Guan L, Li DS, Liang JY et al. Advances of pipeline model parallelism for deep learning training: An overview. JOUR-
NAL OF COMPUTER SCIENCE AND TECHNOLOGY 39(3): 567-584 May 2024. DOI: 10.1007/s11390-024-3872-3

Advances of Pipeline Model Parallelism for Deep Learning Training:
An Overview

Lei Guan! (X #), Member, CCF, IEEE, Dong-Sheng Li* * (Z2%#}), Distinguished Member, CCF
Ji-Ye Liang?® (32351, Fellow, CCF, Wen-Jian Wang?® (£ 3X8), Distinguished Member, CCF
Ke-Shi Ge? (% 1[i&), Member, CCF, and Xi-Cheng Lu? (J583%), Fellow, CCF

1 College of Science, National University of Defense Technology, Changsha 410073, China
2 Oollege of Computer, National University of Defense Technology, Changsha 410073, China
3 School of Computer and Information Technology, Shanxi University, Taiyuan 030006, China

E-mail: guanlei@alumni.nudt.edu.cn; dsli@nudt.edu.cn; ljy@sxu.edu.cn; wjwang@sxu.edu.cn; gekeshi@nudt.edu.cn
xclu@nudt.edu.cn

Received October 19, 2023; accepted April 25, 2024.

Abstract
human production and lifestyle. However, as the complexity of problem-solving increases, deep learning models become in-

Deep learning has become the cornerstone of artificial intelligence, playing an increasingly important role in

creasingly intricate, resulting in a proliferation of large language models with an astonishing number of parameters.
Pipeline model parallelism (PMP) has emerged as one of the mainstream approaches to addressing the significant chal-
lenge of training “big models”. This paper presents a comprehensive review of PMP. It covers the basic concepts and main
challenges of PMP. It also comprehensively compares synchronous and asynchronous pipeline schedules for PMP ap-
proaches, and discusses the main techniques to achieve load balance for both intra-node and inter-node training. Further-
more, the main techniques to optimize computation, storage, and communication are presented, with potential research di-

rections being discussed.

Keywords

1 Introduction

In the past decade, artificial intelligence technolo-
gies, represented by deep neural networks (DNNs),
have experienced rapid development and widespread
application across various fields, including image and
video classificationl» 2, speech recognition® 4, lan-
guage translation> 6, and autonomous drivingl” 3.
With the increasing complexity of problem-solving,
the scale of DNN model parameters has also grown
dramatically to enhance effectiveness. This trend has
given rise to deep learning models with tens to hun-
dreds of layers, totaling millions and even billions of
parameters, exemplified by models like AmoebaNetl9],
Google Neural Machine Translation (GNMT)P!, and

deep learning, pipeline schedule, load balance, multi-GPU system, pipeline model parallelism (PMP)

Bidirectional Encoder Representations from Trans-
formers (BERT)!0. Notably, in the field of natural
language processing (NLP), there has been a rapid de-
velopment of large-scale pre-trained language models
with a massive number of parameters/!6 many of
which are based on the Transformerl!” architecture.
The end of 2022 witnessed the release of DeepMind’s
conversation model, ChatGPT, further fueling the re-
search interest in large-scale language models.
Numerous studies have shown that the predictive
performance of the models improves as deep learning
models become more complex and the training
dataset grows larger. However, the rapid growth of
model sizes and the increasing complexity of neural
architectures have raised significant computational

Survey

This work is supported in part by the National Natural Science Foundation of China under Grant Nos. 62025208, U21A20473,
U21A20513, 62076154, and 62302512, and the State Administration of Science, Technology, and Industry for National Defense of

China under Grant No. WDZC20235250118.
*Corresponding Author

©Institute of Computing Technology, Chinese Academy of Sciences 2024


https://doi.org/10.1007/s11390-024-3872-3
https://doi.org/10.1007/s11390-024-3872-3
https://doi.org/10.1007/s11390-024-3872-3
https://doi.org/10.1007/s11390-024-3872-3
https://doi.org/10.1007/s11390-024-3872-3
https://doi.org/10.1007/s11390-024-3872-3
https://doi.org/10.1007/s11390-024-3872-3

568

challenges. Training large-scale deep learning models
with billions of parameters demands not only substan-
tial computational resources but also efficient paral-
lelization techniques. Notably, modern deep learning
training still faces the following three significant chal-
lenges.

The first challenge stems from the urgent need for
computational resources because training “big mod-
els” requires a substantial amount of computational
resources. The second challenge involves memory limi-
tations, as “big models” typically own a large num-
ber of parameters, making storing these parameters in
memory during training quite challenging. In stark
contrast to the massive number of model parameters
in “big models”, the storage capacity of GPUs is quite
limited. For instance, an NVIDIA GeForce RTX 3090
with 24 GB memory is unable to train GPT-3, which
owns 175 billion parameters and requires 700 GB
memory consumption with 32-bit storage. Obviously,
using a single GPU is usually insufficient to handle
such large-scale models, let alone train them effective-
ly. The third challenge is the training time. Training
“big models” can be time-consuming because of the
huge number of parameters, large-scale datasets (e.g.
ImageNet-1K['8) and YouTube-8M19)), and the com-
plexity of the training process. The training period
can span from days to weeks or longer, depending on
the model size and available computational resources.
For example, training GPT-3 with an NVIDIA V100
GPU would take 288 years20), an impractical and un-
acceptable duration.

Data parallelism/1-23] has emerged as the most
popular method for accelerating DNN model training,
overcoming the computational limitations of a single
GPU. Yet, it necessitates replicating the entire
model’s parameters on each GPU, making it inca-
pable of addressing the storage limitations of a single
GPU and rendering it ineffective for training “big mo-
dels”. Unlike data parallelism, model parallelism[2427]
divides the model into several submodels, which are
then distributed across different GPUs. Multiple
GPUs collaborate to concurrently train each submod-
el, facilitating parallel training of the model. There-
fore, model parallelism can effectively overcome the
storage limitations of a single GPU, paving the way
for efficient training of large models. When partition-
ing the DNN model in a layer-wise manner, model
parallelism can be further classified into pipeline mod-
el parallelism (PMP, also known as pipeline paral-
lelism)28: 291, Thanks to its low communication over-

J. Comput. Sci. & Technol., May 2024, Vol.39, No.3

head and high efficiency, PMP has been considered as
one of the most popular approaches for distributed
deep learning training, successfully achieving the goal
of efficient training of “big models”.

Several previous surveys have concentrated on al-
gorithms and techniques for distributed deep learning
training30-35 with none of them specifically focusing
on the PMP approaches. This survey provides a sys-
tematic review of PMP, a typical class of model paral-
lelism and one of the most popular approaches for
training “big models”. In Section 2, we outline the
three most frequently used parallel training models
and further introduce the basic concepts as well as
the challenges of PMP. Then, in Section 3, the typi-
cal synchronous and asynchronous pipeline schedule
approaches are discussed in detail, and a systematic
analysis and comparison of these approaches are con-
ducted. Next, in Section 4, the key techniques of
achieving load balance for both intra-node and inter-
node training are further summarized. We then dis-
cuss the main techniques to optimize the computa-
tion, storage, and communication of pipeline paral-
lelism approaches in Section 5. Following that, we dis-
cuss the promising future research directions for PMP
in Section 6. Finally, Section 7 concludes the paper.

2  Preliminary
2.1 Parallel Training Modes

e Data Parallelism. Data parallelism (DP)[2!-23, 36]
stands out as the most widely used parallel training
mode in the deep learning field. Popular deep learn-
ing frameworks such as TensorFlowB7, PyTorch[8],
and HorovodB9 offer user-friendly APIs to facilitate
the training of DNN models using data parallelism. In
data parallelism, each GPU is tasked with storing
complete and identical model parameters. Different
mini-batches of training data are then assigned to
specific GPUs. During each iteration of the model pa-
rameter update, all GPUs perform synchronized com-
munication, where the gradients generated on each
GPU are summed with gradient synchronization
strategies like Parameter Server (PS)H40: 41 or global
collective communications such as AllReducel2. Sub-
sequently, the model parameters are synchronized and
updated. Data parallelism involves splitting the train-
ing data and leveraging multiple GPUs to train the
DNN model in parallel, effectively overcoming the
computational limitations of a single GPU, and facili-
tating deep learning training. However, data paral-



Lei Guan et al.: Advances of Pipeline Model Parallelism for Deep Learning Training: An Overview 569

lelism encounters two significant challenges. First,
during each time of weight synchronization, the data
transferred among GPUs is proportional to the size of
the model. Due to frequent weight synchronization
among GPUs, data parallelism suffers from excessive
inter-GPU communication overhead, hindering its
scalability as communication overheads increase with
the growth of the model sizel43; 44, Second, data paral-
lelism faces challenges in overcoming the storage limi-
tations of GPUs because it does not alleviate per-
GPU memory consumption. It is important to note
that, in addition to model parameters, training DNN
models also demands a significant amount of GPU
memory to store weights, activation values, and other
temporary tensor data generated during trainingl45: 46],
Consequently, when the storage space occupied by
model parameters approaches the storage capacity of
the GPU, loading the model onto a single GPU for
training becomes unfeasible. Even if the model can fit
in a GPU, the limited available GPU memory re-
stricts training to small batch sizes, resulting in train-
ing inefficiency or under-utilizing computing re-
sources.

o Model Parallelism. Model parallelism (MP) in-
volves partitioning the model across GPUs, assigning
each GPU the responsibility for weight updates on
specific submodels. Compared with data parallelism,
model parallelism offers two key advantages. First, it
can overcome the storage limitations of a single GPU
through model partitioning. Second, unlike data par-
allelism, model parallelism does not require transfer-
ring the entire model parameters between GPUs dur-
ing each iteration of parameter update, resulting in
significantly lower communication overhead.

Generally, model parallelism can be categorized
into two types: intra-layer MP and inter-layer MP.
Intra-layer MP, also known as tensor model paral-
lelism (TMP), involves horizontally partitioning the
DNN model by splitting the dataflow graph of differ-
ent operators, such as fully connected layers and con-
volutional layers. These partitions are then assigned
with multiple GPUs, applying each operator to the
same batch of training data. Although TMP can over-
come the storage limitations of a single GPU and
achieve the goal of training “big models” with multi-
ple GPUs, it always hits two roadblocks. First, there
is a significant communication overhead, although less
than data parallelism, among all GPUs during each
iteration of parameter update due to extensive AllRe-
duce operations, leading to high communication costs.
Second, especially when training models using a mul-

ti-machine multi-GPU system, the InfiniBand net-
work bandwidth between GPU nodes is generally
much smaller than the NVLink bandwidth within
each GPU node, resulting in inefficient AllReduce op-
erations for each tensor.

