, Adam, and

AdamW. Although XPipe outperforms SpecTrain, its

performance is stills limited by the choice of optimiz-

er and does not cover all optimizers. Furthermore,

PipeMare[66] and AvgPipe[61] try to achieve effective

parameter learning with well-designed techniques,

while both of them are unable to ensure exactly the

same semantics as that in data parallelism.

Weights Memory. Regarding weight storage over-

head, PipeDream consumes the highest and the most

Table 3. Comparisons of Typical PMP Approaches

Approach Bubble Ratio Convergence Weights Memory Activations Memory ♯Extra Mem., Comp., and Comm.

GPipe (D − 1)/(T +D − 1)* Excellent Mθ T ×Ma [×, ×, ×]

GEMS ≈ (D − 1)/(D + 1/2)* Excellent Mθ2 Ma [√, ×, √]

DAPPLE (D − 1)/(D + T − 1)* Excellent Mθ Ma D ×Ma[,] [×, ×, ×]

Chimera (D − 2)/(2T +D − 2)* Excellent Mθ2 (D/2 + 1)Ma D ×Ma[,]* [√, ×, √]

Megatron-LM (D − 1)/(v × T)♢ Excellent Mθ T ×Ma [×, ×, √]

ZB-H2 ≈ 0% Excellent Mθ (2D − 1)×Ma
§ [×, √, ×]

AMPNet ≈ 0% Poor Mθ Ma D ×Ma[,] [×, ×, ×]

PipeDream ≈ 0% Good Mθ D ×Mθ[,] Ma D ×Ma[,] [√, ×, ×]

XPipe ≈ 0% Good† Mθ Ma D ×Ma[,] [√, √, ×]

SpecTrain ≈ 0% Good‡ Mθ Ma D ×Ma[,] [√, √, ×]

PipeDream-2BW ≈ 0% Good 2Mθ Ma D ×Ma[,] [√, ×, ×]

PipeMare ≈ 0% Good Mθ Ma D ×Ma[,] [√, √, ×]

AvgPipe ≈ 0% Good P ×Mθ [1, D × T]× P ×Ma [√, ×, √]

WPipe ≈ 0% Good 2Mθ T ×Ma [√, ×, ×]

v
§ ♯

Note: *: concluded by [47]; ♢: concluded by [55], where denotes the number of chunks on each GPU; † : does not cover all
optimizers; ‡: only works well when using momentum SGD as the optimizer; : peak activations memory concluded by [56]; : [√, ×, √]
means requiring extra memory consumption and communication but no extra computation, and vice versa.

Lei Guan et al.: Advances of Pipeline Model Parallelism for Deep Learning Training: An Overview 575

D

P

P

unbalanced memory size. The frontmost GPU is re-

quired to store versions of weights, while the last

GPU only needs to store one version of weights. The

memory consumption of AvgPipe is also comparative-

ly large as AvgPipe requires each GPU to maintain

replicas of stage parameters, where denotes the

number of replicated pipelines. In contrast, GEMS[54],

Chimera[47], and PipeDream-2BW require each GPU

to hold two versions of weights. WPipe also reaches a

peak weight consumption of two versions of weights,

despite the fact that the 2GW technique reduces the

overall weight memory consumption. GPipe[29], DAP-

PLE[48], ZB[56], AMPNet[57], XPipe[60], SpecTrain[59],

and PipeMare[66] have the lowest weight storage over-

head, with only one copy of weights. Similarly, Mega-

tron-LM[55] requires each GPU to store v smaller

copies of weight chunks, totaling one copy of weights,

where v is the number of chunks on each GPU.

T

Ma D ×Ma

Activations Memory. In terms of activations mem-

ory, AvgPipe consumes the most unbalanced memory

to store the activation due to the pipeline training of

multiple pipeline replicas and the microbatching strat-

egy. GPipe, Megatron-LM, and WPipe rank second

which require each GPU to store activations be-

cause of the adopted recomputation technique. GEMS

enjoys the lowest activations memory consumption,

only requiring each GPU to store one input activa-

tions. The special case is Chimera, which highly de-

pends on the pipeline depth. While DAPPLE and the

remaining asynchronous approaches generally have

activation storage overhead ranging between the in-

terval of and . The point to note is that

ZB-H2[56] requires a sufficient number of micro-batch-

es to achieve zero bubbles, thus necessitating a larger

activation memory footprint than other PMP ap-

proaches with ``1F1B'' schedule (e.g., DAPPLE and

Megatron-LM).

Extra Memory, Computation, and Communica-
tion. For extra memory consumption, the weight

stashing techniques used in PipeDream[28], PipeDream-

2BW[58], and WPipe[62] incur extra memory consump-

tion. The bi-directional pipeline techniques used in

GEMS[54] and Chimera[47] as well as the multiple

pipeline replicas in AvgPipe[61] also incur extra memo-

ry consumption. The weight prediction technique used

in XPipe[68] and SpecTrain[59] requires extra memory

to store the predicted weights. PipeMare[66] also re-

quires using a bit of extra memory to hold an approx-

imation of the velocity of the weights.

For extra computation overhead, the weight pre-

diction mechanisms of XPipe[68] and SpecTrain[59] in-

troduce extra computation overhead. Furthermore,

the learning rate rescheduling and discrepancy correc-

tion techniques used in PipeMare[66] also require do-

ing extra computation. ZB-H2[56] requires executing

extra computation when rollbacking an optimizer

step.

In terms of extra communication overhead, the

basic communication overhead includes transmitting

activation values during forward pass and transmit-

ting gradients during backward propagation. Howev-

er, it should be noted that Chimera[47] and GEMS[54]

require the corresponding stage to perform an AllRe-

duce operation for gradient synchronization in each

iteration, which incurs additional communication

overhead. The elastic averaging technique in

AvgPipe[61] adds communication to maintain weight

consistency among multiple pipelines. The inter-

leaved “1F1B” schedule of Megatron-LM[55] reduces

the bubble size but also incurs extra communication

due to the introduction of chunks. Other pipelined

parallel methods do not have this additional commu-

nication overhead.

4 Load Balance for Pipeline Training

4.1 Load Balance for Intra-Node Training

When executing pipeline training on a computing

node, model partition is one of the key techniques to

achieve load balance within a node. The partitioning

strategy of pipeline parallelism is to divide the com-

putational graph of a model into multiple consecutive

layer blocks (also known as stages), enabling parallel

execution of operations within each stage. The objec-

tive of the partitioning strategy is to balance the com-

putation across GPUs, fully utilize computational re-

sources, and reduce the bubble overhead. Since the

complexity of different DNN layers varies, it would

benefit load balance a lot when partitioning the DNN

layers in a balanced way. Much prior research has

been focused on addressing this issue. The most im-

portant technique to achieve optimal partitioning of a

DNN model is dynamic programming which is suc-

cessfully used in PipeDream[28], PipeDream-2BW[58],

EffTra[69], and DAPPLE[48]. Another technique for

model partition is reinforcement learning[49]. More-

over, Alpa[70] discovers that the hierarchical search

method can effectively search for model partitioning

strategies, thereby contributing to load balance for in-

tra-node training. AutoPipe[71] contains a planner for

automatically generating a balanced pipeline parti-

576 J. Comput. Sci. & Technol., May 2024, Vol.39, No.3

tion scheme with a heuristic partition search algo-

rithm. Unity[72] defines a set of rules for computation-

al subgraph substitution based on computational opti-

mization techniques. Furthermore, vPipe[73] designs a

live layer migration protocol that mitigates layers

from intense stages to their adjacent stages to achieve

more balanced partitions with higher throughput.