Inter-layer MP is widely recognized as pipeline
model parallelism (PMP)[28, 29, 31, 47, 48] The prerequi-
site for PMP is model partitioning2®: 49 which splits
the neural network into consecutive stages each con-
sisting of several consecutive layers. Subsequently, all
stages are loaded onto different GPUs, and the DNN
model is trained in a pipelined manner across all
GPUs. In each complete forward-backward propaga-
tion, the frontmost GPU is responsible for reading the
training data, performing the forward pass, and send-
ing the output activations to the adjacent GPU. This
GPU utilizes the received activations as inputs to
conduct the forward pass and continues to send the
output to the next adjacent GPU, and so on until the
last GPU completes the forward pass. Similarly, in
backward propagation, it starts from the last GPU,
and each GPU sends the gradients to the previous ad-
jacent GPU until the first GPU completes the back-
ward propagation. In PMP, only the activations and
gradients need to be transmitted between adjacent
submodels, resulting in much lower communication
overhead compared with data parallelism. Currently,
PMP has become one of the most effective parallel
training approaches for supporting the training of
“big models”. Various factors such as GPU utiliza-
tion, convergence, computation, storage, and commu-
nication should be considered to maximize the train-
ing efficiency when using the PMP mode on multi-
GPU systems.

e Hybrid Parallelism. Hybrid parallelismBl, as the
name suggests, combines two or more parallelism
modes to harness their advantages to facilitate DNN
training. By doing so, it seeks to integrate the advan-
tages of two or more parallel training modes and
strike a balance among computation, storage, and
communication, enabling the efficient training of large
deep learning models. Compared with using a single
parallelism mode, hybrid parallelism always enables
the following two compelling advantages. First, by
combining multiple parallelization modes, hybrid par-
allelism enables the efficient scaling of model training
to large clusters of GPUs, demonstrating better scala-
bility and adaptability than using a single parallelism
mode. This is crucial for handling massive datasets
and training models with billions of parameters. Sec-



570

ond, hybrid parallelism allows for better utilization of
available resources with multi-level parallelism, mak-
ing it better leverage the computational power of
modern GPU clusters.

Hybrid parallelism generally encompasses three
cases. The first case involves combining DP and
TMP. A notable example is that Alex Krizhevskyl50)
makes use of hybrid parallelism to parallelize the
training of convolutional neural networks. In this
case, data parallelism is applied to the convolutional
layer, while TMP is applied to the fully connected
layers. The second case combines DP and PMP. In
this scenario, DNN models are partitioned in a layer-
wise manner across GPUs, supporting two or more
replicas of DNN models for simultaneous training. Ex-
amples include PipeDream[?8! and
Chimeral7l. The third case of hybrid parallelism in-
volves combining DP, TMP, and PMP (known as 3D
parallelism). A representative example is DistBelief24],

of this case

which not only distributes neurons in the same layer
across machines but also partitions different layers
across machines, integrating the features of both
TMP and PMP. Additionally, DistBelief supports DP
by applying multiple replicas of a model to optimize a
single DNN model. Furthermore, the popular deep
learning frameworks, such as Megatron-LM[20 Deep-
Speed, Colossal-AIPU, and MerakP?, all support 3D
parallelism.

2.2 Basic Concepts of PMP

We assume a DNN model consists of L consecu-
tive layers where layer i (1 <17 < L) specifies its mod-
el parameters #,. Letting functions f; and b; denote
the forward pass and backward propagation of the -
th layer, respectively, the forward pass can be repre-
sented as F'= f, o... fy0 f;, and the backward prop-

J. Comput. Sci. & Technol., May 2024, Vol.39, No.3

agation would be B=0b,0...b;,_,0b,. In the formal
sense, the pipeline parallelism mode splits a DNN mo-
del into D consecutive layer blocks {stage,, stage,, ...,
stage, }, satisfying the condition stage, N stage; = ¢,
if i # j. Each stage is then placed on a specific GPU,
and each GPU is responsible for the weight updates
of the assigned stage. Two types of intermediate data
are required to be transferred between adjacent
GPUs: layer outputs for the forward pass and gradi-
ents for the backward propagation.

Fig.1(a) depicts the model partition, where a
DNN model is divided into three stages, and Fig.1(b)
illustrates the pipeline training of mini-batch data
with an index of x. In each feedforward-backpropaga-
tion round, after a GPU completes its forward step, it
needs to wait until all its subsequent GPUs finish
their forward and backward steps before it starts its
own backward step. This nested arrangement results
in the GPU holding an early stage having to wait
longer. Whenever a GPU is busy computing, all oth-
er GPUs are idle. Therefore, in the naive implementa-
tion of PMP (as shown in Fig.1(b)), all the GPUs are
active sequentially, one at a time, causing serious un-
der-utilization of the GPUs.

o Computation. For each mini-batch training, the
forward pass executes in the order of stage, — ...
— stage,,_, — stage,,, followed by the backward
propagation, which executes stage, — ... — stage, —
stage, -

e Storage. Each computing device (e.g., a GPU)
should hold the model parameters corresponding to a
specific stage. Furthermore, each GPU must main-
tain all the intermediate variables such as activations
and gradients.

o Communication. Inter-GPU communication is
iteratively performed during the pipeline training.
Each GPU should transmit the activations to the

7
O<g<>
el 1IN Flush
/ GPU 3 @ | || Bubble
C@/ GPU 2 T T I:‘ Forward Pass
GPU1| = I x :l Backward Propagation

Stage 1 Stage 2

(a)

Stage 3

(b)

Fig.1. Illustration of 3-stage PMP approach. (a) Model partition. (b) Pipeline training on 3-GPU computing platform. We assume
that the time taken for backward propagation is twice that of forward pass.



Lei Guan et al.: Advances of Pipeline Model Parallelism for Deep Learning Training: An Overview 571

next GPU in the forward direction unless it owns the
last layer and transmits gradients to the previous
GPU in the backward direction unless it keeps the
first layer.

2.3 Challenges in PMP

There are three main challenges in PMP ap-
proaches.

e The first and most important challenge is devis-
ing an effective pipeline schedule strategy that deter-
mines the concurrency and learning efficiency (i.e.,
the convergence rate and model accuracy) of pipeline
training.

® The second challenge is achieving load balance
between intra-node and inter-node training, which sig-
nificantly affects the per-iteration training speed and
scalability of pipeline parallelism.

e The last challenge is, to the maximum extent,
reducing the costs of computation, storage, and com-
munication, contributing to further boosting the per-
formance of pipeline training.

2.3.1 Effective Pipeline Schedule

Generally, pipeline schedules can be classified in-
to synchronous pipeline schedules and asynchronous
pipeline schedules. The adopted pipeline schedule
strategy influences both the pipeline structure and the
weight update manner, jointly determining the total
training time of the DNN model. Let us assume the
number of epochs required to train a DNN model to
the target accuracy is represented by #epoch, and the
training duration for the i-th epoch is denoted as t,.
The whole training time of a DNN model can be rep-
resented as t.,,. Then, we have

#epoch

Liotal = Z t; ~ #epoch x t, (1)
i=1

where ¢ denotes the averaged training time, i.e.,
t= Y7 J#epoch. (1) reveals that the whole
training time of a DNN model is determined by both
the convergence (or learning efficiency), represented
by parameter #epoch indicating the speed at which
the model converges, and the iteration speed, repre-
sented by parameter ¢ indicating the speed at which
iterations are performed.

Synchronous pipeline schedule enables the same
synchronous semantics as that in data parallelism,

hence the focus is solely on improving the iteration

speed to decrease the total pipelined training time.
For asynchronous pipeline parallelism, it is not only
crucial to enhance training speed but also imperative
to ensure the learning efficiency of pipeline training.
Poor learning efficiency may necessitate a larger num-
ber of epochs to achieve the desired accuracy, there-
by prolonging the overall training time of the model.
Consequently, for an effective pipeline schedule, strik-
ing a balance between concurrency and learning effi-
ciency is essential to achieve efficient and effective
training, especially for asynchronous pipeline sched-
ules.

2.3.2 Load Balance for Intra-Node and
Inter-Node Training

The popular PMP approaches are generally de-
signed for multi-GPU machines53], which involve two
levels of parallelism: intra-node (within a single ma-
chine) parallelism and inter-node (between machines)
efficient
pipeline training should simultaneously consider load
balance for both intra-node and inter-node training.

For pipeline training with multi-GPU machines,
achieving intra-node load balance requires each GPU
to work simultaneously in any given pipeline unit and
to spend roughly equal time performing forward and
backward propagation calculations. This often re-
quires good model partitioning methods and an effec-
tive pipeline schedule. Achieving inter-node load bal-
ance requires coordinated efforts from all machines,
often necessitating the use of hybrid parallelism.

parallelism.  Correspondingly, attaining

Achieving load balance for intra-node and inter-node
training helps give rise to high throughput, enhance
the scalability of DNN training, and maximize the
utilization of multi-GPU machines.

2.3.3 Optimization of Computation, Storage, and
Communication

In the context of pipeline model parallelism, com-
putation, storage, and communication are three of the
most important factors affecting the performance and
efficiency of DNN training.

During the pipeline training, each GPU proceeds
through iterations of forward pass and backward
propagation. Optimizing these computations speeds
up the iteration procedure. Furthermore, the opti-
mization of computation also includes reducing addi-
tional computational overhead beyond forward pass
and backward propagation. Throughout the pipeline



572

training period, the GPUs need to store model states
which include optimizer states, gradients, and param-
eters, as well as residual states such as activation/3.
The rapid growth in model size and unbalanced work-
load may lead to the prevalence of out-of-memory
(OOM) errors in pipeline training. For PMP, the op-
timization of storage mainly includes avoiding unnec-
essary memory consumption of weights and gradients
and decreasing the activation storage cost. Data com-
munication is another critical challenge in pipeline
training systems, which is primarily limited by the ca-
pacity of high-speed memory, such as high band-
width memory (HBM) in NVIDIA GPUs. Communi-
cation overhead, including inter-GPU communication
among pipeline stages and inter-node gradient com-
munication for data parallelism, can be a significant
bottleneck in pipeline parallelism. The optimization of
communication mainly focuses on avoiding unneces-
sary communication and hiding the communication
with the overlapping of computation.

Notably, simultaneously reducing the computa-
tion, storage, and communication costs is quite chal-
lenging and often not realistic. It often requires the
researchers to find the best tradeoff among computa-
tion, storage, and communication to maximize the
training efficiency of PMP.

3 Pipeline Schedule for PMP

The schedule manner of a PMP approach actual-
ly determines how the model parameters are updated
throughout the entire training process. Based on the
timing of gradient update, PMP approaches can be
roughly classified into two types: synchronous pipeline
schedule and asynchronous pipeline schedule.

3.1 Synchronous Pipeline Schedule

GPipel?9, proposed by Google, is currently one of
the most well-known and representative approaches
for synchronous pipeline schedules. As shown in Fig.2,

J. Comput. Sci. & Technol., May 2024, Vol.39, No.3

a notable characteristic of GPipe is the use of micro-
batching to reduce the number of bubbles in its
pipeline structure and improve GPU utilization.
GPipe employs synchronous stochastic gradient de-
scent, with periodic pipeline flushes performed at the
end of each mini-batch training. During each itera-
tion, error gradients produced by backpropagation are
accumulated across multiple micro-batches, and the
model parameters are synchronously updated using
the accumulated gradients at each stage. Remarkably,
GPipe only stores one version of weights but con-
sumes additional memory for maintaining activations
incurred by the microbatching.

Since the introduction of GPipe, pipeline paral-
lelism has gained significant attention and research.
Numerous synchronous pipeline structures based on
micro-batching have been proposed subsequently, all
sharing the common goal of reducing pipeline bub-
bles and improving concurrency by adjusting the
schedule of micro-batches within the pipeline. For ex-
ample, DAPPLEM8] employs an early backpropaga-
tion strategy, in which the last GPU in the pipeline
immediately initiates the backpropagation process
when it finishes the forward pass of a micro-batch.
Another notable feature of DAPPLE is that after the
completion of backpropagation, the storage space con-
sumed by storing activation values is released as ear-
ly as possible. Some pipeline parallelism approaches,
such as GEMSE4 and Chimerald”, utilize a dual-
pipeline structure in which two versions of weights
are trained with the same computational resources.
By allowing the two pipelines to be executed in an in-
terleaved manner, these approaches aim to reduce the
number of bubbles by filling them with forward or
backward computations. However, although the dual-
pipeline structure can lessen the number of bubbles in
the pipeline structure, it cannot eliminate the inher-
ent bubble overhead in the synchronous pipeline
Moreover, iteration, the dual-
pipeline mode requires performing AllReduce commu-

schedules. in each

Flush
GPU 4 112 (3] 4 1 2 3 4
GPU 3 1|2]|3]4 1 2 3 4
GPU 2 12|34 1 2 3 4
GPU1| 1|2 | 3| 4 1 2 3 4

D Bubble D Forward Pass

I:I Backward Propagation

Fig.2. Illustration of GPipe on 4-GPU computing system. Each mini-batch consists of four micro-batches.



Lei Guan et al.: Advances of Pipeline Model Parallelism for Deep Learning Training: An Overview 573

nication among the GPUs where the symmetric stages
of the pipelines are located, followed by synchroniz-
ing and updating the model parameters on each stage,
resulting in additional communication overhead.
Megatron-LMI5] “1F1B”
(One Forward, One Backward) pipeline schedule,
where each device in the pipeline is assigned multiple
pipeline stages (or model chunks) and, at the same

employs the interleaved

time, each stage requires less computation. The inter-
leaved “1F1B” schedule leads to a smaller size of
pipeline bubble. However, the same as GEMS and
Chimera, Megatron-LM actually trades a higher com-
munication volume to decrease the pipeline bubbles.
Very recently, zero bubble pipeline parallelism/¢
was proposed to achieve zero pipeline bubbles under
synchronous training semantics. The key insight of ze-
ro bubble pipeline parallelism is to split the back-
ward computation into the gradient computation for
the input and the computation for the parameters,
and then design a handcrafted schedule to fill the
bubbles with computation. A typical case of zero bub-
ble pipeline parallelism is called ZB-H2[6l, which uses
a sufficient number of micro-batches to fill the
pipeline bubbles and achieves a zero bubble schedule.

3.2 Asynchronous Pipeline Schedule

PipeDream(28 is the most representative asyn-
chronous pipeline approach which, for the first time,
proposes to employ the “1F1B” schedule (as shown in
Fig.3) that allows mini-batches/micro-batches to be
trained in an alternating manner with one forward
pass followed by one backward propagation. Further-
more, other asynchronous pipeline approaches such as
AMPNet[57], PipeDream-2BWI8], SpecTrain(],
XPipelf0, and AvgPipel®! all employ the “1F1B”
schedule. The “1F1B” pipeline execution minimizes
the generation of bubbles, resulting in pretty high
GPU utilization and fast training speed. However, the
interleaved execution of mini-batches in the pipeline,
on the one hand, leads to the use of inconsistent

weights for each mini-batch/micro-batch’s forward
and backward passes, thereby affecting the effective-
ness of parameter updates. On the other hand, asyn-
chronous updates of model parameters also give rise
to the weight staleness issue which refers to the fact
that before earlier mini-batches update the weights,
latter mini-batches adopt stale weights to derive gra-
dientsl®. The staleness issue hurts the efficiency of
DNN training and also could lead to unstable parame-
ter learning. Therefore, a key focus of research in
asynchronous pipeline schedules is ensuring the learn-
ing efficiency during asynchronous updates of parame-
ters.

Currently, there are two main techniques used to
ensure learning efficiency when implementing an asyn-
chronous pipeline schedule: weight stashing and
weight prediction. PipeDream(?8 is the first to intro-
duce the weight stashing technique, which requires
storing one version of weights for each mini-batch
that is in progress in the pipeline. This ensures that,
at each stage, the forward pass and backward propa-
gation of each mini-batch use the same weights.
While this technique effectively resolves the weight
inconsistency issue caused by the “1F1B” strategy, it
comes with the drawback of requiring additional stor-
age for multiple versions of weights. Moreover, the
GPUs located at the front of the pipeline are re-
quired to store a larger number of weight versions, re-
sulting in additional and unbalanced GPU memory
consumption. To minimize the additional storage
overhead incurred by the weight stashing technique,
PipeDream-2BW/%8 utilizes a technique called double-
buffered weight updates (2BW). With the 2BW tech-
nique, for a micro-batch that has just entered the
pipeline, the latest weights are used for forward pass.
Meanwhile, for micro-batches already in the pipeline,
2BW employs the previously cached weights for back-
ward propagation. This technique allows each GPU to
maintain only two versions of weights, reducing the
storage requirements compared with traditional
weight storage techniques used in PipeDream. Fur-

GPU 4 1 1 2 2 3 3 4 4 5 5 6 6
GPU 3 1| 2 1 3 4 3 5 4 6 5 7
GPU 2 1 (2|3 1 2 5 3 6 4 7
GPU 1| 1 3| 4 1 5 2 6 3 7 4

2
D Bubble D Forward Pass

I:l Backward Pass and Weight Update

Fig.3. Illustration of PipeDream on 4-GPU computing system.



574

thermore, WPipel62 proposes double-grouped weight
updates (2GW) to achieve better memory efficiency
and fresher weight updates than PipeDream-2BW.
The 2GW technique divides model partitions into two
groups, rearranges the execution order of micro-batch-
es in the first group, and alternatively executes the
update of each group. Compared with PipeDream-
2BW, WPipe halves both the delayed gradient and
memory redundancy. However, although PipeDream,
PipeDream-2BW, and WPipe effectively address the
issue of weight inconsistency, they do not fully re-
solve the problem of weight staleness.

Weight prediction is another technique that con-
tributes to ensuring effective learning of model pa-
rameters, and can simultaneously alleviate both the
weight inconsistency and weight staleness issues
caused by asynchronous pipeline schedules. The
weight prediction technique is initially proposed and
applied to the asynchronous PMP approach Spec-
Train®). Considering that the smoothed gradient
used by the momentum SGDI63 64 optimizer reflects
the update direction of model parameters, SpecTrain,
ahead of either forward pass or backward propaga-
tion, utilizes the product of the smoothed gradient
and the weight version differences to predict the mod-
el weights that will be used in future pipeline time
steps. Unlike PipeDream and PipeDream-2BW, Spec-
Train does not require each GPU to store weights for
each active mini-batch in the pipeline. Instead, it si-
multaneously alleviates the issues of weight inconsis-
tency and weight staleness in asynchronous updates
by predicting future weights ahead of both forward
pass and backward propagation. However, SpecTrain
has significant limitations as it only works well when
using momentum SGD to optimize the DNN weights.
Another typical asynchronous pipeline schedule ap-
proach with the weight prediction technique is
XPipelf%, which constructs the weight prediction
mechanism based on the Adaml®] optimizer and
achieves better learning efficiency compared with mo-
mentum SGD used in SpecTrain.

In addition, Yang et all66 introduced another
approach
PipeMare which uses learning rate rescheduling and
discrepancy correction to improve the statistical effi-
ciency of asynchronous pipeline parallelism. PipeMare
can maximize hardware efficiency by avoiding both
pipeline bubbles and substantial memory increases.
Very recently, the elastic averagingl6”l technique has
been introduced into the asynchronous pipeline train-

asynchronous pipeline-parallel training

J. Comput. Sci. & Technol., May 2024, Vol.39, No.3

ing. This technique has been successfully used by
AvgPipelfll which employs an elastic averaging-based
framework to mitigate the bubble issue in GPipe and
maintain the statistical efficiency where multiple par-
allel pipelines are executed and each pipeline handles
a batch of data per iteration. To fully overlap com-
munication with computation, AvgPipe uses the tech-
nique of advancing forward pass which schedules par-
tial forward pass in advance.

3.3 Comparison

In this subsection, we summarize and compare the
typical synchronous and asynchronous PMP ap-
proaches. Table 1 lists all the symbols and the corre-
sponding explanations used in this subsection. Table 2
summarizes the framework, basic data unit, and
schedule manner of each pipeline approach. It is obvi-
ous that all the typical pipeline approaches are imple-
mented on top of either TensorFlow or PyTorch while
PyTorch is a more popular choice. Furthermore, the
popular pipeline approaches tend to use micro-batch
as the basic training data unit.

Table 1. Descriptions of Notations Used in Subsection 3.3
Symbol Description

D Number of pipeline stages (pipeline depth)

P Number of replicated pipelines

B Micro-batch size

T Number of micro-batches in each mini-batch

N Mini-batch size (N =T x B)

My Memory consumption for weights of a stage

M, Memory consumption for activations of a stage
Table 2. Summary of Framework, Data Unit, and Schedule
Manner of Typical Pipeline Parallelism Approaches

Approach Framework Data Unit Schedule
GPipel®) TensorFlow Micro-batch  Synchronous
GEMSPY TensorFlow Micro-batch  Synchronous
DAPPLEM] TensorFlow Micro-batch  Synchronous
Chimeral” PyTorch Micro-batch ~ Synchronous
Megatron-LMP®  PyTorch Micro-batch ~ Synchronous
ZB-H2[5] PyTorch Micro-batch ~ Synchronous
AMPNet "] TensorFlow Mini-batch Asynchronous
PipeDream/?®! PyTorch Mini-batch Asynchronous
XPipel60] PyTorch Micro-batch ~ Asynchronous
SpecTrain® PyTorch Mini-batch ~ Asynchronous
g’];};]evl?sg]eam— PyTorch Micro-batch  Asynchronous
PipeMarel60] PyTorch Micro-batch  Asynchronous
AvgPipel®!] PyTorch Micro-batch ~ Asynchronous
WPipel6? PyTorch Micro-batch  Asynchronous




Lei Guan et al.: Advances of Pipeline Model Parallelism for Deep Learning Training: An Overview 575

Table 3 shows the bubble ratio, convergence trait,
weights memory, activations memory as well as
whether extra memory, computation, and communica-
tion overhead are needed. For each pipeline approach,
we assume that each GPU is assigned a specific stage
and takes charge of updating the parameters of the
corresponding stage. Here we note that we regard the
execution of the naive PMP approach shown in Fig.1
as the baseline. The extra communication overhead
refers to the extra communication costs other than
transmitting activation values and gradient values be-
tween adjacent GPUs. The extra computation over-
head refers to the extra computations other than per-
forming forward pass, backward propagation, and re-
computation?9]. The extra storage overhead refers to
the extra memory consumption other than storing a
version of weights, activations, gradients, and a copy
of optimizer states.

Bubble Ratio. Table 3 reveals that the overwhelm-
ing majority of synchronous pipeline approaches, ex-
cept for the ZB-H2 approach, suffer from bubble over-
head. The percentage of bubbles is usually deter-
mined by the pipeline depth (i.e., D) and the num-
ber of micro-batches in a mini-batch (i.e., T'). The ex-
ceptional case is Megatron-LM, whose bubble ratio al-
so depends on the number of chunks on each GPU
(i.e., v). In contrast, asynchronous pipelined parallel
approaches always have a close-to-zero percentage of
bubbles, resulting in a GPU utilization close to 100%.

chronous schedule approaches maintain the same se-
mantics as in model parallelism and enjoy excellent
convergence traits superior to that of the asyn-
chronous pipeline approaches. For pipeline paral-
lelism approaches with asynchronous schedules, the
convergence trait is dependent on effective parameter
learning, especially how the weight inconsistency and
staleness issues are addressed. AMPNetl7 executes
the “1F1B” without adopting effective measures to al-
leviate the weight inconsistency and staleness issues,
resulting in poor convergence. PipeDream(28],
PipeDream-2BWF8], and WPipel62 address the weight
inconsistency issue by additionally storing weights of
in-flight mini-batches or micro-batches but leaving
the weight staleness issue unsolved. XPipel® and
SpecTrainl® simultaneously alleviate the weight in-
consistency and staleness issues through weight pre-
diction. Notably, the performance of SpecTrain is
quite limited to the momentum SGD optimizer, not
well applied to the cases when using other gradient-
based optimizers such as RMSprop, Adam, and
AdamW. Although XPipe outperforms SpecTrain, its
performance is stills limited by the choice of optimiz-
er and does not cover all optimizers. Furthermore,
PipeMarel66l and AvgPipelfl]l try to achieve effective
parameter learning with well-designed techniques,
while both of them are unable to ensure exactly the
same semantics as that in data parallelism.