Other important techniques mainly focus on re-

ducing the pipeline bubbles or filling them with com-

putations, ultimately promoting computational load

balance among GPUs. The related technologies in-

clude the followings.

1) Microbatching, which achieves the balance of

computation by hiding pipeline bubbles. With this

technique, a mini-batch of training data is split into

micro-batches with smaller sizes. The pipelining of

these micro-batches in a mini-batch reduces the num-

ber of bubbles in the pipeline, contributing to a bet-

ter load balance across GPUs.

2) The “1F1B” schedule, which is widely used in

asynchronous pipeline approaches such as

PipeDream[28], PipeDream-2BW[58], WPipe[62], and

XPipe[68]. By letting all mini-batches/micro-batches

be scheduled in a one-forward-one-backward manner,

the “1F1B” schedule almost generates no bubble

overhead, makes each GPU busy training the stages

at any pipeline time unit, and contributes a lot to the

load balance across GPUs.

3) Dual-/multiple-pipeline training, which is fre-

quently used to achieve load balance on a multi-GPU

computing node. The key insight of this technique is

to combine two or more pipelines to reduce the num-

ber of bubbles and thus achieve more balanced

pipelined training. Typical cases include Chimera[47]

and AvgPipe[61]. However, one should note that this

technique usually incurs extra storage overhead for

storing weights and extra communication overhead

for realizing weight synchronization.

4) Bubble filling, which suggests that the pipeline

bubbles can be filled with computations. A typical ex-

ample is PipeFisher[74] which fills the pipeline bub-

bles with the work of K-FAC, a second-order opti-

mization based on the Fisher information matrix, to

gain auxiliary convergence benefits in large language

models (LLMs) training.

4.2 Load Balance for Inter-Node Training

Distributed deep learning always requires dis-

tributing the training process across multiple nodes or

devices to speed up the training process. In a dis-

tributed setting, the intra-node communication band-

width is usually larger than that of the inter-node. It

requires a load balance training strategy to tackle this

imbalance. Load balance for inter-node training is

pivotal to scale pipeline parallelism training among

the distributed nodes and thus maximize efficiency

and speed up the training process.

Hybrid parallelism is the most frequently used

technique to achieve load balance for pipeline train-

ing. By harnessing the advantages offered by differ-

ent parallel training modes, hybrid parallelism strives

to achieve enhanced efficiency and scalability in mod-

el training. In particular, the mixture of pipeline par-

allelism and data parallelism is widely used to scale

pipeline parallelism to multi-machine-multi-GPU

computing systems. Popular pipeline approaches such

as GPipe[29], PipeDream[28], PipeDream-2BW[58],

DAPPLE[48], and GEMS[54] show improved perfor-

mance and scalability when using this hybrid paral-

lelism strategy. Another hybrid training way to

achieve load balance across multiple computing nodes

is combining pipeline parallelism with both data par-

allelism and tensor parallelism. The representative

cases include DistBelief[24], Piper[75], and Megatron-

LM[20] which efficiently train large-scale language

models on GPU clusters. On the other hand, PMP

has been demonstrated to perform well in utilizing

cross-server connections with a large-scale number of

GPUs[20, 70]. When employing PMP for inter-node

training while using TMP for intra-node training

(e.g., 3D parallelism), the layer partition techniques

described in Subsection 4.1 can be easily applied to

achieve inter-node load balance. In this case, the mod-

el partition techniques for TMP come as the main

technique to achieve intra-layer load balance. We do

not elaborate on the model partition techniques[20] for

TMP as these go beyond the scope of this paper.

5 Optimization of Computation, Storage,

and Communication

In this section, we focus on computation, storage,

and communication, and discuss the main techniques

to improve the performance of pipeline training.

5.1 Optimization of Computation

The optimization of computation refers to decreas-

ing the computation cost and avoiding unnecessary

and intensive computations. To attain high perfor-

mance, Megatron-LM[20] employs model-specific opti-

mizations to the computation graph. These optimiza-

Lei Guan et al.: Advances of Pipeline Model Parallelism for Deep Learning Training: An Overview 577

tions include changing the data layout in the trans-

former layer, generating fused kernels for a sequence

of element-wise operations, and creating two custom

kernels to enable the fusion of scale, mask, and soft-

max (reduction) operations. PipeFB[76] proposes to ex-

ecute the computations of forward passes and back-

ward propagations with different GPUs to accelerate

pipeline training. XPipe[60] achieves the optimization

of computation by avoiding repetitive weight predic-

tion. To be concrete, for each mini-batch training,

XPipe designates the first micro-batch as a bell-

wether and lets it be in charge of doing weight predic-

tion ahead of both the forward pass and backward

propagation. At the same time, the other micro-

batches in the same mini-batch directly make use of

the predicted weights by the bellwether to do both

forward pass and backward propagation, leading to

much less computational cost compared with making

all micro-batches repeatedly execute weight predic-

tions.

5.2 Optimization of Storage

The recomputation (also known as checkpointing)[77]

technique is always leveraged to minimize activation

memory usage and has been adopted by many popu-

lar PMP approaches such as GPipe, PipeDream, and

DAPPLE. By leveraging this technique, each GPU

only needs to store output activations at the parti-

tion boundaries and recompute the forward pass dur-

ing the backward propagation, avoiding storing the

activations of all intermediate layers within the parti-

tion. Furthermore, the optimization of storage also in-

volves achieving a balanced memory consumption

across GPUs. A successful example is BPipe[78] which

transfers intermediate activations between GPUs to

enable all GPUs to utilize comparable amounts of

memory. It is worth noting that the optimization of

storage does not come for free, always at the cost of

increasing the computation or communication cost.

For example, recomputation incurs more forward pass

computation, and transferring intermediate activa-

tions leads to extra communication costs. Other ef-

forts are dedicated to making use of the CPU memo-

ry. For instance, vPipe[73] utilizes a hybrid combina-

tion of swap and recomputation of activation tensors

which asynchronously transfers activations to CPU

memory and gets them back to GPU memory for re-

computing the forward pass ahead of the backward

propagation. SuperNeurons[79] adopts offloading and

prefetching techniques to address the challenge of lim-

ited GPU resident memory. Similar techniques on

storage optimization include using real-time data

transferring[80, 76], where the activations are offloaded

to the CPU and other GPUs with free memory to re-

duce the peak memory usage of PipeDream. Addition-

ally, MPress[81] proposes a method that utilizes spare

GPU memory to accelerate training by combining re-

computation and swap methods. Furthermore, the Ze-

ro Redundancy Optimizer (ZeRO) optimizer[45], a

technique to optimize memory, can be integrated with

3D parallelism to achieve the goal of optimization of

storage when training LLMs with 3D parallelism[82].

5.3 Optimization of Communication

The main approach for communication optimiza-

tion is overlapping[28], which generally refers to the

overlapping of computation and communication. For

the PMP mode, this technique usually refers to the

overlapping of communication with the computation

of a subsequent mini-batch/micro-batch. The premise

of using overlapping is that the computation and

communication are completely independent and oper-

ate on different tensor data. The overlapping tech-

nique is widely used in asynchronous pipeline ap-

proaches such as PipeDream[28], PipeDream-2BW[20],

and XPipe[68], in which, by using the overlapping of

computation and the communication of activations or

gradients, each GPU is allowed to proceed with the

next input mini-batch before receiving the activa-

tions or gradients from the previous mini-batch. In

addition, GEMS[54] and Chimera[47] also leverage the

overlapping technique to hide the gradient synchro-

nization between the bidirectional pipelines. Further-

more, other communication optimizations focus on de-

creasing the communication redundancy, e.g., the

Scatter/Gather communication optimization in Mega-

tron-LM[55].

6 Discussion

PMP has been acting as one of the most impor-

tant approaches to training “big models” due to its

low communication overhead and high efficiency. The

efficient PMP approach not only pursues rapid itera-

tion but also needs to ensure the effectiveness of pa-

rameter learning. One should strive to achieve a good

tradeoff among computation, storage, and communi-

cation to maximize the performance of the PMP ap-

proach. At the same time, consideration should also

be given to designing corresponding pipeline parallel

578 J. Comput. Sci. & Technol., May 2024, Vol.39, No.3

training methods according to the characteristics of
computer architecture to fully utilize its computing
power. For future research in pipeline parallelism, we
suggest two potential directions that hold significant
importance.

6.1 Asynchronous Pipeline Parallelism with

Effective Parameter Learning

Asynchronous pipeline parallelism approaches al-

ways achieve high GPU utilization and demonstrate

pretty good concurrency, but their convergence prop-

erties are often inferior to synchronous approaches.

Designing efficient asynchronous PMP approaches re-

quires striking the optimal balance between concur-

rency and learning efficiency. As mentioned before,

weight inconsistency and weight staleness issues are

the significant flaws in asynchronous pipeline paral-

lelism with the “1F1B” schedule that result in ineffec-

tive parameter learning. The weight stashing tech-

nique[28, 58] can only address the weight inconsistency

problem, leaving the weight staleness issue unsolved.

On the other hand, the performance of existing

weight prediction based approaches such as Spec-

Train[59] and XPipe[60] heavily rely on the update rule

of the used optimizer, despite that using the weight

prediction technique can simultaneously alleviate the

weight inconsistency and weight staleness issues. How

to simultaneously and effectively address the weight

inconsistency and staleness issues still remains an un-

solved challenge.
Very recently, Guan et al.[83, 84] restudied the

weight prediction and successfully applied it to boost
the convergence of DNN training when using popular
optimizers such as momentum SGD, RMSprop[85],
Adam[65], and AdamW[86]. Especially, the proposed
XGrad[84] framework illustrates that weight predic-
tion can boost all the commonly-used gradient-based
optimizers, including SGD with momentum, RM-
Sprop, Adam, AdamW, AdaBelief[87], and AdaM3[88].
Therefore, in future research on asynchronous
pipelined training, we forecast that dynamically pre-
dicting weights based on the used optimizer is a
promising way to improve the robustness of weight
prediction and enhance the training efficiency of asyn-
chronous pipeline parallelism approaches.

6.2 Pipeline Parallelism for Large-Scale

Heterogeneous Computing Platforms

Currently, high-performance computing platforms,

represented by supercomputers, provide powerful

computational capabilities for deep learning. Super-

computers commonly employ heterogeneous comput-

ing architectures, combining CPUs with accelerators

such as GPUs, MICs, and FPGAs. For example, the

Tianhe-2 supercomputer[89] adopts a CPU+MIC het-

erogeneous parallel architecture, while the Tianhe-1A

supercomputer[90] utilizes a CPU+GPU heteroge-

neous parallel architecture. Existing distributed

pipeline parallel training systems, such as

PipeDream[28], PipeDream-2BW[58], and DAPPLE[48],

typically employ a hybrid parallel training mode that

combines pipeline parallelism and data parallelism.

These pipeline parallelism training systems always as-

sume homogeneous computing platforms for pipeline

parallel training. Furthermore, existing heteroge-

neous pipeline parallel training methods, such as

Pipe-Torch[91] and HetPipe[92], are not suitable for

CPU+GPU/MIC heterogeneous computing platforms.

These approaches maintain the same limitations, as

they do not fully exploit the computational power and

storage capacity of CPUs on each node in large-scale

GPU clusters, thus failing to fully harness the paral-

lel computing capability of supercomputers based on

heterogeneous computing architectures. Therefore, in

future research, investigating pipeline parallel train-

ing systems specifically designed for CPU+GPU/MIC

heterogeneous computing platforms holds significant

potential and value in terms of research significance

and practical applications.

7 Conclusions

As a pretty promising approach, the pipeline mod-

el parallelism (PMP) mode is believed to play a more

important role in addressing the challenge of “big

models”. This paper presented a comprehensive sur-

vey of the state-of-the-art approaches for PMP, in-

cluding the basic concepts and main challenges, the

manner of pipeline scheduling, and the main tech-

niques to achieve intra-node and inter-node load bal-

ance. Furthermore, it covers the main techniques to

optimize computation, storage, and communication—
essential factors influencing the performance of

pipelined training. Additionally, potential research di-

rections are discussed.

Although research on pipeline parallelism has

made significant progress, we believe there is still

room for improvement in pipeline parallel training, es-

pecially in overcoming GPU memory bottlenecks to

further enhance training efficiency.

Lei Guan et al.: Advances of Pipeline Model Parallelism for Deep Learning Training: An Overview 579

Acknowledgements Lei Guan thanks Prof.

Shi-Gang Li at Beijing University of Posts and

Telecommunications (BUPT) for stimulating discus-

sions about pipeline parallelism.

Conflict of Interest The authors declare that

they have no conflict of interest.

References

 He K M, Zhang X Y, Ren S Q, Sun J. Deep residual

learning for image recognition. In Proc. the 2016 IEEE

Conference on Computer Vision and Pattern Recognition,

Jun. 2016, pp.770–778. DOI: 10.1109/CVPR.2016.90.

[1]

 Karpathy A, Toderici G, Shetty S, Leung T, Sukthankar

R, Fei-Fei L. Large-scale video classification with convolu-

tional neural networks. In Proc. the 2014 IEEE Confer-

ence on Computer Vision and Pattern Recognition, Jun.

2014, pp.1725–1732. DOI: 10.1109/CVPR.2014.223.

[2]

 Hinton G, Deng L, Yu D, Dahl G E, Mohamed A R, Jait-

ly N, Senior A, Vanhoucke V, Nguyen P, Sainath T N,

Kingsbury B. Deep neural networks for acoustic model-

ing in speech recognition: The shared views of four re-

search groups. IEEE Signal Processing Magazine, 2012,

29(6): 82–97. DOI: 10.1109/MSP.2012.2205597.

[3]

 Li J Y. Recent advances in end-to-end automatic speech

recognition. APSIPA Trans. Signal and Information Pro-

cessing, 2022, 11(1): e8. DOI: 10.1561/116.00000050.

[4]

 Wu Y, Schuster M, Chen Z F et al. Google’s neural ma-

chine translation system: Bridging the gap between hu-

man and machine translation. arXiv: 1609.08144, 2016.

https://arxiv.org/abs/1609.08144, May 2024.