Weights Memory. Regarding weight storage over-

Convergence. As shown in Table 3, all syn- head, PipeDream consumes the highest and the most
Table 3. Comparisons of Typical PMP Approaches
Approach Bubble Ratio Convergence Weights Memory Activations Memory Extra Mem., Comp., and Comm.*

GPipe (D—-1)/(T+D—1)" Excellent Ms T x Mg [x, X, X]
GEMS ~(D—-1)/(D+1/2)" Excellent 2Mpy M, N, x, ]
DAPPLE (D—-1)/(D+T —1)" Excellent Mg [Ma, D X Mqg] [x, x, x]
Chimera (D —2)/(2T + D — 2)" Excellent ~ 2Mp [(D/2+ 1)Ma, D x Mg]" [V, x, V]
Megatron-LM (D —1)/(v x T)° Excellent Mg T x Mg [, x, ]
7ZB-H2 = 0% Excellent Mpg (2D — 1) x M.} [x, , ]
AMPNet = 0% Poor Mo [Ma, D x M,] [x, %, x]
PipeDream = 0% Good [Mg, D x Mg] [Ma, D x M,] [, x, x]
XPipe = 0% Goodf Mg [My, D x M) W, 3, x]
SpecTrain = 0% Good! Mg [Ma, D x Ma] N, N, x]
PipeDream-2BW =~ 0% Good 2Mp [Ma, D x M| W, x, x]
PipeMare = 0% Good Mg (Mo, D x M| [, v, x]
AvgPipe ~ 0% Good P x My [1,D x T] x P x M, [V, x, V]
WPipe =~ 0% Good 2Mpg T x M, [V, x, x]

Note: *: concluded by [47]; °: concluded by [55], where v denotes the number of chunks on each GPU; : does not cover all
optimizers; ! only works well when using momentum SGD as the optimizer; §: peak activations memory concluded by [56]; #: [\, x, V]
means requiring extra memory consumption and communication but no extra computation, and vice versa.



576

unbalanced memory size. The frontmost GPU is re-
quired to store D versions of weights, while the last
GPU only needs to store one version of weights. The
memory consumption of AvgPipe is also comparative-
ly large as AvgPipe requires each GPU to maintain P
replicas of stage parameters, where P denotes the
number of replicated pipelines. In contrast, GEMS[54],
Chimeralt”], and PipeDream-2BW require each GPU
to hold two versions of weights. WPipe also reaches a
peak weight consumption of two versions of weights,
despite the fact that the 2GW technique reduces the
overall weight memory consumption. GPipel29, DAP-
PLEMS], ZBPS), AMPNetb7, XPipel6, SpecTrainl59,
and PipeMarel66l have the lowest weight storage over-
head, with only one copy of weights. Similarly, Mega-
tron-LMDB?] requires each GPU to store v smaller
copies of weight chunks, totaling one copy of weights,
where v is the number of chunks on each GPU.

Activations Memory. In terms of activations mem-
ory, AvgPipe consumes the most unbalanced memory
to store the activation due to the pipeline training of
multiple pipeline replicas and the microbatching strat-
egy. GPipe, Megatron-LM, and WPipe rank second
which require each GPU to store T activations be-
cause of the adopted recomputation technique. GEMS
enjoys the lowest activations memory consumption,
only requiring each GPU to store one input activa-
tions. The special case is Chimera, which highly de-
pends on the pipeline depth. While DAPPLE and the
remaining asynchronous approaches generally have
activation storage overhead ranging between the in-
terval of M, and D x M,. The point to note is that
ZB-H20656] requires a sufficient number of micro-batch-
es to achieve zero bubbles, thus necessitating a larger
activation memory footprint than other PMP ap-
proaches with “1F1B” schedule (e.g., DAPPLE and
Megatron-LM).

Extra Memory, Computation, and Communica-
tion. For extra memory consumption, the weight
stashing techniques used in PipeDream[28], PipeDream-
2BWBSl, and WPipel®? incur extra memory consump-
tion. The bi-directional pipeline techniques used in
GEMSB4 and Chimeralt” as well as the multiple
pipeline replicas in AvgPipel®l] also incur extra memo-
ry consumption. The weight prediction technique used
in XPipel68l and SpecTrainl¥ requires extra memory
to store the predicted weights. PipeMarel6l also re-
quires using a bit of extra memory to hold an approx-
imation of the velocity of the weights.

For extra computation overhead, the weight pre-
diction mechanisms of XPipel®8 and SpecTrainl9 in-

J. Comput. Sci. & Technol., May 2024, Vol.39, No.3

troduce extra computation overhead. Furthermore,
the learning rate rescheduling and discrepancy correc-
tion techniques used in PipeMarel6¢l also require do-
ing extra computation. ZB-H206 requires executing
extra computation when rollbacking an optimizer
step.

In terms of extra communication overhead, the
basic communication overhead includes transmitting
activation values during forward pass and transmit-
ting gradients during backward propagation. Howev-
er, it should be noted that Chimeral”) and GEMS4
require the corresponding stage to perform an AllRe-
duce operation for gradient synchronization in each
iteration, which incurs
overhead. The averaging technique in
AvgPipelfll adds communication to maintain weight
consistency among multiple pipelines. The inter-
leaved “1F1B” schedule of Megatron-LMP3 reduces
the bubble size but also incurs extra communication

additional communication
elastic

due to the introduction of chunks. Other pipelined
parallel methods do not have this additional commu-
nication overhead.

4 Load Balance for Pipeline Training
4.1 Load Balance for Intra-Node Training

When executing pipeline training on a computing
node, model partition is one of the key techniques to
achieve load balance within a node. The partitioning
strategy of pipeline parallelism is to divide the com-
putational graph of a model into multiple consecutive
layer blocks (also known as stages), enabling parallel
execution of operations within each stage. The objec-
tive of the partitioning strategy is to balance the com-
putation across GPUs, fully utilize computational re-
sources, and reduce the bubble overhead. Since the
complexity of different DNN layers varies, it would
benefit load balance a lot when partitioning the DNN
layers in a balanced way. Much prior research has
been focused on addressing this issue. The most im-
portant technique to achieve optimal partitioning of a
DNN model is dynamic programming which is suc-
cessfully used in PipeDream[?8], PipeDream-2BWI[S],
EffTral%l, and DAPPLEMS!. Another technique for
model partition is reinforcement learningl4. More-
over, Alpal™ discovers that the hierarchical search
method can effectively search for model partitioning
strategies, thereby contributing to load balance for in-
tra-node training. AutoPipel™ contains a planner for
automatically generating a balanced pipeline parti-



Lei Guan et al.: Advances of Pipeline Model Parallelism for Deep Learning Training: An Overview 577

tion scheme with a heuristic partition search algo-
rithm. Unityl™ defines a set of rules for computation-
al subgraph substitution based on computational opti-
mization techniques. Furthermore, vPipel™! designs a
live layer migration protocol that mitigates layers
from intense stages to their adjacent stages to achieve
more balanced partitions with higher throughput.

Other important techniques mainly focus on re-
ducing the pipeline bubbles or filling them with com-
putations, ultimately promoting computational load
balance among GPUs. The related technologies in-
clude the followings.

1) Microbatching, which achieves the balance of
computation by hiding pipeline bubbles. With this
technique, a mini-batch of training data is split into
micro-batches with smaller sizes. The pipelining of
these micro-batches in a mini-batch reduces the num-
ber of bubbles in the pipeline, contributing to a bet-
ter load balance across GPUs.

2) The “1F1B” schedule, which is widely used in
asynchronous pipeline approaches such as
PipeDream[28], PipeDream-2BW8l, WPipel62, and
XPipel®l. By letting all mini-batches/micro-batches
be scheduled in a one-forward-one-backward manner,
the “1F1B” schedule almost generates no bubble
overhead, makes each GPU busy training the stages
at any pipeline time unit, and contributes a lot to the
load balance across GPUs.

3) Dual-/multiple-pipeline training, which is fre-
quently used to achieve load balance on a multi-GPU
computing node. The key insight of this technique is
to combine two or more pipelines to reduce the num-
ber of bubbles and thus achieve more balanced
pipelined training. Typical cases include Chimeral47
and AvgPipel6ll. However, one should note that this
technique usually incurs extra storage overhead for
storing weights and extra communication overhead
for realizing weight synchronization.

4) Bubble filling, which suggests that the pipeline
bubbles can be filled with computations. A typical ex-
ample is PipeFisher!™ which fills the pipeline bub-
bles with the work of K-FAC, a second-order opti-
mization based on the Fisher information matrix, to
gain auxiliary convergence benefits in large language
models (LLMSs) training,.

4.2 Load Balance for Inter-Node Training

Distributed deep learning always requires dis-
tributing the training process across multiple nodes or
devices to speed up the training process. In a dis-
tributed setting, the intra-node communication band-

width is usually larger than that of the inter-node. It
requires a load balance training strategy to tackle this
imbalance. Load balance for inter-node training is
pivotal to scale pipeline parallelism training among
the distributed nodes and thus maximize efficiency
and speed up the training process.

Hybrid parallelism is the most frequently used
technique to achieve load balance for pipeline train-
ing. By harnessing the advantages offered by differ-
ent parallel training modes, hybrid parallelism strives
to achieve enhanced efficiency and scalability in mod-
el training. In particular, the mixture of pipeline par-
allelism and data parallelism is widely used to scale
pipeline parallelism to multi-machine-multi-GPU
computing systems. Popular pipeline approaches such
as GPipel, PipeDream(?8, PipeDream-2BW[8],
DAPPLEM8], and GEMSP4 show improved perfor-
mance and scalability when using this hybrid paral-
lelism strategy. Another hybrid training way to
achieve load balance across multiple computing nodes
is combining pipeline parallelism with both data par-
allelism and tensor parallelism. The representative
cases include DistBelief?4, Piper(™], and Megatron-
LMR0 which efficiently train large-scale language
models on GPU clusters. On the other hand, PMP
has been demonstrated to perform well in utilizing
cross-server connections with a large-scale number of
GPUs(20, 70, When employing PMP for inter-node
training while using TMP for intra-node training
(e.g., 3D parallelism), the layer partition techniques
described in Subsection 4.1 can be easily applied to
achieve inter-node load balance. In this case, the mod-
el partition techniques for TMP come as the main
technique to achieve intra-layer load balance. We do
not elaborate on the model partition techniques20 for
TMP as these go beyond the scope of this paper.

5 Optimization of Computation,
and Communication

Storage,

In this section, we focus on computation, storage,
and communication, and discuss the main techniques
to improve the performance of pipeline training.