[5]

 Dabre R, Chu C H, Kunchukuttan A. A survey of multi-

lingual neural machine translation. ACM Computing Sur-

veys, 2021, 53(5): Article No. 99. DOI: 10.1145/3406095.

[6]

 Chen C Y, Seff A, Kornhauser A, Xiao J X. DeepDriving:

Learning affordance for direct perception in autonomous

driving. In Proc. the 2015 IEEE International Conference

on Computer Vision, Dec. 2015, pp.2722–2730. DOI: 10.

1109/ICCV.2015.312.

[7]

 Bojarski M, Del Testa D, Dworakowski D et al. End to

end learning for self-driving cars. arXiv: 1604.07316, 2016.

https://arxiv.org/abs/1604.07316, May 2024.

[8]

 Real E, Aggarwal A, Huang Y P, Le Q V. Regularized

evolution for image classifier architecture search. In Proc.

the 33rd AAAI Conference on Artificial Intelligence, Jan.

27–Feb. 1, 2019, pp.4780–4789. DOI: 10.1609/aaai.v33i01.

33014780.

[9]

 Devlin J, Chang M W, Lee K, Toutanova K. BERT: Pre-

training of deep bidirectional transformers for language

understanding. In Proc. the 2019 Conference of the North

American Chapter of the Association for Computational

Linguistics: Human Language Technologies, Jun. 2019,

pp.4171–4186. DOI: 10.18653/V1/N19-1423.

[10]

 Radford A, Wu J, Child R, Luan D, Amodei D, Sutskev-

er I. Language models are unsupervised multitask learn-

[11]

ers. OpenAI Blog, 2019, 1(8): 9.

 Brown T B, Mann B, Ryder N et al. Language models are

few-shot learners. arXiv: 2005.14165, 2020. https://arxiv.

org/abs/2005.14165, May 2024.

[12]

 Fedus W, Zoph B, Shazeer N. Switch transformers: Scal-

ing to trillion parameter models with simple and efficient

sparsity. The Journal of Machine Learning Research, 2022,

23(1): 120.

[13]

 Chen M, Radford A, Child R, Wu J, Jun H, Luan D,

Sutskever I. Generative pretraining from pixels. In Proc.

the 37th International Conference on Machine Learning,

Jul. 2020, Article No. 158.

[14]

 Zeng W, Ren X Z, Su T et al. PanGu-α: Largescale au-

toregressive pretrained Chinese language models with au-

to-parallel computation. arXiv: 2104.12369, 2021. https://

arxiv.org/abs/2104.12369, May 2024.

[15]

 Wang S H, Sun Y, Xiang Y et al. ERNIE 3.0 titan: Ex-

ploring larger-scale knowledge enhanced pre-training for

language understanding and generation. arXiv: 2112.

12731, 2021. https://arxiv.org/abs/2112.12731, May 2024.

[16]

 Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L,

Gomez A N, Kaiser Ł, Polosukhin I. Attention is all you

need. In Proc. the 31st International Conference on Neu-

ral Information Processing Systems, Dec. 2017, pp.6000–

6010.

[17]

 Deng J, Dong W, Socher R, Li L J, Li K, Fei-Fei L. Ima-

geNet: A large-scale hierarchical image database. In Proc.

the 2009 IEEE Conference on Computer Vision and Pat-

tern Recognition, Jun. 2009, pp.248–255. DOI: 10.1109/

CVPR.2009.5206848.

[18]

 Abu-El-Haija S, Kothari N, Lee J, Natsev P, Toderici G,

Varadarajan B, Vijayanarasimhan S. YouTube-8M: A

large-scale video classification benchmark. arXiv: 1609.

08675, 2016. https://arxiv.org/abs/1609.08675, May 2024.

[19]

 Narayanan D, Shoeybi M, Casper J et al. Efficient large-

scale language model training on GPU clusters using

megatron-LM. In Proc. the 2021 International Confer-

ence for High Performance Computing, Networking, Stor-

age and Analysis, Nov. 2021, Article No. 58. DOI: 10.

1145/3458817.3476209.

[20]

 Goyal P, Dollár P, Girshick R, Noordhuis P, Wesolowski

L, Kyrola A, Tulloch A, Jia Y Q, He K M. Accurate,

large minibatch SGD: Training ImageNet in 1 hour. arX-

iv: 1706.02677, 2017. https://arxiv.org/abs/1706.02677,

May 2024.

[21]

 You Y, Gitman I, Ginsburg B. Scaling SGD batch size to

32k for ImageNet training. arXiv: 1708.03888, 2017. https:

//arxiv.org/abs/1708.03888v1?2, May 2024.

[22]

 Assran M, Loizou N, Ballas N, Rabbat M. Stochastic gra-

dient push for distributed deep learning. In Proc. the 36th

International Conference on Machine Learning, Jun. 2019,

pp.344–353.

[23]

 Dean J, Corrado G S, Monga R et al. Large scale dis-

tributed deep networks. In Proc. the 25th International

Conference on Neural Information Processing Systems,

Dec. 2012, pp.1223–1231.

[24]

580 J. Comput. Sci. & Technol., May 2024, Vol.39, No.3

https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1109/CVPR.2014.223
https://doi.org/10.1109/MSP.2012.2205597
https://doi.org/10.1561/116.00000050
https://arxiv.org/abs/1609.08144
https://doi.org/10.1145/3406095
https://doi.org/10.1109/ICCV.2015.312
https://doi.org/10.1109/ICCV.2015.312
https://arxiv.org/abs/1604.07316
https://doi.org/10.1609/aaai.v33i01.33014780
https://doi.org/10.1609/aaai.v33i01.33014780
https://doi.org/10.18653/V1/N19-1423
https://doi.org/10.18653/V1/N19-1423
https://doi.org/10.18653/V1/N19-1423
https://arxiv.org/abs/2005.14165
https://arxiv.org/abs/2005.14165
https://arxiv.org/abs/2104.12369
https://arxiv.org/abs/2104.12369
https://arxiv.org/abs/2112.12731
https://doi.org/10.1109/CVPR.2009.5206848
https://doi.org/10.1109/CVPR.2009.5206848
https://arxiv.org/abs/1609.08675
https://doi.org/10.1145/3458817.3476209
https://doi.org/10.1145/3458817.3476209
https://arxiv.org/abs/1706.02677
https://arxiv.org/abs/1708.03888v1?2
https://arxiv.org/abs/1708.03888v1?2

 Shazeer N, Cheng Y L, Parmar N et al. Mesh-Tensor-

Flow: Deep learning for supercomputers. In Proc. the

32nd International Conference on Neural Information Pro-

cessing Systems, Dec. 2018, pp.10435–10444.

[25]

 Jia Z H, Zaharia M, Aiken A. Beyond data and model

parallelism for deep neural networks. In Proc. the 2019

SysML Conference, Mar. 31–Apr. 2, Apr. 2019, pp.1–13.

[26]

 Gan W S, Lin J C W, Fournier-Viger P, Chao H C, Yu P

S. A survey of parallel sequential pattern mining. ACM

Trans. Knowledge Discovery from Data, 2019, 13(3): 25.

DOI: 10.1145/3314107.

[27]

 Narayanan D, Harlap A, Phanishayee A, Seshadri V, De-

vanur N R, Ganger G R, Gibbons P B, Zaharia M.

PipeDream: Generalized pipeline parallelism for DNN

training. In Proc. the 27th ACM Symposium on Operat-

ing Systems Principles, Oct. 2019, pp.1–15. DOI: 10.1145/

3341301.3359646.

[28]

 Huang Y P, Cheng Y L, Bapna A, Firat O, Chen M X,

Chen D H, Lee H, Ngiam J, Le Q V, Wu Y H, Chen Z F.

GPipe: Efficient training of giant neural networks using

pipeline parallelism. In Proc. the 33rd International Con-

ference on Neural Information Processing Systems, Dec.

2019, Article No. 10.

[29]

 Pouyanfar S, Sadiq S, Yan Y L, Tian H M, Tao Y D,

Reyes M P, Shyu M L, Chen S C, Iyengar S S. A survey

on deep learning: Algorithms, techniques, and applica-

tions. ACM Computing Surveys, 2019, 51(5): 92. DOI: 10.

1145/3234150.

[30]

 Ben-Nun T, Hoefler T. Demystifying parallel and dis-

tributed deep learning: An in-depth concurrency analysis.

ACM Computing Surveys, 2020, 52(4): 65. DOI: 10.1145/

3320060.

[31]

 Tang Z H, Shi S H, Wang W, Li B, Chu X W. Communi-

cation-efficient distributed deep learning: A comprehen-

sive survey. arXiv: 2003.06307, 2020. https://arxiv.org/

abs/2003.06307, May 2024.

[32]

 Mayer R, Jacobsen H A. Scalable deep learning on dis-

tributed infrastructures: Challenges, techniques, and tools.

ACM Computing Surveys, 2021, 53(1): Article No. 3.

DOI: 10.1145/3363554.

[33]

 Liang P, Tang Y, Zhang X D, Bai Y H, Su T, Lai Z Q,

Qiao L B, Li D S. A survey on auto-parallelism of large-

scale deep learning training. IEEE Trans. Parallel and

Distributed Systems, 2023, 34(8): 2377–2390. DOI: 10.

1109/TPDS.2023.3281931.

[34]

 Shen L, Sun Y, Yu Z Y, Ding L, Tian X M, Tao D C. On

efficient training of large-scale deep learning models: A

literature review. arXiv: 2304.03589, 2023. https://arxiv.

org/abs/2304.03589, May 2024.

[35]

 Kumar S. Introduction to Parallel Programming. Cam-

bridge University Press, 2022.

[36]

 Abadi M, Barham P, Chen J N et al. TensorFlow: A sys-

tem for large-scale machine learning. In Proc. the 12th

USENIX Conference on Operating Systems Design and

Implementation, Nov. 2016, pp.265–283.

[37]

 Paszke A, Gross S, Massa F et al. PyTorch: An impera-[38]

tive style, high-performance deep learning library. In

Proc. the 33rd Conference on Neural Information Process-

ing Systems, Dec. 2019, Article No. 721.

 Sergeev A, Del Balso M. Horovod: Fast and easy dis-

tributed deep learning in TensorFlow. arXiv: 1802.05799,

2018. https://arxiv.org/abs/1802.05799, May 2024.

[39]

 Li M, G. Andersen D G, Park J W, Smola A J, Ahmed

A, Josifovski V, Long J, Shekita E J, Su B Y. Scaling dis-

tributed machine learning with the parameter server. In

Proc. the 11th USENIX Conference on Operating Sys-

tems Design and Implementation, Oct. 2014, pp.583–598.

[40]

 Cui H G, Zhang H, Ganger G R, Gibbons P B, Xing E P.

GeePs: Scalable deep learning on distributed GPUs with a

GPU-specialized parameter server. In Proc. the 11th Eu-

ropean Conference on Computer Systems, Apr. 2016, Ar-

ticle No. 4. DOI: 10.1145/2901318.2901323.

[41]

 Patarasuk P, Yuan X. Bandwidth optimal all-reduce algo-

rithms for clusters of workstations. Journal of Parallel and

Distributed Computing, 2009, 69(2): 117–124. DOI: 10.

1016/j.jpdc.2008.09.002.

[42]

 Alistarh D, Grubic D, Li J Z, Tomioka R, Vojnovic M.

QSGD: Communication-efficient SGD via gradient quan-

tization and encoding. In Proc. the 31st International

Conference on Neural Information Processing Systems,

Dec. 2017, pp.1707–1718.

[43]

 Jia Z H, Lin S N, Qi C R, Aiken A. Exploring hidden di-

mensions in parallelizing convolutional neural networks.

In Proc. the 35th International Conference on Machine

Learning, Jul. 2018, pp.2279–2288.

[44]

 Rajbhandari S, Rasley J, Ruwase O, He Y X. ZeRO:

Memory optimizations toward training trillion parameter

models. In Proc. the 2020 International Conference for

High Performance Computing, Networking, Storage and

Analysis, Nov. 2020. DOI: 10.1109/SC41405.2020.00024.

[45]

 Gusak J, Cherniuk D, Shilova A et al. Survey on efficient

training of large neural networks. In Proc. the 31st Inter-

national Joint Conference on Artificial Intelligence, Jul.

2022, pp.5494–5501. DOI: 10.24963/ijcai.2022/769.

[46]

 Li S G, Hoefler T. Chimera: Efficiently training large-

scale neural networks with bidirectional pipelines. In

Proc. the 2021 International Conference for High Perfor-

mance Computing, Networking, Storage and Analysis,

Nov. 2021, Article No. 27. DOI: 10.1145/3458817.3476145.

[47]

 Fan S Q, Rong Y, Meng C et al. DAPPLE: A pipelined

data parallel approach for training large models. In Proc.

the 26th ACM SIGPLAN Symposium on Principles and

Practice of Parallel Programming, Feb. 2021, pp.431–445.

DOI: 10.1145/3437801.3441593.

[48]

 Mirhoseini A, Pham H, Le Q V, Steiner B, Larsen R,

Zhou Y F, Kumar N, Norouzi M, Bengio S, Dean J. De-

vice placement optimization with reinforcement learning.

In Proc. the 34th International Conference on Machine

Learning, Aug. 2017, pp.2430–2439.

[49]

 Krizhevsky A. One weird trick for parallelizing convolu-

tional neural networks. arXiv: 1404.5997, 2014. https://

arxiv.org/abs/1404.5997, May 2024.