5.1 Optimization of Computation

The optimization of computation refers to decreas-
ing the computation cost and avoiding unnecessary
and intensive computations. To attain high perfor-
mance, Megatron-LM[20 employs model-specific opti-
mizations to the computation graph. These optimiza-



578

tions include changing the data layout in the trans-
former layer, generating fused kernels for a sequence
of element-wise operations, and creating two custom
kernels to enable the fusion of scale, mask, and soft-
max (reduction) operations. PipeFBI[7 proposes to ex-
ecute the computations of forward passes and back-
ward propagations with different GPUs to accelerate
pipeline training. XPipel6% achieves the optimization
of computation by avoiding repetitive weight predic-
tion. To be concrete, for each mini-batch training,
XPipe designates the first micro-batch as a bell-
wether and lets it be in charge of doing weight predic-
tion ahead of both the forward pass and backward
propagation. At the same time, the other micro-
batches in the same mini-batch directly make use of
the predicted weights by the bellwether to do both
forward pass and backward propagation, leading to
much less computational cost compared with making
all micro-batches repeatedly execute weight predic-
tions.

5.2 Optimization of Storage

The recomputation (also known as checkpointing)[7l
technique is always leveraged to minimize activation
memory usage and has been adopted by many popu-
lar PMP approaches such as GPipe, PipeDream, and
DAPPLE. By leveraging this technique, each GPU
only needs to store output activations at the parti-
tion boundaries and recompute the forward pass dur-
ing the backward propagation, avoiding storing the
activations of all intermediate layers within the parti-
tion. Furthermore, the optimization of storage also in-
volves achieving a balanced memory consumption
across GPUs. A successful example is BPipel™ which
transfers intermediate activations between GPUs to
enable all GPUs to utilize comparable amounts of
memory. It is worth noting that the optimization of
storage does not come for free, always at the cost of
increasing the computation or communication cost.
For example, recomputation incurs more forward pass
computation, and transferring intermediate activa-
tions leads to extra communication costs. Other ef-
forts are dedicated to making use of the CPU memo-
ry. For instance, vPipel™! utilizes a hybrid combina-
tion of swap and recomputation of activation tensors
which asynchronously transfers activations to CPU
memory and gets them back to GPU memory for re-
computing the forward pass ahead of the backward
propagation. SuperNeurons[™ adopts offloading and
prefetching techniques to address the challenge of lim-

J. Comput. Sci. & Technol., May 2024, Vol.39, No.3

ited GPU resident memory. Similar techniques on
storage optimization include using real-time data
transferring[8: 701 where the activations are offloaded
to the CPU and other GPUs with free memory to re-
duce the peak memory usage of PipeDream. Addition-
ally, MPress® proposes a method that utilizes spare
GPU memory to accelerate training by combining re-
computation and swap methods. Furthermore, the Ze-
ro Redundancy Optimizer (ZeRO) optimizerl®s, a
technique to optimize memory, can be integrated with
3D parallelism to achieve the goal of optimization of
storage when training LLMs with 3D parallelism[82],

5.3 Optimization of Communication

The main approach for communication optimiza-
tion is overlapping[®], which generally refers to the
overlapping of computation and communication. For
the PMP mode, this technique usually refers to the
overlapping of communication with the computation
of a subsequent mini-batch/micro-batch. The premise
of using overlapping is that the computation and
communication are completely independent and oper-
ate on different tensor data. The overlapping tech-
nique is widely used in asynchronous pipeline ap-
proaches such as PipeDream[?8], PipeDream-2BWI[20],
and XPipel®8] in which, by using the overlapping of
computation and the communication of activations or
gradients, each GPU is allowed to proceed with the
next input mini-batch before receiving the activa-
tions or gradients from the previous mini-batch. In
addition, GEMSPY and Chimeral4” also leverage the
overlapping technique to hide the gradient synchro-
nization between the bidirectional pipelines. Further-
more, other communication optimizations focus on de-
creasing the communication redundancy, e.g., the
Scatter/Gather communication optimization in Mega-
tron-LM3,

6 Discussion

PMP has been acting as one of the most impor-
tant approaches to training “big models” due to its
low communication overhead and high efficiency. The
efficient PMP approach not only pursues rapid itera-
tion but also needs to ensure the effectiveness of pa-
rameter learning. One should strive to achieve a good
tradeoff among computation, storage, and communi-
cation to maximize the performance of the PMP ap-
proach. At the same time, consideration should also
be given to designing corresponding pipeline parallel



Lei Guan et al.: Advances of Pipeline Model Parallelism for Deep Learning Training: An Overview 579

training methods according to the characteristics of
computer architecture to fully utilize its computing
power. For future research in pipeline parallelism, we
suggest two potential directions that hold significant
importance.

6.1 Asynchronous Pipeline Parallelism with
Effective Parameter Learning

Asynchronous pipeline parallelism approaches al-
ways achieve high GPU utilization and demonstrate
pretty good concurrency, but their convergence prop-
erties are often inferior to synchronous approaches.
Designing efficient asynchronous PMP approaches re-
quires striking the optimal balance between concur-
rency and learning efficiency. As mentioned before,
weight inconsistency and weight staleness issues are
the significant flaws in asynchronous pipeline paral-
lelism with the “1F1B” schedule that result in ineffec-
tive parameter learning. The weight stashing tech-
niquel2® 58] can only address the weight inconsistency
problem, leaving the weight staleness issue unsolved.
On the other hand, the performance of existing
weight prediction based approaches such as Spec-
Train(9 and XPipelf? heavily rely on the update rule
of the used optimizer, despite that using the weight
prediction technique can simultaneously alleviate the
weight inconsistency and weight staleness issues. How
to simultaneously and effectively address the weight
inconsistency and staleness issues still remains an un-
solved challenge.

Very recently, Guan et all33 34 restudied the
weight prediction and successfully applied it to boost
the convergence of DNN training when using popular
optimizers such as momentum SGD, RMSpropl®,
Adaml®], and AdamWIB6, Especially, the proposed
XGrad®4 framework illustrates that weight predic-
tion can boost all the commonly-used gradient-based
optimizers, including SGD with momentum, RM-
Sprop, Adam, AdamW, AdaBeliefl®7, and AdaM3[88].
Therefore, in future research on asynchronous
pipelined training, we forecast that dynamically pre-
dicting weights based on the used optimizer is a
promising way to improve the robustness of weight
prediction and enhance the training efficiency of asyn-
chronous pipeline parallelism approaches.

6.2 Pipeline Parallelism for Large-Scale
Heterogeneous Computing Platforms

Currently, high-performance computing platforms,
represented by supercomputers, provide powerful

computational capabilities for deep learning. Super-
computers commonly employ heterogeneous comput-
ing architectures, combining CPUs with accelerators
such as GPUs, MICs, and FPGAs. For example, the
Tianhe-2 supercomputer8? adopts a CPU+MIC het-
erogeneous parallel architecture, while the Tianhe-1A

supercomputer®l utilizes a CPU+GPU heteroge-
neous parallel architecture. Existing distributed
pipeline  parallel training systems, such as

PipeDream[?8], PipeDream-2BW[8l, and DAPPLELS],
typically employ a hybrid parallel training mode that
combines pipeline parallelism and data parallelism.
These pipeline parallelism training systems always as-
sume homogeneous computing platforms for pipeline
parallel training. Furthermore, existing heteroge-
neous pipeline parallel training methods, such as
Pipe-TorchPl and HetPipel®2, are not suitable for
CPU+GPU/MIC heterogeneous computing platforms.
These approaches maintain the same limitations, as
they do not fully exploit the computational power and
storage capacity of CPUs on each node in large-scale
GPU clusters, thus failing to fully harness the paral-
lel computing capability of supercomputers based on
heterogeneous computing architectures. Therefore, in
future research, investigating pipeline parallel train-
ing systems specifically designed for CPU+GPU/MIC
heterogeneous computing platforms holds significant
potential and value in terms of research significance

and practical applications.

7  Conclusions

As a pretty promising approach, the pipeline mod-
el parallelism (PMP) mode is believed to play a more
important role in addressing the challenge of “big
models”. This paper presented a comprehensive sur-
vey of the state-of-the-art approaches for PMP, in-
cluding the basic concepts and main challenges, the
manner of pipeline scheduling, and the main tech-
niques to achieve intra-node and inter-node load bal-
ance. Furthermore, it covers the main techniques to
optimize computation, storage, and communication—
essential influencing the performance of
pipelined training. Additionally, potential research di-
rections are discussed.

factors

Although research on pipeline parallelism has
made significant progress, we believe there is still
room for improvement in pipeline parallel training, es-
pecially in overcoming GPU memory bottlenecks to
further enhance training efficiency.



580

Acknowledgements

Lei Guan thanks Prof.

Shi-Gang Li at Beijing University of Posts and
Telecommunications (BUPT) for stimulating discus-
sions about pipeline parallelism.

Conflict of Interest

The authors declare that

they have no conflict of interest.

References

(1]

(8]

(9]

(10]

(11]

He K M, Zhang X Y, Ren S Q, Sun J. Deep residual
learning for image recognition. In Proc. the 2016 IEEE
Conference on Computer Vision and Pattern Recognition,
Jun. 2016, pp.770-778. DOI: 10.1109/CVPR.2016.90.
Karpathy A, Toderici G, Shetty S, Leung T, Sukthankar
R, Fei-Fei L. Large-scale video classification with convolu-
tional neural networks. In Proc. the 2014 IEEE Confer-
ence on Computer Vision and Pattern Recognition, Jun.
2014, pp.1725-1732. DOI: 10.1109/CVPR.2014.223.
Hinton G, Deng L, Yu D, Dahl G E, Mohamed A R, Jait-
ly N, Senior A, Vanhoucke V, Nguyen P, Sainath T N,
Kingsbury B. Deep neural networks for acoustic model-
ing in speech recognition: The shared views of four re-
search groups. IEEE Signal Processing Magazine, 2012,
29(6): 82-97. DOI: 10.1109/MSP.2012.2205597.

Li J Y. Recent advances in end-to-end automatic speech
recognition. APSIPA Trans. Signal and Information Pro-
cessing, 2022, 11(1): e8. DOI: 10.1561/116.00000050.

Wu Y, Schuster M, Chen Z F et al. Google’s neural ma-
chine translation system: Bridging the gap between hu-
man and machine translation. arXiv: 1609.08144, 2016.
https://arxiv.org/abs/1609.08144, May 2024.

Dabre R, Chu C H, Kunchukuttan A. A survey of multi-
lingual neural machine translation. ACM Computing Sur-
veys, 2021, 53(5): Article No. 99. DOI: 10.1145/3406095.
Chen C Y, Seff A, Kornhauser A, Xiao J X. DeepDriving:
Learning affordance for direct perception in autonomous
driving. In Proc. the 2015 IEEE International Conference
on Computer Vision, Dec. 2015, pp.2722-2730. DOI: 10.
1109/1CCV.2015.312.

Bojarski M, Del Testa D, Dworakowski D et al. End to
end learning for self-driving cars. arXiv: 1604.07316, 2016.
https://arxiv.org/abs/1604.07316, May 2024.

Real E, Aggarwal A, Huang Y P, Le Q V. Regularized
evolution for image classifier architecture search. In Proc.
the 33rd AAAI Conference on Artificial Intelligence, Jan.
27-Feb. 1, 2019, pp.4780-4789. DOI: 10.1609/aaai.v33i01.
33014780.

Devlin J, Chang M W, Lee K, Toutanova K. BERT: Pre-
training of deep bidirectional transformers for language
understanding. In Proc. the 2019 Conference of the North
American Chapter of the Association for Computational
Linguistics: Human Language Technologies, Jun. 2019,
pp.4171-4186. DOI: 10.18653/V1/N19-1423.