[50]

Lei Guan et al.: Advances of Pipeline Model Parallelism for Deep Learning Training: An Overview 581

https://doi.org/10.1145/3314107
https://doi.org/10.1145/3341301.3359646
https://doi.org/10.1145/3341301.3359646
https://doi.org/10.1145/3234150
https://doi.org/10.1145/3234150
https://doi.org/10.1145/3320060
https://doi.org/10.1145/3320060
https://arxiv.org/abs/2003.06307
https://arxiv.org/abs/2003.06307
https://doi.org/10.1145/3363554
https://doi.org/10.1109/TPDS.2023.3281931
https://doi.org/10.1109/TPDS.2023.3281931
https://arxiv.org/abs/2304.03589
https://arxiv.org/abs/2304.03589
https://arxiv.org/abs/1802.05799
https://doi.org/10.1145/2901318.2901323
https://doi.org/10.1016/j.jpdc.2008.09.002
https://doi.org/10.1016/j.jpdc.2008.09.002
https://doi.org/10.1109/SC41405.2020.00024
https://doi.org/10.1109/SC41405.2020.00024
https://doi.org/10.1109/SC41405.2020.00024
https://doi.org/10.24963/ijcai.2022/769
https://doi.org/10.1145/3458817.3476145
https://doi.org/10.1145/3437801.3441593
https://doi.org/10.1145/3437801.3441593
https://doi.org/10.1145/3437801.3441593
https://arxiv.org/abs/1404.5997
https://arxiv.org/abs/1404.5997

 Li S G, Liu H X, Bian Z D, Fang J R, Huang H C, Liu Y

L, Wang B X, You Y. Colossal-AI: A unified deep learn-

ing system for large-scale parallel training. In Proc. the

52nd International Conference on Parallel Processing,

Aug. 2023, pp.766–775. DOI: 10.1145/3605573.3605613.

[51]

 Lai Z Q, Li S W, Tang X D, Ge K S, Liu W J, Duan Y

B, Qiao L B, Li D S. Merak: An efficient distributed DNN

training framework with automated 3D parallelism for gi-

ant foundation models. IEEE Trans. Parallel and Dis-

tributed Systems, 2023, 34(5): 1466–1478. DOI: 10.1109/

TPDS.2023.3247001.

[52]

 Ramashekar T, Bondhugula U. Automatic data alloca-

tion and buffer management for multi-GPU machines.

ACM Trans. Architecture and Code Optimization, 2013,

10(4): 60. DOI: 10.1145/2544100.

[53]

 Jain A, Awan A A, Aljuhani A M, Hashmi J M, Antho-

ny Q G, Subramoni H, Panda D K, Machiraju R, Par-

wani A. GEMS: GPU-enabled memory-aware model-par-

allelism system for distributed DNN training. In Proc. the

2020 International Conference for High Performance Com-

puting, Networking, Storage and Analysis, Nov. 2020,

pp.1–15. DOI: 10.1109/SC41405.2020.00049.

[54]

 Shoeybi M, Patwary M, Puri R, LeGresley P, Casper J,

Catanzaro B. Megatron-LM: Training multi-billion pa-

rameter language models using model parallelism. arXiv:

1909.08053, 2019. https://arxiv.org/abs/1909.08053, May

2024.

[55]

 Qi P, Wan X, Huang G, Lin M. Zero bubble pipeline par-

allelism. In Proc. the 11th International Conference on

Learning Representations, Jul. 2023.

[56]

 Gaunt A L, Johnson M A, Riechert M, Tarlow D, Tomio-

ka R, Vytiniotis D, Webster S. AMPNet: Asynchronous

model-parallel training for dynamic neural networks. arX-

iv: 1705.09786, 2017. https://arxiv.org/abs/1705.09786,

May 2024.

[57]

 Narayanan D, Phanishayee A, Shi K Y, Chen X, Zaharia

M. Memory-efficient pipeline-parallel DNN training. In

Proc. the 38th International Conference on Machine

Learning, Jul. 2021, pp.7937–7947.

[58]

 Chen C C, Yang C L, Cheng H Y. Efficient and robust

parallel DNN training through model parallelism on mul-

ti-GPU platform. arXiv: 1809.02839, 2018. https://arxiv.

org/abs/1809.02839, May 2024.

[59]

 Guan L, Yin W T, Li D S, Lu X C. XPipe: Efficient

pipeline model parallelism for multi-GPU DNN training.

arXiv: 1911.04610, 2019. https://arxiv.org/abs/1911.04610,

May 2024.

[60]

 Chen Z H, Xu C, Qian W N, Zhou A Y. Elastic averag-

ing for efficient pipelined DNN training. In Proc. the 28th

ACM SIGPLAN Annual Symposium on Principles and

Practice of Parallel Programming, Feb. 2023, pp.380–391.

DOI: 10.1145/3572848.3577484.

[61]

 Yang P C, Zhang X M, Zhang W P, Yang M, Wei H.

Group-based interleaved pipeline parallelism for large-

scale DNN training. In Proc. the 10th International Con-

ference on Learning Representations, Apr. 2022.

[62]

 Qian N. On the momentum term in gradient descent

learning algorithms. Neural Networks, 1999, 12(1):

145–151. DOI: 10.1016/S0893-6080(98)00116-6.

[63]

 Sutskever I, Martens J, Dahl G, Hinton G. On the impor-

tance of initialization and momentum in deep learning. In

Proc. the 30th International Conference on Machine

Learning, Jun. 2013, pp.III-1139–III-1147.

[64]

 Kingma D P, Ba J. Adam: A method for stochastic opti-

mization. In Proc. the 3rd International Conference on

Learning Representations, May 2015.

[65]

 Yang B W, Zhang J, Li J, Ré C, Aberger C R, De Sa C.

PipeMare: Asynchronous pipeline parallel DNN training.

arXiv: 1910.05124, 2019. https://arxiv.org/abs/1910.05124,

May 2024.

[66]

 Zhang S X, Choromanska A, LeCun Y. Deep learning

with elastic averaging SGD. In Proc. the 28th Interna-

tional Conference on Neural Information Processing Sys-

tems, Dec. 2015, pp.685–693.

[67]

 Guan L, Qiao L B, Li D S, Sun T, Ge K S, Lu X C. An

efficient ADMM-based algorithm to Nonconvex penalized

support vector machines. In Proc. the 2018 IEEE Interna-

tional Conference on Data Mining Workshops, Nov. 2018,

pp.1209–1216. DOI: 10.1109/ICDMW.2018.00173.

[68]

 Zeng Z H, Liu C B, Tang Z, Chang W L, Li K L. Train-

ing acceleration for deep neural networks: A hybrid paral-

lelization strategy. In Proc. the 58th ACM/IEEE Design

Automation Conference, Dec. 2021, pp.1165–1170. DOI:

10.1109/DAC18074.2021.9586300.

[69]

 Zheng L M, Li Z H, Zhang H, Zhuang Y H, Chen Z F,

Huang Y P, Wang Y D, Xu Y Z, Zhuo D Y, Xing E P,

Gonzalez J E, Stoica I. Alpa: Automating inter- and In-

tra-Operator parallelism for distributed deep learning. In

Proc. the 16th USENIX Symposium on Operating Sys-

tems Design and Implementation, Jul. 2022, pp.559–578.

[70]

 Liu W J, Lai Z Q, Li S W, Duan Y B, Ge K S, Li D S.

AutoPipe: A fast pipeline parallelism approach with bal-

anced partitioning and micro-batch slicing. In Proc. the

2022 IEEE International Conference on Cluster Comput-

ing, Sept. 2022, pp.301–312. DOI: 10.1109/CLUSTER51413.

2022.00042.

[71]

 Unger C, Jia Z H, Wu W et al. Unity: Accelerating DNN

training through joint optimization of algebraic transfor-

mations and parallelization. In Proc. the 16th USENIX

Symposium on Operating Systems Design and Implemen-

tation, Jul. 2022, pp.267–284.