Radford A, Wu J, Child R, Luan D, Amodei D, Sutskev-

er I. Language models are unsupervised multitask learn-

[12]

(13]

[14]

[15]

[16]

(17]

(18]

[19]

20]

[21]

22]

[23]

24]

J. Comput. Sci. & Technol., May 2024, Vol.39, No.3

ers. OpenAlI Blog, 2019, 1(8): 9.

Brown T B, Mann B, Ryder N et al. Language models are
few-shot learners. arXiv: 2005.14165, 2020. https://arxiv.
org/abs/2005.14165, May 2024.

Fedus W, Zoph B, Shazeer N. Switch transformers: Scal-
ing to trillion parameter models with simple and efficient
sparsity. The Journal of Machine Learning Research, 2022,
23(1): 120.

Chen M, Radford A, Child R, Wu J, Jun H, Luan D,
Sutskever I. Generative pretraining from pixels. In Proc.
the 37th International Conference on Machine Learning,
Jul. 2020, Article No. 158.

Zeng W, Ren X Z, Su T et al. PanGu-a: Largescale au-
toregressive pretrained Chinese language models with au-
to-parallel computation. arXiv: 2104.12369, 2021. https://
arxiv.org/abs/2104.12369, May 2024.

Wang S H, Sun Y, Xiang Y et al. ERNIE 3.0 titan: Ex-
ploring larger-scale knowledge enhanced pre-training for
language understanding and generation. arXiv: 2112.
12731, 2021. https://arxiv.org/abs/2112.12731, May 2024.
Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L,
Gomez A N, Kaiser L, Polosukhin I. Attention is all you
need. In Proc. the 31st International Conference on Neu-
ral Information Processing Systems, Dec. 2017, pp.6000-
6010.

Deng J, Dong W, Socher R, Li L J, Li K, Fei-Fei L. Ima-
geNet: A large-scale hierarchical image database. In Proc.
the 2009 IEEE Conference on Computer Vision and Pat-
tern Recognition, Jun. 2009, pp.248-255. DOI: 10.1109/
CVPR.2009.5206848.

Abu-El-Haija S, Kothari N, Lee J, Natsev P, Toderici G,
Varadarajan B, Vijayanarasimhan S. YouTube-8M: A
large-scale video classification benchmark. arXiv: 1609.
08675, 2016. https://arxiv.org/abs/1609.08675, May 2024.
Narayanan D, Shoeybi M, Casper J et al. Efficient large-
scale language model training on GPU clusters using
megatron-LM. In Proc. the 2021 International Confer-
ence for High Performance Computing, Networking, Stor-
age and Analysis, Nov. 2021, Article No. 58. DOI: 10.
1145/3458817.3476209.

Goyal P, Dollar P, Girshick R, Noordhuis P, Wesolowski
L, Kyrola A, Tulloch A, Jia Y Q, He K M. Accurate,
large minibatch SGD: Training ImageNet in 1 hour. arX-
iv: 1706.02677, 2017. https://arxiv.org/abs/1706.02677,
May 2024.

You Y, Gitman I, Ginsburg B. Scaling SGD batch size to
32k for ImageNet training. arXiv: 1708.03888, 2017. https:
//arxiv.org/abs/1708.03888v172, May 2024.

Assran M, Loizou N, Ballas N, Rabbat M. Stochastic gra-
dient push for distributed deep learning. In Proc. the 36th
International Conference on Machine Learning, Jun. 2019,
pp.344-353.

Dean J, Corrado G S, Monga R et al. Large scale dis-
tributed deep networks. In Proc. the 25th International
Conference on Neural Information Processing Systems,
Dec. 2012, pp.1223-1231.


https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1109/CVPR.2014.223
https://doi.org/10.1109/MSP.2012.2205597
https://doi.org/10.1561/116.00000050
https://arxiv.org/abs/1609.08144
https://doi.org/10.1145/3406095
https://doi.org/10.1109/ICCV.2015.312
https://doi.org/10.1109/ICCV.2015.312
https://arxiv.org/abs/1604.07316
https://doi.org/10.1609/aaai.v33i01.33014780
https://doi.org/10.1609/aaai.v33i01.33014780
https://doi.org/10.18653/V1/N19-1423
https://doi.org/10.18653/V1/N19-1423
https://doi.org/10.18653/V1/N19-1423
https://arxiv.org/abs/2005.14165
https://arxiv.org/abs/2005.14165
https://arxiv.org/abs/2104.12369
https://arxiv.org/abs/2104.12369
https://arxiv.org/abs/2112.12731
https://doi.org/10.1109/CVPR.2009.5206848
https://doi.org/10.1109/CVPR.2009.5206848
https://arxiv.org/abs/1609.08675
https://doi.org/10.1145/3458817.3476209
https://doi.org/10.1145/3458817.3476209
https://arxiv.org/abs/1706.02677
https://arxiv.org/abs/1708.03888v1?2
https://arxiv.org/abs/1708.03888v1?2

Lei Guan et al.: Advances of Pipeline Model Parallelism for Deep Learning Training: An Overview

25]

(26]

27]

28]

29]

(30]

(31]

32]

33]

34]

(35]

(36]

37]

(38]

Shazeer N, Cheng Y L, Parmar N et al. Mesh-Tensor-
Flow: Deep learning for supercomputers. In Proc. the
32nd International Conference on Neural Information Pro-
cessing Systems, Dec. 2018, pp.10435-10444.

Jia Z H, Zaharia M, Aiken A. Beyond data and model
parallelism for deep neural networks. In Proc. the 2019
SysML Conference, Mar. 31-Apr. 2, Apr. 2019, pp.1-13.
Gan W S, Lin J C W, Fournier-Viger P, Chao H C, Yu P
S. A survey of parallel sequential pattern mining. ACM
Trans. Knowledge Discovery from Data, 2019, 13(3): 25.
DOI: 10.1145/3314107.

Narayanan D, Harlap A, Phanishayee A, Seshadri V, De-
vanur N R, Ganger G R, Gibbons P B, Zaharia M.
PipeDream: Generalized pipeline parallelism for DNN
training. In Proc. the 27th ACM Symposium on Operat-
ing Systems Principles, Oct. 2019, pp.1-15. DOI: 10.1145/
3341301.3359646.

Huang Y P, Cheng Y L, Bapna A, Firat O, Chen M X,
Chen D H, Lee H, Ngiam J, Le Q V, Wu Y H, Chen Z F.
GPipe: Efficient training of giant neural networks using
pipeline parallelism. In Proc. the 33rd International Con-
ference on Neural Information Processing Systems, Dec.
2019, Article No. 10.

Pouyanfar S, Sadiq S, Yan Y L, Tian H M, Tao Y D,
Reyes M P, Shyu M L, Chen S C, Iyengar S S. A survey
on deep learning: Algorithms, techniques, and applica-
tions. ACM Computing Surveys, 2019, 51(5): 92. DOI: 10.
1145/3234150.

Ben-Nun T, Hoefler T. Demystifying parallel and dis-
tributed deep learning: An in-depth concurrency analysis.
ACM Computing Surveys, 2020, 52(4): 65. DOI: 10.1145/
3320060.

Tang Z H, Shi S H, Wang W, Li B, Chu X W. Communi-
cation-efficient distributed deep learning: A comprehen-
sive survey. arXiv: 2003.06307, 2020. https://arxiv.org/
abs/2003.06307, May 2024.

Mayer R, Jacobsen H A. Scalable deep learning on dis-
tributed infrastructures: Challenges, techniques, and tools.
ACM Computing Surveys, 2021, 53(1): Article No. 3.
DOI: 10.1145/3363554.

Liang P, Tang Y, Zhang X D, Bai Y H, Su T, Lai Z Q,
Qiao L B, Li D S. A survey on auto-parallelism of large-
scale deep learning training. IEEE Trans. Parallel and
Distributed Systems, 2023, 34(8): 2377-2390. DOIL: 10.
1109/TPDS.2023.3281931.

Shen L, Sun Y, Yu Z Y, Ding L, Tian X M, Tao D C. On
efficient training of large-scale deep learning models: A
literature review. arXiv: 2304.03589, 2023. https://arxiv.
org/abs/2304.03589, May 2024.

Kumar S. Introduction to Parallel Programming. Cam-
bridge University Press, 2022.

Abadi M, Barham P, Chen J N et al. TensorFlow: A sys-
tem for large-scale machine learning. In Proc. the 12th
USENIX Conference on Operating Systems Design and
Implementation, Nov. 2016, pp.265-283.

Paszke A, Gross S, Massa F et al. PyTorch: An impera-

[39]

(40]

(41]

[42]

(43]

[44]

(45]

[46]

(47]

(48]

[49]

[50]

581

tive style, high-performance deep learning library. In
Proc. the 33rd Conference on Neural Information Process-
ing Systems, Dec. 2019, Article No. 721.

Sergeev A, Del Balso M. Horovod: Fast and easy dis-
tributed deep learning in TensorFlow. arXiv: 1802.05799,
2018. https://arxiv.org/abs/1802.05799, May 2024.

Li M, G. Andersen D G, Park J W, Smola A J, Ahmed
A, Josifovski V, Long J, Shekita E J, Su B Y. Scaling dis-
tributed machine learning with the parameter server. In
Proc. the 11th USENIX Conference on Operating Sys-
tems Design and Implementation, Oct. 2014, pp.583-598.
Cui H G, Zhang H, Ganger G R, Gibbons P B, Xing E P.
GeePs: Scalable deep learning on distributed GPUs with a
GPU-specialized parameter server. In Proc. the 11th Eu-
ropean Conference on Computer Systems, Apr. 2016, Ar-
ticle No. 4. DOI: 10.1145/2901318.2901323.

Patarasuk P, Yuan X. Bandwidth optimal all-reduce algo-
rithms for clusters of workstations. Journal of Parallel and
Distributed Computing, 2009, 69(2): 117-124. DOI: 10.
1016/j.jpdc.2008.09.002.

Alistarh D, Grubic D, Li J Z, Tomioka R, Vojnovic M.
QSGD: Communication-efficient SGD via gradient quan-
tization and encoding. In Proc. the 31st International
Conference on Neural Information Processing Systems,
Dec. 2017, pp.1707-1718.

Jia Z H, Lin S N, Qi C R, Aiken A. Exploring hidden di-
mensions in parallelizing convolutional neural networks.
In Proc. the 35th International Conference on Machine
Learning, Jul. 2018, pp.2279-2288.

Rajbhandari S, Rasley J, Ruwase O, He Y X. ZeRO:
Memory optimizations toward training trillion parameter
models. In Proc. the 2020 International Conference for
High Performance Computing, Networking, Storage and
Analysis, Nov. 2020. DOI: 10.1109/SC41405.2020.00024.
Gusak J, Cherniuk D, Shilova A et al. Survey on efficient
training of large neural networks. In Proc. the 31st Inter-
national Joint Conference on Artificial Intelligence, Jul.
2022, pp.5494-5501. DOI: 10.24963/ijcai.2022/769.

Li S G, Hoefler T. Chimera: Efficiently training large-
scale neural networks with bidirectional pipelines. In
Proc. the 2021 International Conference for High Perfor-
mance Computing, Networking, Storage and Analysis,
Nov. 2021, Article No. 27. DOI: 10.1145/3458817.3476145.
Fan S Q, Rong Y, Meng C et al. DAPPLE: A pipelined
data parallel approach for training large models. In Proc.
the 26th ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming, Feb. 2021, pp.431-445.
DOI: 10.1145/3437801.3441593.

Mirhoseini A, Pham H, Le Q V, Steiner B, Larsen R,
Zhou Y F, Kumar N, Norouzi M, Bengio S, Dean J. De-
vice placement optimization with reinforcement learning.
In Proc. the 34th International Conference on Machine
Learning, Aug. 2017, pp.2430-2439.

Krizhevsky A. One weird trick for parallelizing convolu-
tional neural networks. arXiv: 1404.5997, 2014. https://
arxiv.org/abs/1404.5997, May 2024.


https://doi.org/10.1145/3314107
https://doi.org/10.1145/3341301.3359646
https://doi.org/10.1145/3341301.3359646
https://doi.org/10.1145/3234150
https://doi.org/10.1145/3234150
https://doi.org/10.1145/3320060
https://doi.org/10.1145/3320060
https://arxiv.org/abs/2003.06307
https://arxiv.org/abs/2003.06307
https://doi.org/10.1145/3363554
https://doi.org/10.1109/TPDS.2023.3281931
https://doi.org/10.1109/TPDS.2023.3281931
https://arxiv.org/abs/2304.03589
https://arxiv.org/abs/2304.03589
https://arxiv.org/abs/1802.05799
https://doi.org/10.1145/2901318.2901323
https://doi.org/10.1016/j.jpdc.2008.09.002
https://doi.org/10.1016/j.jpdc.2008.09.002
https://doi.org/10.1109/SC41405.2020.00024
https://doi.org/10.1109/SC41405.2020.00024
https://doi.org/10.1109/SC41405.2020.00024
https://doi.org/10.24963/ijcai.2022/769
https://doi.org/10.1145/3458817.3476145
https://doi.org/10.1145/3437801.3441593
https://doi.org/10.1145/3437801.3441593
https://doi.org/10.1145/3437801.3441593
https://arxiv.org/abs/1404.5997
https://arxiv.org/abs/1404.5997

582

[51]

[52]

(53]

[54]

[55]

[56]

[57]

(58]

[59]

(60]

(61]

(62]

Li S G, Liu H X, Bian Z D, Fang J R, Huang H C, Liu Y
L, Wang B X, You Y. Colossal-Al: A unified deep learn-
ing system for large-scale parallel training. In Proc. the
52nd International Conference on Parallel Processing,
Aug. 2023, pp.766-775. DOI: 10.1145/3605573.3605613.
Lai Z Q, Li S W, Tang X D, Ge K S, Liu W J, Duan Y
B, Qiao L B, Li D S. Merak: An efficient distributed DNN
training framework with automated 3D parallelism for gi-
ant foundation models. IEEE Trans. Parallel and Dis-
tributed Systems, 2023, 34(5): 1466-1478. DOI: 10.1109/
TPDS.2023.3247001.

Ramashekar T, Bondhugula U. Automatic data alloca-
tion and buffer management for multi-GPU machines.
ACM Trans. Architecture and Code Optimization, 2013,
10(4): 60. DOI: 10.1145/2544100.

Jain A, Awan A A, Aljuhani A M, Hashmi J M, Antho-
ny Q G, Subramoni H, Panda D K, Machiraju R, Par-
wani A. GEMS: GPU-enabled memory-aware model-par-
allelism system for distributed DNN training. In Proc. the
2020 International Conference for High Performance Com-
puting, Networking, Storage and Analysis, Nov. 2020,
pp.1-15. DOI: 10.1109/SC41405.2020.00049.

Shoeybi M, Patwary M, Puri R, LeGresley P, Casper J,
Catanzaro B. Megatron-LM: Training multi-billion pa-
rameter language models using model parallelism. arXiv:
1909.08053, 2019. https://arxiv.org/abs/1909.08053, May
2024.

Qi P, Wan X, Huang G, Lin M. Zero bubble pipeline par-
allelism. In Proc. the 11th International Conference on
Learning Representations, Jul. 2023.

Gaunt A L, Johnson M A, Riechert M, Tarlow D, Tomio-
ka R, Vytiniotis D, Webster S. AMPNet: Asynchronous
model-parallel training for dynamic neural networks. arX-
iv: 1705.09786, 2017. https://arxiv.org/abs/1705.09786,
May 2024.

Narayanan D, Phanishayee A, Shi K Y, Chen X, Zaharia
M. Memory-efficient pipeline-parallel DNN training. In
the 38th International Conference on Machine
Learning, Jul. 2021, pp.7937-7947.

Chen C C, Yang C L, Cheng H Y. Efficient and robust
parallel DNN training through model parallelism on mul-
ti-GPU platform. arXiv: 1809.02839, 2018. https://arxiv.
org/abs/1809.02839, May 2024.

Guan L, Yin W T, Li D S, Lu X C. XPipe: Efficient
pipeline model parallelism for multi-GPU DNN training.
arXiv: 1911.04610, 2019. https://arxiv.org/abs/1911.04610,
May 2024.

Chen Z H, Xu C, Qian W N, Zhou A Y. Elastic averag-
ing for efficient pipelined DNN training. In Proc. the 28th
ACM SIGPLAN Annual Symposium on Principles and
Practice of Parallel Programming, Feb. 2023, pp.380-391.
DOI: 10.1145/3572848.3577484.

Yang P C, Zhang X M, Zhang W P, Yang M, Wei H.
Group-based interleaved pipeline parallelism for large-
scale DNN training. In Proc. the 10th International Con-

ference on Learning Representations, Apr. 2022.

Proc.

(63]

[64]

(65]

(66]

(67]

[68]

[69]

(70]

(71]

[72]

(73]

(74]

[75]

J. Comput. Sci. & Technol., May 2024, Vol.39, No.3

Qian N. On the momentum term in gradient descent
learning algorithms. Neural Networks, 1999, 12(1):
145-151. DOI: 10.1016/S0893-6080(98)00116-6.

Sutskever I, Martens J, Dahl G, Hinton G. On the impor-
tance of initialization and momentum in deep learning. In
the 30th International Conference on Machine
Learning, Jun. 2013, pp.I1I-1139-111-1147.

Kingma D P, Ba J. Adam: A method for stochastic opti-
mization. In Proc. the 3rd International Conference on

Proc.

Learning Representations, May 2015.

Yang B W, Zhang J, Li J, Ré C, Aberger C R, De Sa C.
PipeMare: Asynchronous pipeline parallel DNN training.
arXiv: 1910.05124, 2019. https://arxiv.org/abs/1910.05124,
May 2024.

Zhang S X, Choromanska A, LeCun Y. Deep learning
with elastic averaging SGD. In Proc. the 28th Interna-
tional Conference on Neural Information Processing Sys-
tems, Dec. 2015, pp.685-693.

Guan L, Qiao L B, Li D S, Sun T, Ge K S, Lu X C. An
efficient ADMM-based algorithm to Nonconvex penalized
support vector machines. In Proc. the 2018 IEEE Interna-
tional Conference on Data Mining Workshops, Nov. 2018,
pp-1209-1216. DOI: 10.1109/ICDMW.2018.00173.

Zeng Z H, Liu C B, Tang Z, Chang W L, Li K L. Train-
ing acceleration for deep neural networks: A hybrid paral-
lelization strategy. In Proc. the 58th ACM/IEEE Design
Automation Conference, Dec. 2021, pp.1165-1170. DOI:
10.1109/DAC18074.2021.9586300.

Zheng L M, Li Z H, Zhang H, Zhuang Y H, Chen Z F,
Huang Y P, Wang Y D, Xu Y Z, Zhuo D Y, Xing E P,
Gonzalez J E, Stoica I. Alpa: Automating inter- and In-
tra-Operator parallelism for distributed deep learning. In
Proc. the 16th USENIX Symposium on Operating Sys-
tems Design and Implementation, Jul. 2022, pp.559-578.
Liu W J, Lai Z Q, Li S W, Duan Y B, Ge K S, Li D S.
AutoPipe: A fast pipeline parallelism approach with bal-
anced partitioning and micro-batch slicing. In Proc. the
2022 IEEE International Conference on Cluster Comput-
ing, Sept. 2022, pp.301-312. DOI: 10.1109/CLUSTER51413.
2022.00042.

Unger C, Jia Z H, Wu W et al. Unity: Accelerating DNN
training through joint optimization of algebraic transfor-
mations and parallelization. In Proc. the 16th USENIX
Symposium on Operating Systems Design and Implemen-
tation, Jul. 2022, pp.267-284.

Zhao S X, Li F X, Chen X S, Guan X X, Jiang J Y,
Huang D, Qing Y, Wang S, Wang P, Zhang G, Li C, Luo
P, Cui H M. VPipe: A virtualized acceleration system for
achieving efficient and scalable pipeline parallel DNN
training. IEEE Trans. Parallel and Distributed Systems,
2022, 33(3): 489-506. DOI: 10.1109/TPDS.2021.3094364.
Osawa K, Li S, Hoefler T. Pipefisher: Efficient training of
large language models using pipelining and fisher informa-
tion matrices. In Proc. the 6th Conference on Machine
Learning and Systems, May 2023.

Tarnawski J, Narayanan D, Phanishayee A. Piper: Multi-


https://doi.org/10.1145/3605573.3605613
https://doi.org/10.1109/TPDS.2023.3247001
https://doi.org/10.1109/TPDS.2023.3247001
https://doi.org/10.1145/2544100
https://doi.org/10.1109/SC41405.2020.00049
https://arxiv.org/abs/1909.08053
https://arxiv.org/abs/1705.09786
https://arxiv.org/abs/1809.02839
https://arxiv.org/abs/1809.02839
https://arxiv.org/abs/1911.04610
https://doi.org/10.1145/3572848.3577484
https://doi.org/10.1016/S0893-6080(98)00116-6
https://doi.org/10.1016/S0893-6080(98)00116-6
https://doi.org/10.1016/S0893-6080(98)00116-6
https://doi.org/10.1016/S0893-6080(98)00116-6
https://doi.org/10.1016/S0893-6080(98)00116-6
https://arxiv.org/abs/1910.05124
https://doi.org/10.1109/ICDMW.2018.00173
https://doi.org/10.1109/DAC18074.2021.9586300
https://doi.org/10.1109/CLUSTER51413.2022.00042
https://doi.org/10.1109/CLUSTER51413.2022.00042
https://doi.org/10.1109/TPDS.2021.3094364

Lei Guan et al.: Advances of Pipeline Model Parallelism for Deep Learning Training: An Overview 583

[76]

[77]

(78]

[79]

(80]

(81]

(82]

(83]

(84]

(85]

(86]

dimensional planner for DNN parallelization. In Proc. the
35th International Conference on Neural Information Pro-
cessing Systems, Dec. 2021, Article No. 1902.

Jiang W, Wang B, Ma S, Hou X, Huang L B, Dai Y,
Fang J B. PipeFB: An optimized pipeline parallelism
scheme to reduce the peak memory usage. In Proc. the
22nd International Conference on Algorithms and Archi-
tectures for Parallel Processing, Oct. 2022, pp.590-604.
DOI: 10.1007/978-3-031-22677-9 31.

Chen T Q, Xu B, Zhang C Y, Guestrin C. Training deep
nets with sublinear memory cost. arXiv: 1604.06174, 2016.
https://arxiv.org/abs/1604.06174, May 2024.

Kim T, Kim H, Yu G I, Chun B G. BPIPE: Memory-bal-
anced pipeline parallelism for training large language
models. In Proc. the 40th International Conference on
Machine Learning, Jul. 2023, Article No. 682.