[72]

 Zhao S X, Li F X, Chen X S, Guan X X, Jiang J Y,

Huang D, Qing Y, Wang S, Wang P, Zhang G, Li C, Luo

P, Cui H M. VPipe: A virtualized acceleration system for

achieving efficient and scalable pipeline parallel DNN

training. IEEE Trans. Parallel and Distributed Systems,

2022, 33(3): 489–506. DOI: 10.1109/TPDS.2021.3094364.

[73]

 Osawa K, Li S, Hoefler T. Pipefisher: Efficient training of

large language models using pipelining and fisher informa-

tion matrices. In Proc. the 6th Conference on Machine

Learning and Systems, May 2023.

[74]

 Tarnawski J, Narayanan D, Phanishayee A. Piper: Multi-[75]

582 J. Comput. Sci. & Technol., May 2024, Vol.39, No.3

https://doi.org/10.1145/3605573.3605613
https://doi.org/10.1109/TPDS.2023.3247001
https://doi.org/10.1109/TPDS.2023.3247001
https://doi.org/10.1145/2544100
https://doi.org/10.1109/SC41405.2020.00049
https://arxiv.org/abs/1909.08053
https://arxiv.org/abs/1705.09786
https://arxiv.org/abs/1809.02839
https://arxiv.org/abs/1809.02839
https://arxiv.org/abs/1911.04610
https://doi.org/10.1145/3572848.3577484
https://doi.org/10.1016/S0893-6080(98)00116-6
https://doi.org/10.1016/S0893-6080(98)00116-6
https://doi.org/10.1016/S0893-6080(98)00116-6
https://doi.org/10.1016/S0893-6080(98)00116-6
https://doi.org/10.1016/S0893-6080(98)00116-6
https://arxiv.org/abs/1910.05124
https://doi.org/10.1109/ICDMW.2018.00173
https://doi.org/10.1109/DAC18074.2021.9586300
https://doi.org/10.1109/CLUSTER51413.2022.00042
https://doi.org/10.1109/CLUSTER51413.2022.00042
https://doi.org/10.1109/TPDS.2021.3094364

dimensional planner for DNN parallelization. In Proc. the

35th International Conference on Neural Information Pro-

cessing Systems, Dec. 2021, Article No. 1902.

 Jiang W, Wang B, Ma S, Hou X, Huang L B, Dai Y,

Fang J B. PipeFB: An optimized pipeline parallelism

scheme to reduce the peak memory usage. In Proc. the

22nd International Conference on Algorithms and Archi-

tectures for Parallel Processing, Oct. 2022, pp.590–604.

DOI: 10.1007/978-3-031-22677-9_31.

[76]

 Chen T Q, Xu B, Zhang C Y, Guestrin C. Training deep

nets with sublinear memory cost. arXiv: 1604.06174, 2016.

https://arxiv.org/abs/1604.06174, May 2024.

[77]

 Kim T, Kim H, Yu G I, Chun B G. BPIPE: Memory-bal-

anced pipeline parallelism for training large language

models. In Proc. the 40th International Conference on

Machine Learning, Jul. 2023, Article No. 682.

[78]

 Wang L N, Ye J M, Zhao Y Y, Wu W, Li A, Song S L,

Xu Z L, Kraska T. Superneurons: Dynamic GPU memo-

ry management for training deep neural networks. In

Proc. the 23rd ACM SIGPLAN Symposium on Principles

and Practice of Parallel Programming, Feb. 2018,

pp.41–53. DOI: 10.1145/3178487.3178491.

[79]

 Jiang W, Xu R, Ma S, Wang Q, Hou X, Lu H Y. A mem-

ory saving mechanism based on data transferring for

pipeline parallelism. In Proc. the 2021 IEEE Internation-

al Conference on Parallel & Distributed Processing with

Applications, Big Data & Cloud Computing, Sustainable

Computing & Communications, Social Computing & Net-

working (ISPA/BDCloud/SocialCom/SustainCom), Sept.

30–Oct. 3, 2021, pp.1230–1235. DOI: 10.1109/ISPA-BD-

Cloud-SocialCom-SustainCom52081.2021.00169.

[80]

 Zhou Q, Wang H Q, Yu X Y, Li C, Bai Y H, Yan F, Xu

Y L. MPress: Democratizing billion-scale model training

on multi-gpu servers via memory-saving inter-operator

parallelism. In Proc. the 29th IEEE International Sympo-

sium on High-Performance Computer Architecture, Feb.

25–Mar. 1, 2023, pp.556–569. DOI: 10.1109/HPCA56546.

2023.10071077.

[81]

 Le Scao T, Fan A, Akiki C et al. BLOOM: A 176B-pa-

rameter open-access multilingual language model. arXiv:

2211.05100, 2022. https://arxiv.org/abs/2211.05100, May

2024.

[82]

 Guan L. Weight prediction boosts the convergence of

AdamW. In Proc. the 27th Pacific-Asia Conference on

Knowledge Discovery and Data Mining, May 2023,

pp.329–340. DOI: 10.1007/978-3-031-33374-3_26.

[83]

 Guan L, Li D S, Shi Y Q, Meng J. XGrad: Boosting gra-

dient-based optimizers with weight prediction. IEEE

Trans. Pattern Analysis and Machine Intelligence. DOI:

10.1109/TPAMI.2024.3387399.

[84]

 Shi N C, Li D W, Hong M Y, Sun R Y. RMSprop con-

verges with proper hyper-parameter. In Proc. the ICLR

2021, May 2021.

[85]

 Loshchilov I, Hutter F. Decoupled weight decay regular-

ization. arXiv: 1711.05101, 2017. https://arxiv.org/abs/

1711.05101, May 2024.

[86]

 Zhuang J T, Tang T, Ding Y F et al. Adabelief optimizer:

Adapting stepsizes by the belief in observed gradients. In

Proc. the 34th International Conference on Neural Infor-

mation Processing Systems, Dec. 2020, pp.18795–18806.

[87]

 Wang Y Z, Kang Y, Qin C, Wang H, Xu Y, Zhang Y L,

Fu Y. Momentum is all you need for data-driven adap-

tive optimization. In Proc. the 23rd IEEE International

Conference on Data Mining, Dec. 2023, pp.1385–1390.

DOI: 10.1109/ICDM58522.2023.00179.

[88]

 Liao X K, Pang Z B, Wang K F, Lu Y T, Xie M, Xia J,

Dong D Z, Suo G. High performance interconnect net-

work for Tianhe system. Journal of Computer Science and

Technology, 2015, 30(2): 259–272. DOI: 10.1007/s11390-

015-1520-7.

[89]

 Yang X J, Liao X K, Lu K, Hu Q F, Song J Q, Su J S.

The TianHe-1A supercomputer: Its hardware and soft-

ware. Journal of Computer Science and Technology, 2011,

26(3): 344–351. DOI: 10.1007/s02011-011-1137-8.

[90]

 Zhan J, Zhang J H. Pipe-torch: Pipeline-based distribut-

ed deep learning in a GPU cluster with heterogeneous

networking. In Proc. the 7th International Conference on

Advanced Cloud and Big Data, Sept. 2019, pp.55–60.

DOI: 10.1109/CBD.2019.00020.

[91]

 Park J H, Yun G, Yi C M, Nguyen N T, Lee S, Choi J,

Noh S H, Choi Y R. HetPipe: Enabling large DNN train-

ing on (whimpy) heterogeneous GPU clusters through in-

tegration of pipelined model parallelism and data paral-

lelism. In Proc. the 2020 USENIX Conference on Usenix

Annual Technical Conference, Jul. 2020, Article No. 21.

[92]

Lei Guan received his Ph.D. de-

gree in computer science and technolo-

gy from the National University of De-

fense Technology (NUDT), Changsha,

in 2022. He is an associate professor in

the College of Science at NUDT. His

research interests include deep learn-

ing, parallel computing, optimization, and AI for sci-

ence.

Dong-Sheng Li received his Ph.D.

degree in computer science and tech-

nology from the National University of

Defense Technology (NUDT), Chang-

sha, in 2005. He is a professor in the

College of Computer at NUDT. He

was awarded the Chinese National Ex-

cellent Doctoral Dissertation in 2008. His research inter-

ests include distributed systems, cloud computing, and

big data processing.

Lei Guan et al.: Advances of Pipeline Model Parallelism for Deep Learning Training: An Overview 583

https://doi.org/10.1007/978-3-031-22677-9_31
https://doi.org/10.1007/978-3-031-22677-9_31
https://doi.org/10.1007/978-3-031-22677-9_31
https://doi.org/10.1007/978-3-031-22677-9_31
https://doi.org/10.1007/978-3-031-22677-9_31
https://doi.org/10.1007/978-3-031-22677-9_31
https://doi.org/10.1007/978-3-031-22677-9_31
https://doi.org/10.1007/978-3-031-22677-9_31
https://doi.org/10.1007/978-3-031-22677-9_31
https://doi.org/10.1007/978-3-031-22677-9_31
https://doi.org/10.1007/978-3-031-22677-9_31
https://arxiv.org/abs/1604.06174
https://doi.org/10.1145/3178487.3178491
https://doi.org/10.1109/ISPA-BDCloud-SocialCom-SustainCom52081.2021.00169
https://doi.org/10.1109/ISPA-BDCloud-SocialCom-SustainCom52081.2021.00169
https://doi.org/10.1109/ISPA-BDCloud-SocialCom-SustainCom52081.2021.00169
https://doi.org/10.1109/ISPA-BDCloud-SocialCom-SustainCom52081.2021.00169
https://doi.org/10.1109/ISPA-BDCloud-SocialCom-SustainCom52081.2021.00169
https://doi.org/10.1109/ISPA-BDCloud-SocialCom-SustainCom52081.2021.00169
https://doi.org/10.1109/ISPA-BDCloud-SocialCom-SustainCom52081.2021.00169
https://doi.org/10.1109/ISPA-BDCloud-SocialCom-SustainCom52081.2021.00169
https://doi.org/10.1109/HPCA56546.2023.10071077
https://doi.org/10.1109/HPCA56546.2023.10071077
https://arxiv.org/abs/2211.05100
https://doi.org/10.1007/978-3-031-33374-3_26
https://doi.org/10.1007/978-3-031-33374-3_26
https://doi.org/10.1007/978-3-031-33374-3_26
https://doi.org/10.1007/978-3-031-33374-3_26
https://doi.org/10.1007/978-3-031-33374-3_26
https://doi.org/10.1007/978-3-031-33374-3_26
https://doi.org/10.1007/978-3-031-33374-3_26
https://doi.org/10.1007/978-3-031-33374-3_26
https://doi.org/10.1007/978-3-031-33374-3_26
https://doi.org/10.1007/978-3-031-33374-3_26
https://doi.org/10.1007/978-3-031-33374-3_26
https://doi.org/10.1109/TPAMI.2024.3387399
https://arxiv.org/abs/1711.05101
https://arxiv.org/abs/1711.05101
https://doi.org/10.1109/ICDM58522.2023.00179
https://doi.org/10.1007/s11390-015-1520-7
https://doi.org/10.1007/s11390-015-1520-7
https://doi.org/10.1007/s11390-015-1520-7
https://doi.org/10.1007/s11390-015-1520-7
https://doi.org/10.1007/s11390-015-1520-7
https://doi.org/10.1007/s11390-015-1520-7
https://doi.org/10.1007/s11390-015-1520-7
https://doi.org/10.1007/s02011-011-1137-8
https://doi.org/10.1007/s02011-011-1137-8
https://doi.org/10.1007/s02011-011-1137-8
https://doi.org/10.1007/s02011-011-1137-8
https://doi.org/10.1007/s02011-011-1137-8
https://doi.org/10.1007/s02011-011-1137-8
https://doi.org/10.1007/s02011-011-1137-8
https://doi.org/10.1109/CBD.2019.00020

Ji-Ye Liang received his Ph.D. de-

gree in applied mathematics from Xi’

an Jiaotong University, Xi'an, in 2001.

He is a professor with the Key Labora-

tory of Computational Intelligence and

Chinese Information Processing of the

Ministry of Education, School of Com-

puter and Information Technology, Shanxi University,

Taiyuan. His research interests include artificial intelli-

gence, granular computing, data mining, and machine

learning.

Wen-Jian Wang received her Ph.D.

degree in applied mathematics from

Xi'an Jiaotong University, Xi'an, in

2004. Now she is a full professor and

Ph.D. supervisor of the Key Laborato-

ry of Computational Intelligence and

Chinese Information Processing of the

Ministry of Education, Shanxi University, Taiyuan. Her

research interests include machine learning, data mining,

intelligent computing, etc.

Ke-Shi Ge received his B.S. degree

in computer science and technology

from the Department of Computer

Science and Technology, Xi’an Jiao-

tong University, Xi'an, in 2015, and

his Ph.D. and M.S. degrees in comput-

er science and technology from the

College of Computer, National University of Defense

Technology (NUDT), Changsha, in 2022 and 2017, re-

spectively. He is currently an assistant professor with

NUDT. His research interests include high-performance

computing and distributed machine learning systems.

Xi-Cheng Lu received his B.S. de-

gree in computer science from the

Harbin Military Engineering Institute,

Harbin, in 1970. He is currently a pro-

fessor with the College of Computer,

National University of Defense Tech-

nology, Changsha. His research inter-

ests include distributed computing, computer networks,

and parallel computing. He is an Academician of the

Chinese Academy of Engineering.

584 J. Comput. Sci. & Technol., May 2024, Vol.39, No.3

	1 Introduction
	2 Preliminary
	2.1 Parallel Training Modes
	2.2 Basic Concepts of PMP
	2.3 Challenges in PMP
	2.3.1 Effective Pipeline Schedule
	2.3.2 Load Balance for Intra-Node and Inter-Node Training
	2.3.3 Optimization of Computation, Storage, and Communication

	3 Pipeline Schedule for PMP
	3.1 Synchronous Pipeline Schedule
	3.2 Asynchronous Pipeline Schedule
	3.3 Comparison

	4 Load Balance for Pipeline Training
	4.1 Load Balance for Intra-Node Training
	4.2 Load Balance for Inter-Node Training

	5 Optimization of Computation, Storage, and Communication
	5.1 Optimization of Computation
	5.2 Optimization of Storage
	5.3 Optimization of Communication

	6 Discussion
	6.1 Asynchronous Pipeline Parallelism with Effective Parameter Learning
	6.2 Pipeline Parallelism for Large-Scale Heterogeneous Computing Platforms

	7 Conclusions
	Acknowledgements
	Conflict of Interest
	References