Wang L N, Ye J M, Zhao Y Y, Wu W, Li A, Song S L,
Xu Z L, Kraska T. Superneurons: Dynamic GPU memo-
ry management for training deep neural networks. In
Proc. the 23rd ACM SIGPLAN Symposium on Principles
and Practice of Parallel Programming, Feb. 2018,
pp-41-53. DOI: 10.1145/3178487.3178491.

Jiang W, Xu R, Ma S, Wang Q, Hou X, Lu H'Y. A mem-
ory saving mechanism based on data transferring for
pipeline parallelism. In Proc. the 2021 IEEE Internation-
al Conference on Parallel & Distributed Processing with
Applications, Big Data & Cloud Computing, Sustainable
Computing & Communications, Social Computing & Net-
working (ISPA/BDCloud/SocialCom/SustainCom), Sept.
30-Oct. 3, 2021, pp.1230-1235. DOI: 10.1109/ISPA-BD-
Cloud-SocialCom-SustainCom52081.2021.00169.

Zhou Q, Wang H Q, Yu X Y, Li C, Bai Y H, Yan F, Xu
Y L. MPress: Democratizing billion-scale model training
on multi-gpu servers via memory-saving inter-operator
parallelism. In Proc. the 29th IEEE International Sympo-
sium on High-Performance Computer Architecture, Feb.
25-Mar. 1, 2023, pp.556-569. DOIL: 10.1109/HPCA56546.
2023.10071077.

Le Scao T, Fan A, Akiki C et al. BLOOM: A 176B-pa-
rameter open-access multilingual language model. arXiv:
2211.05100, 2022. https://arxiv.org/abs/2211.05100, May
2024.

Guan L. Weight prediction boosts the convergence of
AdamW. In Proc. the 27th Pacific-Asia Conference on
Knowledge Discovery and Data Mining, May 2023,
pp-329-340. DOI: 10.1007/978-3-031-33374-3 26.

Guan L, Li D S, Shi Y Q, Meng J. XGrad: Boosting gra-
dient-based optimizers with weight prediction. IEEE
Trans. Pattern Analysis and Machine Intelligence. DOI:
10.1109/TPAMI.2024.3387399.

Shi N C, Li D W, Hong M Y, Sun R Y. RMSprop con-
verges with proper hyper-parameter. In Proc. the ICLR
2021, May 2021.

Loshchilov I, Hutter F. Decoupled weight decay regular-
ization. arXiv: 1711.05101, 2017. https://arxiv.org/abs/
1711.05101, May 2024.

[87] Zhuang J T, Tang T, Ding Y F et al. Adabelief optimizer:
Adapting stepsizes by the belief in observed gradients. In
Proc. the 34th International Conference on Neural Infor-
mation Processing Systems, Dec. 2020, pp.18795-18806.

[88] Wang Y Z, Kang Y, Qin C, Wang H, Xu Y, Zhang Y L,
Fu Y. Momentum is all you need for data-driven adap-
tive optimization. In Proc. the 23rd IEEE International
Conference on Data Mining, Dec. 2023, pp.1385-1390.
DOI: 10.1109/ICDM58522.2023.00179.

[89] Liao X K, Pang Z B, Wang K F, Lu Y T, Xie M, Xia J,
Dong D Z, Suo G. High performance interconnect net-
work for Tianhe system. Journal of Computer Science and
Technology, 2015, 30(2): 259-272. DOI: 10.1007/s11390-
015-1520-7.

[90] Yang X J, Liao X K, Lu K, Hu Q F, Song J Q, Su J S.
The TianHe-1A supercomputer: Its hardware and soft-
ware. Journal of Computer Science and Technology, 2011,
26(3): 344-351. DOI: 10.1007/s02011-011-1137-8.

[91] Zhan J, Zhang J H. Pipe-torch: Pipeline-based distribut-
ed deep learning in a GPU cluster with heterogeneous
networking. In Proc. the 7th International Conference on
Advanced Cloud and Big Data, Sept. 2019, pp.55-60.
DOI: 10.1109/CBD.2019.00020.

[92] Park J H, Yun G, Yi C M, Nguyen N T, Lee S, Choi J,
Noh S H, Choi Y R. HetPipe: Enabling large DNN train-
ing on (whimpy) heterogeneous GPU clusters through in-
tegration of pipelined model parallelism and data paral-
lelism. In Proc. the 2020 USENIX Conference on Usenix
Annual Technical Conference, Jul. 2020, Article No. 21.

Lei Guan received his Ph.D. de-
gree in computer science and technolo-
gy from the National University of De-
fense Technology (NUDT), Changsha,
in 2022. He is an associate professor in
the College of Science at NUDT. His
research interests include deep learn-
ing, parallel computing, optimization, and AI for sci-

ence.

Dong-Sheng Li received his Ph.D.
degree in computer science and tech-
nology from the National University of
Defense Technology (NUDT), Chang-
sha, in 2005. He is a professor in the
College of Computer at NUDT. He
was awarded the Chinese National Ex-
cellent Doctoral Dissertation in 2008. His research inter-
ests include distributed systems, cloud computing, and

big data processing.


https://doi.org/10.1007/978-3-031-22677-9_31
https://doi.org/10.1007/978-3-031-22677-9_31
https://doi.org/10.1007/978-3-031-22677-9_31
https://doi.org/10.1007/978-3-031-22677-9_31
https://doi.org/10.1007/978-3-031-22677-9_31
https://doi.org/10.1007/978-3-031-22677-9_31
https://doi.org/10.1007/978-3-031-22677-9_31
https://doi.org/10.1007/978-3-031-22677-9_31
https://doi.org/10.1007/978-3-031-22677-9_31
https://doi.org/10.1007/978-3-031-22677-9_31
https://doi.org/10.1007/978-3-031-22677-9_31
https://arxiv.org/abs/1604.06174
https://doi.org/10.1145/3178487.3178491
https://doi.org/10.1109/ISPA-BDCloud-SocialCom-SustainCom52081.2021.00169
https://doi.org/10.1109/ISPA-BDCloud-SocialCom-SustainCom52081.2021.00169
https://doi.org/10.1109/ISPA-BDCloud-SocialCom-SustainCom52081.2021.00169
https://doi.org/10.1109/ISPA-BDCloud-SocialCom-SustainCom52081.2021.00169
https://doi.org/10.1109/ISPA-BDCloud-SocialCom-SustainCom52081.2021.00169
https://doi.org/10.1109/ISPA-BDCloud-SocialCom-SustainCom52081.2021.00169
https://doi.org/10.1109/ISPA-BDCloud-SocialCom-SustainCom52081.2021.00169
https://doi.org/10.1109/ISPA-BDCloud-SocialCom-SustainCom52081.2021.00169
https://doi.org/10.1109/HPCA56546.2023.10071077
https://doi.org/10.1109/HPCA56546.2023.10071077
https://arxiv.org/abs/2211.05100
https://doi.org/10.1007/978-3-031-33374-3_26
https://doi.org/10.1007/978-3-031-33374-3_26
https://doi.org/10.1007/978-3-031-33374-3_26
https://doi.org/10.1007/978-3-031-33374-3_26
https://doi.org/10.1007/978-3-031-33374-3_26
https://doi.org/10.1007/978-3-031-33374-3_26
https://doi.org/10.1007/978-3-031-33374-3_26
https://doi.org/10.1007/978-3-031-33374-3_26
https://doi.org/10.1007/978-3-031-33374-3_26
https://doi.org/10.1007/978-3-031-33374-3_26
https://doi.org/10.1007/978-3-031-33374-3_26
https://doi.org/10.1109/TPAMI.2024.3387399
https://arxiv.org/abs/1711.05101
https://arxiv.org/abs/1711.05101
https://doi.org/10.1109/ICDM58522.2023.00179
https://doi.org/10.1007/s11390-015-1520-7
https://doi.org/10.1007/s11390-015-1520-7
https://doi.org/10.1007/s11390-015-1520-7
https://doi.org/10.1007/s11390-015-1520-7
https://doi.org/10.1007/s11390-015-1520-7
https://doi.org/10.1007/s11390-015-1520-7
https://doi.org/10.1007/s11390-015-1520-7
https://doi.org/10.1007/s02011-011-1137-8
https://doi.org/10.1007/s02011-011-1137-8
https://doi.org/10.1007/s02011-011-1137-8
https://doi.org/10.1007/s02011-011-1137-8
https://doi.org/10.1007/s02011-011-1137-8
https://doi.org/10.1007/s02011-011-1137-8
https://doi.org/10.1007/s02011-011-1137-8
https://doi.org/10.1109/CBD.2019.00020

584

Ji-Ye Liang received his Ph.D. de-
gree in applied mathematics from Xi’
an Jiaotong University, Xi’an, in 2001.
He is a professor with the Key Labora-
tory of Computational Intelligence and

Chinese Information Processing of the

Ministry of Education, School of Com-
puter and Information Technology, Shanxi University,
Taiyuan. His research interests include artificial intelli-
gence, granular computing, data mining, and machine

learning.

Wen-Jian Wang received her Ph.D.
degree in applied mathematics from
Xi’an Jiaotong University, Xi’an, in
2004. Now she is a full professor and
Ph.D. supervisor of the Key Laborato-

ry of Computational Intelligence and

Chinese Information Processing of the
Ministry of Education, Shanxi University, Taiyuan. Her
research interests include machine learning, data mining,

intelligent computing, etc.

J. Comput. Sci. & Technol., May 2024, Vol.39, No.3

Ke-Shi Ge received his B.S. degree

in computer science and technology

L e A from the Department of Computer
S Science and Technology, Xi’an Jiao-

-
&\/, tong University, Xi’an, in 2015, and
\%\ 7 his Ph.D. and M.S. degrees in comput-

B\ T[4
College of Computer, National University of Defense
Technology (NUDT), Changsha, in 2022 and 2017, re-

spectively. He is currently an assistant professor with

Al
il er science and technology from the

NUDT. His research interests include high-performance

computing and distributed machine learning systems.

Xi-Cheng Lu received his B.S. de-
gree in computer science from the
Harbin Military Engineering Institute,
Harbin, in 1970. He is currently a pro-
fessor with the College of Computer,
National University of Defense Tech-
nology, Changsha. His research inter-
ests include distributed computing, computer networks,
and parallel computing. He is an Academician of the

Chinese Academy of Engineering.



	1 Introduction
	2 Preliminary
	2.1 Parallel Training Modes
	2.2 Basic Concepts of PMP
	2.3 Challenges in PMP
	2.3.1 Effective Pipeline Schedule
	2.3.2 Load Balance for Intra-Node and Inter-Node Training
	2.3.3 Optimization of Computation, Storage, and Communication


	3 Pipeline Schedule for PMP
	3.1 Synchronous Pipeline Schedule
	3.2 Asynchronous Pipeline Schedule
	3.3 Comparison

	4 Load Balance for Pipeline Training
	4.1 Load Balance for Intra-Node Training
	4.2 Load Balance for Inter-Node Training

	5 Optimization of Computation, Storage, and Communication
	5.1 Optimization of Computation
	5.2 Optimization of Storage
	5.3 Optimization of Communication

	6 Discussion
	6.1 Asynchronous Pipeline Parallelism with Effective Parameter Learning
	6.2 Pipeline Parallelism for Large-Scale Heterogeneous Computing Platforms

	7 Conclusions
	Acknowledgements
	Conflict of Interest
	References

